
Algorithms for Distributed Fault Management

in Telecommunications Networks?

Eric Fabre, Albert Benveniste, Stefan Haar1, Claude Jard2, and Armen
Aghasaryan3

1 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
2 IRISA/ENS-Cachan Campus de Ker-Lann; 35042 Rennes cedex, France

3 Alcatel Research & Innovation, Next Generation Network and Service Management
Project, Alcatel R&I, Route de Nozay, Marcoussis, 91461 France

Abstract. Distributed architectures for network management have been
the subject of a large research effort, but distributed algorithms that im-
plement the corresponding functions have been much less investigated.
In this paper we describe novel algorithms for model-based distributed

fault diagnosis.

1 Introduction

Distributed self-management is a key objective in operating large scale infras-
tructures. Fault management is one of the five classical components of manage-
ment, and is the subject of our work. In this paper, we consider a distributed
architecture in which each supervisor is in charge of its own domain, and the
different supervisors cooperate at constructing a set of coherent local views for
their respective domains. By coherent, we mean that the different views for
the different supervisors agree on the interfaces of their respective domains. Of
course, to ensure that the approach can properly scale up, the corresponding
global view should never be actually computed.

Fault diagnosis has been addressed by different means. Historically, the first
approach was by means of rule-based expert systems [10,11]. Such systems are
generally limited to simple correlation rules, with small scope, and hardly capture
all the complexity of the network reaction to a failure. Connexionist and related
learning techniques from Artificial Intelligence area have been investigated to
avoid the burden of providing detailed and explicit knowledge on the supervised
domain [5]. But again, such methods are not scalable, and difficult to update
when the network evolves. To avoid these drawbacks, the main trend nowadays
is in favor of model based approaches [8,7,9]. Most of them rely on topological
information, both physical and logical (this information is easy to get by scanning
Management Information Bases). Using the topology of interactions, successive
correlations with an observed symptom can be traced back to their possible
alternative causes.

? This work was supported by the French National RNRT project MAGDA2, funded
by the Ministère de la Recherche.

2

The present approach goes further in this direction. First of all in the size and
details of the model (see fig. 1) : the physical and logical topologies (Network
Elements + connections) are modeled as a graph of interconnected Managed
Objects (MO), and each MO is itself described as a small dynamic system. In the
management plane, MOs are equiped with their own fault management function
and are responsible of the production of alarms. Alarms are emitted when a
local failure is detected, or in reaction to the failure of a neighboring MO that
was necessary to guarantee a correct service. This second phenomenon is at the
origin of failure propagations in the network. We refer the reader to [1] for details
on the modeling, and for the description of a tool that automatically builds
the model. Second key feature of our approach : fault diagnosis is performed
in a distributed way. Specifically, we assume alarms are not sent to a global
supervisor, but are rather collected by local supervisors, in charge of part of the
system. In this scenario, a local supervisor only needs to know the local model of
its domain (for example one NE in fig. 1), and cooperates asynchronously with
supervisors of neighboring domains. We believe this is the key to cross-domain
fault management.

For space reasons, we only give a glance at the theory behind distributed
diagnosis algorithms, by means of a toy example (see [2,3,4] for details).

St Ouen Aubervilliers

Montrouge Gentilly

TFLOS

TF
LOS

MS-AIS

MS-AIS

disabled AU-AIS

AU-AIS

AU-AISAU-AIS

disabled
disabled

AU-AIS AU-AIS disabled

Fig. 1. Left : Part of the Paris area SDH/SONET ring (topological view, at the Network
Element level). In the model of this network, each NE is further decomposed into
Managed Objects, corresponding to the SDH hierarchy (SPI, RS, MS, etc.). Right : a
failure scenario on this model, with propagation of the failure, entailing correlation in
the alarms raised.

2 A structure to represent runs with concurrency

A central feature in large distributed dynamic systems is that many components
run in parallel, so several events can occur at the same time, i.e. “concurrently.”
It is therefore crucial to represent runs of such systems in a framework that
captures this independence, and sequences of events are definitely inappropriate
for that. Since the components of our network are finite state machines, this

3

suggests to use safe Petri nets to model components, and to represent runs of the
network (i.e. failure propagations) with so-called “true concurrency semantics.”
We illustrate this on a toy example, given in fig. 2.

component 2

component 1
5

32 4

1

iiii ii

iv v vi

7

6

2

i

1 7

43

57

43
11

iii

iv

ii

11 7 5 6

44

2

11

2 3

ii

2 3

7 511

2 3 4

i

71

6

iii iv v

vi

iii iv v

iii
#

5

32 4

1

ρ β β

α α ρ

7

6

Fig. 2. Running example in the form of a Petri Net, viewed as two components inter-
acting through shared places 3 and 7 (left). Thick places indicate the initial marking.
Right : representation of runs of this system under the form of a branching process.
“Time” goes from top to bottom.

On the example, places 1 and 2 represent states ok or down of component 1
(with a possibility of self-repair by transition iii). Component 1 can thus go
down in two ways, through ii or i. The second possibility fills place 3 which
models a propagation of the failure to component 2 : place 4 corresponds to
state ok, place 5 to a temporary failure (self-repair possible by vi), and place 6
to a definitive down state. Notice that, on the leftmost right picture of the model,
transitions are labeled by α, β, ρ which corresponds to the alarms produced when
they fire.

The mechanism of constructing a run of the Petri net P in the form of a
partial order is illustrated in the 2nd and 3rd diagrams. Initialize any run of P
with the three conditions labeled by the initial marking (1, 7, 4). Append to the
pair (1, 7) a copy of the transition (1, 7) → i → (2, 3). Append to the new place
labeled 2 a copy of the transition (2) → iii → (1). Append, to the pair (3, 4),
a copy of the transition (3, 4) → iv → (7, 5) (this is the step shown). We have
constructed (the prefix of) a run of P , where concurrency is explicitly displayed :
the ordering of events labeled iii and iv is left unspecified, we only know they
occur after (or as a consequence of) i.

Now, all runs of P can be constructed in this way. Different runs can share
some prefix. The rightmost diagram shows a branching process (BP) of P , ob-
tained by superimposing the shared parts of different runs. The gray part is a
copy of the run shown in the middle. The alternative run on the extreme left

4

of this diagram (involving successive transitions ii, iii, i) shares only its initial
places with the run in gray. On the other hand, replacing, in the gray run, the
transition labeled iv by the one labeled v yields another run. We say there is
a conflict at place 4 : a choice must be made between firing iv or v. A conflict
takes place each time a place is branching in this diagram. Branching processes
thus encodes sets of executions of a PN in a compact manner : a run of the PN
corresponds to selecting part of the BP which is both conflict free and causaly
closed. Observe that by nature a BP has no oriented cycle. The maximal BP
of a Petri net P is called its unfolding : UP . Places and transitions of a BP are
rather called conditions and events, and are labeled by places and transitions of
the original net P .

#

β

α

ρ

ρ ρ α α

ρ

11 11 7 5 6

44

4322

71

ββ

ρ ρ α α

ρ

11 11 7 5 6

44

4322

71

ββ

Fig. 3. Left : an alarm pattern A. Center : the product A∧UP . right : same net without
the conditions of A.

Assume the system modeled by P runs and that labels (alarms) produced by
its transitions are collected by a sensor. We represent the collected alarm pattern
under the form of a net A (left diagram on fig. 3). The (centralized) diagnosis
problem can be formalized in the following manner : compute all runs of P

that could explain the observed alarm pattern A. Deciding what failure actually
occured is then a post-processing on this set of possible runs. Formally, this
amounts to computing all runs of the product net A×P , which is P constrained

by observations A. Equivalently, we want UA×P = A∧ UP , where ∧ is a special
product on branching processes, designed to avoid oriented cycles. The result is
depicted on fig. 3, and can be built recursively, in an asynchronous manner, just
like branching processes of P . Observe that an extra conflict relation is created
(dashed line labeled with #) to capture the fact that alarm ρ can be explained
either by (2) → iii → (1) or by (5) → iii → (4). Possible explanations to A

correspond to maximal runs of A∧UP that are labeled by all alarms of A (some
runs of A ∧ UP may only explain the first alarms and then stop).

3 Distributed diagnosis with two supervisors

This is the main novelty of this paper. Assume a local sensor collects alarms
produced component i, under the form of a local alarm pattern Ai, i = 1, 2.
The objective is to build a distributed view of UP ∧A1 ∧A2. Alarm patterns are
processed by two local supervisors communicating asynchronously.

5

Fig. 4 (top) displays the information available to supervisor i : Ai together
with the local model of component i. The bottom diagrams represent the local
views of the diagnosis. They correspond to projections on events of each compo-
nent of UP∧A1∧A2. Specifically, on the side of component 1, one has transitions
of component 1 (explaining local alarms A1) plus abstractions of the action of
component 2 on shared places 7 and 3. These events appear as empty rectangles.
To recover a complete trajectory of P , one has to glue matching trajectories on
each side. This corresponds for example to gluing events indicated by arrows on
the picture, to obtain the grey trajectory of P . Observe that this distributed
representation of the diagnosis is more efficient than the centralized one : to be
able to glue two local runs, it is enough that they have maching behaviours only

on shared places. So, for a given history of these shared places, m trajectories of
component 1, and n trajectories of component 2 actually correspond to m × n

trajectories of P .

component 1

component 2

supervisor 1 supervisor 2

κ2

6

α

κ1

7 5 6

α

3 44

α

7

ρ2

5

α

3 4

7

κ1

κ2

11

ρ1

2

β

2

β

71

β

2 3

ρ1

11 7

ββ

2 2 3

7

β

β

ρ1
32

1

ρ β β

7

α

α

ρ2

5

4

α α ρ

3

7

6

Fig. 4. Distributed diagnosis: two coherent local views of the unfolding UP ∧ A1 ∧ A2

are built by two supervisors cooperating asynchronously.

As for the centralized case, the distributed view of the diagnosis can be ob-
tained recursively, but requires communication between supervisors. Each arrow
actually corresponds to the communication of a new event to append. However,
the cooperation between the two supervisors need only asynchronous commu-
nication. Each supervisor can simply “emit and forget.” Diagnosis can progress

6

concurrently and asynchronously at each supervisor. For example, supervisor 1
can construct the branch [(1) → β → (2) → ρ1 → (1) → β → (2)] as soon as
the corresponding local alarms are collected, without ever synchronizing with
supervisor 2.

4 Conclusion

We have proposed an unfolding approach to the distributed diagnosis of con-
current and asynchronous discrete event dynamical systems. Our presentation
was informal, based on a toy illustrative example. The related mathematical
material is found in [3]. A prototype software implementing this method was
developed at IRISA. This software was subsequently deployed at Alcatel on a
truly distributed architecture, no modification was necessary to perform this de-
ployment. Model-based approaches suffer from the burden of getting the model.
We have developed a tool [1] that automatically generates the needed model.
This work is also presented at this conference.

References

1. A. Aghasaryan, C. Jard and J. Thomas : UML specification of a genericmodel for
fault diagnosis of telecommunications networks. ICT 2004.

2. A. Benveniste, E. Fabre, C. Jard and S. Haar : Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Trans. on Automatic Control, 48(5),
714–727, may 2003.

3. A. Benveniste, S. Haar, E. Fabre and C. Jard : Distributed monitoring of concurrent
and asynchronous systems. In Proc. of CONCUR’2003, Sept. 2003. See also IRISA
report No 1540, http://www.irisa.fr/bibli/publi/pi/2003/1540/1540.html

4. E. Fabre. Monitoring distributed systems with distributed algorithms. In Proc of
the 2002 IEEE Conf. on Decision and Control, 411–416, Dec. 2002, Las Vegas, 2002.

5. Bennani Y. and Bossaert F : Modular Connectionist Modeling and Classification
Approaches for Local Diagnosis in TelecommunicationTraffic Management. Int. J. of

Computational Intelligence and Applications, World Scientific Publishing Company.
6. J. Engelfriet : Branching Processes of Petri Nets. Acta Informatica 28, 1991, pp

575–591.
7. B. Gruschke : Integrated Event Management: Event Correlation using Dependency

Graphs. In Proceedings of the 9th IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management 1998, DSOM 98, Newark, DE, USA, October,
1998.

8. S. Kaetker and K. Geihs : A Generic Model for Fault Isolation in Integrated Man-
agement System. Journal of Network and Systems Management, Special Issue on
Fault Management in Communication Networks, Vol. 5, No. 2, June 1997.

9. S. Kliger, S. Yemini, Y. Yemini, D Ohsie, and S. Stolfo. A coding approach to event
correlation. In IFIP/IEEE Int. Symp. on Integrated Network Management IV, 1995,
266-277.

10. J. Liebowitz, editor. Expert System Applications to Telecommunications. John
Wiley and Sons, New York, NY, USA 1988.

11. Y. A. Nygate : Event correlation using rule and object based techniques. In
IFIP/IEEE Int. Symp. on Integrated Network Management IV, 1995, 278-289.

