
1

Principles of Distributed Test Synthesis based on
True-concurrency Models

Claude Jard

IRISA/CNRS

Campus de Beaulieu
F-35042 RENNES Cedex
France

Claude.Jard@irisa.fr

Abstract: Automatic synthesis of test cases for conformance testing has been principally
developed with the objective of generating sequential test cases. In the
distributed system context, it is worth extending the synthesis techniques to the
generation of multiple testers. We base our work on our experience in using
model-checking techniques, as successfully implemented in the TGV tool.
Continuing the works of A. Ulrich and H. König, we propose to use a true-
concurrency model based on graph unfolding. The article presents the
principles of a complete chain of synthesis, starting from the definition of test
purposes and ending with a projection onto a set of testers.

Key words: Test, Distributed systems, Synthesis, True-concurrency models,
Interoperability

1. INTRODUCTION

Algorithms for automatic test synthesis have been proposed both in the
academic world, and in industry. However, the use of these tools reaches a
limit when testing distributed systems. This is because they are dedicated to

2 Test synthesis using true-concurrency models Claude Jard

the synthesis of sequential test cases (represented by event sequences or
finite automata). Such synthesis is not always well-suited to test systems
containing parallel activities. It is also known that a state representation of a
specification with parallelism often suffers from a combinatorial explosion.
The interest in generating distributed test cases was recognised a few years
ago, as demonstrated by the inclusion of concurrent constructs in the TTCN
standard. We retain three main motivations to synthesise distributed test
cases:
- It can be naturally imposed by the test architecture under consideration.

Let us consider a system geographically scattered on a network. The idea
is to design a set of testers, each tester being located at the
communicating entity to be checked, and communicating with the other
testers to co-ordinate the test activity and the production of diagnosis.

- It allows more compact and clear test cases to be obtained. This is the
case when the system under test produces concurrent observable events:
a sequential representation would require all possible interleavings to be
computed. This rapidly suffers from a combinatorial explosion as the
concurrency increases.

- In certain cases parallel testing is needed to check particular behaviours.
For example, one often considers for controllability reasons that the
testers must wait for the system stabilisation before injecting new
interactions. Under this assumption, it was shown by [2] that a
distributed test case can position the system under test into states which
are not reachable by a sequential test. More generally, the situation will
also occur in the context of real-time testing.

One can distinguish two main approaches to synthesising distributed test
cases:
- The generation of sequential test cases, followed by their automated

distribution. The idea is to produce a set of communicating testers which
behave like the sequential test (i.e. in the sense of trace equivalence).
The advantage of this approach is that it requires no more than the
current state of the art; it can even be used on hand-written test cases.
The major drawback is that it does not take into account the intrinsic
parallelism of the system under test. In general, one does not know how
to distinguish between parallelism and interleaving; in practice this leads
to useless synchronisation between the local testers.

- The re-examination of the synthesis, retaining the parallelism
information contained in the formal specification during the construction
of the test cases. We discuss this extreme approach in the paper. The
main difficulty is the use of a true-concurrency model in which causality
and concurrency are explicitly represented, in place of the usual

Test synthesis using true-concurrency models Claude Jard 3

automata or transition system models. This kind of model has been
mainly developed by theoreticians and has not yet been fully exploited.
The synthesis of distributed test cases appears to be an interesting
context to use the explicit parallelism included in the model.

The question of the automatic synthesis of distributed testers is relatively
recent. It has appeared gradually from the notion of multiple, then distributed
interfaces. For example, in [18], the system under test is modelled by a
single finite state machine with several distributed interfaces. A test
generation method is sketched, based on the idea of synchronisable test
suites. In [19], multiple testers are generated by considering only particular
synchronous behaviours of the parallel specification. Co-ordination of the
testers makes the assumption that the communications between entities of
the system under test are observable. The idea of using true-concurrency
models in the case of asynchronous systems came from two research groups
separately (one in Korea, driven by M. Kim, the other in Germany, driven by
A. Ulrich and H. König). In Kim’s approach [20,21], they adopt a specific
model, which consists in computing particular concurrent paths from a
communicating finite state machines view. The introduction of event
duration makes the computation easier. It is not clear however to know the
algorithmic complexity of the method and how it scales up in a real testing
methodology (abstraction, selection, …). We chose to follow the Ulrich and
König’s approach [22], mathematically based on theoretical and algorithmic
results on Petri nets. The partial order semantics of Petri nets and its
implementation in the “unfolding” algorithmic has been developed for many
years, but rather confined in the theoretical computer science community.
We think it is enough sound and advanced to be applied in several
domains… like distributed testing. In [22], the unfolding of “behaviour
machines” is used to propose a “partial order transition cover” as a general
heuristics to select partial order test cases, which could be later projected on
parallel testers. In the same vein, [23] has tempted to avoid the use of Petri
nets and to directly generate the partial orders (event structures) in the
context of asynchronous communication.

The rest of the paper is organised as follows: First, we give an overview
of a test synthesis method based on model-checking and sequential transition
systems, as implemented in the TGV tool. We then propose to revisit the
whole test-production chain using partial-order representations of the
behaviours. This is presented in Section three, following the different steps
of the methodology: the partial order view of a specification (the notion of
“tile”) and of a test purpose, the construction of an unfolding (the “puzzle
game”), its partial order abstraction, and its final projection onto several

4 Test synthesis using true-concurrency models Claude Jard

testers. Particular attention is paid to the algorithmic complexity and its
potential to scale up, in the perspective of developing a real prototype. Some
indications of possible future developments are given in the conclusion.

2. SYNTHESIS BASED ON TRANSITION SYSTEMS

We mainly rely on our experience in conformance testing. The TGV tool
(Test Generation using the Verification technology) [3,4], jointly developed
by our group at Irisa and a group at Vérimag, is a real-size implementation
of synthesis techniques based on transition systems. We thus begin by
recalling the main principles.

2.1. Our example

Let us consider the small example depicted in Figure 1. This is a simple
connection-disconnection protocol, modelled with two interacting finite
automata communicating through one-bounded channels. The users can use
the protocol by asking for a new connection (event a), or asking for the
disconnection of a previously opened connection (event b from one side,
event c from the other side). Each request is acknowledged by the local
process after having performed the corresponding action (events a, b and c).
The protocol manages a possible collision of disconnect messages by
exchanging a disconnect confirmation, named d. The scenario presented in
Figure 1 illustrates the three possible repeatable behaviours (connection is
closed by the initiator, connection is closed by the other side, and collision).
The message exchanges between processes are neither controllable, nor
observable.

A0

A1

A2

A4

A5

a

!a

b

!b

?c,?d

?c

B0

B1

B4

B2

?b

?a

?b

!d

c

!c

a, ab, b c, c

a

A3

A6
b

B3

c

a

b c

a

Test purpose :
check the possibility
to accept a new connection
after collision

c

ba a b a a ba a b

c c c

a b d a c a
b

c

Figure 1. A small example of connection-disconnection protocol and a possible test purpose

Test synthesis using true-concurrency models Claude Jard 5

The test objective here is to check the possibility to accept a new
connection after collision (collision management is known to be a fragile
aspect of this kind of protocol). This can be naturally described by the partial
order given in Figure 1: a must precede b and c, which precede a. The
description by communicating finite automata is just for illustration purpose.
In the real use of TGV, models are described in higher-level languages like
SDL, Lotos or UML [5,6,7], the associated compiler providing the state
representation.

2.2. The state-graph representation

00

10

2a0

3a0

4a0

21 22 23c 20c

31 32 33c 30c

41 42 43c 40c

5b1 5b2 5b3c 5b0c 50c 13

03 00

10

6b1 6b2 6b3c 6b0c 60c

0b3 0b0 00

1b3 1b0 10

2a3 2a0

3a3

4a3

3a0

4a0

54

64

50d

64d

00

a

a

a a

a

a a a a a

b b b b b

b

b b b b b

b b

!b !b !b !b

!a

!a

?c?c ?c

?d

?a

?a

?a

c

c

c

c

c

!c

!c

!c

!c

!c

c

c

c

c

c

c

c

?b

?b

?b

?b

c

c

c

c

c

!d

!d

?b
?b

?c
?c

Abstraction (visible behavior)
Determinization
Minimization

a

b c

c b

a

Linearisation
of the test purpose

a

a

b

b

c

c c

c

c

a
c

c

c
a
c

a

a

bb

b b

a
c

a

a
a

(product of transition systems)

Figure 2. Finite automata, trace-equivalent to the communicating automata of Figure 1; its
visible abstraction, guided by the automaton of the test purpose. Each state of the test purpose

accepts all the events (the single loops are not represented). The sink state is labelled by
accept.

The exhaustive simulation of the protocol, starting in the initial state
A0B0 with empty channels, and keeping track of the global states reached by
the simulator gives the graph depicted in Figure 2. Notice that cycles are
built when reaching a previously generated state. This state graph captures
all the possible traces of the protocol (the interleaving is computed in the
case of concurrent events). From this graph, one can compute a trace-
equivalent automaton restricted to the alphabet of visible events. A part of
this graph can be selected using the test purpose in order to keep only the
traces it accepts (leading to the sink state PASS).

2.3. Test synthesis

The resulting graph representing all the visible traces of the specification,
consistent with the test purpose, defines a set of possible test cases (up to the

6 Test synthesis using true-concurrency models Claude Jard

inversion of interactions). In general, to reduce the complexity, one extracts
only one test case using some heuristics. For example, we consider that a test
case must be (globally) controllable, which means that there is no choice
between an emission from the tester and another interaction. In our
example, the resulting test case is given in Figure 3. To be complete, we
must mention that the test case is augmented with verdicts (PASS in the final
state, FAIL for possible receptions that are not in the graph,
INCONCLUSIVE when the reception is not on a path selected by the test
purpose) and timers (to prevent the test from dead-, live- and output-locks).
The generated test cases are guaranteed to be safe (they cannot reject a
conformant implementation in the sense of ioco conformance [8]). The
method is also complete in the sense that it is able to reject any non-
conformant implementation (assuming the provision of a corresponding test
purpose, and some fairness assumptions about the implementation).

a
c

c
a

c

a

a

b

b

a

PASS

Tester

System
under
test

a c
c a

b a
a

Controlability (centralized)

Figure 3. Resulting test case under controllability assumption

In the complete version of TGV, these different graphs are not built in
sequence. Their construction is performed on-the-fly during the synthesis of
the test case through the use of APIs at different levels [10], as depicted in
Figure 4. The algorithms are mainly based on adaptations of Tarjan’s
algorithm [9], computing the strongly connected components of a graph via
a depth-first search. The complexity is linear in the size of the state graph
(though the graph itself may be exponential in the size of the model, notably
when the concurrency is significant). Determinisation remains exponential,
but is applied to the graph of visible behaviours, which is much smaller than
the state graph.

Test synthesis using true-concurrency models Claude Jard 7

API simul.
Object-Géode API UMLAUTAPI AldébaranAPI simul.

Caesar

SDL Spec. Lotos Spec. Automaton UML Spec.

API specification
S

API Test purpose
TP

API of PS = S x TP

API of PS abstracted

API of PS (visible)

Synchronous product

Renaming, hidingRename
Hide

 andτ *-reduction determinisation

TGV_loop

Test case
graph

Test case
in TTCN

Timers

Figure 4. The on-the-fly organisation of TGV

3. PARTIAL ORDER VIEW OF THE SYSTEM

3.1. Tile systems

In this section we introduce our mathematical framework. Tiles
correspond to partial transitions and a system is defined as a collection of
tiles.

 Let V be a finite set of variables. Each variable V∈v takes its values in
some finite domain vD . For V⊆V , we set ∏ ∈

=
Vv

vV DX . Elements

of VX are denoted by Vx and are called V-states, or local states. For V∈v ,
we denote by)(Vxv the value of the variable v in state Vx . We shall consider
local transitions relating local states, very much in the same way as
transitions relate states in standard automata. These local transitions will be
referred to as tiles in the sequel. Formally, a tile is a 4-tuple

>=< VV xxV ,,, ατ , where V⊆V is a subset of variables, and),,(VV xx α
is a local transition, relating the previous V-state vDxV ∈ , and performing
event α where α ranges over some set A of possible event labels. For τ a
tile, we shall sometimes denote by τV its set of variables. A system is a triple

>Τ=<Σ ,, 0XV , where V⊆V is a finite set of variables, 0X is a set of
initial states, and Τ is a finite set of tiles and U Τ∈

=
τ

τVV .

8 Test synthesis using true-concurrency models Claude Jard

Figure 5 shows the tile system of our example, as it is entered in our
prototype.

Figure 5. The tile system of the example of Figure 1 in textual form.

The interleaved sequence of states and events
,...,,...,,,,, 22110 kk xxxx ααα is a run of system Σ if 00 Xx ∈ and,

1. for each 0>k , there exists Τ>∈=< ττ ατ τ VV xxV ,,, such that,
)()(,),()(: 1 ττ αατ VV xvxvxvxvVv kkk ===∈∀ − , and,

2.)()(: 1 kk xvxvVv =∉∀ −τ .

 Since tiles define local transitions, it may be the case that two successive
tiles of a given run involve disjoint sets of variables, i.e. modify different
local states. In this case, exchanging the order of the tiles yields to an
equivalent run. This is why we will adopt a partial ordering of tiles instead of
considering the different runs.

3.2. Construction of the unfolding

Given a run, the sequence of successive tiles forms a graph, by
superimposing the pre-condition of a tile)(τVxv onto an equivalent
condition in the existing graph (like a puzzle game). This graph contains two

% Variables
var A : 0..6 init 0;
 B : 0..4 init 0;
 M : (O,a,b) init O;
 N : (O,c,d) init O;

% Tiles
?A pre A(0) label ?A post A(1);
?b pre B(0) M(b) label ?b post B(0) M(0);
!a pre A(1) M(0) label !a post A(2) M(a);
?a pre B(0) M(a) label ?a post B(1) M(0);
!A pre A(2) label !A post A(3);
?C pre B(1) label ?C post B(2);
?B pre A(3) label ?B post A(4);
!c pre B(2) N(0) label !c post B(3) N(c);
?c pre A(3) N(c) label ?c post A(0) N(0);
!C pre B(3) label !C post B(0);
!b pre A(4) M(0) label !b post A(5) M(b);
?b2 pre B(1) M(b) label ?b post B(4) M(0);
!B pre A(5) label !B post A(6);
!d pre B(4) N(0) label !d post B(0) N(d);
?c2 pre A(6) N(c) label ?c post A(0) N(0);
?d pre A(6) N(d) label ?d post A(0) N(0);

Test synthesis using true-concurrency models Claude Jard 9

types of nodes: the conditions (the different values of the variables used in
pre and post conditions of the tiles), and the events of the tiles. Given two
nodes n and n’ (condition or event), we say that n causes n’, written 'nn ≤ ,
if either 'nn = or there is a path of arrows from n to n’. We say that n and n’
are in conflict, written '# nn , if there is a condition m, different from n and
n’, from which one can reach n and n’, exiting m by different arrows. Finally
we say that n and n’ are concurrent if neither 'nn ≤ , nor nn ≤' , nor '# nn
hold. A co-set is a set of concurrent nodes. From a tile system

>Τ=<Σ ,, 0XV , the basic algorithm for the construction of the graph is the
following:

Puzzle := 0X ;
repeat
 if there exists a tile Τ∈τ such that τVx is a co-set of Puzzle then append τ to Puzzle
forever

Figure 6 shows the graph obtained after 8 steps of the above algorithm.

A0 a A1(1)

A1 !a A2
M0 Ma

(2)

B0 ?a B1
Ma M0

(3)

B1 c B2 (4)

B2 !c B3
N0 Nc

(6)

A2 a A3(5)

A3 b A4(8)

A3 ?c A0
Nc N0

(7)

A0

M0

N0

B0

A0 a A1 !a A2

Ma

B0 ?a B1

M0

c B2

a A3

!c B3

Nc

b A4

?c

A0

N0

#

conflict

Figure 6. Result of the application of these 8 tiles in sequence. Conflict between tiles 7 and 8
is pointed out by the branching from condition A3.

This graph is generally infinite (in the case of infinite behaviour), it has
no circuits, every condition has at most one input node, every node has a
finite number of predecessors in the graph, and no node is in self-conflict. It
is in fact an occurrence net in the framework of Petri nets. We can use the
corresponding terminology. A cut is a set of conditions c satisfying the
following two properties: c is a co-set, and c is maximal (it is not properly
included in any other co-set). A configuration is a set of nodes κ satisfying
the two following properties: κ is causally closed (if κ∈n and nn <' , then

κ∈'n) and conflict-free (no two nodes of κ are in conflict). Furthermore,

10 Test synthesis using true-concurrency models Claude Jard

we require for convenience that all maximal nodes (if any) of configurations
shall be conditions. Finite configurations and cuts are closely related. In
particular, given a finite configuration κ the set of conditions Cut(κ) is a
reachable global state, which we denote GS(κ). The basic algorithm will
eventually produce any reachable global state under only the fairness
assumption that every tile candidate to be added is eventually chosen to
extend the puzzle (the correctness proof follows from the definitions and
from the results of [11]).

It appears that the unfolding is of fractal nature, and can be reduced to a
finite generator part, called a finite complete prefix. A prefix U of the
unfolding is complete if for every reachable global state S there exists a
configuration C in U such that SCGS =)(and for every tile τ enabled by S
there exists a configuration { }eC ∪ such that Ce ∉ and e is the event of τ.
A complete prefix contains as much information as the unfolding, in the
sense that we can construct the unfolding from it as the least fix-point of a
concatenation operation on patterns defined by maximal configurations of
the prefix . In order to construct such a prefix, the question is to locate the
events (called the cut-off events) from which the extension in the unfolding
can be stopped. We will denote [e] the set of predecessors of e (the set of
events e’ such that ee ≤'). An event e of the prefix is a cut-off event (with
respect to a particular order p) if the prefix contains an event e’ such that

() ()]'[][eGSeGS = , and][]'[ee p . The algorithm to construct a finite
complete prefix is the following:

Finite_Puzzle := X0;
cut_off := {};
repeat
 Select a tile τ such that τVx is a co-set of Finite_Puzzle;
 live := τ exists and τVx ∩ cut_off={};
 if live then append τ to Finite_Puzzle;
 if ∃ u p t : GS(u)=GS(t) then cut_off := cut_off ∪ τVx
until not live

The correctness of the algorithm requires that the partial order p be
correctly chosen. In [12], it is proved that p must be adequate, that is
defined as an order that is well-founded, which refines the set inclusion and
which is preserved by finite extensions. The size of the prefix also depends
on this order, but it is possible to guarantee that the prefix is never larger
than the global reachability graph (states + transitions).

Test synthesis using true-concurrency models Claude Jard 11

The running time of the algorithm is ()()ϕ

ϕ
CO , where C is the set of

conditions of the prefix, and ϕ denotes the maximal size of the pre-
conditions of the tiles in the original system.

Figure 7 shows the complete prefix of our example as computed by the
Esparza-Römer-Vogler’s unfolding algorithm (available through the
“Model-Checking Kit” of the Technical University of Münich [26]). The
slowest part of the algorithm is locating the possible conditions that can be
covered by a new tile. This is implemented by coding the concurrency
relation and providing a method of maintaining it. This deteriorates as the
size of the prefix increases, since the amount of memory needed to store the
concurrency relation may be quadratic in the number of conditions in the
already built part of the prefix. A recent improvement proposed in [13]
structures the set of events in order to speed up the search in practice, not by
trying the events one by one, but several at once, merging the common parts
of the work.

The unfolding can be generated from this prefix by considering three
maximal configurations ended by the sets {A0,M0,N0,B0}, {A4,M0,N0,B1}
and {A2,Ma,N0,B0} respectively, shown as dashed lines in Figure 7. From
these maximal nodes in the prefix, the unfolding can be continued by gluing
the pattern starting from a similar cut in the prefix.

A0

M0

N0

B0

a

a
A1

!a
A2 A3

b !b
A4

b
A5

c

A6
?c

A0
a

A1
!a

A2

Ma M0 Mb MaMaM0 M0

Nc N0 N0 Nd N0

?a
B1 B2

!c
B3

c
B0

?b
B0

B4?b
!d

B0

?a
B1

M0

?c A0
a

A1
!a

A2

a

A3
b

A4

?d A0

Figure 7. Complete finite prefix of our example

3.3. Guiding by test purposes

Test purposes are a very interesting feature when dealing with large
specifications. Their role is to mark out a relevant part of the specification in
which a test must be found. This concept, present since the beginning in the

12 Test synthesis using true-concurrency models Claude Jard

ISO methodology, is rich enough to continue to arouse discussions in a
broader community [14,15]. In TGV, a test purpose is given by a finite
automaton with sink states labelled by accept or refuse. A transition of the
specification is triggered if there exists a similar transition in the test
purpose. It thus allows some transitions to be cut in the state graph
representation. The accept state will become the PASS state in the final test
case.

This point of view can be easily ported to partial order models, by
considering that test purposes are particular tile systems, with two terminal
specific tiles having accept or refuse as post-conditions. From the two tile
systems (the specification and the test purpose), one can derive a new tile
system, coding the product. The principle is as follows: for each tile of the
test purpose, let us consider a tile of the specification with a similar event
label and build a new tile by making the conjunction of pre-conditions and
the conjunction of post-conditions. This can increase the number of tiles.
The unfolding is then carried out on this new tile system. An alternative
could be to perform the product on-the-fly during the construction of the
unfolding, instead of pre-computing the new tiles. This would imply to keep
the maximal configurations in the prefix in order to be able to continue the
unfolding if required by the test purpose. Placing a tile containing an accept
or refuse condition is considered as a cut event in the algorithm. Figure 8
shows the tile system of the test purpose chosen in our example.

T0 a
T1

T2

b

c T3

T4
a Accept

*

*

*

*
*

Figure 8. A partial ordered test purpose. “*” means any event label of the specification,
except the outgoing events.

3.4 . Abstraction

At this step, the complete prefix contains all the information needed to
generate a test case (no further unfolding is needed, since all the realisation
of the test purpose has been considered in the new tile system, resulting from
the product of the specification with the test purpose). We consider that the
relevant semantics for a test case is the partial order of its events. It can be
extracted from the prefix by considering the observable events only and the
paths in the graph linking them. The graph of the test case is the partial order

Test synthesis using true-concurrency models Claude Jard 13

defined as follows: the nodes are the events of the observable tiles, and a
node n precedes a node n’ if and only if there exists a path of arrows from n
to n’. This operation is linear in the size of the prefix (computation of a sub-
order). To be rigorous, we must distinguish the situation in which two nodes
labelled with concurrent events have a common predecessor, from the case
where the events are in conflict. The latter situation will be resolved in the
projection phase, while the first will generate a local choice.

Some more pruning can be done on the graph. First, the only interesting
paths are those leading to Accept. The others can be deleted, while keeping
the branching information on the relevant paths in order to be able to set
possible INCONCLUSIVE verdicts. Second, we generally require that test
cases are controllable. In our framework, we consider local controllability
only, which means that a reception in the tile system, occurring on a local
process cannot have the same direct predecessor as another event of this
process. Figure 9 shows the partial order of the abstraction in our example
and the extracted sub-graph.

a a b b a

a a b

c c

a Accept

a a b b a

c

a Accept

Figure 9. Abstraction and selection of a test graph

3.5. Projection

The last step is the projection of the test graph onto the different testers.
The principle is the following:
- the events of the testers are the mirror images of the events of the test

graph (receptions from the point of view of the specification are the
emissions of the testers, and vice versa),

- the graph of events of a tester is the projection of the test graph, keeping
only the local events (another sub-order construction). At this step, it is
advisable to build the transitive reduction of the local graph, in order to
avoid redundant synchronisation (this is of cubic complexity, but the
algorithm is applied generally on small graphs),

- a direct link between two events located on different testers is
implemented by exchanging a synchronisation message (this particular
message is emitted after the occurrence of the first event, and received
by the other tester before performing the second event).

14 Test synthesis using true-concurrency models Claude Jard

This is standard way to distribute the behaviour of an automaton. By
construction, the partial order defined by the test graph is preserved by
projection. Thus, all the traces are preserved too [16,17]. The result of the
projection for our example is shown on Figure 10.

a a b b a

c

a
!a

!s1

?a

!b

?b

?s2

!a

?a

PASS

?s1

!c

!s2

PASS

Tester 1

Tester 2

System under test
A

B

T1

T2

a a b b

c

a a

Insertion of
message synchro
to implement
the causal relation

Figure 10. The resulting testers in our example

It is interesting to compare this distributed test case with the sequential one
of Figure 3. The automatic distribution of the test case of Figure 3 would
produce much more synchronisation. Of course, the diamond (a,c) in the
centralised test case is represented by real parallelism in the distributed test
case. Furthermore, we can see that interaction !b (and ?b) is concurrent with
!c in the distributed case. This situation seems impossible to infer from the
sequential test case.

4. CONCLUSIONS AND PERSPECTIVES

Pursuing the approach initiated by Ulrich and König, we propose a
complete chain of test synthesis based on a true-concurrency model. This is
done by revisiting the TGV methodology based on test purposes and of
graph manipulation (product, abstraction, projection, controllability). The
theoretical basis of our proposal relies on sound and scalable algorithmic,
based on the construction of prefixes of unfoldings. The main perspective is
to continue the implementation of these ideas. We have also several research
directions to explore:

Test synthesis using true-concurrency models Claude Jard 15

- The use of UML as modelling language. Beyond its popularity, there is a
real challenge to deal with the partial order semantics of UML, as given
in the action semantics currently specified.

- The required algorithms seem to be implementable on-the-fly, like in
TGV. But the situation is much more complex on unfoldings than in
simple transition systems.

- There are specific questions of controllability in a distributed context
[24], which deserve further study.

- Finally, it is tempting to refine the standard conformance relation based
on sequential traces to a kind of partial order inclusion. This could be
achieved by considering a distributed observation of the communication
between the entities under test [25], i.e. by instrumenting the
implementation by a vector clock mechanism.

5. BIBLIOGRAPHY

[1] ISO/IEC 9646 IT-OSI, OSI Conformance Testing Methodology and Framework
[2] M. Törö. Decision on Tester Configuration for Multiparty Testing. Proc. of the 12th int.
Workshop on Testing of Communicating Systems. Budapest, Hungary, 1999.
[3] JC. Fernandez, C. Jard, T. Jéron and C. Viho. Using on-the-fly verification techniques for
the generation of test suites, Conference on Computer-Aided Verification (CAV '96), New
Brunswick, New Jersey, USA, Alur, A. and Henzinger, T. editors, Springer, LNCS 1102, july
1996.
[4] JC. Fernandez, C. Jard, T. Jéron and C. Viho. An Experiment in Automatic Generation of
Test Suites for Protocols with Verification Technology, Science of Computer Programming,
Groote, J.-F. and Rem, M. editors}, Elsevier Science, number 29, pages 123-146, 1997
[5] L. Doldi, V. Encontre, JC. Fernandez, T. Jéron, S. Le Bricquir, N. Texier and M.
Phalippou. Assessment of Automatic Generation Methods of Conformance Test Suites in an
Industrial Context, IFIP TC6 9th International Workshop on Testing of Communicating
Systems, Baumgarten, B. and Burkhardt, H.-J. and Giessler, A., Chapman & Hall, september
1996.
[6] A. Kerbrat, C. Rodriguez, and Y. Lejeune. Interconnecting the ObjectGéode and CADP
toolsets. In Proceedings of SDL forum'97. Elsevier Science (North Holland), 1997.
[7] T. Jéron, JM. Jézéquel and A. Le Guennec Validation and Test Generation for Object-
Oriented Distributed Software. International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE'98), Tokyo, Japan, April 1998.
[8] J. Tretmans, Test Generation with Inputs, Outputs and Repetitive Quiescence. Software,
Concepts and Tools (1996) 17: 103-120.
[9] R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal Computing,
1(2):146-160. June 1972.

16 Test synthesis using true-concurrency models Claude Jard

[10] T. Jéron and P. Morel. Test Generation Derived from Model-Checking. 11th intern. Conf.
On Computer Aided Verification (CAV’99), Trento, Italy, July 1999. LNCS 1633, pp. 108-
122.
[11] J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28, pp. 575-591
(1991).
[12] J. Esparza, S. Römer. An Unfolding Algorithm for Synchronous Products of Transition
Systems. Proc. Concur’99, Springer, LNCS 1664 (1999) 2-20.
[13] V. Khomenko and M. Koutny. Towards an Efficient Algorithm for Unfolding Petri Nets.
Proc. Concur’2001. Springer, LNCS 2154 (2001): 366-380.
[14] Y. Ledru, L. Du Bousquet, P. Bontron, O. Maury, C. Oriat, and ML. Potet. Test
Purposes: Adapting the Notion of Specification to Testing. To appear in the proc. of the IEEE
Automated Software Engineering Conference (ASE’2001). San Diego, November 2001.
[15] RG. De Vries and J. Tretmans. Towards Formal Test Purposes. In Formal Approaches to
Testing of Software (FATES), Aalbord, Denmark, August 2001.
[16] B. Caillaud, P. Caspi, A. Girault and C. Jard. Distributing Automata for Asynchronous
Network of Processors. European Journal on Automated Systems (JESA), 31(3): 503-504.
May 1997.
[17] C. Jard, T. Jéron, H. Khalouche and C. Viho. Towards Automatic Distribution of
Testers for Distributed Conformance Testing. . Formal Description Techniques and Protocol
Specification, Testing and Verification, 18, pp. 353-368. IFIP, Kluwer, November 1998.
[18] G. Luo, R. Dssouli, Gv. Bochmann, P. Venkaratan and A. Ghedamsi. Test Generation
with respect to Distributed Interfaces. Computer Standards and Interfaces 16 (1994): 119-132.
[19] R. Castanet and O. Koné. Deriving Co-ordinated Testers for Interoperability. Protocol
Test Systems, VI (C-19), O. Rafiq (Ed). Elsevier Science B.V. (North-Holland). 1994 IFIP.
[20] M. Kim, S.T. Chanson, S. Kang and J. Shin. An Approach for Testing Asynchronous
Communicating Systems. Proc. of the 9th int. Workshop on Testing of Communicating
Systems. Darmstadt, 1996, pp. 141-155.
[21] M. Kim, J. Shin, S.T. Chanson and S. Kang. An Enhanced Model for Testing
Asynchronous Communicating Systems. Formal Description Techniques and Protocol
Specification, Testing and Verification, 19, pp. 337-355. IFIP 1999. Beijing, China.
[22] A. Ulrich and H. König. Specification-based Testing of Concurrent Systems. Formal
Description Techniques and Protocol Specification, Testing and Verification, 17. T. Mizuno,
N. Shiratori, T. Higashino & A. Togashi (Eds.), 1997 IFIP. Published by Chapman & Hall.
[23] O. Henniger. On Test Case Generation from Asynchronously Communicating State
Machines. Testing of Communicating Systems. Vol. 10. M. Kim, S. Kang & Al. (Eds).
Chapman & Hall, pp. 255-271, September 1997.
[24] A. Ulrich and H. König. Architectures for Testing Distributed Systems. Proc. of the 12th

int. Workshop on Testing of Communicating Systems. Budapest, Hungary, 1999, pp. 93-108.
[25] L. Cacciari and O. Rafiq. Controllability and Observability in Distributed Testing.
Information and Software Technology 41 (1999): 767-780. Elsevier.
[26] http://wwwbrauer.informatik.tu-muenchen.de/gruppen/theorie/KIT/)

