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Abstract We present a formal approach to check the correctness anotoge corrections
of hand-written test suites with respect to a formal speatifin of the protocol
implementations to test. It is shown that this requires inegal a complex
algorithmic comparable to model-checking. The princigdéa prototype tool,
called VTS, and based on the synthesis algorithms of TGVpeesented. We
then prove the usefulness of the technique by checking éis@m part of the
ATM Forum test suite for the SSCOP protocol.
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1. INTRODUCTION

The simple idea developed in this article is that, as soomadas a formal
specification, one can check the correctness of test suritewby hand. It
is a useful function since many errors of various types ranramanual test
cases. Itis in particular the case when designing testsritegbor distributed
tests. One can also go a little further trying to automaijozdrrect test cases.

Test case verification appears easier than the synthesileproThis latter,
already well studied, must still face problems of state esipin or handling
complex symbolic systems. However, test case verificasarot a common-
place algorithmic problem. Indeed the test cases do notaridg as sequences
of interactions which a simulator can reproduce. Test casesoften real
reactive programs which can be abstracted by general graphs

Existing approaches of the problem are based on a co-siowlaf the
test case with the specification. This is the case with TTGMN¢[12] for
SDL specifications and TTCN test cases (TTCN: Tree and Tekdanbined
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Notation defined in [7] Part 3). The same principle was alslus [4] using
the Tetra tool for Lotos specifications and test cases tmtsifrom TTCN.
Co-simulation is useful for the early detection of errorsest cases but is not
sufficient in general for exhaustively checking test casBse reason is that
this technique only allows to look at particular sequencise first problem
is due to possible loops in test cases which may be unfoldgdesobounded
number of times. Moreover for non-deterministic specifaa (due to hiding
of internal actions for example), it is not sound as corressninvolves the
comparison of the set of possible outputs of the specificatith the set of
inputs of the test case afterthe same trace. The problemmedeterminism was
mentionned but not solved in [4]. Thus correctness of tes¢savith respect
to the behaviors contained in a formal specification reguine installation of
a complex algorithmic comparable with model-checking. Wecsely have
this experience in the development of the test generatioliri@V [8]*.

Based on some basic blocks of TGV, we have developed a tomidled
VTS (for Verification of Test Suites), specialized for theifieation of tests.
In this case, the test case plays the role of a complete tepog& which
strongly guides the traversal of the specification statplgrds the algorithm
works on-the-fly by building in a lazy way only the part of thegesification
state graph (and its observable behavior) correspondirijetdest case, the
performances are very satisfactory. The principal linota that one met
relate to the necessary abstraction of the test cases sgdres TTCN in the
general format of graphs we have in VTS. The suggested ot illustrated
by the validation of the test suite of the SSCOP protocol psegd by the ATM
Forum. We found several errors and proposed some correction

The continuation of the article is structured as followsct® 2 presents the
testing theory which constitutes the basis of the testidhgdoolset. Section 3
is devoted to the principles of test-checking. Section 4gmés the application
of our VTS prototype to the verification of part of the SSCO#t wiite. One
successively describes there the protocol, the test sh@approach used and
the results obtained. The article ends in a conclusion amgk gyospects.

2. FORMAL CONFORMANCE TESTING

In this section we introduce the models used to describeifg@gons,
implementations and test cases. We then define a conformalat®mn that
precisely states which implementations conform to a giyeacification. We
report to [13] for a precise definition of the testing theosgd.

1TGV generates test cases from specifications in SDL and LOA@Sormalized test purposes.
2This means that all observable actions are present in thpugsose, while TGV allows more abstraction.



2.1 MODELS

The model used for specifications, implementations andceests is based
on the classical model of labelled transition systems wigkirljuished inputs
and outputs.

Definiton 1 An IOLTS is an LT/ = (Q", A", —,, ¢)") with Q" a finite set
of states, A" a finite alphabet partitioned into three distinct sets

A" = A"U AY U I" where A" and A} are respectively inputs and outputs
alphabets and™ is an alphabet of unobservable, internal actions,

—u C Q" x A" x Q" is the transition relation and]’ is the initial state.

We use the classical following notations of LTS for IOLTS.
Letq,q',q, € Q",Q C Q" a, € A" U A", 1, € I', ando € (A" U AY)*.

" =g =(=¢Vqg ™" )
q ! € a € !
" 0=,q =30,0:9=>u @ ~u G =u ]
aj...an _ a a
"¢ BN =300 =G G S0 G =1
» traces,(q) = {o]|q =,} andtraces, (M) = traces,(q").
m gafter, o = {¢'|g 2, ¢'} andQ after, o = U,cqq after,, o.
For an IOLTSM, we sometimes usk{ after o for ¢! after, o.

w outy(q) = {a € A¥|q =} andout, (Q) = {out.(q)|q € Q}.

Specifications. A specificationis modelled by an IOLTS = (Q°, A%, —+, ¢5).
This IOLTS describes the complete behavior of the spedificaincluding in-
ternal actions. We consider quiescence (livelock and dujpiescence) as
observable (by timeouts). So we need to model possible cpries in the
specification. Formally, a statgof S is quiescent if+(Ja € A3 U I®,q %)
(output quiescencdprIa € I*, ¢ 5. ¢ (livelock)*. Thesuspension automa-
ton S° of S is then obtained by considering the special labels an output
and adding self loops labelled Wyin all quiescent states. This corresponds
to [13] except that we also consider livelocks. In practi§js not build but
its construction is mixed withi-closure (see below).

Now, as testing only deals with observable events (inclydjoniescence),
we define a deterministic IOLTS,,s with same observable behavior $&
SVIS — (QVIS, Aws’ _>V|57 q(\J/ls) WhereQws g QQS’ AVIS — A?/IS U Ags Wlth
A = ASU{é} andAYs = A5, g'° = ¢ afters e, Va € A™,VP, P' € Q"",
P4, P < P =P after, a.

3A deadlock ((Ja € AS g ﬂs)) is a particular case of output quiescence.
4As we consider finite state IOLTS, a livelock is a loop of imt@ractions. A livelock in the specification is
not necessarily an error as it may occur due to abstraction.



S° does not need to be built because transitions labelled #vitan be
added directly ta5,,s during 7-closure. This is easy for deadlocks and output
quiescence but involves the computation of strongly cot@ecomponents
(SCCs) ofr actions for livelocks { are only synthesized on SCC roots). This
is done on-the-fly by a part of TGV called FERMDET [9, 8] whictiapts
Tarjan’s algorithm [11].

Implementations. We assume (usual test hypothesis) that an implementation
can be modelled by an IOLTBnp = (Q™, A™, —,.., ¢:™) with

A™ =A™ U AP UI™and A C A™ and A3 C AZ®. As usually, we assume
that implementations can never refuse an input. We hOt&T'S the set of
input-complete IOLTS. For the definition of conformance, also need to

consider the suspension automafenp’ of I'mp.

Test cases. A test case is modelled by a deterministic IOLTS

TC = (Q°, A™, =1, q°) WhereA™ = A7° U AF with Al C A° and

Al° C Arr. Two disjoint subsets of statd2uss C Q™ and

Inconc C Q™ and a statdail € Q™(Fail ¢ Pass U Inconc) are associated
to TC. They correspond to arrival states of transitions carryieglicts as in
TTCN. We assume that a test case is complete for inputtinn each non
controllable state (state where no output is possible).s Thin general the
case also for TTCN test cases with the special |1&8b&herwise. We restrict
ourselves to deterministic test cases without internabast This restriction
could be avoided to deal with more general test cases imgjudternal actions
such as distributed tests. In this caseeduction and determinization should
be applied to test cases with FERMDET.

2.2 CONFORMANCE TESTING

In order to speak about correctness of test cases, we neegfite dhe
conformance relation that the test cases are supposeddk.chs in [8], we
consider thaoco relation [13]. Note that it is in fact an extensionioto as
we consider livelocks. It says that conformant implemeaoiestare IOLTS that
allow only outputs of the specification (including after any trace of? (also
called suspension trace 8fin [13]). It is defined as follows:

Definition 2 Let I'mp (implementation) and (specification) be two IOLTS,
Impioco S = Vo € traces(S°%), out(Imp® after o) C out(S? after o).
3. VERIFICATION PRINCIPLE

Different properties can be checked on test cases. First static properties
can be checked such as syntactical correctness, existénezdicts, input
completeness, controllability, timer management. Thespgrties can be
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checked using test cases only. We are more interested imiymaoperties

which involve the observable behavior of the specificatidfe do not pretend
to check all properties but only some of them in particulasthinvolving the

specification. We could also check some properties invglte test purpose
(are Pass verdicts correctly assigned) but this necctessigdso to formalize
test purpose which are often very informal.

First, we tackle the problems of laxness and unsoundnesgstAst lax if
it accepts non conformant implementations which it couldabke to reject.
Almost conversely, a test is unsound if it rejects confortmiaaplementations.
Then in a second part, we deal with the problems of contrititiab

This separation corresponds to a difference in algorittaegign. The first
problems are solved by a forward traversal of state graphde\wwome con-
trollability conflicts are only corrigible by a backwardwexsal. Moreover, the
problems of laxness and unsoundness are strongly depemlém specifica-
tion. This is not the case for controllability.

3.1 TEST CASE AGAINST SPECIFICATION

In this part, we define the types of errors of a test case whiehletectable
by comparing the behavior of the specification with that eftist.

The concept of comparison leads us to define the synchronmgsigi
denoted byPS,.s between a test casgeC and the observable behavior of the
specificationS,s. LetTC = (Q™, A™, —., ¢;°) provided with two sets of
statesPass™ andInconc™ a Fail state and lef, s = (Q%, A%, —q., ¢7)
be ther-reduced and determinized specification.

Definition 3 The synchronous product is an IOLTS
PSVTS: (Qwsa AVTSﬂ —rs ql\)/TS) where

m A= AU A, with A = AF U AYS, outputs of the product are the
outputs of the test case and the inputs of the specification;
A/ = Al°U AY®, inputs of the product are the inputs of the test case and
the outputs of the specification,

QT C(QWU{L}) x (QTU{L}and—,are the smallest sets defined
by application of the following rules.

-0 =(0" %)
(qws’ qTC) c QVTS/\ qVIS i)ws qIVISA ch i)Tc qch
(q/ws7 qch) € QVTS/\ (qws’ ch) i>VTS (qlws7 qch)
B (qws’ qTC) c QVTS/\ qVIS 72)\”5 /\ch ﬁ>TC qch7
(J_7 qITC) € QVTS/\ (qws7 ch) ﬁ)VTS (J_7 qITC)

(qws, qTC) c QVTS/\ qVIS i)ws q/ws/\ ch 72)Tc
(q/ws, J_) IS QVTS/\ (qws, ch) ﬂ)ws (q/ws, J_)




The two last rules say that the traces of the specificatisp(ref the test)
which do not exist in the test (resp. in the specification)ienmhrticular
states noted. in the synchronous product.

Verification and correction of laxness. A test case is lax if it could reject
a non-conformant implementation but does not. More prigig&_ is lax if
there exists an implementatidimp which does not conform t§ because after
a traceo it allows an output: thatS does not,I'C' can perform the trace.a
but does not produceFail verdict. Formally:

Definition 4 LetS be a specification an@C a test caseT'C is lax w.r.t.S for
iocoiff 3Imp € TOLTS 3o € traces(S?) N traces(Imp®) N traces(TC),
Ja € A3 such thaw.a € traces(TC), a € out(Imp® after o) A

a & out(S°® after o) NTC after o.a # Fail.

If we notice thatImp? is characterized by.a, it is easy to see that the
existential quantification ofinp can be eliminated. Thus the laxness property
can be reformulated while using only the trace§'6f andS?, thus the product
PSVTS'

Proposition 1 A test case is lax iff
a(qVIS, qTC) e QVTS, a E A|VTS, qITC # FaZl e QTC: (qVIS’ qTC) E)VTS (J_, q/TC)

We propose a correction which eliminates any laxness froivesmdest case.
Each time an input of the test cdB€’ not leading td=ail does not correspond to
an output of the specification, this transition is replacea ransition leading
to Fail in the corrected test caseC’. We thus obtain the inclusion of the
outputs of the specification in the inputs of the test in edatesof the test
where an input is possible and accessible by a trace of tlufispdon. This
is formalized by the following transformation rule:

(qws’ ch) ﬁ)ws (J_’ qITC) ANa € AI\/TS A qITC 7& Fail
qe 72>TC' g NG £>T(:' Fail

Verification and correction of unsoundness. A test is sound if it rejects
only non conformant implementations. Conversely, it isoumsl if there exists
a conformant implementation which can be rejected by thetese. Formally:

Definition 5 LetS be a specification an@'C' a test case.

TC is unsound w.r.tS for iocoiff

3Imp € TOLTS I'mp ioco SATo € traces(S®)Ntraces(Imp®)Ntraces(TC),
da € A, TC after 0.a = Fail

Again, the existential quantification dmnp can be suppressed and unsound-
ness can be expressed BS,.



Proposition 2 A test case TC is unsound iff
H(qVIS, qTC) E QVTS’ a E Al\/TS, qIVIS # J_ E QVIS: (qVIS’ qTC) ﬂ)ws (q/VIS, FCL’LZ)

In this case, the correction consists in replacing the mobrtransition
leading toFail in TC with a new transition in the corrected test cas€’
with same label and leading to a new state in lkeoNCLUSIVE set. This
correction is reflected by the following rule:

(qws’ ch) £>VTS (qlws, J_) A qIVIS 75 1 Aa c A|VTS A qch g QTC

q/TC c QTC' A qch c ITLCOTLCTC' A ch E)TC' qITC'

It is easy to see that corrections of laxness and unsoundoasst interfere
(correction of laxness cannot produce unsoundness andveisa). Correc-
tion of laxness replaces lax inputs by sound Fail verdictdendorrection of
unsoundness remove unsound Fail verdicts by unlax inpaitkrig to Inconc.

Verification and correction of controllability conflicts. Test cases should
be controllable in the sense that they should never havehitieebetween an
output and another output or input.

Definition 6 A test case has a controllability conflict if:
g€ Q™ Jac AT, Iz € AU AC\{a}: ¢° 5. and g° 5

Detection of controllability conflict can be done by any fang search in
the test case. But correction is more difficult in the geneesle where test
cases have loops. While pruning a test case, accessibifgssstates must be
preserved. The solution is then to perform a search (brdadttor depth first)
on the reverse transition relation, to prune other traomsitin case of conflict
and to forget parts of the test case that become unreachHfikalgorithm is
detailed in [8] as it is also part of TGV.

Implementationin VTs. The algorithm takes as input a test case inédldran
format (general purpose graph format) and a specificatisariteed inLoTOS,
SpL, Bca (compressed format for graphs) or &lshran. In the case of testing
in context, the specification should include this context@sformance is de-
fined for the specification in its context. It checks the ccimmess of the test case
(laxness and unsoundness) with respect to the specifidadioavior. FoSDL
andLoTos this behavior is given by simulators (respectively ObjexiGe [14]
and the OPEN/CASAR interface [5]) which are driven by VTS Svimple-
ments these verifications by a breadth-first traversal adyhehronous product
between ther-reduced and determinized specification and the test cass. T
T-reduction and determinization are performed on-the-flythgy FERMDET
tool only on the common traces of the test case and the spiific(in fact
traces ofPS,.;). The traces of the test case not leading-&dl must be in-
cluded in those of the specification. Thus for any trace oftés¢ case, we
check two aspects. On the one hand, if inputs of the test caggoasible, the
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algorithm checks the equality between these possible snpttleading td-ail
and the possible outputs of the specification after the seaxe.t In addition,
if outputs are possible in the test case, then they shouldbsilie inputs of
the specification (the equality is not required in this ca3dde controllability
conflicts are detected when a state of the test case haslgaessile outputs
or an output and inputs. Correction is performed by a bacttwaversal.

4. APPLICATION TO THE ATM SSCOP TEST SUITE

We have decided to experiment VTS with a real case study. \W@sech
the B-ISDN ATM Adaptation Layer-Service Specific Connegti@riented
Protocol (SSCOP) from the ITU Q.2110 document [10]. It prseseveral
advantages:

m this protocol has been studied for test generation withouartools such
as Samstag [6], TVeda [3] and TestGen [2],

= we have a formal SDL specification, which has already beedatad
and used for automatic test generation [1];

m there is a complete conformance test suite, standardizetieoATM
Forum, publicly available at http://www.atmforum.com

4.1 THE SSCOP PROTOCOL

The Service Specific Connection Oriented Protocol residdhe Service
Specific Convergence Sublayer (SSCS) of the ATM Adaptatiayek (AAL)
(see figure 1.1). SSCOP is used to transfer variable lengthcBeData Units
(SDUs) between SSCOP users. SSCOP provides its serviceeivi@esSpe-
cific Coordination Function (SSCF). The SSCF maps the sefiSSCOP to
the needs of the AAL user. SSCOP uses the service of the CP@8n(Gn
Part Convergence Sublayer) and SAR protocols which prosiden-assured
information transfer and a mechanism for detecting coioanpf SSCOP Pro-
tocol Data Units (PDUs). One currently defined use of SSCQO#thin the
signaling AAL (SAAL).

SSCOP performs the following functions:

= Sequence integrity: this function preserves the order @8 SDUs
that were submitted for transfer by SSCOP.

= Error correction by selective retransmission: throughmeacing mech-
anism, the receiving SSCOP entity can detect missing SDUis. flinc-
tion corrects sequence errors through retransmission.

= Flow control.

= Error reporting to layer management.
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m  Keep alive: this function verifies that the two peer SSCORiestpar-
ticipating in a connection are remaining in a link connectstablished
state even in the case of a prolonged absence of data transfer

m Local dataretrieval: this function allows the local SSCGPEruo retrieve
in-sequence SDUs which have not yet been released by the B8idy.

= Connection control: this function performs the establishin release,
and re-synchronization of an SSCOP connection. It alsevaltbe trans-
mission of variable length user-to-user information withae guarantee
of delivery.

m Transfer of user data: SSCOP supports both assured anduredslata
transfer.

m Protocol error detection and recovery.

= Status reporting.

Q2931
‘ Primitives —*—
SSCF (Q2130) Service
Service Specific Coordination Functions (S:]; ;?/‘élr?gence
t Signaux Sublayer (SSCS)
SSCOP [92 110) AAL Functions
Service Specific Connection Oriented Protocol
t Signaux
CPCS
Common Part Convergence Sublayer Common Part
SAR (Segmentation and Reassemblage) AAL Functions

% Primitives ¢

ATM SAP

Figure 1.1 Situation of SSCOP in the ATM stack

The SDL executable specification of SSCOP was written byeS@mayuthier
from CNET (the research center for France-Telecom). Theifépation was
written in 1995 using SDL based on the SDL description givethé final draft
document X1/Q2210 of ITU-T study group. It consists in apfnoately 5000
lines of textual SDL code. The specification was dedicataggbgeneration,
thus it makes some simplifications which do not comply withttzé aspects
of the standard. Later on, the formal specification has bkgintly corrected
during the verification works of the FORMA project [1].

4.2 THE ATM TEST SUITE

We considered the conformance abstract test suite for SS@K¢h was
published by the ATM Forum Technical Committee on Septeri®86 under
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the title "Conformance Abstract Test Suite for the SSCORJE 3.1.". This
test suite aligns with the principles defined in the OSI camfnce testing
methodology and framework 1ISO 9646 Parts 1-2 [7]. The tesptscare
written in TTCN.

The testing architecture considered is the remote testicigitacture (see
figure 1.2) with only one lower tester (and PCO). The asynobue communi-
cation on this PCO is reflected in the formal specificationhgyihtercalation of
a retransmission process between the SSCOP entity andvinenenent. This
palliates the absence of queue between the SDL model aniviteement in
the ObjectGeode simulator.

i
GNae Test
Upper
TCP
Lower Tester
Tester ASP(N) t
- > IUT
} PCO
’ASP(N—l ASP(N—l)t
Service (N-1)

Figure 1.2 Remote testing architecture

While the test suite consists of 317 test cases (approxiyna@® pages of
TTCN), the test cases viable for verification based on oun&bispecification
of the protocol were found to be 110 test cases. The abstnactsulted in the
following:

m the test cases testing invalid PDUs (INV) were not consillere the
specification does not describe the behavior of the SSCOBaaption
of invalid PDUs. INV test cases arise to 186 cases.

= UD and MD PDUs were not considered in the SDL specificationusTh
these PDUs have been abstracted in TTCN test cases. MottbeveR
test cases related to valid UD and MD PDUs were not considered

m the test cases testing the behavior of clocks and timeouts atxstracted
as timers are treated as internal unobservable actionserTaat cases
arise to 9 cases.

Most of the test cases have the same structure: a preamdsetdridrive
the implementation under test (IUT) to a particular constake of the SSCOP
entity as defined in the specification; then a test body isiegpb check that
the IUT behaves correctly; then follows a state identifaratbehavior which
checks the arrival control state; finally a postamble drieslUT to the initial
state.
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4.3 OUR APPROACH TO USE VTS

We proceeded through the successive following steps.
1. The development of a compiler for the generation of tesesdrom the
test suite. The input is a test suite written in TTCN machinecessable
(TTCN.MP) format. The output is a set of automata (one fohdast case)
in the Aldeébaran format that the VTS program can process. The congbder
maintains a set of state variables similar to the set maieteby SSCOP. The
values of the state variables are used to generate the wdlilesconstraints that
VTS can deal with. The compiler has to simulate the operattbat are to be
executed on the contents of the state variables of the SS@@#epl mentioned
by the test case. This simulation is essential for the sakgeoération of
PDUs and ASPs to be fired by the tester. It also simulates theges in the
state variables associated with firing transitions thaharenally not explicitly
mentioned in the test case. This is essential for the sakeradrgtion of PDUs
and ASPs expected from the specification.
2. The development of a program for the automatic generatfahe sup-
plementary files needed as inputs to the VTS program, narhelyfi¢ed" and
the "hide" files. The feed file is used during the constructibthe transition
system of the specification as an input to the ObjectGeode T feed file
contains the various signals that to be feed into the SSC@étfgmtion from
the external environment. The environment refers to botbeu@nd lower
layers. The hide file is used to hide the unobservable tiansithat are gener-
ated but are not observable at the point of control and obterv(PCO) due
to the test architecture. Unobservable transitions in d¢isé guite may be 1/
inputs or outputs of the queue of the retransmission proegsesenting the
asynchronous channel, 2/ signals between the user and @@ §pecification
that cannot be observed form the lower tester, and thus drsmewtioned in
the test script, 3/ actions on timers of the specification.
3. The use by VTS of the test cases generated by the compuifartfre TTCN
test suite and of the supplementary files in order to checlcarrdct test cases.
4. The analysis of the errors found by the VTS tool and theavae between
the hand written test cases of the ATM Forum test suite anddhected test
cases generated by VTS.
5. The proposal for corrections of the ATM test suite by pdawy alternatives
to incorrect test cases with respect to the SSCOP speaficati

4.4 RESULTS

Most test cases failed because of forgotten signals dudabsical problem
of message crossing inherent to asynchronous commumcabiofact these
signals are observable due to the expiration of timers befog reception by
SSCOP of a signal sent by the tester. One can imagine tha #resot real
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errors but are due to implicit assumptions on the transorisi¢lay between the
tester and the IUT. Nevertheless, as the remote testingectire is considered
this assumption should not be done or should at least be detech

Out of the 110 test cases, 16 test cases failed for othermeasbey all fall
in the state identification step: 2 tests in control state i, dontrol state 5, 4
in control state 7 and 9 in control state 10.

Out of the 16 defective tests, the following have been cterkc

1. 2 tests of state 4, 1 test of state 5, 2 tests of state 10 hggedstep to
correct the value of the state counters. For example, in 4tdt R_S(Q is not
changed on receivin®S or ER PDUs. The SA/ERIFY test step fails if the
last transition performs aR.S or ER PDUs asV R_S(Q) is not incremented.
ThustheBG N PDU of the test step is not detected as a retransmission. AsVT
does not manipulate symbolic variables but only valuespésdnot provide a
useful correction. Once the problem identified, it can rindess be easily
corrected by hand by decrementing the valu& @t SQ) in the test case before
conducting the state verification step.

2. 4 tests of state 7 by adding a step to initialize the valdethe state
counters. This is detected by VTS as incorrect values ofi§& AT PDU
in the S1QVERIFY step (state 10 is the arrival state of these test yaJdw
SSCOP specification resets its state variables after saditG AK PDU at
state 3. The initialization is not reflected in the test ca3éss can be manually
corrected by inserting the initialization procedure befstate verification.

3. 4 tests of state 10 by introducing an alternative sequfamoeerification
of state 10. S1O/ERIFY assumes the reception of &6T AT PDU before
entering in the verification step. VTS has shown that therst eituations in
which the SSCOP entity transfer directly to state 10 witttbetgeneration of
anU ST AT PDU. The only solution is to change completely the SIHERIFY
procedure.

4. 2 tests of state 10 by changing the values of the USTAT PDtthen
procedure for verification of state 10.

4.5 EXAMPLE OF VERIFICATION/CORRECTION

We present here an example of the experimentation of the ¥dlSh the
test case numbered SM0P17 in the ATM Forum Test Suite. This test case
and its following checking sequence (SY&RIFY) are presented below in
TTCN.GR format. They are exact copies of the ATM Forum tesecnd test
step except that UD and MD PDUs have been abstracted. Aagptdithe
informal test purpose, this test case verifies that the ldTantrol state 10
(DataTransferReady), saves an SD PDU that sequence nusnbetween the
sequence number of the next in sequence and the next higtpestted SD
PDUs.
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| S10_V_P17 |

| Nr | Label | Behaviour Description | Constraint Ref | Verdict |
1 +S1QPREAMBLE
2 LT_PCO!SD SD.S.N_S(VT_S+2)
3 START T_Wait
4 LB1 LT_.PCO?USTAT(VIMS:= USTAT_R.LIST(VT.S,
BIT_TOINT(USTAT.N.MR)) VT_S+2, VI.S)
5 LT_PCO!SD SD_S.N_S (VT.S+1)
6 LT_PCO!SD SD_S.N_S (VT.S)
7 LT_PCO!POLL(VT.PS:= POLL_S.N_S(VT.S+3)
INC.MOD_24 (VT.PS,1))
8 START T_Wait
9 LB2 LT_PCO?STAT[CHECKN.PS STAT_.R.N_R(VT_S+3) P)
(VT_PA, BIT_2_INT(STAT.NPS),
VT_PS)|(VT.MS:=BIT_.TO_INT
(STAT.NLMRY))
10 +S1QVERIFY
11 +POSTAMBLE
12 LT_PCO?POLL POLL.R_GEN
13 GOTO LB2
14 +TS Wait
15 LT_PCO?POLL POLL.R_GEN
16 GOTO LB1
17 +TS. Wait
| S10_.VERIFY |
| Nr | Label | Behaviour Description | Constraint Ref | Verdict |
1 LT_PCO!SD SD_S.N_S(VT_MS+3)
2 START T_Wait
3 LB1 LT_PCO?USTAT(VIMS:= USTAT_RLIST(VT.S, P)
BIT_TO_INT(USTAT.N.MRY)) VT_MS, VT_S)
4 LT_PCO?POLL POLL.R.GEN
4 GOTO LB1
5 +TS Wait

The graph drawn on the left hand side of Figure 1.3 represbattest case
(body) with its different test steps (preamble, checkirgseice and postamble)
in agraph format as processed by our TTCN compiler. For theakclarity we
did not represent the transitiofistherwise producinglnconclusiveverdicts
in states 2 and 4 anBail verdicts in states 6, 10, 12 and 15. In the SDL
specification and the test suite we have set the parametdviSTo 20 and
Max_CC to 1 in order to shorten the preambles. The variableS/$ initially
setto O.

As for most test cases, the VTS tool detects unsoundneg®{fen inputs of
END PDU in states 6, 10 and 12) because of a bad treatment élagnism.
According to the specification, once in control state DagasferReady an
END PDU can be sent if TimerNoResponse expires. The imgligiothesis
made in this test is that the PDUs SD (lines 2 and 5 or tramsitio— 6 and
11 — 12) and POLL (line 7, transitio® — 9) sent by the tester are received
before the timer expires.

Formally speaking, the test case is also laX@sierwise in states 2 and
4 should produce &ail verdict and not arinconclusiveverdict. In fact it is
common practice to deliver onlynconclusiveverdicts in preambles but the
VTS tool does not make this distinction.

The test case is really incorrect in the SYBRIFY step as the value of
the first and last parameters of the USTAT PDU (line 3, trémsit2 — 13)
are not correct. The VTS tool found this error (which is bakress and
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S LT_PCO!SD(23) LT_PCO!SD(23)
11,(PASS) [ 11,(PASS)
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% T LT_PCO!SD(1) T LT_PCO!SD(1)
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6 LT_PCO?POLL(L,0) 6f )LT_PCO?POLL(1,0)
L LT_PCO!SD(2) L LT_PCO!SD(2)
T LT_PCO?BGAK(20) T LT_PCO?BGAK(20)
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T LT_PCO!BGN(L,20) T LT_PCO!BGN(L,20)
o I I 3
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2 T LT_PCO?ENDAK T LT_PCO?ENDAK
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T LT_PCO!END(user) T LT_PCO!END(user)
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T LT_PCO!BGREJ T LT_PCO!BGREJ
0 0
Original test case Corrected test case

Figure 1.3 Initial and corrected test cases
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unsoundness) and proposed to correct the test case. Theéagt side of
Figure 1.3 corresponds to the corrected test case prodyc#dteb/TS tool.
New transitions lead to thinconclusivestate 17 for missing END PDUs and
the transition labelled by USTAT is corrected by changing finst and last
parameters values from O to 3.

This error was further analyzed by a close look to the TTCNdase. The
real reason is that the variable V3 of the test case is not updated when sending
an SD PDU (lines 2, 5, 6 in S19_P17) but this variable is used in USTAT
PDU (line 3 of SIQVERIFY). Thus it still has value 0 which is sent in USTAT
while in the specification the corresponding variable igeéntented and the
resulting parameter has value 3.

As the VTS tool manipulates instantiated test cases, it wg @ossible
to find the correct values. But finding that incrementatiomseanmissing was
done by hand. Finding this kind of correction automaticadlynot possible
in general. But some improvements can be made by a symbettntent of
variables, the help of provers, abstractions and statitysisa

5. CONCLUSION AND PERSPECTIVES

VTS was originally conceived for testing the TGV tool. Teases produced
by TGV were checked by VTS in order to track bugs in the maiomtigm of
TGV. But the main interest of VTS is to check manual test casdss was
demonstrated here by its application on an industrial geeification and a
significant part of a test suite in which some errors have lie@mnd.

The interest of such a tool is evident for complex systems.is Thin
particular the case for distributed systems because ofitfieutty to foresee
all behaviors of these systems due to asynchronism, hidingeynal actions
and non-determinism. This leads directly to checking itisted test cases.
VTS can be easily extended to check the correctness of thisifitest cases by
using FERMDET as a front end. Nevertheless correction isermpooblematic
as observed errors can be caused by internal actions.

But VTS suffers from the limitation inherent to enumerativels. Param-
eters of specifications and test cases have to be fixed threctrogss cannot
be guaranteed for all values of these parameters. Moresiwer of the errors
detected by VTS on the SSCOP test suite are errors on valugsesgage
parameters. Analyzing the errors and correcting them wbaldasier with a
symbolic treatment of data.
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