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Diagnostic de systemes discrets répartis, une approche par dépliages

Résumé : Dans cet article nous étudions le probleme du diagnostic pour des systémes
répartis. Ce probleme est formulé comme un probléme de reconstruction de trajactoire
d’état a partir des alarmes observées. Nous adoptons un point de vue dit de la “concurrence
vraie”, ce qui signifie que nous ne manipulons jamais d’états globaux, et que nous utilisons
un temps qui a la structure d’un ordre partiel. Notre outil principal est le concept de dépliage
de réseau de Petri. Nous étudions un certain nombre de variantes de ce probleme. Cette
étude est motivée par le cas de la corrélation d’alarmes en gestion de réseaux.

Mots clés : Diagnostic réparti, systemes discrets, réseaux de Petri, dépliage, corrélation
d’alarmes.
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1 Introduction

The diagnosis of large, distributed systems is a task of growing importance today. For
instance, the increasing complexity and openness of telecommunication networks makes
network diagnosis one of the challenging tasks in network management today — network
diagnosis is called event correlation in this area.

Related work. Fault diagnosis in discrete event systems has attracted a significant at-
tention. We refer the reader to [1][2] for an overview of the litterature and introduction to
the subject.

Decentralised diagnosis has been identified as a useful approach for the diagnosis of com-
plex systems, in which alarms are sensed within different components of the system. Decen-
tralised diagnosis has been considered by several authors. A thorough study is performed
in [2], including both algorithms and their diagnosability properties. In this reference, the
notion of a diagnoser is used, meaning that the solution is formulated in terms of a set of
communicating machines that have their states labelled by sets of faults, and react to alarm
observations and communications. Also, the language oriented framework of Wonham and
Ramadge is used [3], and the systems architecture is that of communicating automata, with
a “synchronous” communication based on a global time, as revealed by the assumption “A6”
therein. In [4], a different approach is proposed, more in the form of a simulation guided by
the observed alarms, again for a model of communicating automata. The solution proposed
offers a first attempt to handle the problem of state explosion due to the interleaving of the
events involving the different components.

Event correlation in network management is probably the main example of a complex
system subject to diagnosis. This area is the subject of a vast litterature, and a number of
commercial products are available. We refer the reader to [5] for a survey. There are two
main frameworks for most of the methods developed in this area. The first framework relates
to rule-based or case-based reasoning, an approach very different from the one we study here.
The second one uses a causal model, in which the relation between faulty states and alarm
events is modelled in some way or another. The articles [6][7][8] belongs to this family. The
authors formulate diagnosis as an optimisation problem, this has some relation with the
present approach. The case of event correlation in network management also motivated the
series of papers [9][10][11], on which the present paper relies.

Diagnosis architectures. In this paper, motivated by the example of telecommunication
network diagnosis and management, we focus on diagnosis algorithms that are suitable to
truly distributed, asynchronous, systems. Figure 1 illustrates our purpose by showing three
samples of architectures, ordered from left to right and from top to bottom. The first
architecture is centralized : one system is globally monitored by one sensor (or, equivalently,
one set of synchronized sensors), and one global supervisor performs diagnosis. In the second
architecture, the system is distributed. It has several local sensors, each of them having only
a partial view of the overall system, the sensors are not synchronized and a global supervisor
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Figure 1: Diagnosis architectures: centralized, decentralized, and distributed.

performs diagnosis — this is the typical architecture today in telecommunication systems.
In the third architecture, the system and its diagnosis are both distributed, and there is
no overall supervisor, hence the local sensors cooperate to build a coherent view of the
overall system. In addition, the system may be open, i.e., it interacts with some partially
unknown environment — typically, another telecommunication network, shown in dashed in
the figure. In this case, only incomplete knowledge of the system is available. Finally (this
is not shown in the picture) the system itself may be dynamic, meaning that its behaviour
changes dynamically, due to reconfigurations. In this paper we focus on the third case.

Modelling approaches. In this paper we follow an approach based on partial order mod-
els of time and making no use of a global notion of state. This approach was introduced in
[9][10][11] and is motivated by the figures 2 and 3. Figure 2 depicts a typical fault prop-
agation in a SDH/SONET network management system. The different boxes are network
elements, and the different links correspond to the different layers in the SDH/SONET hier-
archy. The fault shown is a fault in STM1 port, resulting in the appearance of a symmetric
fault at the distant extremity of the link, both faults propagating upward the hierarchy.
The architecture shown for the management system has a distributed, asynchronous, set
of sensors, but a central supervisor which collects all alarms (there are many of them!).
The resulting chronogram of faults and associated emitted alarms is depicted in figure 3,
first diagram. The four network elements are shown. In each element, the different lines
figure the different layers in the hierarchy. Finally, the observed part of this pattern is
shown in figure 3, second diagram. Note that, while events collected on the same sensor
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Figure 2: The example of SDH/SONET networks.

are ordered in time, this is not the case for events collected on different sensors. Those
events are mutually ordered only when some causality relationship exists, for instance some
fault is propagated, or some alarm is broadcast through the network, resulting in a causality
relation between its emission and corresponding reception. From the above discussion, the
following requirements for our modelling approach emerge, namely :

e a partial order model of time shall be used, time shall capture 1/ the local time at each
local sensor, and possibly, 2/ causal relations between the distributed events;

e no global state shall be utilized.

Such an approach was introduced and discussed in details in [11]. But the so-called “Viterbi
puzzle” introduced in the latter reference was not completely specified. In particular, the
data structure needed to keep track of all solutions to the diagnosis problem was not de-
scribed, only the way one solution should be built was discussed.

In this paper we solve the whole problem and provide one possible data structure for the
case in which solutions to the diagnosis problem are built on-line while alarms are collected
(clearly, this is not the only relevant approach, off-line algorithms are also relevant, see
[12]). Paper [13] proposes an approach based on synchronizing automata. States for each
local automaton are handled in an enumerated way, but the global, product automaton is
never built and the local diagnosers work asynchronously in cooperation toward building
the overall diagnosis. In this paper we adopt a net unfolding approach [14][15][16]. Net
unfoldings were introduced by D. McMillan to allow reachability analyses in an efficient way
for Petri nets [14]. They were generalized to other models of concurrency in [16], including
synchronized automata (called “synchronous products of transition systems” in the above
reference). Net unfoldings are not wellknown in the control community, they have been
used for supervisory control in [17][18]. Finally, net unfoldings were recognized a useful
structure for proof systems dealing with products of automata with enumerated states [14].
Net unfoldings support useful concepts such as
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Figure 3: A chronogram of fault and alarm propagation, corresponding observed part.

e causality, resulting in partial orders of events ;
e concurrency, in order to allow considering local states only, never global states;

e conflict, to model branching histories, i.e., different histories sharing some prefix;
hence conflict relations will allow us to handle the set of all solutions to the diagnosis
problem in an efficient way.

From systems to their models. When dealing with model based diagnosis, an under-
lying model is always assumed to be given. Unfortunately, not paying attention to the
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feasibility of this task may result in a non practical solution. Clearly, getting an appropriate
model for the fault and alarm propagation in SDH/SONET telecommunications network is
a formidable challenge by itself. The available information typically has the following form :

e Components of the system and their relations are described, in the form of an object
oriented model involving classes and their generic inheritance and other relations, and
associated diagrams involving deployed instances. No precise behaviour, but only
architectures are described at this point.

e Various information regarding components may be available in the form of state tran-
sition diagrams showing the behaviour of generic components, at some level of abstrac-
tion.

e Information regarding the interaction between components are available in the form
of scenarios involving the exchanged messages, and so are typical fault and alarms
propagation informations.

Actual instanciation of the classes would then result in some instanciation of the generic
components, together with their interconnections, and this would yield the desired model.
The important point is that such a construction can be partially automatized, once the
classes have been defined. As for describing the behaviour of the different objects, we assume
that a transition relation is attached to each class as an additional method. This transition
relation relates a finite set of previous input and state variables to the corresponding set of
current output and state variables of each considered object. State variables of these objects
can be either local or shared. Since objects have knowledge of only part of the variables,
these transition relations relate partial states. Such partial transition relations are called
tiles in this paper, to refer to puzzle games, a metaphor already used in [11].

Organization of the paper. The paper is organized as follows. Our basic model of tiles
and systems is introduced in section 2, and we lift this model to a Petri net framework.
Petri net and their unfoldings are presented in section 3. Diagnosis is discussed in sections
4 and 5, which constitute the core of this paper. It is formulated as the reconstruction of
an unfolding from alarm observations, this unfolding encodes all solutions to our diagnosis
problem. Centralized diagnosis is discussed in section 4, and distributed diagnosis is dis-
cussed in section 5. Corresponding algorithms are given in section 6, with additional details
in appendix A. Useful extensions are considered in section 7, this involves the case in which
some alarms are lost and the distributed system may fail to communicate, the case of dy-
namic instanciation of tiles, and the case of incomplete modelling. Finally we draw some
conclusions and perspectives.

2 Tiles and systems

In this section we introduce our mathematical framework. Tiles correspond to partial tran-
sitions and systems are defined as a collection of tiles.
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2.1 Tiles

We assume a vocabulary V which is a set of typed variables. All types are assumed finite.
States (or partial states) will be described as (partial) valuations of the variables. Formally,
we define a state x to be a type-consistent interpretation of V), assigning to the set of all
variables, a value for it over its domain. We denote by X the set of all states. For a subset
of variables V' C V), we define a V-state, or simply partial state, to be a type-consistent
interpretation of V. Thus a V-state x assigns to the set V' a value zy for it over its domain.
Also, for v € V' a variable, we denote by v(z) its interpretation by state z, and by v(zv) its
interpretation by V-state zy. Note that v(zv) = v(z) = z,.

We shall consider partial transitions relating partial states, very much in the same way
transitions relate states in standard automata. These partial transitions will be referred to
as tiles in the sequel. Formally, a tile is a 4-tuple

T = (V,zy,0,2v) (1)
where

e V C V is a subset of variables, and

e (zy,,a,zy) is a partial transition, relating the previous V-state zy, to the current
V-state zy, and emitting event o where a ranges over some set A of possible event
labels. Due to our particular area of interest, these events will be frequently referred
to as alarms in the sequel.

For 7 a tile, we shall sometimes denote by V. its set of variables.

2.2 Systems and their parallel composition
A system is a triple X = (V, Xy, T), where

e V C YV is a finite set of variables,

e Xy is a set of initial states, and

e T is a finite set of (prototype) tiles and V = U, erV;.

The interleaved sequence of states and alarms
Lo, 01,L1,02,22,-..,0k,Tky---

is a run of system X if 2y € X and, for each k > 0, there exists 7 = (VT,$1_/T,04,$V,) eT
such that,

YoeVr : v(zg—1)
and, Vo €V, : wv(xg—1)

(zy,), = e, v(zg) = v(@v,),

(k) -

v
v

PIn®?7?



10 E. Fabre, A. Benveniste, C. Jard, M. Smith

Since tiles define partial transitions, it may be the case that two successive tiles of the
considered run, say 7 and 7', involve disjoint sets of variables. In this case, exchanging 7
and 7’ in the considered run yields another run. This new run is said to be equivalent to
the first one, up to an interleaving. The transitive closure of the so defined relation is an
equivalence relation. Since we advocate a local view of state and time, it is advisable not
to distinguish runs that are equivalent up to an interleaving. Partial order semantics is the
classical answer to this request, we shall present it in the following section, using a Petri net
framework.

This being said, centralized diagnosis is formulated as follows: given an alarm sequence
ai,as,..., reconstruct the set of all runs that have this alarm sequence associated with
them.

To develop a framework of distributed diagnosis, we need to formalize what we mean by
a distributed system. To this end we equip the set of systems with a parallel composition.
For ¥; = (Vi, X§,T:), i = 1,2 two systems, their parallel composition ¥; || X5 is defined as
follows::

Sil% & (M UV XENX2TiUTs) 2)

Parallel composition is commutative and associative. Distributed diagnosis is formulated
as follows. We are given a compound system ¥ = ||;c;X;. Each run of ¥ projects onto a
local run for each component ¥;. Each component has its own supervisor, which collects
the local alarms of each local run. The different supervisors work concurrently, aiming at
constructing, jointly, the set of all runs of ¥ which can generate the locally observed alarm
sequences.

2.3 From systems to Petri nets

We shall lift our framework into the more classical framework of Petri nets. This will allow
us to use corresponding background to develop our approach. At this stage, we assume the
reader familiar with Petri nets. If this fails to be the case, or if the reader feels uncomfortable
with some notations, she or he is referred to the next section, where all material we need is
exposed. We are given a system X = (V, Xy, 7). We shall represent ¥ as a labelled Petri
net N defined as follows:

e The places of N have the form p = (v, z,), where v ranges over V, and z, ranges over
the domain of v.

e The transitions of A" are just the tiles 7 € 7. For 7 = (V, 2}, a, zv) a tile, we associate
to it its alarm component « as a label, and we write A\(7) = a.

e Arrow (v,x,) — T belongs to N iff 1/ v € V;, and 2/ v(zy, ) = x,. Similarly, arrow
7 — (v, 1) belongs to N iff 1/ v' € V., and 2/ v'(zy,) = Ty

The so defined net A is a net of capacity one. This lifting allows us to cast our problem
in the framework of Petri nets, which we detail now. The mapping of tiles to transitions is
illustrated on figure 4 at the end of this paper.

Irisa
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3 Some background on Petri Nets and their unfoldings

We shall use some basic notions related to Petri Nets and their unfoldings, we shamelessly
borrow significant parts of this presentation from [15][16]. For the basic definitions on Petri
net, we refer the reader to [19][3]. Unfoldings are a way to encode the reachable markings of
a Petri net by means of a special acyclic Petri net called an occurrence net. A key point is
that it is enough to regard this occurrence net as a directed graph in order to compute the
reachable markings of the original Petri net. We now collect the notions we need on Petri
net and occurrence nets.

3.1 Petri Nets and their synchronous products

A Petri net consists of a set of places, graphically represented by circles and generically
denoted by p, a set of transitions, graphically represented by bars and generically denoted
by t, and a flow relation assigning to each place (transition) a set of input and a set of
output transitions (places). The flow relation is graphically represented by arrows leading
from places to transitions and from transitions to places. Places and transitions are called
nodes, generically denoted by n. For n a node, the set of its input and output nodes is
denoted by °n and n®, respectively. A place of a net can hold tokens, and a map assigning
to each place a number of tokens is called a marking. In this paper we consider only Petri
nets of capacity one. In such Petri nets, places hold zero or one token. If at a given marking
all the input places of a transition hold a token and all the places which are outputs and not
inputs are empty, then the transition can occur, which leads to a new marking obtained by
removing one token from each input place and adding one token to each output place. An
occurrence sequence is a sequence of transitions that can occur in the order specified by the
sequence. A Petri net N' = {P, Py,T,—} is characterized by its set P of places, its set T of
transitions, its flow relation — C (P x T') U(T x P), and the subset Py C P which composes
the initial marking of the net. A labelling of Petri net N is a map X : T — A, where A is
some finite alphabet. A Petri net equipped with a labelling is called a labelled Petri net.

Definition 1 (product of Petri nets) The synchronous product A7 x Ny of the two la-
belled Petri nets N; = {P;, Poi, Ti, —i, Ai}, i = 1,2, is a labelled Petri net defined as follows :

NixNo & {P,Ry,T,—,\},where P=P,UPy, Py=Po1 UPys,
and t € T iff: (3)
case (i): 3t; € T; for some i = 1,2, such that
At) =Xi(ti) € Ai\A;,j#i,and
=0t , =t
case (ii) : for each i =1,2, 3t; € T; such that

At) = Ai(t1) = Aa(t2) , and
=t U% , t°=t Ut

PIn®7?7?
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The synchronous product is associative and commutative. In case (i) only one net fires a
transition and this transition has a private label, while the two Petri nets synchronise on
transitions with identical labels in case (ii). Note that the two Petri nets can have shared
places, this deviates from the notion of synchronous product used in [16].

A link with the parallel composition of systems. Let us establish a link between
this notion of a synchronous product of Petri nets, and our previous definition (2) for the
parallel composition of systems. Consider two systems ¥; and Y5, and assume they share
variables (V3 NV, # 0) but they have distinct sets of alarms, this is the case of interest
for practical distributed diagnosis applications. Then corresponding Petri nets A} and N>
have shared places, but distinct labels for their events, and therefore, when considering their
synchronous product N7 x A3, only case (i) applies. As a consequence, in this case, product
net N1 x N is the net associated with the composed system X1 || Xs.

A link with the diagnosis problem. Consider the case in which net A5 has its event
label set contained in that of net N;, meaning that events produced by N5 “could have been”
produced by N;. On the other hand, we assume that N; and A, have distinct places, say,
places of A3 are dummy and have no particular concrete signification. When computing the
synchronous product A x Na, then only case (ii) of synchronizing events applies, and this
product will in particular compute those behaviours of A7 which can “explain” the observed
behaviours of N3. This is very similar to the diagnosis problem we shall investigate later.

3.2 Representing the runs of a Petri net via unfoldings

In this subsection we consider the problem of representing all the runs of a Petri net, using
the notion of occurrence net and unfolding.

Occurrence nets — definition, terminology, and notations

Given two nodes n and n' (place or transition) of a Petri net, we say that n causes n/,
written n < n/, if either n’ = n or there is a path of arrows from n to n’. We say that n and
n' are in conflict, written n#tn’, if there is a place m, different from n and n’, from which
one can reach n and n’, exiting m by different arrows. Finally we say that n and n’ are
concurrent, written nln’, if neither n < n’, nor n < n’, nor n#n’ hold. For n a node, we
write 1L(n) to denote the set of nodes that are concurrent with n. An occurrence net is a
Petri net satisfying the following properties:

1. the net, seen as a directed graph, has no circuit;
2. every place has at most one input transition ;

3. no node is in self-conflict, i.e., n#n does not hold.

Irisa
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Occurrence nets can be infinite. We restrict ourselves to those in which every event has at
least one input place, and in which the arrows cannot be followed backward infinitely from
any point (this is referred to as well-foundedness). It follows that, by following the arrows
backward we eventually reach a place without predecessors, these are the minimal places of
the occurrence net.

To distinguish occurrence nets from other Petri nets, we shall use specific terminology
and notations, mostly borrowed from [15]. Occurrence nets are generically denoted by U,
their places are called conditions, they are generically denoted by b, and the set of conditions
is denoted B. Also, their transitions are called events, they are generically denoted by e,
and the set of events is denoted by E.

A cut of an occurrence net is a set of conditions ¢ satisfying the following two properties :
c is a co-set (any two elements of ¢ are concurrent), and ¢ is maximal (it is not properly
included in any other co-set). A configuration is a set of nodes k satisfying the following two
properties: k is causally closed (if n € k and n’ < n, then n’ € k), conflict-free (no two nodes
of k are in conflict), and, when seen as a set of nodes, a configuration is a union of cuts.
Furthermore we require for convenience that all maximal nodes (if any) of configurations
shall be conditions. Figure 5 shows an example of a configuration, figure 6 depicts different
cuts for the configuration of figure 5, and figure 7 shows an example of an occurrence net.

Unfoldings

For N a Petri net, its unfolding we introduce now represents the set of all its runs. To
define the unfolding, we shall first associate to A" a set of labelled occurrence nets, called
the branching processes of N'. The conditions of these nets are labelled with places of N/,
their events are labelled with transitions of A/, the flow relation of A is “unfolded” into that
of the branching process, and the branching process “starts” at the initial marking of N.
All this is formalized next.

Definition 2 (branching process) A branching process of a Petri net N = {P, Py, T, —}
is a labelled occurrence net U = {B, E,—,\}, where the labelling function A, with domain
B U E, satisfies the following properties :

(i) N(B) C P and N(E) CT.

(ii) Ve € E, the restriction of A to %e is a bijection between e and *X(e), and similarly for
e* and \(e)®.

(#i) The restriction of A to min(U), seen as a directed graph, is a bijection between min(U)
and Py.

(i) Vei,es € E, %1 = %e2 and A(e1) = A(e2) together imply ex = es.

Condition (iv) expresses that the unfolding of the flow relation is performed without dupli-
cation. The set of all branching processes is uniquely defined, up to an isomorphism (i.e.,

PIn~7?77?



14 E. Fabre, A. Benveniste, C. Jard, M. Smith

a renaming of the conditions and events). Branching processes are partially ordered by in-
clusion. The union of a finite or infinite set of branching processes of N is also a branching
process of N, where union of branching processes is defined componentwise on places and
events. Therefore the union of all branching processes of A is also a branching process,

we call it the unfolding of N/, and denote it by U . (4)

This notion is illustrated in figures 9 and 10.

4 Diagnosis in the framework of Petri Nets

We are given the following objects.

¢ A labelled Petri net N' = {P, Py, T, —, Ay}, where the range of the labelling map )\,
is the set of possible alarms, denoted by A, and

e its unfolding Uy = {B, E,—, A}, where the different objects have been introduced in
subsection 3.2.

Note the following chain of labelling maps:

A A . A
E = T = A : er—Ae)r— Aa(Me) = Ayle), (5)
events transitions alarms

which defines the alarm label of event e (or “alarm”, for short, when no confusion can occur),
we denote it by A, (e).

We assume some run of net N, i.e., some configuration & of its unfolding /. And we
assume that we only observe the alarm events of configuration k, meaning that, for event
e € k, we only observe A,(e). Our task consists in reconstructing all configurations of the
unfolding of the considered net, which could give raise to the above mentioned observations.
We rephraze this by saying that the desired configurations “explain these observations”, and
we interpret this as a diagnosis problem. To gain an intuition of this, just imagine that we
try to recover the diagram on the top of figure 3, from observing the diagram on the bottom
of the same figure.

As said before, only alarms are observed, but we also need to specify which information
regarding causalities between the different alarm events our observation system can capture:

(a) For the simplest design, we assume that we have a single sensor observing sequentially
some interleaving a1, as, ... (a; € A), of the alarm events belonging to the considered
configuration. We assume that it is not the case that i’ < 7 and «; caused ay, i.e.,
the observed interleaving is consistent with the causalities specified by the underlying
Petri net.

(b) For a more sophisticated design, we assume that we have a finite set of sensors labelled
by j € J. These sensors work concurrently and independently, and sensor j observes
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sequentially some interleaving o, o, . .. (ozg € A), of the alarm events relevant to its

site. Again, we assume that, locally to each site, the observed interleaving is consistent
with the underlying causalities.

(¢) More generally, we assume that we have some sensoring system able to observe alarm
events, partially ordered in a way which does not contradict the way they were causally
produced.

Case (a) is typical of a diagnosis using a centralized supervisor, in which alarm events are
collected in sequence by respecting causalities — a typical architecture in network manage-
ment systems today. Case (b) is an extension of (a) to diagnosis via distributed supervision
— the preferred architecture for future network management systems in which heteroge-
neous network management systems will cooperate. Finally, case (c) subsumes case (b) to
its important assumptions for our purpose. All this is formalized next.

4.1 Problem statement

To formalize the above discussed partial capture of causalities, we need the notion of exten-
sion of an occurrence net.

Definition 3 (extension of an occurrence net) Given a labelled occurrence net, we call
an extension of it any labelled occurrence net obtained by adding, to this net, conditions and
flow relations but not events.

An occurrence net induces a labelled partial order on the set of its events. Extending this
occurrence net according to definition 3 induces an extension of this labelled partial order .
Then, we need to formalize what we mean by “observing alarms only”. To understand
why the following framework is required, the reader is referred to (5) and the related ex-
planations. We consider alarm labelled occurrence nets of the form U = {B,E, —,A,}, in
which the labelling map A,(e), e € E, takes its values in the set A of possible alarms.

Definition 4 (alarm-isomorphic occurrence nets) Two alarm labelled occurrence nets
U={B,E,—,ANy} andUU' ={B',E',—-',A/,} are called alarm-isomorphic if there exists an
isomorphism 1, from {B,E,—} onto {B', E',—'} seen as directed graphs, which preserves
the alarm labels, i.e., such that Ve € E : AL, (¢(e)) = Aa(e).

Two alarm-isomorphic occurrence nets can be regarded as identical if we take into account
the alarm labels of their events, but ignore their conditions.

Definition 5 (alarm pattern) Consider a labelled net N' and its unfolding Uyr. A labelled
occurrence net A is called an alarm pattern of N if:

1 Recall that the labelled partial order (X, <) is an eztension of labelled partial order (X', <') if labelled
sets X and X’ are isomorphic, and < O <’ holds. When (X, <) is a total order, we call it a linear extension
of (X, ).
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1. Its labelling map takes its value in alphabet A of alarms,

2. A is itself a configuration (it is conflict free), its set of conditions is disjoint from that
of Unr, and

3. There ezists a configuration & of Uy such that A and k possess extensions that are
alarm-isomorphic.

Assuming for A a set of places disjoint from that of U/ aims at reflecting that alarm patterns
vehicle no information regarding hidden states of the original net. This justifies condition 2.
Keeping in mind definitions 3 and 4 and the cases (a,b,c) of the discussion before, condition
3 expresses that k can explain A. For instance: in case (a), A itself is an extension of x;
in case (b) each local part of A is an extension of k, but causalities relating alarm events
received by different sensors are lost; case (c) expresses that x and A possess compatible
partial orders.
For A a given alarm pattern of N, we denote by

diagnosis (A) (6)

the set of configurations  of U, satisfying the conditions 1,2,3 of definition 5. In the next
subsection, we propose an adequate data structure to represent the set diagnosis (A4), we call
it a diagnosis net.

4.2 Diagnosis nets

In occurrence nets, configurations are causally closed and conflict free unions of cuts. Hence
configurations are conveniently characterized using causality and conflict relations. There-
fore, a first natural idea is to represent diagnosis (A) by

the minimal subnet of unfolding U, containing 1)
all configurations € diagnosis (A) ; we denote it by U (A).

Subnet Upr(A) inherits canonically by restriction, of the causality, conflict, and concurrence
relations defined on Upr. Net Uy (A) contains all configurations belonging to diagnosis (A),
but unfortunately it also contains undesirable maximal configurations not belonging to
diagnosis (A), as the following picture shows:

R Rrdhy

~.. O

U A diagnosis(_4 )

1
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In this picture, we show an unfolding i/ on the left hand side. In the middle, we show
a possible associated alarm pattern A. Alarm labels are figured by colors (black and
white). The set diagnosis(.A) is shown on the right hand side, it comprises two configura-
tions. Unfortunately the minimal subnet Uy (A) of the original unfolding &/ which contains
diagnosis (A), is indeed identical to ¢/ ! Undesirable configurations are {(1, t12,2), (4, t46,6)}
and {(1,t13,3), (4,t45,5)} (in these statements, 15 denotes the transition separating states
1 and 2). But configuration {(1,%12,2), (4, t46,6)} is such that its two transitions t13,t46 €x-
plain the same alarm event in 4, and the same holds for the other undesirable configuration.
The idea is to turn the relation “explain the same alarm event” into a conflict relation, since
this would prevent {(1, t12, 2), (4,%46,6)} and {(1, 13, 3), (4, t45, 5) } from being configurations
in this case! Let us formalize this idea.

Referring to the definition 5 of alarm patterns, for every x € diagnosis (A), denote by 1,
the alarm-isomorphism mapping the events of k onto those of 4. For a an event of an alarm
pattern A, we denote by diagnosis (a) the set {1);1(a) : k € diagnosis(A)}, it is the set
of events belonging to diagnosis (A) which explain a. By abuse of notation, we also denote
by diagnosis (a) the corresponding set of events in subnet Uy (.A). We define the following
A-conflict relation on subnet Uy (A) as follows, we write it #.4 :

Definition 6 (A-conflict relation) Relation # 4 is the weakest relation satisfying the fol-
lowing three conditions :

1. If p#q, then p# 4 q, i.e., #.4 is stronger than # ;
2. If Ja € A such that t € diagnosis (a) and t' € diagnosis(a), then t #.41', i.e., sharing

an alarm event is a source of conflict;

3 Ifp#asqandpp,q=2q, thenp' #44q, i.e., #.4 is causally closed.

We equip the subnet U (A) of nodes with the causality relation < inherited from the original
unfolding Uy, together with the above defined reinforced conflict relation # 4. Finally, we
write p I 4 ¢ if neither p < g, nor ¢ < p, nor p #.4 q holds. The following theorem holds:

Theorem 1 Let Uy be the unfolding of some Petri net N', A an associated alarm pattern,
and let diagnosis (A) be defined as in (6). Equip Uy (A) with the reinforced conflict relation
# .4 introduced in definition 6. Then the triple Una = {Un(A), X, #4} is an adequate
representation of diagnosis (A), as it possesses exactly diagnosis (A) as its set of mazimal
configurations, we write this

diagnosis (A) ~ Una

Proof: it is organized into several steps.

1. Every k € diagnosis (A) is a configuration of Un 4.

By definition of diagnosis (.A), no two nodes of k explain the same alarm event of A. On
the other hand, &, being a configuration of Ux(A) equipped with its original conflict
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relation #, is causally closed. Hence no two nodes of k are causally related to nodes
explaining the same alarm event a € A. Since & is already a configuration of Uxr(A)
equipped with its original conflict relation #, conditions 2 and 3 of definition 6 imply
that & is a configuration of U 4.

2. Every & € diagnosis (A) is a mazimal configuration of Up; 4.

Assume this is not true, then there exists some x € diagnosis (.A) which is not a maximal
configuration of Uy 4. Hence kCk', k # k', for some maximal configuration k' € Up4.
Then two cases can occur. Either the suffix k' \ k is not a subset of any element
of diagnosis (A), hence it can be removed from Uy (A), therefore contradicting the
minimality of Uy (A). Or some node of '\ & belongs to some element of diagnosis (A),
but then it explains some alarm event of A, hence it must be in conflict with the
node of k explaining the same alarm event of 4, this contradicts the fact that ' is a
configuration of U 4, equipped with the reinforced conflict relation # 4.

3. Every mazimal configuration of Un;a is an element of diagnosis (A).

Assume there exists some maximal configuration & of Ux; 4 which does not belong to
diagnosis (A). We have already seen that x cannot contain an element of diagnosis (A).
Then the following cases can occur. Either x has some suffix which has empty in-
tersection with every element of diagnosis (A), hence it can be removed from Up(A),
therefore contradicting again the minimality of Ux(A). Or k is a union of subcon-
figurations of elements of diagnosis (.A). Then either two different nodes of  explain
the same alarm event, and this prevents k from being a configuration with respect to
the enhanced conflict relation # 4, or no such two nodes exist, and then x must be
a strict subconfiguration of some element of diagnosis (A), hence it is not a maximal
configuration of Un 4. o

The structure Ux;4 introduced in theorem 1 is not a proper occurrence net: its conflict
relation is not inherited from the topology of the underlying bipartite graph, it is rather
an extension of the conflict relation associated to Ux(A) seen as a bipartite graph. But
the incremental construction of an unfolding requires anyway to maintain explicitly the
concurrence/conflict relations by appropriate pointers, hence there is indeed no additional
burden in computing this special data structure.

However, structure Un;4 lacks algebraic properties, hence it is difficult reasoning with
it for the case of distributed diagnosis we discuss hereafter in subsection 5.1. Therefore we
shall introduce a less compact, but more elegant representation of diagnosis (.4), amenable
of algebraic manipulations that will be instrumental in handling the distributed case.

Theorem 2 Let N, Uy, A, and diagnosis (A) be as in theorem 1, and consider the unfolding
Unxa. Then erasing, in the set of all configurations of Unx A, the conditions labelled with
nodes from A, yields the set U4 < 4 diagnosis (A'), where A’ ranges over the set of the prefizes
of A. Hence Unx 4 is an adequate representation of U4 diagnosis (A'), written

U diagnosis (A") ~ Unxa-
A< A
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This theorem is illustrated in the following picture, which continues our running example.
The reader should compare this figure with the preceding one, and note that the restriction,
to the nodes of AV, of unfolding U x4, has exactly diagnosis (A) as its set of configurations :

£

diagnosis(.4) ~ MJV A

Proof of theorem 2: it relies on the following claims.

1. Let & be a configuration of Un'x 4 ; then erasing, in k, the conditions labelled by nodes
from A, yields an element of diagnosis (A’), where A’ is obtained by erasing, in k, the
conditions labelled by nodes from N .

To prove this claim, we use in detail the definition 1 of the product of Petri nets, and
the definition 2 of branching processes. Since N and A possess the same labelling
alphabet A, only case (ii) of definition 1 applies, i.e., both A" and A must synchronize
at each transition of their product V' x A. Using this remark and conditions (iii) and
(ii) of definition 2, erasing, in &, the conditions labelled by places from N, yields a
configuration of 4 = A (we use the obvious fact that the unfolding of an occurrence
net is this net itself). But the configurations of A are just its prefixes, hence the so
obtained configuration is some prefix, A’, of A. Using again the fact that all transi-
tions of A/ x A are synchronizing transitions, erasing, in x, the conditions labelled by
conditions from A, yields a configuration of Uy. By definition 5 of alarm patterns,
this configuration is an element of diagnosis (A').

2. For A’ an arbitrary prefix of A, any element of diagnosis (A') is obtained by erasing,
in some configuration k of Un x4, the conditions that are labelled by nodes from A'.

It is enough to prove the above claim for the special case A" = A. By theorem 1, we
know that diagnosis (A) coincides with the set of maximal configurations of the struc-
ture Un;4. From the definition 6 of enhanced conflict relation # 4, we immediately see
that any maximal configuration of x4 is obtained by erasing, in some configuration
& of Un x4, the conditions that are labelled by nodes from .A’. This proves the claim,
and finishes the proof of the theorem. <o
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The data structures introduced in theorems 1,2 are generically called diagnosis nets in the
sequel. We are now ready to investigate the distributed case.

5 Distributed diagnosis

5.1 Problem statement

Here we assume several systems running concurrently, and sharing some of their hidden
state variables. Each system would have its own local sensoring system. Different sensoring
systems are concurrent, and share no information. Now, we cast again distributed diagnosis
in our Petri net framework.

Throughout this section we consider a product net of the form

N = HM,Iaset.
i€l

where [] refers to the synchronous product of nets. Due to subsections 2.2, 2.3, and the
remark at the end of subsection 3.1, we assume the following:

labelled nets N; have pairwise distinct label sets for their events, (8)
but they can share places.

We need to generalize the problem statement of subsection 4.1 to the distributed case.

Definition 7 (distributed alarm pattern) Given the family N;,i € I, o distributed
alarm pattern for [] N; consists of a family A;,i € I of nets having the following
properties :

iel

1. Vi € I, A; is an alarm pattern of N,
2. the sets of places of A; are both pairwise disjoint and disjoint from that of [1;c; Ni.

Again, assuming pairwise disjoint sets of places reflects the assumption that sensors cannot
capture causalities relating events occurring at different sites. Set

A 2 J[A

iel

Then A satisfies conditions 2,3 which define alarm patterns in subsection 4.1 on (centralized)
diagnosis. Hence we can consider diagnosis (A) and we define

diagnosis (A;,7 € I) 2 diagnosis (A) . 9)

Therefore we already know how to represent it : apply theorem 1, which yields the following
respective representations for diagnosis (A;,7 € I), namely

uMA = {UN(A), j: #A} 5
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by using theorem 1, or alternatively

Unxa (10)

by using theorem 2. Due to its simpler algebraic structure, unless otherwise specified,
we shall work with the latter representation in the sequel. To prepare for a distributed
computing of diagnosis (A;,% € I), we shall now analyse the structure of diagnosis nets for
the distributed case.

5.2 Architecture of distributed diagnosis

In this subsection we prepare for the design of algorithms for distributed diagnosis. We
describe it first using the metaphor of puzzle games. Roughly speaking, we assume each
local sensor has a player associated with it. We wish to regard the diagnosis problem as a
cooperative multi-player game in which each player monitors his own sensor, and cooperates
with other players at constructing the overall diagnosis, on-line. We like to see the diagnosis
net under construction as a “puzzle” made of tiles glued together. Each player has his own
private subset of tiles, to reflect that the whole model is the product of local Petri net models
and each player only knows his local model. Since the different players cooperate at building
an overall puzzle, each given player can put tiles on current puzzle boudaries that were
constructed by himself (local continuation) or by other players (cooperative continuation).
Finally, we require that the players can cooperate at this puzzle game like “agents” working
in a fully asynchronous way, without the need for any particular synchronization service
provided by the underlying communication infrastructure. Let us formalize this.

Some further material on Petri nets and their unfoldings

We need some further material on Petri nets and their unfoldings. We define the projection
of a Petri net N' = {P, Py, T, —, A} onto a subset P’ C P of its places, this is depicted below,
where black patches refer to places belonging to P’ :

—
and is formalized as follows:
projp (N) = {P,PonP T —p,\N}, (11)
where
T = T\{t: (tut)nP =0}, (12)
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— pr is the restriction to (P’ x T")U(T" x P’) of the flow relation —, and X’ is the restriction
to T" of the labelling map A. To ensure the consistency of the definition (12) for 7", we
assume that the pair (N, P’) satisfies:

VteT

{ either NP #£0, (13)

or (tUt*)NP =0,

so that no transition of projp. (N) has an empty preset — note that this also allows us to
avoid problems in defining the unfolding of projp (V). Set P’ = P\ P’. If both pairs
(N, P") and (N, P") satisfy condition (13), then the following decomposition holds:

N = projp (N) x projpn () (14)

Then we will need the following combinator on Petri nets (recall that Petri nets can share
places, not only transitions):

NON' 2 pProjpnp (N) x projpap (V') . (15)

where P, P’ denote the respective sets of places for Petri nets N/, . Using these operators,
formula (14) implies the following result :

Lemma 1 for N' and N two nets, the following formula holds :
N XN = Nocx WNIN') x N, (16)
where
Noc = Projp\p: W) 5 Noe = Projpi\p (W) .

The interest of decomposition (16) lies in the following two facts: on the one hand N,
(N MN'), and N possess pairwise disjoint sets of places, hence they can only synchronize
on their shared events; and on the other hand, the remaining operation N 1M N’ involves
two nets with identical sets of places. In addition, if nets A" and N’ have disjoint sets of
events, then operation A T1 N’ involves two nets with identical sets of places and no shared
events. Thus decomposition (16) provides a separation of concerns.

Distributed diagnosis with two players, a decomposition formula

We consider two Petri nets NV and AN’ such that P'NP"” # () and T'NT" = ), and associated
alarm patterns A’ and A", following the general scheme of distributed diagnosis as discussed
in subsection 5.1. In particular, A’ and A" have disjoint sets of conditions and events. The
diagnosis consists in computing the unfolding

Unxa = z/{(N’><J\f”)><(.A’><.A”)-

Irisa



Distributed diagnosis 23

Using lemma 1, decompose

N x A (Nl X.A/) x (N// ><./4//)
(N x Aoe x (N'TIN)
— ( ! X AI) X (N’/ [—lN”)

loc

(N” x A”)Ioc
( 1 X.A”)

X
X loc

(note that alarm patterns A’ and A" possess only private places), hence we need to compute
the unfolding :

u_/\[xA = u(MgcXA’)X(N’HN")X(MZCXA”) . (17)
loc’ interaction loc!’

In (17) the term loc’ (resp. loc”) is local to player play’ (resp. play”). The term interaction
concentrates the interaction between the two players. Therefore player play’ deals with
loc x interaction, and symmetrically for player play”. This is reflected by the following
structure for the unfolding (17): referring to the definition 2, if

Unxa = {B,E,—, A}
then:
e The set B of conditions decomposes as
B = Bio' W Binteraction W Bioc (18)

where By is the set of private conditions for player play’ (and similarly for Bjoc),
and Binteraction 18 the set of conditions which must be known from both players.

e The set E of events decomposes as
E = EooWEjq: (19)
where Ej, is the set of private events for player play’ (and similarly for Ejc»).

e The flow relation handled by player play’ is defined on
((Bloc' ] Binteraction) X Eloc') U (Eloc’ X (Bloc’ U] Binteraction)); (20)
and similarly for player play”.

Conditional independence

To prepare for distributed diagnosis with two players, we first show that concurrence and
conflict relations can be recovered from neighbouring interaction involving only Petri nets
in a direct interaction. We formalize this using the notion of conditional independence.
Consider three Petri nets N_, Ny, Ny such that:
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(a) Mo, N— on the one hand, and Ay, N3 on the other hand, have shared places and
transitions,

(b) but N_, NV, have disjoint sets of places and transitions.

We say that the Petri nets N_ and N are conditionally independent, given Ny. Hence
pairs (Np, N_) and (Np, N, ) directly interact, whereas (N_, Ny ) interact only indirectly,
through Np. Consider the product Petri net N'= N_ x Ny x N4 and its unfolding Uy. We
shall use the following notations. In the rest of this subsection, the term “labelled by No”
will mean for short: “labelled by nodes belonging to Ny”, and similarly for N, A .

For ng, n{, two nodes of occurrence net Uys that are labelled by No, we write

No jg ’I’L6 (21)

if the path of arrows from ng to n{ in Uy visits only nodes that are labelled by Ny. In
other words, relation <g is the part of the causality relation on Uy which is locally caused
by Petri net Ny. Local causality relations <_ and <, are defined accordingly.

For ng, ng two nodes of occurrence net Uy that are labelled by Ny, we write

ny #o 1y (22)

if n{ # ng if there is a condition by € Uy labelled by Ny and different from ng and ng, from
which one can reach ny and n{ through Uy, exiting by by different arrows. In other words,
ng #o ny holds if the source of the conflict is labelled by Ap. Local conflict relations #_
and #4 are defined accordingly.

Finally, <| »;, denotes the restriction, to the set of nodes labelled by Mo, of the causality
relation on Uy, i.e., for two nodes n,n’:

n X n, 0 iff n <Xn' and n,n’ are labelled by N . (23)

Restricted conflict relation # |, is defined in the same way. And similar notations hold
for the two other Petri nets N_ and Ny. Also, <|x_nx, denotes the restriction of the
causality relation < to the set of nodes labelled by both N_ and Ny, and so on.

Theorem 3 (a useful factorization) Consider three Petri nets N_, No, Ny such that N_
and Ny are conditionally independent given No. Then,

1. the relation <X | n_ is the transitive closure of the relation X_ U X|x_nn, , and

2. the relation 4 |n_ is the closure, through causality relation < |x_, of the relation
#— U #|N7 NANg -

Proof: Point 1is immediate, by inspection of the graph of the unfolding Un_ x ap xa7, - To
show point 2, recall the following. Let b# be a source of conflict in the unfolding U, and
let n”_ and n” be two different nodes labelled by N_, which can be reached, within Uy,
from b# by exiting b# via two different arrows. Hence we have n’_ # 5 n”, by definition.
We consider the following three cases.
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A(b#) € N_: then the pair (n’_,n”) belongs to the closure of relation #,_ by causality
relation = n_, by definition.

A(b#) € Ny : consider a path from b# to n’_, and denote by nj,_ the node labelled by nodes
shared by NV_ and Ny which is closest to n’_ in this path, i.e., the last node labelled
by Np before reaching n’ . Node nj_ is defined similarly. From the preceding point,
we already know that n{_ #¢ ng_. By construction, we have n’ >_ n{_, whence
n’ = n_ ng_ by using statement 1 of the theorem. Hence the pair (n’ ,n’) belongs
to the closure of relation # | » na;, by causality relation < . .

A(b#) € Ny : the same pair (ny_,n{_) as before still belongs to # |, , and we finish the
proof as in the preceding case. <o

Theorem 3 is used as follows.

Corollary 1 For the construction of the restriction, to the nodes labelled by N_ or Ny, of
the causality and conflict relations on Uy, it is enough to maintain 1/ the local conflict and
causality relations #_ and <_ due to N_, together with 2/ the conflict relation #IN_ONo
and the transitive reduction of the causality relation = |a_nny -

Direct cooperation between players play_ and play, is not required: the construction of the
global unfolding factorizes into the two local cooperations between play_ and play, on the
one hand, and play, and play, on the other hand.

If we reuse this remark for the construction of the diagnosis net of formula (17), it means
that players play’ and play” only interact via their interaction part.

Distributed diagnosis in the case of several players in a tree-structured interac-
tion

Now we turn to the general setup of subsection 5.1: we have a set Nj,i € I of Petri nets,
and corresponding alarm patterns A;. We define the (nondirected) interaction graph T as
follows:

(i,j)eT iff P,NP#0, (24)

i.e., we draw a branch (i, j) iff the two nets N; and N possess shared places. Pick a branch
(Jus kx) € Z. Assume that we can partition set I into

I = Ju{je{kIWK, (25)

and the subsets J and K are separated by the branch (jy, k«), meaning that there is no
branch in the graph 7 linking two nodes sitting on J and K, respectively. Set

N = HN] x Nj ,N":Nk*x<HNk)

jeJ kEK
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Applying decomposition (16) successively to A" and N, x Ny, , and using notations therein,
we have

N o= NXNT = A
Nj, x M, = (Nj,)

x (NN x !

loc

X (N* I—IN/C*) X (Nk*)loc

loc

and the following relations hold :

N'MN" = N, NN, (26)

I;c = H'A[J X ('A/J'*)Ioc ’ |:)lc = (Nk*)loc x (H Nk)

jedJ keEK

Formulas (26) express that, in order to compute the interaction between N’ and N, it is
enough to compute the interaction between the adjacent components A, and N, .
If the graph 7 is indeed a tree, then decomposition (25) holds for any branch (j,k) € Z,
and the same reasoning as above applies inductively to N, = ([T;c;N;) x (Nj,)o, and
oe = N )ioe X (ITgex Ni), separately. To summarize, for the case of several players in
a tree-structured interaction, it is enough that each player handles his interaction with his
neighbours in a local manner. More precisely, we distinguish some index belonging to I and
denote it by 0, and let Iy C I be the set of the neighbours of 0 in graph Z, player 0 needs
to perform the following:

Specification 1 [tree-structured multiplayer distributed diagnosis]

(a) Let P joc be the set of private places of Ny, and define N oc accordingly. Player 0 has
to compute locally the contribution of Np oc X Ao to the unfolding.

(b) For each j € Iy, player 0 needs to cooperate (only) with player j in computing the
contribution of (N MA;) to the unfolding.

(c) Player 0 has to to compute locally the contribution of the product Ny joc X Ao X HjeIo (Mo M N;)
to the unfolding.

NoTA. The assumption that the interaction graph is a tree is important. Assume for
instance Z is a cycle 0,1,..., K,0. Then the restriction, to the nodes labelled by Ny, of the
conflict relation on Uy, cannot be deduced solely from #q, # | v, ; and # | n, - For example,
it is possible that two nodes of U labelled by Ay are reached, by starting from the same
condition labelled by N} for some 0 < k < K, via two paths, respectively traversing nodes
labelled by Ni—1,Nk—2,...,N1,No and Ngt1, Nig+2,- .-, Ni,No. In this case, the conflict
relation cannot be locally computed and communicated along the different components, it
is truly global.
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6 Algorithms

In this section, we specify the algorithms that implement the three tasks of specification 1.
We first describe the framework we use for such a specification, based on rewriting rules.

First, we state an inductive construction of the unfolding of a Petri net, as defined in
(4) and definition 2 (this construction is borrowed from [16]). In this construction, we make
consistent use of the following notations. The conditions of the unfolding have the form
(e,p), where e is an event of the unfolding and p a place of the Petri net in consideration ;
the label of condition (e,p) is p (written A(e,p) = p), and its unique input event is e.
Conditions (L, p) are those having no input event, i.e., the distinguished symbol L is used
for the minimal conditions of the occurrence net. Similarly, events of the unfolding have the
form (X,t), where X is a co-set of conditions belonging to the unfolding, and ¢ is a transition
of the Petri net in consideration; the label of event (X, %) is ¢ (written A\(X,t) = ¢), and its
set of input conditions is X.

In the sequel we make use of these notations and represent a branching process as a pair
(B, E) of conditions and events. The set of branching processes of N' = {P, Py, T,—} can
be inductively constructed as follows:

e The following term is a branching process of N :

¢ If (B, E) is a branching process, t € T an event of A/, and X D B a co-set labelled by
*t, then the following term is also a branching process of N :

(BU{(e,p)|pet®},EU{e}), where e=(X,t). (28)

If e ¢ E we call e a possible extension of (B, E), written (B, E) ® e, we denote the corre-
sponding extended branching process by (B, E) . e and call it a continuation of (B, E) by e.
This inductive construction is restated, for convenience, in the following form of a rewriting

rule: -
precondition

current branching process |- continuation
Using this notation, rule (28) for branching process continuation rewrites as follows:
X co-set of B, \(X) =

e=(X,t) in:
(B,E) = (BU{(e,p)lp€t®},EU{e})

(29)

In the subsections to follow, we specify tasks (a),(b),(c) using similar notations. Note that
task (a) coincides with the centralized diagnosis. Before discussing these three tasks, we shall
first specify the algorithm implementing the more generic task of computing the unfolding
Un, x N, for two nets N7 and N3 having no shared places.
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NOTATION. To shorten the rewriting rules, we shall discard the statement “X co-set of B”
in the sequel. Be careful that checking such a condition requires knowing the concurrence
relation, or, equivalently, the causality and conflict relations. It is therefore a nontrivial task
in the distributed case (corollary 1).

6.1 Centralized diagnosis

More precisely, we discuss

the computation of the unfolding U, x a7, for two nets A; and N5 having no shared
places.

This generic algorithm can serve as an implementation of both tasks (a) and (c). Note that
these tasks are local to player i,. We have two nets A7 and Ny : p; (resp. t;) shall denote
generically a place (resp. event) of net ¢, and the labelling map for events is denoted by A(.)
for both the two nets and the unfolding under construction. Using these notations, we have
the following rules for constructing U, x a7,

A(t;) is private, and A(X;) = *;

€e; = (X,',ti) in : (30)
(B,E) = (BU{(ei,pi)|pi €]}, EU{ei})
A .
A(tl) = /\(tz) = , Vi = 1,2 : )\(X,) = .tz (31)

€=(X1UX2,t),/\(t)=/\ in :
(B,E) = (BU{(e,p)[petiuts},EU{e})

Rule (30) performs a local continuation involving a single component, whereas rule (31)
performs a synchronized continuation.

Thanks to theorem 2, the above rules (30,31) implement the computation of the unfolding
Uprx 4, and hence solve the centralized diagnosis problem. The resulting algorithm can be
run “on-line”, meaning that the unfolding Uy« 4 can be updated using rules (30,31) each
time a new alarm is collected. Since continuations can occur from any node in the current
status of the unfolding, the whole unfolding must be continuously maintained. Of course
this data structure is of rapidly increasing complexity, and this makes the general algorithm
based on the above rule quite cumbersome.

However, for centralized diagnosis, it is a natural assumption that data are sequentially
collected at a sensor, in an order which does not contradict the causality relations due to the
underlying Petri nets, see the discussion in the beginning of section 4. In the next subsection
we shall take advantage of this and provide in this case a much more efficient algorithm.

6.2 Centralized diagnosis, an optimized version

More precisely, we investigate
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the computation of the diagnosis net Ux;4, for A a totally ordered alarm pattern of

N.

In this subsection we show how to compute the special structure Up;4, in the particular
case considered. We proceed by starting from the unfolding Un x4, and we use theorem 2
which relates this unfolding to Ux;4. Also, our objective here is to refine the rules to take
advantage of the particular assumptions and derive some optimizations. This is performed
in several steps.

1.

PIn~

On-line computation of Uy« 4. We first rewrite rules (30,31) for computing Uprx -
Since A is an alarm pattern of AV, it has no private event and only the “synchronizing”
rule (31) applies. The latter rule specializes as follows:

At =Ma) 2 a, MX)="%, \(X?) =%
e=(XwX*t) in:
(B,E) F (BU{(e;p)|pet®wa},EU{e})

(32)

Now, since A is totally ordered, we can simplify the precondition A(X®) = ®a and the
postcondition. Simply write

A = (B,E), where
B (L,1),((1,01),2),...,((n,an),n),...
E (1,an),(2,a2),...,(n,a),..., and A((n,an)) = an,

and rewrite (32) as follows:
AlD) =AM, om)) = an , MX) ="

e=(Xuw{n},t) in:
(B.E = (BU{(e;p)[pet*}U{(e,n+1)}, EU{e})

(33)

The presence of index n suggests to consider an on-line version of this algorithm. This
consists in applying the algorithm in the following way :

[Vn=1,2,...[Vt : Res(n,t)]], (34)

where Rs3)(n,t) denotes rule (33), for n and ¢ seen as parameters. Then the on-line
version is just the inner part of (34):

[Vt : Ryss)(current,t) ], (35)

where “current” denotes the current value for index n. The continuations performed
by applying rule (35) are called the fresh continuations.

. Computing really diagnosis(A4). Now, reading carefully theorems 1 and 2 reveals

that we need in fact to compute Up 4, not Unxa. In Upn x4, some configurations
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explain only prefixes of alarm pattern .4, not the full alarm pattern. These config-
urations must be removed while computing Uy x4. To kill the nodes that cannot
explain the whole alarm pattern, but only prefixes of it, we only need, after having
applied rule [V : Rss)(n,t)], to discard those nodes that cannot explain the current
alarm n: since A is totally ordered, such nodes will never be able to explain alarm
n. Therefore, call E,, the set of events that have been added to E while applying rule
[Vt: Rysz)(n,t)], and let “#(E,) in (B, E)” denote the set of nodes, which belong to
(B, E) and are in conflict with every node of E,. We claim the following:

the nodes belonging to “ #(E,) in (B,E)”

will never explain alarm n. (36)
Accordingly, the following postprocessing is applied after [Vt : Rss)(n,1)]:
postR(z3)(n) : (B, E) — (B,E)\ (#(En) in (B,E)) (37)

It remains to justify claim (36). By definition of E,,, no immediate continuation of E,,
can explain the nth alarm event. Assume further continuing (B, E) can later explain
the nth alarm event. This means that there exists a subsequent alarm event, with
index m > n, and some configuration « of (B, E), which 1/ continues (B, E), 2/ can
explain the nth alarm event, and 3/ such that e, > ey, in & (with obvious notations).
The conjunction of e, = e, in A, and e, > e, in k, contradicts condition 3 of
definition 5. This justifies claim (36).

. Making use of theorem 1. Also, a representation equivalent to U/, 4, but having

the form of a net, is obtained by simply removing, from Un x4, the causalities that
are solely inherited from alarm pattern A, and keeping only the so inherited conflict
relations. To this end, rule Rss)(n,t) is rewritten as follows:

At) = A(n,an)) =an , A(X)=1%
e=(Xw{n},t) in:
(B,E) = (BU{(e,p)|lpet®}, EU{e})

R33)(n,1)

(38)

Compare with (33): we have removed the causalities from e to index n + 1, this were
the causalities inherited from the totally ordered alarm pattern. On the other hand,
the causalities from n to e are kept, this encodes the reinforced conflict relation # 4
introduced in theorem 1. At this stage, rule (35) rewrites:

[Vt : Ryss)(current,t)] ; post R s (current) (39)

with the form (38) for Rss)(n,1).

. Optimizing. We can still optimize rule (39) by noting that, in the term (B, E) result-

ing from aplying this rule, not all places from B can serve for future continuations of
(B, E). Denote by L (E,) the maximal places belonging to (B, E) that are concurrent
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with some event belonging to (E,) (note the difference with the former definition of
#(E,)). Then we claim that

only the nodes belonging to E; U 1L(E,) in (B, E), (40)
can serve for future continuations of (B, E).

Using claim (40), rule (38) rewrites as follows, note the modification of the pre-
condition :

XCE, UL(E,_1) in(B,E)
Alt) = A(n,an)) =an , A(X)=1%
e=(Xw{n},t) in:
(B,E) - (BU{(e;p)|pet*}, EU{e})

This pruning mechanism is illustrated in figure 8. Now it remain to justify claim
(40). To this end, consider the n + 1st alarm event, and assume there exists some
continuation e of (B, E), e explains the n + 1st alarm event, but it is not the case
that e can be concatenated to (B, E) by using the extended precondition (41). Then
it must be the case that e has in its prefix some place q strictly anterior to E,, for the
causality relation <. Hence we must have e € #(E,,), and we derive a contradiction
as in the proof of claim (36).

ROPt (n, )

(33) (41)

In appendix A, we give details on the implementation of these algorithms. In particular
we give a variation of the above optimized on-line version. Then we also give an optimized
version for specification 1, when each local alarm pattern is totally ordered.

6.3 Distributed diagnosis, the key part
Here we discuss

the distributed computation of the unfolding Uy, x s, for two nets A7 and A5 having
identical sets of places, but disjoint sets of events (whence N} x Ny = N; MA)

The distributed computation of Ua,ra, in this case is a very simplified version of task
(b) of specification 1. We discuss it here for didactic purposes. Also we shall reuse the
corresponding rules for implementing task (b) of specification 1, see subsection 6.4.

Consider two nets N7 and N3 as before. Events of N; are generically denoted by ¢;. The
two rules for player play; are given next:

A = (12)
€ = (Xl,tl) m :
(B1,E1) F (BiU{(e1,p1)|p1 €1}, E1U{er});
Vp1 € 17, emit (e1,p1)
receive (ea, o) (43)

(B1,E1) F (BiU{(e2,p2)},E1 U{ea})
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Rule (42) is the replica of (29), it corresponds to player play; performing a continuation
based on a local event ;. Rule (43) corresponds to play; taking into account a continuation
performed by player plays.

The two players apply these rules in parallel, repeatedly and asynchronously. Note that
the emission in (42) is non blocking. Assume a model of communication medium in which
messages are not lost, but the ordering of message can be modified — this is a weak form
of a reliable communication medium. For ¢, j = 1,2 and ¢ # j, denote by (B;;, E;;) the set
of continuations (e;,p;) that have been sent by player play; but not received yet by player
play;. The following result is immediate, but it is at the same time important :

Theorem 4 We have
(Bij, Eij) C (By, Ej),

and the following balance equation holds :
(B1,E1) U (B12,E12) = (B2,Es)U (Ba1, Ea). (44)

Theorem 4 formalizes the consistency of the distributed algorithm for the type of com-
munication medium we have considered. In particular, if no message is in the process of
being communicated, then (Bys, E12) = (Ba1, E21) = 0, whence (By, E1) = (Bs, E») follows,
meaning that the two players have a consistent view of the unfolding in this case.

6.4 Implementing distributed diagnosis

Here we adapt and assembly the primitives consisting of the rules (30,31) for implementing
tasks (a) and (c), and (42,43) for implementing task (b) of specification 1. In writing
these rules we take into account the particular form (18,19,20) for the diagnosis net in the
distributed case, and we make consistent use of theorem 3 and corollary 1.

We give the rules for player playg, using notations from specification 1. This player
constructs a nested set of branching processes, denoted by (B, E), and (B, E) decomposes
as follows:

e The set B of its conditions decomposes as
B = BoW A4 By, (45)

where By are the local conditions labelled by Petri net N joc, Ao are local conditions
labelled by the local alarm pattern Ay, B; is the set of conditions labelled by places
of Ny that are shared with Petri net J\/j, and By, = Wcr, B; are the interacting con-
ditions. Co-sets of By, Ao, Br,, are generically written Xo, X§', and X7,, respectively,

and we write X = X5, N B;.
e The set E of its events decomposes as

E = Ey¥E, (46)

Irisa



Distributed diagnosis 33

where Ej is the set of local events, labelled by a synchronized transition of Petri net
Mo and alarm pattern Ag, and Ej, is the set of imported events, i.e., events that have
been constructed by some other player j € Iy.

e Synchronized transitions of Petri net Ay and alarm pattern Ay are written in the form
to X ag, to indicate that they synchronize transition #o belonging to Petri net Ay and
event, ag belonging to alarm pattern Ag.

According to corollary 1, player play, needs to transmit, to each neighbour play;, the re-
striction to N of the transitive reduction of the causality relation < | N, » and the restriction
to N of the conflict relation # |, . Hence, in adapting rule (42) to the full specification 1,
we need to adapt the “emit” statement to take this point into account.

1. We first construct the transitive reduction of the restricted causality relation < x,n; -
Consider e € Ej a local event such that some nodes belonging to its postset e® are
labelled by nodes shared by both Ay and NV;. This event can give raise to a continuation
by player play; and therefore player play, needs to forward the information that play;
needs to perform such a continuation. For e an event as before, denote by

*e|j ) .7 7£ 0 (47)
the star-preset of e in Nj, it is a set of conditions defined as follows:

(a) start from event e; follow backward the flow relation in the unfolding under
construction, until either nodes labelled by N are reached, or a node labelled by
Nji,j' # j is reached, or a minimal node labelled by N is reached.

(b) If a non empty set of nodes labelled by Nj is reached, then *e|; denotes this set
of nodes, it is a co-set of the unfolding under construction. Otherwise, *e|; is
a new condition forwarded to play;, having a distinguished label “0” to indicate
the origin of the condition.

Finally, if the above event e has the form e = (X, t) where X is a co-set of B labelled
by the preset of transition ¢, then we define

A
ej = (Peiht), (48)
i.e., e|; is the pair obtained by replacing co-set X by the star-preset of of e in Nj.
The preset of e|; is known to player play; hence play; can use e|; and its postset,
for local continuation. So far for the transmission, to play;, of the restricted causality
relation = apnw; -

2. Next, we need to transmit the restricted conflict relation # | x,ny; - Referring to case
(1b) above, two situations occur :

(a) The star preset *e|; is labelled by N;. Then no additional conflict information
needs to be forwarded, since it is entirely encoded in the topology of the local
part of the unfolding under construction, seen as a graph.
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(b) The star preset *e|; is composed of “dummy” conditions. Then the conflict
information has to be forwarded explicitly. This is performed by marking the
emitted event e|; with a minimal description of the set of dummy conditions,
labelled by “0”, which are in conflict with e ;.

In the following, we assume that e ; is equipped with this additional marking whenever
needed.

Using these notations, the resulting rules are the following:

Xalto) = Aa(ao) 2 Aa(t), t=to x ag, (Xo W X1,) = %, X& = *ao
e=(XoWX§WwXy,,t) in:
(BoW Ao W By, , Ep)
T
(Bow Ao & By, U {(e,p)lp € 14} U (e, )16 € ag}, Bo U {e}) ;
[Vp|pe(3NP;),jelo] : emit (e|;,p) to player j

(49)

where e | ; is defined in (47,48). Rule (49) corresponds to player playy performing a continua-
tion of the current branching process. This results in 1/ extending the set of local conditions
By, the set of alarm conditions Ag, and the set of interaction conditions By, 2/ extending
the set of local events Ey, and 3/ emitting the interacting continuations to players belonging
to the neighbour of playg. Note that the emitted continuation involves only objects that are
shared with player play;. This rule is obtained by combining the rules (31) and (42).

The next rule is the symmetric one, in which interacting continuations are received from
some neighbouring player, it corresponds to rule (43):

receive (ej, p;) from player j
(Br, , Er,) F (B, U{(ej,p5)}, B, U{e;})

Rule (50) performs a continuation of the set By, of interaction conditions and of the set Ej,
of imported events. The distributed diagnosis algorithm is illustrated, for two players, in
figure 13. The same remark holds, regarding the nature of the communications, as in the
subsection 6.3.

(50)

7 Some useful extensions

In this section we discuss the various extensions needed to encompass the cases listed in the
abstract.

7.1 Dynamic instanciation of transitions

We first discuss this in within our original framework of systems and tiles, as introduced in
section 2. The idea is that the system ¥ = (V, X, T) itself becomes dynamic. Therefore we
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modify the definition (1) of tiles as follows. A dynamic tile is a 5-tuple
T = (V7,V;2,_,a,zv) (51)
where

e V=,V CV are finite subsets of variables. V'~ is the set of previous variables, and V is
the set of current variables. The important fact is that we can have V' # V~, meaning
that variables can be created or destroyed, dynamically. Accordingly, the set V of all
variables is now possibly infinite (but countable).

e The triple (zj,_,a,zv) is a partial transition, relating the previous V~-state z7,_
to the current V-state zy, and emitting event o where o ranges over some set A of
possible event labels.

We now cast this situation in our Petri net framework, by following mutatis mutandis
the reasoning of subsection 2.3. Repeating the reasoning of the latter subsection, we obtain
the following class of Petri nets.

Definition 8 (locally finite Petri nets) Let N = {P, Py, T,—,\} be a Petri net such
that : the sets of places P and transitions T are infinite, but the initial marking Py is finite,
and each finite X C P and S C T have finite postsets X* and S°®, respectively. A Petri net
satisfying the above conditions is called locally finite.

This being said, the analysis of sections 4 and 5, and the algorithms of section 6 extend
without modification to locally finite Petri nets and their unfoldings.

7.2 Loss of alarms

We consider a situation in which some alarms may be lost. This is modelled as follows.
Referring again to section 2, tiles having alarms that may be subject to losses are modelled
as follows:

T = (V,ay,aVe, zv) (52)

meaning that the tile may emit either alarm «, or keep silent (symbol &) due to the loss of
its emitted alarm. Duplicate tile (52) into two different tiles, namely

7o = (Vizy,a,zv) , 7. =(V,zy,6,2v) (53)

This yields a new type of silent tile 7.. Casting this situation into our Petri net framework,
we consider a labelled net N’ = {P, T, —, A} and its unfolding U{»r. Referring to our objective
of modelling the loss of alarms, the idea is that the transitions which are labelled by alarms
subject to loss are duplicated, with their copy having a silent transition, this is illustrated
below :
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The resulting net has its set of transitions partitioned into the set of observed and that of
silent transitions. We can handle this in two different ways we detail next.

First approach: modifying the definition of alarm patterns

We modify the definition 5 for alarm patterns to allow for an arbitrary number of alarm
losses between two successive observed alarms. We first need to define the silence closure
ke of a configuration k of the unfolding Uys. It is obtained by applying iteratively, to &, the
following transformation, until convergence occurs (this happens in finitely many steps) :

1. Set Keurr := K ;
2. Until no event remains in K¢y which is labelled by ¢, do:

a) pick an event e € Kkcyry labelled by the silent alarm e,
Y

(b) for each €’ € *%, add e® to €*,

(c) for each e’ € e**, add % to %",

(d) remove e from Keyyr;
3. Return k. := Kcure-

Then, definition 5 is modified as follows:

Definition 9 (alarm pattern, with loss of alarms) Consider a labelled net N' and its
unfolding Upr. A labelled occurrence net A is called an alarm pattern of N if :

1. Its labelling map takes its values in alphabet A of alarms.

2. A is itself a configuration (it is conflict free), and its set of places is disjoint from that
of Uy, and

3. there exists a configuration k of Uy, such that its silence compression k. and A possess
extensions that are event-isomorphic.

Since label ¢ is now private to unfolding Uys, the diagnosis still consists in computing the
product Uprx 4. With this in mind, subsections 4.2 to 6.3 extend as such, except for sub-
section 6.2, which does not extend to this new situation. The reason is that, whereas alarm
pattern A is a totally ordered configuration, the unfolding /s has € as a private label, some-
thing preventing from applying the results of subsection 6.2. The same negative remark holds
for the detailed distributed algorithm of appendix A.2.
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Second approach : introducing macro-tiles/transitions

The idea is that silent tiles of formula (53) shall be concatenated together to build macro-
tiles, which must terminate by a non silent tile. We formalize this construction now, in
our Petri net framework. Macro-transitions are obtained as follows. Consider Petri net A/,
and associate, to each transition of it, an isomorphic silent transition (cf. the figure above).
Denote by A; the resulting Petri net. Let us see Petri net A as a bipartite graph. Search
in N all maximal convex? subgraphs t() of V., having the following properties: t(*) is a
union of transitions and their pre— and postsets, all transitions of ¢() are linearly ordered,
() terminates by visible transitions, and other transitions of () are all silent. Hence #(*)
is a linearly ordered chain of transitions. Remove from () the possible loops. Collapse ()
into a single transition, by taking the minimal places of () as its preset, the last (visible)
transition as its unique transition, and its maximal nodes as postset. This makes t(5) a new
transition. This construction is illustrated in the figure 14. Now each silent transition of
N is contained in a unique macro-tile ¢(*). Therefore we modify N by removing its silent
transitions, and adding the above constructed macro-transitions (they are only finitely many
of them). In the so modified Petri net, all transitions are visible, and its unfolding is the
same as that of the original N, with silent transitions being collapsed. The bottom line is
that we are now back to our standard setting, and all our machinery applies.

All this is satisfactory, however it should be pointed out that the construction of macro-
transitions itself raises problems, for the case of distributed diagnosis. Building macro-
transitions requires dealing with the global Petri net N and its silent extension N.. When
distributed diagnosis is considered, the two cases may occur. Either alarms subject to losses
are only local to some given player, and then constructing macro-transitions works fine,
based on the above described procedure. Or alarms subject to losses belong to the pre—
or post-set of some place shared by two different players. Then, building macro-transitions
requires the cooperation of these two players, something we do not consider practical.

To summarize, constructing macro-transitions is a good solution, provided that alarm
losses are only local to some player. The general case requires further investigation.

7.3 Failure to communicate

Here we investigate the situation in which distributed diagnosis is performed, and some
coordination messages exchanged between the different players can be lost. This only affects
the distributed part of our procedure, namely the algorithm specified in subsection 6.3.

Assume first the algorithm (42,43) is applied as such and not modified. Then the fun-
damental balance equation (44) no longer holds, it is replaced by :

(B, Er) U (Bi2, Er2)received U (B12; E12)10st
= (Ba, E2) U (Ba1, Ea1)received U (Ba1; Ea1)1ost (54)

2 G is said to be a convez subgraph of A if the following holds: if p,q are two nodes of G and there is a
path from p to ¢ in A, then this path must also belong to G.
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with selfexplanatory notations. The modified balance equation (54) shows that the algorithm
(42,43) will not construct spurious configurations, but some actual configurations may be
missed.

7.4 Incomplete modelling

By this we mean the following situation, referring again to our tile/system framework. We
assume our model is partial, but correct. This means that, in our hypothesized system
¥ = (V,Xo,T), V are really variables of the system being modelled, and tiles belonging
to T are actual behaviours of it. But it may be the case that other, unmodelled, variables
may be needed to describe the behaviour of the system completely, together with associated
missing sets of tiles. Casting this situation in our Petri net framework, we arrive at the
following.

We assume some “true” underlying Petri net N’ = {P,T,—, A}, modelling the exact
behaviour of the considered system. Petri net N is not known, but we assume some hy-
pothesized model Npyp = {Phyp, Thyp> —hyps Ahyp }- We assume that Ppyp C P, Thy, C
T, = hypC—, and labelling map Apyp is the restriction, to Thy,, of the original labelling map
A. This formalizes the fact that our model is partial, but correct.

Finally, we assume that the range of labelling map A equals that of Apy,, plus some
distinguished element we denote again by €. Label ¢ is used to indicate that it is not seen
by the supervisor. Transitions belonging to the true but unknown set 7' can emit alarms
that are observable by the supervisor, but they can also be silent (i.e., they are labelled by
¢). Finally, we assume that, when a transition belonging to T},, occurs, then it must emit
an alarm observable by the supervisor.

To summarize, we are in the following situation. There is some true Petri net A/. This
Petri net can have alarm patterns A, associated with it, we have used subscript .. to indicate
that the supervisor observes all alarms but €. Therefore, we are in the lossy alarms situation
analysed in subsection 7.2. But, in addition, we only have partial knowledge of the possible
transitions Petri net V' can perform. This is identical to the situation analysed in subsection
7.3. Accordingly, the solution consists in combining the analyses from these two subsections.
Details are beyond the scope of this paper, and are not given here.

8 Discussion

A net unfolding approach to on-line distributed diagnosis was presented. Distributed diagnosis
was approached by means of hidden state history reconstruction from alarm observations.
This true concurrency approach is suitable to distributed systems in which no global state
and no global time is available, and therefore a partial order model of time is considered.
We considered the following situations: 1/ one supervisor, centralized algorithm, 2/ a dis-
tributed architecture of supervisors with local sensors, 3/ the system itself is reconfigurated
dynamically, and reconfiguration actions are either known or hidden. Then we sketched how
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to handle the case in which the system may fail to communicate or deliver some alarms, or
the knowledge of the underlying system model is incomplete.

Some comparison is in order, with the technique presented in [13]. While the present
paper uses a Petri net approach, [13] uses a model of automata interacting asynchronously
via shared variables. For the single player case, this reduces to a single automaton, and [13]
proposes a data structure which turns out to be equivalent to the unfolding of the considered
automaton. For the multi-player case, each player handles the state of his own automaton,
and the different players cooperate asynchronously at performing the overall continuations.
Referring to our framework, this means that each player handles (local) cuts, not co-sets as
players do in our case. Hence one can view the approach of the present paper as a more
fragmented version of the approach of [13], in which concurrency is handled also within
each component and not only between different components. This may be an advantage in
the case where the model of each local Petri net is itself obtained from smaller models of
components, a frequently encountered situation when object oriented techniques are used
for modelling. In turn, the approach of [13] encompasses probabilistic models, in which
non-determinacy is solved by maximum likelihood techniques. Also, since the global state of
an automaton is sufficient to predict its future, trajectories having explained the same alarm
patterns and terminating at the same state can be merged for joint continuation. Hence
both approaches have their advantages and disavantages.

Implementation issues are numerous. First, we have proposed an on-line approach. This
may not be very practical, due to the cost of communications in distributed systems, and it
may not be needed. On the other hand, purely batch “post-mortem” diagnosis is generally
not sufficient. What seems a reasonable approach is to perform on-line/per-packet diagnosis,
for better use of network bandwidth. Second, we have seen the need to consider incomplete
modelling. In such case, our algorithm will temporarily loose its ability to explain the
current situation. An extreme situation occurs when only finite patterns can be recognised
prior to escaping out of the model. In this case our approach merges with the technique of
“chronicles” known in the AI community [20].
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A Appendix: implementation details

Notations. In the sequel, we shall not use algorithm (27,28) for constructing branching
processes. Also we shall not code the conflict and concurrence relations by means of graph
properties of the constructed occurrence nets, as it was done before in the section 6 on
algorithms. We shall instead maintain a more compact data structure invlving only a suf-
fix of the previously considered occurrence nets, and conflict/concurrence relations will be
maintained explicitly.

So we shall abandon the notation (B, E) and use the generic notation U instead :

u = {BﬂE’-<JJL7#}

where B and E are the sets of conditions and events of U, and <, I, # are the causality,
concurrence, and conflict relations. Notation ¢ © e shall denote that event e is a possible
extension of U, and U « e denotes the corresponding continuation (see the notations intro-
duced at the beginning of section 6 on algorithms). Also, for E a set of events e such that
U © e holds, then U « E shall denote the union of nets U .« e for e ranging over E. For n a
node, L (n) (resp. <X (n),#(n)) shall denote the set of nodes that are concurrent with n
(resp. inferior to n, in conflict with n). For X a set of nodes, 1(X) = [J,cx L(n), and

= (X) = Unex =X (n), but in contrast #(X) = [,,c x #(n), note the change.

A.1 Centralized on-line diagnosis of alarm patterns, for a totally
ordered alarm pattern

We present here a detailed implementation of the algorithm already discussed in subsection
6.2. In the following algorithm, we are given some underlying, totally ordered, infinite
alarmpattern A.,, and all considered alarms are taken from it. On-line diagnosis means
that, for A a prefix of A, and A’ a continuation of A, we compute Up; 4 by updating Un; 4.
As in subsection 6.2, it will be enough to update some suffix of U, 4, we shall denote by
G such a sufficient suffix. The resulting algorithm is shown in table A.1. In this and the
following algorithms, for X alocal variable, X' shall denote its update. According to (57,58),
#Aea(Es) C Una s Eq, but it has no continuation so far that can explain A.a, therefore
it is removed from G..a, and also from Un;4 « E,. This algorithm is illustrated in figures
11 and 12. This algorithm is derived, from that of subsection 6.2, by not introducing the
conditions and events from alarm pattern A, but rather propagating directly the enhanced
conflict relation # 4. Clearly, the special structure U4 is totally suitable for this detailed
implementation.

A.2 Distributed on-line diagnosis of alarm patterns

We now turn to refine specification 1 for distributed diagnosis. According to this specifi-
cation, player 0 has to cooperate with his neighbours at computing the contribution of the
product N joc X Ao X ] el (No M Nj;) to the unfolding. Since there is no direct interaction
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inputs:
local:

1.

a € Ay such that A ® a, where A is a finite prefix of A .
pair (G,Un 4), where G is the sufficient suffix of Up4 .
Set

E, = {e|]GoeANe~a}
E: = {(e,p)| e€ E, N pe )} (55)

where e ~ a means that both events have identical alarm labels, i.e., e can explain a.

. Construct G. E, « E3, extend concurrence relation L 4 by setting:

Ve € By : Lasale) = () Lale)
gE®e
Vgee', Laiale) = Lauale) [J e\ {a}) (56)

and the extended conflict relation # 4, , follows accordingly. At this stage we have a
net G. E, . £} with its extended causality, concurrence, and conflict relations.

Update G:
G 2 Gwa = E U (GNLa.a(E)) (57)
note that Ge.a is a suffix of Un; 4 « £, « E.
Update Upn 4 by putting:
Uga £ Uvsaea = Z(Geea) (58)

where < (G.. a) denotes the smallest prefix of Un;4 « E, containing G..a.

Table 1: Centralized on-line diagnosis in the case of a totally ordered alarm pattern (optimized
algorithm).

between the players labelled j, we collapse them into a single alternative player play’, coop-
erating with play, at computing the contribution of the product Ny joc X Ag X (No M N”) to
the unfolding.

Rewriting Ny joc X Ao X (No MN') as (Nojoc X (No MAN)) x Ag 2 M x Ao makes this
looking like a diagnosis problem and we may think that we already have the solution for
this! Unfortunately, N'M N’ has more behaviors than A/, since nets /' and N share only
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places, but no events. Therefore Ag is not an alarm pattern of Petri net M, and we must
adapt our algorithm A.1.

We give here an optimized version, which relies on the assumption that the local alarm
pattern 4y is totally ordered (but of course, we do not know the interleaving with other
alarm patterns). In this case, we also need to construct the special structure U, 4, similar to
the one used in table A.1. However the pruning mechanism of table A.1 cannot be reused as
such, since player play’ will contribute to Uy 4 by providing continuations not corresponding
to any event of Aq. Hence, some alarms from Ag may not be, at some point, explanable via
a local continuation of the U 4, but they may become explanable later, after player play’
has offered suitable continuations.

The resulting algorithm is shown in table A.2. To focus on the optimization aspect,
we did not include the aspects related to corollary 1 and the discussion on the star-preset
in (47,48) of subsection 6.4. This means that we transmit to the other players the whole
continuation and do not compute its proper restriction. The distributed diagnosis algorithm
is illustrated, for two players, in figure 13.
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inputs:

local :

output:

casel a € A, such that A.a, where A is a finite prefix of Ay ;

case 2 (¢/,p'), a continuation, by N, of the unfolding Upq 4 ;

case 3 (€,0'),ockeds @ Mark indicating that (e’,p’) € Urqa is currently blocked for
continuation by the environment.

B, and C, such that C C B C A;
us Um,a, G sufficient suffix of U, K a prefix of G.

oK.

. casel update (' =CU{a}, A' = A.a;

case 2 update G :=G.(e,p), (¢',p') & K; update
C' = Cu{a€eB|Ie:Goe A e~a}
case 3 if (¢/,p’) € K, then remove (¢/,p') from G, and update

B = B\{a€eB|-[Fe:Goe A e~al}

. for a € C, set

E, = {e|] (G\K)oe ANe~a}
E; {(e.p)| €€ B A pEXe)}

. Update G’ = G. E, « E2, extend concurrence relation L 4 by setting:

Ve€ B, : Lule) = [) Lalg)

Vgeet, La(a) = La(e) [J (e \{a})

and the extended conflict relation # 4 follows accordingly.

. Define X' by

G\K' = E! U (GNLA..(E,))

and emit 6K = K \ K, equipped with relations L 4 and # 4. Update Upq 4 by putting
Upa =2 (9").

Table 2: Distributed diagnosis for totally ordered local alarm patterns. K contains the prefix of
G which is currently blocked, for continuation by play,. C contains those alarm events that
can be currently explained by play,, and B contains in addition alarm events that might
later become explainable by play,, after continuation by play’. K is the subnet which just
became blocked for play, (6K mirrors input of case 3), for emission toward the other players.
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B Figures illustrating the different notions

In these figures, time progresses downwards.

TN

t — O (alarm)

X, : in/state™

X, : out/state

Figure 4: From tiles to transitions. The diagram on the left depicts a tile. Black patches
figure valuation of state variables. For V the set of variables of the tile, the patches on
the left denote previous state variables z, ,v € V, whereas the patches on the right denote
current state variables z,,v € V. On the right hand side, the tile is redrawn as a transition
t. The resulting transition fires downward. When firing, it emits an alarm a.

Figure 5: A configuration.
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Both iy

Figure 6: Showing three different cuts for the configuration of figure 5. The cuts are composed
of the black patches.

5#*,

Figure 7: Occurrence net. The source of the conflict is depicted in black. Two different
histories branch from this conflict, the grey one and the white one. The conflict is indicated
by the # symbol.
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doeb 4

Figure 8: Pruning. The pruning mechanism used in both algorithms of subsection 6.2 and
table A.1 is illustrated here, for the case where alarms «;,7 = 1,2, 3,4 have been processed
yet, and next alarm for processing is as. No more concatenation can be performed from the
light grey zone. In particular, the dashed continuation with a question mark is not possible,
as it would give raise to a configuration not explaining ay.

~ ~
component 1 component 2

Figure 9: A petri net example. We show two interacting components. The interpretation of
this example is the following. Places 1 and 2 are the nominal (safe) states. Places 3 and 5
figure truly faulty states. Place 4, for component 2, indicates a fake faulty state, resulting
from the unability of component 2 to deliver its service, due to the failure of component 1.
Alarms are attached to transitions. Transitions figured with the same pictogram emit iden-
tical alarms, therefore resulting in ambiguities. Self-repair can occur, for each component.
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component 1 component 2

component 1 component 2

Figure 10: Unfolding the petri net example. We show only a prefix of the unfolding (i.e., a
branching process).
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;
?
J%
X

g

L @ @@

Figure 11: Centralized Diagnosis. The unfolding of figure 10 is shown on the top, for com-
parison. The two pictures on the bottom show the centralized diagnosis, for two different
sequences of observed alarms, repectively depicted on the top of each unfolding. The config-
urations which explain these two alarm sequences are those terminating at the cuts marked
with the light grey ellipsoid patches. The steps leading to this final solution are shown in
figure 12.
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T — —
i
5

i
g.?@%é v

ot ot

Figure 12: Centralized Diagnosis, the steps of the algorithm. We show how the solution of
figure 11, left case, is obtained, on-line while reading the successive alarms. The second and
third diagrams exhibit conflits, therefore showing the multiple solutions to the diagnosis
problem at these steps. The fourth diagram is that of figure 11. In the last diagram we have
backpropagated the pruning, therefore cutting back dead branches for the diagnosis. Note
that no conflict is shown, this results from killing back one of the two solutions shown in
the third diagram.
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from play’

Figure 13: Distributed Diagnosis. The distributed algorithm corresponding to the centralized
algorithm of figure 11, is shown here. Player play, sits on the left, and player play’ on the
right. On the top we recall the above centralized algorithm, and the distributed version is
depicted on the bottom. The thin dashed arrows show the communications between the
two players. The objects received from other players are shown in dashed, boldface. In
particular, player play, receives the combination of the dark grey dashed patch and the
ingoing arrows, also dashed: this is just the abstraction player play’ needs from the first
top-left transition from the second player, note the dummy transition which has been added
to encode concurrency.
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Figure 14: Constructing a macro-tile. The diagram on the left shows a t*) satisfying the
requirements listed in subsection 7.2. The visible transition is filled in black. The black
places are the minimal or maximal ones. The diagram on the right hand side shows the
resulting macro-tile.
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