Diagnosis of asynchronous discrete event systems, a net
*

unfolding approach

Albert Benveniste, Eric Fabre, Claude Jard, and Stefan Haarf

13th February 2002

Abstract

In this paper we consider the diagnosis of asynchronous discrete event systems. We
follow a so-called true concurrency approach, in which no global state and no global
time is available. Instead, we use only local states in combination with a partial or-
der model of time. Our basic mathematical tool is that of net unfoldings originating
from the Petri net research area. This study was motivated by the problem of event
correlation in telecommunications network management.

Keywords: diagnosis, asynchronous diagnosis, discrete event systems, Petri nets,
unfoldings, alarm correlation.

1 Introduction

In this paper we study the diagnosis of truly asynchronous systems. Typical examples are
networked systems, such as shown in Fig. 1. In this figure, the sensor system is distributed.

Figure 1: Supervision of a networked system.

It involves several local sensors, attached to some nodes of the network (shown in black).
Each sensor has only a partial view of the overall system. The different sensors possess

*This work was supported by the RNRT project MAGDA, funded by the Ministére de la Recherche; other
partners of the project are France Telecom R&D, Alcatel, Ilog, and Paris-Nord University.

fIRISA, Campus de Beaulieu, 35042 Rennes cedex, France. A.B., E.F., S.H. are with Inria, C.J. is with
CNRS. Corresponding author Albert.Benveniste@irisa.fr



their own local time, but they are not synchronized. Alarms are reported to the global
supervisor (depicted in grey) asynchronously, and this supervisor performs diagnosis. This
is the typical architecture in telecommunications network management systems today, our
motivating application'. Events may be correctly ordered by each indidual sensor, but
communicating alarm events via the network causes a loss of synchronization, and results
in a nondeterministic and unbounded interleaving at the supervisor. Hence, the right pic-
ture, for what the supervisor collects, is not a sequence of alarms, but rather a partially
ordered set of alarms.

Fault diagnosis in discrete event systems has attracted a significant attention, see the
work of Lafortune and co-authors [34][10] for an overview of the literature and introduc-
tion to the subject. Decentralized diagnosis is analyzed in [10], including both algorithms
and their diagnosability properties; the solution is formulated in terms of a precomputed
decentralized diagnoser, consisting of a set of communicating machines that have their
states labeled by sets of faults and react to alarm observations and communications; the
language oriented framework of Wonham and Ramadge (see [9]) is used, and the systems
architecture is that of communicating automata, with a synchronous communication based
on a global time, as revealed by the assumption “A6” in [10]. The work [10] has been
extended by the same authors in [11] toward considering the effect of (bounded) commu-
nication delays in decentralized diagnosis. Difficulties resulting from communications in
diagnosis are also investigated by Sengupta in [35]. Finally, the recent work of Tripakis
[36] discusses issues of undecidability for a certain type of decentralized observability, this
issue has again some relation with asynchrony. Baroni et al. [4] propose a different ap-
proach, more in the form of a simulation guided by the observed alarms, for a model
of communicating automata. The solution proposed offers a first attempt to handle the
problem of state explosion which results from the interleaving of events involving different
components.

Diagnosis in the framework of Petri net models has also been investigated by some
authors. Hadjicostis and Verghese [22] consider faults in Petri nets in the form of losses or
duplications of tokens, this is different than using Petri nets as an asynchronous machine
model, for diagnosis. Valette and co-authors [33] use Petri nets to model the normal
behavior of systems, and considers as faults the occurrence of events that do not match
firing conditions properly. The work closest to ours is that of Giua and co-authors [23][24],
it considers the estimation of the current marking from observations.

Event correlation in network management is the subject of a considerable literature,
and a number of commercial products are available. We refer the reader to Gardner [21]
for a survey. There are two main frameworks for most methods developed in this area.
The first framework relates to rule-based or case-based reasoning, an approach very dif-
ferent from the one we study here. The second one uses a causal model, in which the
relation between faulty states and alarm events is modelled. The articles by Bouloutas et
al. [7][8][27] belong to this family. The case of event correlation in network management

'See [28] and the url http://magda.elibel.tm.fr/ for a presentation of the MAGDA project on fault
management in telecommunications networks.



also motivated the series of papers by Fabre et al. [6][2][3], on which the present paper
relies.

As said before, our present approach was motivated by the problem of fault manage-
ment in telecommunications networks, so it is worth discussing how this context motivated
some of our choices. As seen from our bibliographical discussion, two classes of approaches
were available, to handle the diagnosis of asynchronous systems.

A possible approach would consist in constructing a diagnoser in the form of a Petri
net, having certain places labeled by faults, and transitions labeled by alarms. Received
alarms trigger the net, and visiting a faulty place would indicate that some fault occurred
in the original net for monitoring. Another approach would consist in estimating the
current marking of the Petri net for monitoring, as in [23][24].

For our application, we needed to support distributed sensor setups, from which wrong
interleaving can result. Hence we feel it important, that robustness against a wrong
interleaving should be addressed. However, the available approaches typically assume
that alarms are received in sequence, and that this sequence is an actual firing sequence
of the net.

Also, for our application in fault management in telecommunications networks (where
faults are typically transient), providing explanations in the form of scenarios, not just
snapshots, was essential. Finally, returning all scenarios compatible with the observations,
was the requirement from operators in network management. They did not ask for a more
elaborated information such as fault identification, or isolation.

In this paper, we propose an approach to handle unbounded asynchrony in discrete
event systems diagnosis by using net unfoldings, originally proposed by Nielsen,Plotkin and
Winskel [30]. Unfoldings were used by Mc Millan [29] for model checking in verification.
They were subsequently developed by Engelfriet [13][32], Esparza, and Rémer [14][15][16].
Net unfoldings are branching structures suitable to represent the set of executions of a
Petri net using an asynchronous semantics with local states and partially ordered time. In
this structure, common prefixes of executions are shared, and executions differing only via
the interleaving of their fired transitions are represented only once. Our motivation, for
using Petri nets and their unfoldings, is to have an elegant model of asynchronous finite
state machines, therefore we restrict ourselves to safe Petri nets throughout this paper.
Net unfoldings are not wellknown in the control community, they have been however used
for supervisory control in [25][26].

The paper is organized as follows. Section 2 is devoted to the problem setting. Sub-
section 2.1 collects the needed background material on Petri nets and their unfoldings.
Subsection 2.2 introduces our first example. And our problem setting for asynchronous
diagnosis is formalized in subsection 2.3, which constitutes per se our first contribution.

In asynchronous diagnosis, some recorded alarm sequences differ only via the inter-
leaving of concurrent alarms, hence it is desirable not to distinguish such alarm sequences.
Similarly, it is desirable not to distinguish diagnoses which only differ in the interleaving
of concurrent faults. Diagnosis nets are introduced to this end in section 3, they express
the solution of asynchronous diagnosis by using suitable unfoldings, and constitute the



main contribution of this paper. Corresponding (asynchronous) algorithms will be given
in the extended version of this paper. Finally we draw some conclusions and perspectives.

2 Asynchronous diagnosis: problem setting

In this section we first introduce the background we need on Petri nets and their unfoldings.
Then we introduce informally asynchronous diagnosis on an example. And finally we
formally define asynchronous diagnosis.

2.1 Background notions on Petri nets and their unfoldings

Basic references are [31][9][12]. Homomorphisms, conflict, concurrency, and unfoldings,
are the essential concepts on which a true concurrency and fully asynchronous view of
Petri nets is based. In order to introduce these notions, it will be convenient to consider
general “nets” in the sequel.

Nets and homomorphisms. A net is a triple P = (P,T,—), where P and T are
disjoint sets of places and transitions, and — C (P x T') U (T x P) is the flow relation.
The reflexive transitive closure of the flow relation — is denoted by <, and its irreflexive
transitive closure is denoted by <. Places and transitions are called nodes, generically
denoted by z. For z € PUT, we denote by *z = {y : y — z} the preset of node z, and by
z* ={y:z — y} its postset. For X C PUT, we write *X = [J,cx *z and X* = [J,cx 2°.
An homomorphism from a net P to a net P’ is a map ¢ : PUT —— P’ UT' such that:
1/ o(P) C P, o(T) C T, and 2/ for every node z of P, the restriction of ¢ to *z is a
bijection between *z and *p(z), and the restriction of ¢ to z°® is a bijection between z°
and ¢(z)°.

Occurrence nets. Two nodes z,z' of a net P are in conflict, written z#z', if there
exist distinct transitions ¢, € T, such that *tN°*t # Q0 and t < z, ¢ < z’. A node z is
in self-conflict if z#x. An occurrence net is a net O = (B, E, —), satisfying the following
additional properties:

Ve € BUE : -[z#z]  no node is in self-conflict
Vee BUE:—[z <z]  =is a partial order
Ve BUE:|{y:y <z} <oo  =<is well founded

each place has at most
one input transition

VbeB: | <1

We will assume that the set of minimal nodes of O is contained in B, and we denote by
min(B) or min(O) this minimal set. Specific terms are used to distinguish occurrence nets
from general nets. B is the set of conditions, E is the set of events, < it the causality
relation.

Nodes z and z’ are concurrent, written z I z', if neither z < z’, nor = < 2/, nor z#z’
hold. A co-set is a set X of concurrent conditions. A maximal (for set inclusion) co-set is

4



called a cut. A configuration k is a sub-net of O, which is conflict-free (no two nodes are
in conflict), causally closed (if ' X z and = € k, then 2’ € k), and terminates at a cut.

Occurrence nets are useful to represent executions of Petri nets. They are a subclass of
nets, in which essential properties are visible via the topological structure of the bipartite
graph—unlike for Petri nets.

Petri nets. For P a net, a marking of P is a multiset M of places, i.e., a map M :
P+ {0,1,2,...}. A Petri net is a pair P = (P, My), where P is a net having finite sets
of places and transitions, and My is an initial marking. A transition ¢t € T is enabled at
marking M if M(p) > 0 for every p € *t. Such a transition can fire, leading to a new
marking M’ = M — *t + t*, we denote this by M[t)M'. The set of reachable markings of
P is the smallest (w.r.t. set inclusion) set Mjy[) containing Mj and such that M € M,[)
and M[t)M' together imply M’ € My[). Petri net P is safe if M(P) C {0,1} for every
reachable marking M. Throughout this paper, we consider only safe Petri nets, hence
marking M is regarded as a subset of places. A finite occurence net B can be regarded as
a Petri net, where the initial marking is My = min(B).

Branching processes and unfoldings. A branching process of Petri net P is a pair
B = (O,p), where O is an occurrence net, and ¢ is an homomorphism from O to P
regarded as nets, such that: 1/ the restriction of ¢ to min(Q) is a bijection between
min(Q) and M, (the set of initially marked places), and 2/ for all e,e’ € E, ®e = *¢’ and
o(e) = ¢(e') together imply e = €.

The set of all branching processes of Petri net P is uniquely defined, up to an iso-
morphism (i.e., a renaming of the conditions and events), and we shall not distinguish
isomorphic branching processes. For B, B’ two branching processes, B’ is a prefiz of B,
written B’ C B, if there exists an injective homomorphism ) from B’ into B, such that the
composition @ o 1) coincides with ¢'. By theorem 23 of [13], there exists (up to an isomor-
phism) a unique maximum branching process according to C, we call it the unfolding of
P, and denote it by Up.

As announced, configurations are adequate representations of firing sequences of Petri
net P. Let My, M1, Ms,... be a maximal firing sequence of P, and let My_1[tx) M} be
the associated sequence of fired transitions. Then there exists a unique maximal (for
set inclusion) configuration x of P having the following properties: & is the union of
a sequence e, es,... of events and a sequence cg,¢€q,Cs,... of cuts, such that, for each
k>0, o(ck) = My, p(ex) = tk, and cx_1 2 ®ex,e; C c;. Conversely, each maximal
configuration of P defines a maximal firing sequence, which is unique up to the interleaving
of structurally concurrent transitions—transitions ¢ and ¢’ are structurally concurrent iff
*'N(*tUt’)=0and *tNn(*YUL*) =0.

Example 1. Fig. 2 shows the example we will use throughout this paper. A Petri net P
is shown on the left. Its places are 1,2,3,4,5,6,7, and its transitions are 1, 41, 142, v, v, Vi.
Places consituting the initial marking are encircled in thick.

A branching process B = (O, ¢) of P is shown on the right. Its conditions are depicted



Figure 2: Example 1, its unfolding, and a configuration. For this and subsequent examples,
we take the following convention for drawing Petri nets and occurrence nets. In Petri nets, the
flow relation is depicted using directed arrows. In occurrence nets, since no cycle occurs, the
flow relation progresses downwards, and therefore there is no need to figure them via directed
arrows, standard solid lines are used instead.

by circles, and its events are figured by boxes. Each condition b of B is labeled by ¢(b),
a place of P. Each event e of B is labeled by ¢(e), a transition of P. A configuration of
Petri net P is shown in grey. Note that the minimal condition labeled by 7 is branching
in B, although it is not branching in P itself. The reason is that, in P, the token can
freely move along the circuit 1 — 4 — 2 — 4z — 1, and resynchronize afterwards with
the token sitting in 7.

The mechanism for constructing the unfolding of Petri net P is illustrated in the middle,
it is informally explained as follows. Put the three conditions labeled by the initial marking
of P, this is the minimal branching process of P. Then, for each constructed branching
process B, select a co-set X of B, which is labeled by the preset *¢ of some transition ¢ of
P, and has no event labeled by £ in its postset within 5. Append to X a net isomorphic to
*t — t — t* (recall that *¢ = X), and label its additional nodes by ¢ and ¢*, respectively.
Performing this recursively yields all possible finite branching processes of P. Their union
is the unfolding Up.

Labeled nets and their products. For P = (P,T,—) a net, a labeling is a map
A: T — A, where A is some finite alphabet. A net P = (P,T,—,\) equipped with a
labeling A is called a labeled net. For P; = {P;,T;, —i, Ai}, i = 1,2, two labeled nets, their
product P; x Py is the labeled net defined as follows:

P xPy = (P,T,—),)\). (1)



In (1), P = P, & P,, where & denotes the disjoint union, and:

{tl eT: Al(tl) € A \ A2} (1)
T = U {(tl,tg) ety xTy: )\1(751) = )\2(t2)} (ll)
U {ta €To: Aa(te) € A2\ A1}, (iii)
.o PEP andp—1t; for case (ii) or (i)
p—t iff p € Py and p =9 t2  for case (ii) or (iii)
P p ff p € Py and t; —1 p for case (ii) or (i)

p € Py and ty —9 p for case (ii) or (iii)

In cases (i,iii) only one net fires a transition and this transition has a private label, while
the two nets synchronize on transitions with identical labels in case (ii). Petri nets and
occurrence nets inherit the above notions of labeling and product.

2.2 Discussing asynchronous diagnosis on example 1

A labeled Petri net model. Our first example of Fig. 2 is redrawn slightly differently
in Fig. 3, in the form of a labeled Petri net. The example is now intepreted as two

0 component 2

component 1 o e e

Figure 3: Example 1, two interacting components modelled as a labeled Petri net.

interacting components, numbered 1 and 2. Component 2 uses the services of component
1 for its functioning, and therefore it may fail to deliver its service when component 1 is
faulty.

Component 1 has two states: nominal, figured by place 1, and faulty, figured by place
2. When getting into faulty state, the component 1 emits an alarm 3, which is associated
to transition (i) and (ii) (cf. Fig. 2) as a label. The fault of component 1 is temporary,
and therefore self-repair can occur, this is figured by the label p associated to transition
(@) (cf. Fig. 2).

Component 2 has three states, figured by places 4,5,6. State 4 is nominal, state
6 indicates that component 2 is faulty, and state 5 indicates that component 2 fails to



deliver its service, due to the failure of component 1. Fault 6 is permanent and cannot be
repaired.

That component 2 may fail to deliver its service due to a fault of component 1, is
modelled by the shared place 3. The monitoring system of component 2 only detects that
this component fails to deliver its service, it does not distinguish between the different
reasons for this. Hence the same alarm « is attached to the two transitions (iv,v) as a
label (cf. Fig. 2). Since fault 2 of component 1 is temporary, self-repair can also occur
for component 2, when in faulty state 5. This self-repair is not synchronized with that of
component 1, but is still assumed to be manifested by the same label p. Finally, place 7
guarantees that fault propagation, from component 1 to component 2, occurs only when
the latter is in nominal state.

The grey area indicates where interaction occurs between the two components. The
initial marking consists of the two nominal states 1,4, for each component. Labels (alarms
a, 8 or self-repair p) attached to the different transitions or events, are generically referred
to as alarms in the sequel.

The different setups considered, for diagnosis. The first setup assumes that the
successive alarms are recorded in sequence by a single supervisor, in charge of fault mon-
itoring.

In a second setup, we assume two independent sensors, one per each component. Each
sensor records its local alarms in sequence, by ignoring the other sensor’s records. The two
records are collected, asynchronously, by a single supervisor. In this setup the interleaving
of the two local sequences of alarms is lost.

In the third setup, the fault monitoring is performed in a distributed way, by two
supervisors cooperating asynchronously. Each supervisor is attached to a component, it
records its local alarms in sequence, and can exchange supervision messages with the other
supervisor, asynchronously.

In this paper we consider the first and second setups (and generalizations of them), but
not the third one, which is an instance of distributed diagnosis. For distributed diagnosis,
the reader is referred to [17][18][19].

The different setups are illustrated in Fig. 4, which is a combination of Fig. 2 and
Fig. 3. The labeled Petri net of Fig. 3 is redrawn, on the left, with the topology used in
Fig. 2. In the middle, we redraw the configuration shown in grey in Fig. 2-right, call it
%, and we relabel its events by their associated alarms. Configuration x expresses that
component 1 went into its faulty state 2, and then was repaired; concurrently, component
2 moved to its faulty state 6, where self-repair cannot occur. Note that the transmission
of the fault of component 1 to component 2, via place 3, is preempted, due to the fatal
failure of component 2.

How alarms are recorded is modelled by the two occurrence nets shown in the third
and fourth diagrams, we call them alarm patterns. In the third diagram, we assume the
first setup, in which a single sensor is available to collect the alarms. Hence configuration
k produces the alarms 3, a, p, recorded in sequence. This record is modelled by the linear
alarm pattern shown in the third diagram. This alarm pattern has its events labeled by



:
3

second setup

Figure 4: Example 1, a scenario involving a single sensor, and two independent sensors.

alarms, but its conditions are “blind”, i.e., they have no label. This manifests the fact
that the different places traversed while producing the alarms 3, «, p are not observed.

Now, in the last diagram, we show the case of the second setup, in which 3, p are
collected by the first sensor, and « is collected by the second one, independently. The
result is an alarm pattern composed of two concurrent parts, corresponding to the records
collected by each sensor. When collected by the supervisor, these concurrent parts can
interleave arbitrarily—this manifests asynchrony.

Alarm patterns are generically denoted by the symbol A. Note that each sensor de-
livers, as an alarm pattern, some linear extension of the partial order of events it sees.
But the causality relations involving pairs of events seen by different sensors, are lost.
In general, observations may add some causalities, may lose other ones, but they never
reverse any of them. Therefore, the only valid invariant between alarm pattern A and the
configuration « that produced it, is that A and k possess a common linear extension. With
this definition, we encompass the different considered setups in a common framework.

Asynchronous diagnosis. From the above discussion on asynchronous diagnosis, we
must accept as plausible explanations of an alarm pattern A any configuration s such that
A and k possess a common linear extension. Such x are said to ezplain A. We are now
ready to formalize our problem setting.

2.3 Asynchronous diagnosis: formal problem setting

Now, we formalize what an alarm pattern A is, and what it means, for A, to be associated
with some configuration k. We are given the following objects, where the different notions
have been introduced in subsection 2.1:

e A labeled Petri net P = (P, T,—, My, \), where the range of the labeling map A is
the set of possible alarms, denoted by A, and

e its unfolding Up = (B, E, —, p).



Note the following chain of labeling maps:
2 A . A
L — T — A : e—=9e)—Aeple)) = Ale), (2)

events transitions alarms

which defines the alarm label of event e, we denote it by A(e)—we call it also “alarm”, for
short, when no confusion can occur.

An eztension of a net P = (P,T,—) is any net obtained by adding places and flow
relations but not transitions. Occurrence nets inherit this notion. An occurrence net
induces a labeled partial order on the set of its events, extending this occurrence net
induces an extension of this labeled partial order .

Two labeled occurrence nets O = (B, E,—,A) and O' = (B',E',—',\’) are called
alarm-isomorphic if there exists an isomorphism 1, from (B, E, —) onto (B’, E', '), seen
as directed graphs, which preserves the alarm labels, i.e., such that Ve € E : A'(y(e)) =
A(e). Two alarm-isomorphic occurrence nets can be regarded as identical if we take into
account the alarm labels of their events, but ignore their conditions.

Definition 1 (alarm pattern) Consider P, Up, and A, as in (2). A labeled occurrence
net A = (B, E4,—A,A4) is an alarm pattern of P iff:

1. Its labeling map A4 takes its value in the alphabet A of alarms,

2. A is itself a configuration (it is conflict free), its set of conditions By is disjoint
from that of Up, and

3. There exists a configuration k of Up, such that A and k possess extensions that are
alarm-isomorphic.

Assuming, for A, a set of places disjoint from that of Up, aims at reflecting that alarm
patterns vehicle no information regarding hidden states of the original net. This justifies
condition 2. Concerning condition 3 the allowed discrepancy between x and A formal-
izes the possible loss of some causalities (e.g., due to independent and non synchronized
sensors), and the possible adding of other ones (e.g., when sensors record their alarms in
sequence). The key fact is that the information about the concurrency of events produced
by the system cannot be observed by the supervisor. To refer to our context of diagnosis,
we say that & can ezplain A. For A a given alarm pattern of P, we denote by

diag(A) (3)

the set of configurations « of Up, satisfying the conditions 1,2,3 of definition 1. In the
next subsection, we propose an adequate data structure to represent the set diag(.A) in a
compact way, we call it a diagnosis net.

? Recall that the labeled partial order (X, <) is an extension of labeled partial order (X', <') if labeled
sets X and X' are isomorphic, and X D <’ holds. When (X, <) is a total order, we call it a linear extension
of (X', <").

10



3 Diagnosis nets: expressing asynchronous diagnosis by means
of unfoldings

In this section, we provide explicit formulas for the solution of asynchronous diagnosis, in
the form of suitable unfoldings.

A first natural idea is to represent diag(.A) by the minimal subnet of unfolding Up,
containing all configurations € diag(.A), we denote it by Up(A). Subnet Up(A) inherits
canonically by restriction, the causality, conflict, and concurrence relations defined on Up.
Net Up(A) contains all configurations belonging to diag(.A), but unfortunately it also
contains undesirable maximal configurations not belonging to diag(.A), as Fig. 5 reveals.

A A TS

U A diag(.A)

Figure 5: Example 2. Showing U, A, and diag(.A). Note that Up(A) =U.

In this figure, we show an unfolding U/ on the left hand side. In the middle, we
show a possible associated alarm pattern A. Alarm labels are figured by colors (black
and white). The set diag(.A) is shown on the right hand side, it comprises two configura-
tions. Unfortunately the minimal subnet Up(.A) of the original unfolding &/ which contains
diag(A), is indeed identical to #! Undesirable configurations are {(1,%12,2), (4,%46,6)}
and {(1,t13,3), (4, t45,5)} (in these statements, t12 denotes the transition separating states
1 and 2). But configuration {(1,%12,2), (4,t46,6)} is such that its two transitions t12,t46
explain the same alarm event in A. And the same holds for the other undesirable config-
uration.

Fig. 6 suggests an alternative solution, using the product P x A of P and A, seen
as labeled nets with respective labels A and A4 (see subsection 2.3 for these notations).
The unfolding Up« 4 is shown. The projection, on the set of nodes labelled by nodes
from P, is depicted using larger arrows. The reader can verify that the corresponding
set of maximal configurations coincides with diag(A). This suggests that Upx 4 is an
appropriate representation of diag(.A4). We formalize this in the theorem to follow. We
use the notations from subsections 2.1 and 2.3, and we need a few more notations.

For P = (P,T,—) a net and X a subset of its nodes, P| x denotes the restriction of P

to X, defined as P| x 2 (PNX,TNX,— | x ), where the flow relation — x is defined as the
restriction, to X x X, of the flow relation — C (P xT)U(T x P) given on P. Be careful that
we restrict the flow relation, not its transitive closure. For P = (P, T, —, M)) a Petri net,
P’ a sub-net of P with place set P', and U = (B, E,—, ¢) a sub-net of the unfolding Up,
we denote by projp/ (i) the labeled occurrence net projp (U) 2u | o-1(P")UE > Obtained
by restricting U to the set of conditions labelled by places from P’, and restricting the

11



@)
@) -
w
[N
[N

PxA

UpxA

Figure 6: Example 2. Representing diag(A) by Upx 4.

flow relation accordingly. Finally, for O an occurrence net, we denote by config (O) the
set of all its configurations.

Theorem 1 Let Up be the unfolding of some Petri net P, A an associated alarm pattern,
and let diag(A) be defined as in (3). Consider the unfolding Upx 4 = (B, E,—,p), and
its associated projections projp(.) and proj4(.). Then, x € diag(.A) iff:

Jr € config (Upx4) : projp(k) =k and projy(r) = A. (4)

Note that every % satisfying (4) must be a maximal configuration of Upy 4. Theorem 1
expresses that Upy 4 is an adequate representation of diag(A), we call it a diagnosis net.

Proof: We first prove the if part. Let % be a configuration of Up 4 such that proj 4(x) =
A, and define k¥ = projp(%). By definition of net extensions (cf. definition 1 and above),
K is an extension of both x and A. Hence, by definition 1, x € diag(.4). This was the
easy part.

We then prove the only if part. Select an arbitrary x € diag(.4). We need to show
the existence of a K satisfying (4). Since k and A possess alarm-isomorphic extensions,
there exists a bijection 1, from E 4 (the set of events of A), onto the set of events of k,
such that 1 preserves the alarm labels. Pick e, an event of A, and set

fo= 4vle). ()

By definition 1, *eU{e} Ue® and *fU{f} U f* possess alarm-isomorphic extensions—they
do not possess contradictory flow relations. Hence we have

(k x A) (FOUlhelufe)® = Blerunure X Aleafeues (6)

= (RUA) e pumeui(fenpusoues - (7)

where (6) follows from the definition of the product of labeled nets, and (7) results from
the fact that *e U {e} Ue® and *f U {f} U f*® possess alarm-isomorphic extensions.

12



Let [1] 2 {(f,e) : f = (e)} be the graph of . Denote by B, and E, the two sets
of conditions and events of x, respectively. Denote by x X, A the restriction of x x A to
(B, UB4) U], ie.,

A
xy A = (X A)| (5,08 U

We will show that & = & X A satisfies (4). To this end, we first show that the flow relation
on K X4 A unfolds the flow relation on P x A, therefore showing that it is a subnet of the
unfolding Upx 4.

Using the notations from (2) and definition 1, define a map

¢ (BeUBA)U[Y] — (PUB4) U(T x Ey) (8)

as follows: the restriction of ¢, to By is equal to ¢, the restriction of ¢, to B4 is the
identity, and for (f,e) € [¢], set vi(f,e) = (p(f),e). The so defined map ¢, is an
homomorphism from net £ X, A to the net P x A. In addition, ¢, is such that, for €, &
two events of k x4 A, *e = *€’ and @, (€) = p«(€’) together imply e = €’. Hence, by the
universal property of branching processes and their associated homomorphism, k X A
identifies with a subnet of Upx 4, and ¢, must be the restriction, to (B, U B4) U [¢], of
the homomorphism @ from the unfolding Up« 4 onto P x A.
This, and (6,7), together imply that

projp ((’1 X A) |®fuseU{(f,e)}UsfeUe* ) = Klefu{fyuse, (9)
proja (5 Xy A) |« jeei(ropureves ) = Alretejoes

where equalities in (9) hold up to a renaming of event (f,e) by f or e alone. Consider
again (9). Since it holds for any e, we get:

projp(k Xy A) =K , Projy(s xy A) = A, (10)

which implies that & x, A is causally closed and terminates at a cut of Upyx 4. On the
other hand, x x4 A is clearly conflict free, therefore

E 2 & Xy A is a configuration of Upx 4. (11)

(10) and (11) together prove the only if part of (4). <o

Remark. Theorem 1 assumes the knowledge of the initial marking M, for Petri net
P. When only a set My of possible initial markings is known instead, simply augment
(P,T,—) as follows. Add some additional place py not belonging to P, for each possible
initial marking My € M, add one transition ¢,, to T', and add the branches p, = tp;, —
My to the flow relation. And apply theorem 1 to the so augmented Petri net.

13



Figure 7: Example 1, diagnosis net, an illustration of theorem 1.

Example 1, illustration of diagnosis nets, and comparison with the use of the
marking graph. We show in Fig. 7 an illustration of theorem 1. In this figure we show
the Petri net P of Fig. 3 (left), an associated alarm pattern A (middle), and the net
Upx 4, Testricted to its nodes labeled by nodes from P (right). We show in dashed-thick
the additional conflict relation between the two otherwise concurrent events labeled by
the same alarm p. This conflict is inherited from the sharing of a common condition—not
shown—belonging to A. It is easily checked that diag(.A) is adequately represented by
this diagram. Note that the restriction, to its events, of this data structure, is an event
structure according to Winskel’s definition [30][37].

Four alternative explanations are delivered by this diagnosis, this reflects the ambiguity
resulting from asynchrony in this example. Explanation 1: component 1 gets in its faulty
state without causing damage to component 2, and then gets self-repaired; independently,
component 2 gets into its fatal faulty state 6 ((8 < p)_La). Explanation 2: component 1
gets in its faulty state while causing damage to component 2, and then gets self-repaired;
independently, component 2 gets into its fatal faulty state 6 (again (8 < p)Lla). Ex-
planation 3: component 1 gets in its faulty state while causing damage to component 2;
consequently, component 2 fails to delivers its service and gets into its state 5, where it
subsequently gets self-repaired (8 < p < «). Explanation 4: component 1 gets in its faulty
state while causing damage to component 2; consequently, component 2 fails to delivers
its service; independently component 1 gets self-repaired (8 < (pLa)).

Fig. 8 compares diagnosis nets with the use of marking graphs. The reader is referred
again to our running example 1 (shown in Fig. 7), call it P. In the first diagram we show the
marking graph of P, denoted by M(P). It is a labeled Petri net whose places are labeled
by the reachable markings of P, shown by the combination of the places composing the
different markings. We identify the places of the marking graph M(P) with the markings
of P. Then, M[t)M' in P if M — 7 — M’ in M(P). Transition 7 of M(P) is then
labeled by transition ¢ of P. In Fig. 8 we have labeled instead the transitions 7 of M(P)
by the alarm labels A(t) = «, 3, p of the associated transitions ¢ from P.

The pre/postset of each transition of M(P) is a singleton, hence there is no concur-

14



Figure 8: Marking graph of example 1 (left), and unfolding (right).

rency, and M (P) models an automaton. Note the diamond composed of the two branches
275 = p — 175 = p — 174 and 275 — p — 274 — p — 174, it represents the two possible
interleavings of the concurrent transitions labeled by p in P.

We can still regard M(P) as a Petri net, and consider its unfolding Uy (p), shown in
part in the second diagram (some flow relations are sketched in dashed, to save space).
Now, we can safely merge the two conditions labeled by 174 in the bottom of this dia-
gram. The reasons for this are the following: 1/ they are both labeled by the same state
(namely 174), hence they possess identical continuations, and, 2/ their causal closures is
labeled by the same alarm sequence (3, @, p, p, i.e., explain the same sequences of alarms.
Merging the two conditions labeled by 174 in the bottom of the second diagram yields
a lattice, i.e., a labeled net with branching and joining conditions but no circuit, we de-
note it by Lp). Lattices are not new, they are the data structures used when applying
the Viterbi algorithm for maximum likelihood estimation of hidden state sequences in
stochastic automata.

Being linear and not branching any more, £ p) is a more compact data structure
than the unfolding U (p). The reason for merging the two places labeled by 174 in Uy (p)
is the diamond occuring in M(P). But this diamond manifests the concurrency of the two
self-repairing transitions, and the unfolding Up of P, shown in Fig. 2, already handles this
properly: the marking 174 is not duplicated in Up, unlike in Uy p). In fact, this lattice
corresponds to a prefix of the unfolding shown in Fig. 2. The unfolding of Fig. 2 is more
compact, but in turn, building co-sets requires some processing, whereas this requires
no processing for the unfolding of Fig. 8, since co-sets are just places. Therefore, for
applications in which memory constraints prevail over processing speed, unfoldings should

15



be preferred.
The generalization of lattices to Petri nets is of interest, and their definition and use
for diagnosis will be investigated in the extended version of this paper.

4 Discussion

A net unfolding approach to on-line asynchronous diagnosis was presented. This true
concurrency approach is suitable to distributed systems in which no global state and no
global time is available, and therefore a partial order model of time is considered. In
the present paper, our basic tool was the net unfolding, a branching structure suitable to
represent the set of configurations of a Petri net using an asynchronous semantics with local
states and partially ordered time. Diagnosis nets were introduced as a way to encode all
solutions of a diagnosis problem. They avoid the wellknown state explosion problem, that
typically results from having concurrent components in a distributed system interacting
asynchronously. Whereas state explosion is kept under control, the computing cost of
performing the diagnosis on-line increases (due to the need to compute co-sets); but this
is typically a preferred tradeoff for the diagnosis of complex asynchronous systems with
concurrency.

It is worth saying what this paper does not consider. We do not follow a diagnoser
approach. One can view a diagnoser as a “compiled” algorithm for diagnosis. It consists in
pre-computing a finite state machine which accepts alarm events, and has states labeled by,
e.g., visited faults. In contrast, our approach can be seen as an “interpreted” one, since our
diagnosis nets are computed, on-line, by using only the original Petri net structure. Also,
we did not investigate issues of diagnosability. Diagnosers for unbounded asychronous
diagnosis and related diagnosability issues have not been considered in the literature, at
least to our knowledge. We believe this could be performed by using so-called complete
prefizes of the unfolding, see [15][16].

Complexity issues have not been addressed. However, the following pragmatic argu-
ment can be given to justify the use of unfoldings. Complete prefixes of unfoldings have
been used for model checking, an area in which practical complexity is of paramount im-
portance [29][14][15][16]; in particular, the more parallelism there is in the applicatio, the
more is gained from the partial order representation.

Various extensions of this work are under progress. Our target application—fault
management in telecommunications networks—typically exhibits a great deal of ambiguity.
Hence it is of interest to return (the) most likely explanation(s). Probabilistic versions of
the present work have been developed for this purpose, see [2][3][20], and [5] for a theory
of corresponding stochastic processes.

Then, this study is clearly an intermediate step toward distributed diagnosis, in which
diagnosis is perfomed jointly by a network of supervisors communicating asynchronously—
see [17] for a first attempt toward distributed diagnosis, and also [19][18].

The robustness of our algorithms against alarm losses, or more generally the failure to
communicate, needs to be investigated. Also, due to the systems complexity, there is little
hope indeed, that an exact model can be provided, hence we need to develop diagnosis

16



methods that work based on an incomplete model, i.e., a model not able to explain all
observed behaviours.

Last but not least, getting the system model itself is a bottleneck, for complex dis-

tributed systems such as, e.g., telecommunications network management systems. The
issue of how to partially automatize the model construction is investigated in [28].

References

[1]

2]

Extended version of this paper
http://www.irisa.fr/sigma2/benveniste/pub/B_al_asdiag_2001.html

A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. A Petri net approach
to fault detection and diagnosis in distributed systems. Part II: extending Viterbi
algorithm and HMM techniques to Petri nets. CDC’97 Proceedings, San Diego, De-
cember 1997.

A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard. Fault Detection and
Diagnosis in Distributed Systems : an Approach by Partially Stochastic Petri nets,
Discrete Event Dynamic Systems: theory and application, special issue on Hybrid
Systems, vol. 8, pp. 203-231, June 98.

P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large active systems.
Artificial Intelligence 110: 135-183, 1999.

A. Benveniste, E. Fabre, and S. Haar. “Markov nets: probabilistic models for dis-
tributed and concurrent systems”. Irisa Research Report 1415, September 2001, sub-
mitted for publication, http://www.irisa.fr/sigma2/benveniste/pub/BIGFH2000.html

R. Boubour, C. Jard, A. Aghasaryan, E. Fabre, A. Benveniste. A Petri net approach to
fault detection and diagnosis in distributed systems. Part I: application to telecom-
munication networks, motivations and modeling. CDC’97 Proceedings, San Diego,
December 1997.

A.T. Bouloutas, G. Hart, and M. Schwartz. Two extensions of the Viterbi algorithm.
IEEFE Trans. on Information Theory, 37(2):430-436, March 1991.

A.T. Bouloutas, S. Calo, and A. Finkel. Alarm correlation and fault identification in
communication networks. IEEE Trans. on Communications, 42(2/3/4), 1994.

C. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer Aca-
demic Publishers, 1999.

R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for
failure diagnosis of discrete event systems. Discrete Fvent Dynamic Systems: theory
and application. 10(1/2), 33-86, 2000.

17



[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

R. Debouk, S. Lafortune, and D. Teneketzis. On the effect of communication delays in
failure diagnosis of decentralized discrete event systems. Control group report CGRO0-
04, Univ. of Michigan at Ann Arbor, submitted for publication, 2001.

J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge University Press, 1995.

J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28, 1991, pp 575—
591.

J. Esparza. Model Checking Using Net Unfoldings. Sci. of Comp. Prog. 23:151-195,
1994.

J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s unfolding algo-
rithm. In T. Margaria and B. Steffen Eds., Proc. of TACACS’96, LNCS 1055, 87-106,
1996. Extended version to appear in Formal Methods in System Design, 2000.

J. Esparza, and S. Romer. An unfolding algorithm for synchronous products of tran-
sition systems, in proceedings of CONCUR’99, LNCS 1664, Springer Verlag, 1999.

E. Fabre, A. Benveniste, C. Jard, L. Ricker, and M. Smith. Distributed state recon-
struction for discrete event systems. Proc. of the 2000 IEEE Control and Decision
Conference (CDC’2000), Sydney, Dec. 2000.

E. Fabre, A. Benveniste, C. Jard, and M. Smith. Diagnosis of distributed
discrete event systems, a net unfolding approach. Preprint, February 2001.
http://www.irisa.fr/sigma2/benveniste/pub/F&al2001.html

E. Fabre, A. Benveniste, C. Jard. Distributed diagnosis for large discrete event dy-
namic systems. In Proc of the IFAC congress, Jul. 2002.

E. Fabre, A. Benveniste, C. Jard. Distributed diagnosis for bayesian networks of
dynamic systems, in preparation.

R.G. Gardner, and D. Harle. Methods and systems for alarm correlation. In Globe Com
96, London, November 1996.

C.N. Hadjicostis, and G.C. Verghese. Monitoring discrete event systems using Petri
net embeddings. in Proc. of Application and theory of Petri nets 1999, 188-208.

A. Giua. —PN state estimators based on event observation. Proc. 36th Int. Conf. on
Decision and Control, San Diego, Ca, 4-86—-4091, 1997.

A. Giua, and C. Seatzu. Observability of Place/Transition Nets. Preprint, 2001.

K.X. He and M.D. Lemmon. Liveness verification of discrete-event systems modeled
by n-safe Petri nets. in Proc. of the 21st Int. Conf. on Application and Theory of
Petri Nets, Danmark, June 2000.

18



[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

K.X. He and M.D. Lemmon. On the existence of liveness-enforcing supervisory policies
of discrete-event systems modeled by n-safe Petri nets. in Proc. of IFAC’2000 Conf.
on Control Systems Design, special session on Petri nets, Slovakia, June 2000.

I. Katsela, A.T. Bouloutas, and S. Calo. Centralized vs distributed fault localisation.
Integrated Network Management IV, A.S. Sethi, Y. Raynaud, and F. Faure-Vincent,
Eds. Chapman and Hall, 251-261, 1995.

MAGDA project. Paper on modeling, to be available on the MAGDA project web page
http://magda.elibel.tm.fr/

K. McMillan. Using Unfoldings to avoid the state explosion problem in the verification
of asynchronous circuits. In: 4th Workshop on Computer Aided Verification, pp. 164—
174, 1992.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and domains.
Part I. Theoretical Computer Science 13:85-108, 1981.

W. Reisig. Petri nets. Springer Verlag, 1985.

G. Rozenberg and J. Engelfriet. Elementary Net Systems. In: Lectures on Petri Nets
I: Basic Models. LNCS 1491, pp. 12-121, Springer, 1998.

A. Sahraoui, H. Atabakhche, M. Courvoisier, and R. Valette. Joining Petri nets and
knowledge-based systems for monitoring purposes. Proc. of the IEEE Int. Conf. on
Robotics Automation, 1160-1165, 1987.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diag-
nosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555-1575,
1995.

R. Sengupta. Diagnosis and communications in distributed systems. In Proc. of
WODES 1998, international Workshop On Discrete Event Systems, 144-151, IEE, Lon-
don, England, 1998.

S. Tripakis. Undecidable problems of decentralized observation and control. In Proc.
of the 40th IEEE Conf. on Decision and Control, Orlando, Dec. 2001.

G. Winskel. Event structures. In Advances in Petri nets, LNCS vol. 255, 325-392,
Springer Verlag, 1987.

19



