
1

Principles of Distributed Test
Synthesis based on True-concurrency
Models

Claude JARD
IRISA/CNRS

Campus de Beaulieu
F-35042 Rennes France

Claude.Jard@irisa.fr
http://www.irisa.fr/triskell/perso_pro/home.html

2

Distributed conformance testing

P1 P2 P3

!a, ?b !c, ?d !e, ?f

3

Why synthesis of parallel test
cases?

? Required by some test architectures
? Some behaviours need to be tested in

parallel (real-time testing, stable states)
? More compact and clear test cases

(parallel vs interleaved)
? Existing parallelism in TTCN-3 or MSC

notations, not yet fully exploited from the
synthesis point of view

4

Possible approaches

? Distribution of sequential test cases:
simple, but does not distinguish between
non-determinism and concurrency -> lot
of synchronizations

? Keep explicit the parallelism of the
specification. Revisit the generation
phase by using a true-concurrency
model

5

Context

? This question has been explored for 5 years in
IWTCS/Testcom and Forte/PSTV, mainly in
Korea (Kim) and Germany (Ulrich, König,
Henniger)

? We decided to follow the german approach
using unfoldings of nets.

? From our experience, we propose to revisit the
complete chain of TGV, using the notion of
test purpose, and replacing IOLTS by
unfoldings (or event structures).

6

Small example:
a connect-disconnect protocol

Controllable events :

a : Connect_Request
c : Disconnect_Request (from B)

Observable events :

b : Disconnect_Confirm (of A)
c : Disconnect_Confirm (of B)
e : Disconnection_Completed

A0

A1

A2A4

a

!a

!bb

?c

B0

B1

B4

B2

?b

?a

?b

!d

c

!c

b,e a c

A3

e

A5

?c

?d

Process A Process B

B3

c

c

7

Testing connection-disconnection
in case of collision

a

b c

e

Test purpose :
check the correct
disconnection in
case of collision
(a,b,c and e must occur,
and must be partially
ordered as presented)

b

c

a ae ba

c

a b d a c a

b

c

e e

c c

8

TGV at present

Spec
(SDL, Lotos, UML)

Test purpose
(automaton)

IOLTS
(of the product)

Visible significant
behaviour

Test Graph

- Abstraction to the visible
 events (?*-reduction)
- Determinisation

- Mirror image
- Controllability
- Verdicts

Most of the work is done on-the-fly using APIs

9

Transitions on partial states: tiles (S)

A0 a A1

A3 b A4

A1 !a A2
M0 Ma

A2 ?c A5
Nc N0

A4 ?c A5
Nc N0

A4 ?d A5
Nd N0

A5 e A0

B1 c B2

B0 ?b B0
Mb M0

B0 ?a B1
Ma M0

B1 ?b B4
Mb M0

B4 !d B0
N0 Nd

B2 !c B3
N0 Nc
B3 c B0

A0

A1

A2A4

a

!a

!bb

?c

B0

B1

B4

B2

?b

?a

?b

!d

c

!c

b,e a c

A3

e

A5

?c

?d

Process A Process B

B3

c

c
A2 !b A3
M0 Mb

10

Tile system of the test purpose (TP)

TA1 b TA2

TA0 a TA1
TB0 TB1a

b c

e TA2 e Accept

TB1 c TB2

Pre-compilation of the tiles
of the product TPxS:

? duplicate the tiles of common
actions (making the union of
pre- and post-conditions)

? these new tiles are prioritary
in case of conflict with the
original

? Terminating sink tiles when
the post-condition is accept
(or refuse)

11

Computing the set of partial order
histories: the puzzle game (unfolding)

Puzzle := initial_global_state;
repeat
 if it exists a tile t such that pre(t) is a
 co-set of Puzzle then
 append t+post(t) to Puzzle
forever

A1 !a A2
M0 Ma

A2 ?c A5
Nc N0

B1 c B2

B1?a

M0

B2 !c B3
N0 Nc

(1)

(2)

(3)

(4)

(6)

(5)

(7)

(8)

A0
a

A1
TB0
TA0

TB1
TA1

!b A3

Mb

A3 b A4
TA1 TA2

A0

M0

N0

B0

TA0

TB0

a A1

TB1

TA1
!a A2

Ma

B0 ?a B1
Ma M0

A2 !b A3
M0 Mb

b A4

TA2

c B2 !c B3

Nc

?c
A5

N0

conflict

12

Finite_Puzzle := initial_global_state;
cut_off := {};
repeat
 Select a tile t such that pre(t) is a
 co-set of Finite_Puzzle;
 live := t exists and pre(t)? cut_off={};
 if live then append t+post(t) to Finite_Puzzle;
 if ? u < t : Gstate(u)=Gstate(t)
 then cut_off := cut_off ? {post(t)}
until not live

- < can be extended to decrease the size of the structure (cf. Mac-Millan, Esparza),
 which can be not bigger than the global state representation
- complexity |C|?/? ?(|C| number of conditions, ? degree of //) [notion of canonical

 prefix]

Computing a finite complete prefix
(contains all the possible tiles and configurations)

13

The finite complete prefix of our
example

B1?a

M0

!b A3

Mb

A0

M0

N0

B0

TA0

TB0

a A1

TB1

TA1
!a A2

Ma

b A4

TA2

c B2 !c B3

Nc

?c A5

N0

?c A5

N0

c B0

TB2

e Accept

e A0

?b B4
M0

?b B0

M0

!d B0

Nd ?d

A5

N0

e

A0

14

The causal and conflict relations
(covering of the underlying event structure)

? Conditions are
just pins for the
construction
and can be
removed

? Abstraction to
visible events
can be defined
as a sub-
structure

?a

!ba !a b

c !c

?c

?c

c

e Accept

e

?b

?b

!d

?d e

a b

c c

e Accept

e

e

Causality is transitive
Conflict is inherited

15

Insertion of synchronisation +
distribution by projection

a

b c

c
e e e

Accept

a

b c

c
e e e

Accept

!s1

?s1

!s2

?s2

!s3

?s3Preserve causality and conflicts

Projection is a sub-structure

a

b

e e e
Accept

!s1

?s2

?s3

TA

c

c

?s1

!s2

!s3

TB

16

Construction of the test automata

a

!s1
b

?s2

e

e

e

Pass

Inc

Inc

?s3

TA

?s1

c

!s2
!s3

c

TB

? Build the “budding” lattice of the
event structures (the set of
configurations: compute the
interleavings and take into
account the conflicts)

? There exist linear algorithms
? Local controllability of

synchronisation messages
could be applied (restriction of
concurrency)

? Fail upon non-specified
receptions

17

Test examples

TA

System
under
test

A

B

TB

a

c c

e

INC

a b e

INC

a

c c

b e

PASS

18

Conclusion and perspectives

? Small prototype under development using the MC tool kit of
T.U.M. (Römer, Esparza): unfolding of safe-Petri-nets
(wwwbrauer.informatik.tu-muenchen.de/theorie/KIT)

? Soundness (in the sense of io-conformance is achieved) since all
the transformations are trace-preserving

? Definition of a new distributed conformance relation based on
partial orders (requires to observe concurrency)

? On-the-fly unfolding and abstraction
? Experiment with the partial order semantics of the action

semantics of UML
? Link to symbolic TGV using symbolic tiles

19

Grey box test architecture

P1 P2 P3

!a, ?b (x) !c, ?d (x) !e, ?f (x)

Local observation : H[i]:=H[i]+1; Timestamp with H
Sending of a message : piggyback with H
Receiving message m(H’) : H:=max(H,H’)

Vector clocks instrumentation:

