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Abstract

Due to the difficulty to foresee all the disorder on the observations collected by the
tester as well as the possible collision between a stimulus and an observation, designing
tests for remote asynchronous testing is error-prone. Designing correct synchronous tests
is a little easier, but transforming them into correct asynchronous ones is a difficult task.

In this paper, we prove that by using a simple counting mechanism, remote testing
can have the same power as local testing: the conformant implementations in synchronous
environment can be exactly the same ones as in asynchronous environment. We give an
algorithm to generate these kind of tests. Furthermore, we show how in an asynchronous
environment, one can implement into the tester a way to execute at runtime tests designed
for a synchronous environment. Thus, the tester will test exactly the synchronous confor-
mance between the IUT and the specification, despite the asynchronous environment.

Key-words : Conformance Testing, Test Generation, Local and Remote Testing, Asyn-
chronism, Stamp

1 Introduction

Let us consider the context of black box conformance testing in which an implementation under
test (IUT for short) is tested in order to obtain the conviction that its behavior conforms with
its specification. The tester stimulates the IUT by sending messages on points of control and
observation (PCOs) and observes on these same PCOs the reactions of the IUT (see figure 1,
part A). Within sight of the reactions, a verdict (Fail, Pass or Inconclusive) is emitted. The
underlying concepts have been formalized since the last years leading to the so called testing
theory which identifies the notion of formal conformance relation and gives a precise meaning of
the verdicts (see [1] for example). Originally, the theory considered a synchronous interaction
between the tester and the IUT. This made the implicit assumption that an IUT can refuse an
event and that the tester can observe the refusal [7]. In practice however, one cannot always
avoid taking into account the test environment intercalated between the tester and the IUT.
The most frequent example is that of remote testing architecture in which the tester reaches the
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Figure 1: Synchronous and asynchronous testing

IUT through a network connection. In this case, PCOs can be seen as composed of two FIFO
queues for each direction of the interaction: one speaks then about asynchronous interaction
between the tester and the IUT as illustrated in figure 1, part B.

The asynchronous nature of the PCOs poses some difficulties to design correct test cases. This
is due to the possibility of disorder on the observations collected on different PCOs as well as
the possible collision on a PCO between a stimulus and an observation. During the examination
of existing test suites, one realizes (see for instance [13]) that these are the main reasons of
non-validity of some tests: precisely the notions of conformance in synchronous or asynchronous
environment are not comparable. This implies that asynchronous testing requires to take into
account the PCO queues for designing correct test cases. Due to the distortions brought by
the PCO queues, transforming a correct synchronous test case into a correct asynchronous test
case is a difficult task. It appears nevertheless that under certain conditions, the asynchronous
deformation is invertible.

The principal results of this article are the following:

1. It is possible to complete a specification S such that conformance between an IUT [ and
the specification S is exactly the set inclusion between the traces of I and those of the
completion of S.

2. When a specification S is complete, synchronous conformance is preserved by the asyn-
chronous environment. This means that the asynchronous test cases reject only non con-
formant IUTs. But they are in general more permissive (IUTs rejected synchronously can
be accepted in the asynchronous mode).

3. Under the assumption of one PCO linking the IUT and its environment, and by using
stamps (a simple counting mechanism), remote asynchronous testing has the same power
as local synchronous testing: i.e. conformant IUTs in synchronous environment are exactly
the same ones as in asynchronous environment. We deduce a possible algorithm to generate
these kind of tests.

4. Furthermore, still in the case of one PCO, synchronous test cases can be used for asyn-
chronous testing. This is achieved by a specific driver which inverts the asynchronous
transformation using stamps.

We think that this new mechanism can be of a great utility. It makes it possible to conceive
tests in a synchronous way while carrying out them in an asynchronous environment.



The presentation is organized as follows. We start by the definition of models. Then, we recall
the local synchronous approach and the need to complete specifications to prepare their use in
an asynchronous environment. Secondly, we present the distortions induced by the PCO queues
and which must be taken into account by the tester. Then we define a counting mechanism
of messages which allows the tester to distinguish sequences of events that have been made
indistinguishable by the asynchronous queues. We deduce a transformation of the specification
allowing to generate automatically correct test cases. The last part is devoted to a possible
implementation at runtime in which a synchronous test case is controlled by the information
acquired dynamically from the IUT. We finish by some prospects of generalization in the case
of multiple PCOs.

2 Local synchronous testing

Because of the asymmetrical nature of the testing activity, the models have to differentiate
input and output actions. In this paper, we will use the model of IOLTS (Input-Output Labeled
Transition Systems) to describe the different objects involved in the conformance testing.

2.1 Models

Definition 2.1 An IOLTS is a tuple M=(Q", P}*, P}, Ay, A5, T" qi.) where Q" is a set of
states, qir, € Q" is the initial state, P and Pj are finite sets of input and output ports. Aj" and
Ap respectively are finite input and output alphabets. AM = P} x {7} x AYUPAN x{!} x A is the
alphabet of observable actions constructed from the sets of input-output ports and input-output
alphabets. T ¢ AM denotes an internal action. T" C Q" x A" U {1} x Q" is the transition
relation, we note p =, q for (p, o, q) € T™.

Let a; € AY, i, € AM U {7}, 0 € (AM)*, ¢,¢',¢; € Q™
® g uﬂf C]' —def ElqO =4q¢,q---,4qn = qlaVi S [lvn]’qi*1 MA qis

i o p1pin o
o ¢ "B =4 3¢, ¢ " ¢ and ¢ A ¢ =aep (g "B,

© = ¢ =qerq=q orqg =" ¢ and ¢ 5 ¢ =ger I, 62,9 > @1~ @2 = ¢,

®q agn q, —def E|(]0 =4q¢,q---,4qn = (]I,Vi € [17n]7 di—1 % di,

o cnable(q) =gq5 {0 € AM | 3¢ and ¢ =, ¢} is the set of observable actions possible in
¢, In(q) =aer {a € A} | 3p € P, p?a € enable(q)} is the set of possible inputs in ¢, and
Out(q) =aey {a € AS | Ip € Pj,pla € enable(q)} is the set of possible outputs in g,

o ¢ after 0 =45 {q¢ € Q" | ¢ 2\ ¢} is the set of reachable states from ¢ by the sequence of
observable actions o,

o Traces(q) =4y {0 € (A™)* | ¢ after o # 0},

e if « € AM is an observable action, we note @ its mirror action defined by: if & = pla then
@ = pa else @ = pla. This notation is extended to sequences of actions.



Definition 2.2 An IOLTS M s said

e deterministic if V o € (AY)*, |M after o| < 1 where |X| is the cardinality of the set X.

e controllable if in each state of M, either only one output is enabled or all inputs are enabled:
Vo € (AY)*, In(M aftero) = A¥ or (In(M afterc) =0 A |Out(M aftero)| < 1).

e input-complete if any input is possible after each trace: Yo € (AY)*, In(M aftero) = A}.

As usual [5, 6], a specification of a system S will be modeled by an IOLTS S = (Q®, P}, P, Aj,
o, %, ¢ ) and an implementation by a deterministic input-complete IOLTS I = (Q", P}, P},
A AL T ¢l ), with Pl = PP, Ph = Pj, A} C A}, and AP C Ap,.

A test case is a set of sequences of actions describing all the interactions occurring between an
IUT and a tester which wants to verify that an IUT conforms with its specification. A test case
is modeled by a deterministic IOLTS T = (Q", P/, P5, AT, A5, T, ¢y ) such that: AT = A
(every possible output of the IUT must be considered as an input of the test case), Aj, = A} (a
test case should only send outputs that are waited by the specification), {pass, fail} € Q" with
enable(pass) = enable(fail) = (), and fail is directly accessible only by inputs: Vg € Q*, Vo € AT,
q =7 fail= 3p € PF,a € AT, a = p?a. In general, it is assumed that a test case is controllable.

Remark: In practice A} = Aj, is unknown. Thus, only inputs not leading to fail can be
denoted, the other inputs are implicitly leading to fail or are denoted by “7 otherwise Fail”, like
in TTCN (see [9]-part 3). ©

2.2 Conformance

Formalizing conformance testing [2] necessitates to formally define the conformance relation (also
called implementation relation). We will consider the conformance relation which states that
outputs produced by an IUT after a trace of the specification are foreseen by the specifica-
tion [5, 6].

Definition 2.3 (Conformance relation) Let S be the IOLTS describing the specification and I
an input-complete IOLTS describing an implementation:
I ioconfS <= Vo € Traces(S),Out(I after o) C Out(S after o).

Definition 2.4 (Synchronous Testing) The synchronous application of a test case to an IUT is

. a7 IS8T
defined as a parallel composition ||s of the test case T and the IUT I TILISTLI
Definition 2.5 (Test failure and unbiased test case)
T fails I =gy 3I',30,T||sI = fail||sI'. A test case T is unbiased with respect to S if and only if
VI, T fails I = not(I ioconfS).

The definition of toconf authorizes IUTs to diverge from the specification starting from unspec-
ified inputs: the specification implicitly authorizes any behavior in the [IUT after an unspecified
input. We need to make these behaviors explicit by considering input-complete specification.
Moreover for input complete specifications, toconf has a very simple characterization as stated
by the following proposition:



Proposition 2.1 Let S be an input-complete IOLTS S and I an implementation, then:
I ioconfS <= Traces(I) C Traces(S)

Proof: Suppose I ioconf S and let w € Traces(I). Suppose w & Traces(S), then w can be
split in two sequences w = w;.we where w; is the maximal prefix of w € Traces(S). Let «
be the first action in wy. If a is an input, as S is input complete, wy.ac € Traces(S). If a is
an output, as wy € Traces(S) and I ioconf S, a € Out(S after wy), and wy.ac € Traces(S)
which contradicts the hypothesis. Thus, Traces(I) C Traces(S). Thus in both cases w; is not
maximal and proves that w € Traces(S).

The converse i.e. Traces(I) C Traces(S) = I ioconf S is evident even for a non input-complete
specification S. (]

We can then define a transformation which completes the specification (see definition 2.6 and
figure 2). For any non input complete specification, we can build an equivalent input complete
specification. We will see that this does not change the set of conformant IUTs. This has some
important consequences as input complete specifications have nice properties, in particular for
asynchronous testing as will be seen in section 3.

Definition 2.6 (Completion) Let S be an IOLTS. We define Comp(S) as an IOLTS such that:
Traces(Comp(S)) = Traces(S)J(U w.a.(ArUAp)")

weTraces(S),acAr\In(S after w)
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Figure 2: Example illustrating the completion (Dotted lines represent transitions added by the
transformation)

Remark: It should be noted that this notion of input completeness is different from what is
implicit in SDL [10]. In SDL, there is no unspecified reception: This means that in any control
state where an input is not specified, if this input occurs (is the first in the FIFO channel) it is
consumed. But as transitions are atomic, this happens only in any control (stable) states. Thus
in terms of transition systems, only some states are input complete. Notice also that the notion
of completeness of Mealy machines [11] corresponds more to this implicit completeness of SDL
than to our notion of input-completeness. <

Proposition 2.2 Let S be an IOLTS and Comp(S) its input completion. For all input complete
IOLTS I, I ioconf S <= I ioconf Comp(S).



Proof:  Suppose (I ioconf S). By definition of ioconf, this means 3o € Traces(S),3z €
Out(I after o), and z € Out(S after o). By definition of Comp, we have Traces(S) C
Traces(Comp(S)), so o € Traces(Comp(S)). But 0.z € Traces(Comp(S)) as z € Ap and
the input completion only adds a € A;\In(S after ). This implies =(I ioconf Comp(S)).
Suppose now —(I ioconf Comp(S)), this means Jo € Traces(Comp(S)), Iz € Out(I after o),
and z & Out(Comp(S) after o). If o € Traces(S) then z &€ Out(Comp(S) after o) induces z ¢
Out(S after o) as Traces(S) C Traces(Comp(S)). Otherwise o € Traces(Comp(S))\Traces(S)
is of the form oy.a.09 with 01 € Traces(S) and a € Aj. In this case, 0y.a.09.2 € Traces(Comp(S)),
i.e. z € Out(Comp(S) after o) which contradicts the hypothesis. [

Propositions 2.1 and 2.2 lead to the following proposition 2.3 which gives a very simple charac-
terization of zoconf.

Proposition 2.3 I ioconf S <= Traces(I) C Traces(Comp(S))

3 Remote asynchronous testing

In practice, the testing activity is generally done through an environment intercalated between
the tester and the IUT. For example, in the context of remote testing architecture, the tester
reaches the IUT through a network. In this case, the interaction between the tester and the
IUT is asynchronous and PCOs can be seen as composed of two FIFO queues.

We first define the asynchronous transformation .4 on IOLTS which describes the impact of
FIFO queues on observable behaviors. We recall how this affects the conformance: the set of
conformant IUTs in synchronous or asynchronous architectures are not comparable in general.
However, we show that synchronous conformance is included in asynchronous conformance for
input-complete specifications.

3.1 Asynchronous testing
As already described in [4], we define the asynchronous transformation A as follows:

Definition 3.1 Let M = (Q", P}*, Py, Ay, A5, T", ¢ini) be an IOLTS.
A(M) = (Q*0, P Py Ap™ AG™, TA(M), qal’) with:
) QA(M) _ QM % HpEPMAM* % HpePMAM* and qzl(li\t/f) =< M ( . '6), (6' . '6) >
o P} = PM and PA(M) Pg, AA(M) AY and A = AY,
° TA(M) is descmbed by the followmg opemtzonal rules deﬁned for all ¢.¢ € Q",a € A}, b €
Ay, oy € P po € PY:

? .
Rl <q,(pr--pyp,=w---),(poy ") >p[i>aA(M)< ¢ (pry P =w.a---),(poy---) > (inputsof A(M) from Env)

b
R2 <gq, (pn " ')a (po1 cpop =bw-- ) >p0—$ am)< g, (pn e ')7 (p01 rPop =W ) > (OUtPUtS of A(M) toE’nv)
q 1>M q
<q,(pr1--),(poy ) >1>A(M)< q,(pr ), (Poy ) >

P1k7a

g = ud
<q¢, (P Py, =aw--),(poy ) >—>A(M)< q,(prn - pyy =w---),(poy 7)) >

R3 (internal actions)

R4

(inputs of M from queues)
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b
qp% v q

R5
<q,(pry-"*), o1 Poy =w-+") >1>A(M)< ¢, ), poy - pPoy =wb---) >

(outputs of M toqueues)

Remark: V IOLTS M,Traces(M) C Traces(A(M)). <

As advocated in [2, 3] for testing in context, the conformance of an implementation with respect
to a specification in a context is defined as the conformance of the implementation in its context
with respect to the specification in the same context. For the asynchronous context this gives:

Definition 3.2 (Conformance in an asynchronous environment) Let I and S be two IOLTS
with I input complete. I ioconf, S =405 A(I) ioconf A(S).

The notion of test failure and unbias in an asynchronous environment are straightforward.

3.2 Problems in asynchronous testing

Let us consider the specification S described on the left part of figure 3. For sake of clarity, we
will suppose that all the indicated observable actions occur on the same PCO. Notice also that S
is not input-complete. The right part of figure 3 contains different implementations which show
that testing synchronously or asynchronously is not comparable. More precisely, they show two
main problems when testing in an asynchronous environment:

Permissiveness: The IUT I2 shows that asynchronous testing is more permissive than syn-
chronous testing: —(I12 ioconf S) but (I2 ioconf, S). We have —(I2 ioconf S) because
Out(12 after 7a) = {y} € Out(S after 7a) = {x}. In asynchronous environment, events can be
observed in an order different from the order of occurrence on the IUT. By the asynchronous
transformation A, the trace ly.?a of S can be observed as 7a.ly. Thus, we have (12 ioconf, S)
as Out(A(12) after 7a) = {y} C Out(A(S) after 7a) = {x,y}.

Non preservation of conformance: This problem is brought to light by the ITUT I3: 13 ioconf S
but =(13 ioconf, S)). In fact, I3 ioconf S even though ?a.?b.!z is not a trace of S. This is because
toconfauthorizes divergence from the specification starting from an input. In the asynchronous
transformation of S, 7a.?b is a trace of A(S), and we have Out(A(S) after 7a.?b) = {x,y} but
Out(A(I3) after 7a.7b) = {x,y, z}. Thus =(I3 ioconf, S).

The problem of permissiveness is inherent to the transformation by a context. But the non
preservation of conformance is due to the fact that S is not complete. This can be avoided for
particular contexts and for input-complete specifications as stated by lemma 3.1.

Remark: Notice that these problems are more complex in the context of several PCOs as
inputs and outputs orders are not preserved. Similar remarks concerning the non preservation
of the conformance in asynchronous environment have been done in [4]. But these were made
regarding the synchronous conformance relation conf (which does not distinguish inputs and
outputs) and an asynchronous conformance relation similar to ioconf,. <
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Figure 3: Difference between synchronous and asynchronous testing

Definition 3.3 A transformation on an IOLTS is monotonic if it preserves trace inclusion:
Traces(M) C Traces(M') = Traces(T(M)) C Traces(T(M")).

Lemma 3.1 Let S and I be input complete IOLTS. If T is a monotonic transformation,
I ioconf S = T(I) ioconfT(S).

Proof: Suppose I ioconf S and S and I are input complete. By proposition 2.1 we have
Traces(I) C Traces(S). By monotonicity of 7, this implies Traces(T(I)) C Traces(T(S))
which implies T (1) ioconf T(.S). N

The asynchronous transformation A is monotonic because it is applied on sequences indepen-
dently of others. Application of lemma 3.1 gives the following corollary:

Corollary 3.1 Let S and I be input complete IOLTS. We have: I ioconfS = I ioconf, S.

The consequence of this corollary is that the only difference between ioconf and ioconf, is
permissiveness. We will see in the next section that this problem can also be avoided if the
order of occurrence of events on the IUT is captured by an appropriate stamp mechanism.

4 Stamped asynchronous testing

The idea is to instrument the IUT so that each output from the IUT to the tester (via the
environment) can bring to the tester an additional information on the real order in which the
IUT has produced the events. Linking time stamp techniques used in observing distributed
systems to the problem of generating tests has been already advocated in different contexts like
in [8, 14].

This instrumentation can be defined by the synchronous parallel composition of the IUT with
a stamp process ST (as illustrated in figure 4). The role of the stamp process ST is to code
the history of events which occurred on the TUT and to transmit it to the environment by
piggybacking each output.



We will consider the particular case of one PCO in which history is coded by an integer counter.

pco

ST
= TITT]
IUT | 1urew lCT' O Envoas Tester
Env!(!x,CT);D Q CT := CT++; L L L[]

CT :=CT++ IUT!(?a)

Figure 4: Implementation of the counting mechanism st

This stamping process ST implements a function st defined on traces as follows:

Definition 4.1 st : (A;U Ap)* — (A; U (Ao x IN))*, Vo € (A; U Ap)*,a € Ay, and z € Ap:
st(e) =€, st(o.lz) = st(o).(1z,length(o)), and st(o.7a) = st(o).?a.

By extension, one can regard the transformation st as being carried out on the IOLTS by the
on-the-fly traversal of the graph. Let us consider the example of an interaction between an IUT
and its environment illustrated on figure 5. From the point of view of events produced on the
IUT, one has: st(?x.!s.7y.7t.7u.lz) =72x.(1s,1).7y.7t.7u.(12,5).

0= 0"2.0'”2

M xis' 7%y 2t ?ulz

(1z,5)

Figure 5: Illustration of the computation of st and st

This counting information is intended to be used by the tester. This is why one considers an
opposite transformation denoted st (and illustrated in figure 5), which defines how the environ-
ment can order events of a system M. From a sequence of events w in the environment Env, st
computes two sequences of events using the counting information associated to outputs of the
system M:

e the first component (denoted st(w)[1]) of st is the sequence of events of the system M
which precede the last output z of M received by the environment including this output.

e the second component (denoted st(w)[2]) is the sequence of inputs of M (corresponding to
outputs of the environment) which were not received before the sending by M of z. As we
assume a FIFO channel between Env and M, this sequence will be received in this order
but M may have some intercalated outputs of M.



Notice that st can be computed on-the-fly by Env. When Env makes an output, the corre-
sponding input is added to the tail of the second component o5. When Env makes an input z
with the counting information, the first and second components are updated accordingly.

Definition 4.2 st : (A[U(AO XN))* — (A[UAo) XA;, St( ) = (6 6) and Vw € (A[U(AO X
M), st(w) = (st(w)[1], st(w)[2]), then st(w.7a) = (st(w)]l], st(w)[2].7a ); and st(w.(1z,7)) =
(st(w)[1].0%.!z, o)) where ol and o are sequences such that st(w)[2] = ob.0 with length(o)) =
i— length(st )[1])

For example, let us consider the sequence of events occurring on the tester in figure 5 (denoted
by their corresponding names on the IUT). Then we have : st(?z.7y.(!s,1).7t.2u.7v.7w) =
(?zls, Tyt 7u.tv.?w), and st(?x.?7y.(Is,1).7t.7u.70.2w.(12,5)) = (?als.?y. 7t 7ulz, 7v.7w). In
this last case, this means that upon reception of z, the tester knows that 7x.!s.7y.7t.7u.!z has
occurred in this order on the IUT, but it does not know yet what will be the order in the future
including the receptions of v and w. The counting information gives the index for inserting the
output in the sequence.

The following proposition means that the asynchronous transformation sto .4 is invertible: given
a trace o, the application of st on a trace of A(st(¢)) can reconstruct o.

Proposition 4.1 VM € IOLTS,VYo € Traces(M),Yw € Traces(A(st(c))), we have:
st(w) = (01, 09) witho = 01.03.

Proof: st associates with each output the index of this output in the sequence. This informa-
tion can be used by st to recover the order since the transformation A (in the case of only one
FIFO queue in each direction) preserves the order on inputs. [ |

Remark: The outputs do not need to be FIFO ordered. ¢

We can now prove the main theorem which says that for sequential and input complete IOLTS
communicating asynchronously with their environment using one FIFO in each direction, remote
(asynchronous) testing using stamps has the same testing power as local synchronous testing.

Theorem 4.1 Let S and I be two sequential and input complete IOLTS communicating asyn-
chronously with their environment using one FIFO in each direction. We have:

I ioconf S <= st(I) ioconf, st(S)

Proof:  We first prove that IioconfS = A(st(I))ioconfA(st(S)). st o A is a monotonic
transformation since A and st are monotonic (st is defined on traces). Lemma 3.1 thus applies.

Now, we have to prove the converse, that is if —(7 ioconfS) then —=(A(st(I)) ioconfA(st(S))).
By definition of ioconf, =(I ioconfS) implies Jo € Traces(S), Iz € Out(lafterc) such that z ¢
Out(Saftero). Let w = st(o). For any IOLTS M,o € Traces(M) = st(o) € Traces(st(M))
and Traces(M) C Traces(A(M)). Thus, we have: w € Traces(A(st(S))) and w.(z,length(o)) €
Traces(A(st(I))). We want to prove that w.(z,length(c)) & Traces(A(st(S))). Since z ¢
Out(Safterc), we must show that the output (z,length(o)) after w cannot be created by the
st o A transformation. First, note that the traces of A(o) are produced from o by the following
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semi-commutation !z.7y—7y.!z which can delay the outputs. Let us suppose that z belongs to
a trace o’ of S. We show that ¢’ is identical to 0. Vo' € Traces(S),3w € A(st(c')) and w =
st(c) = o = o'. This is based on the properties of A: a) length(c) = length(c'), b) ¢ and
o' are on the same alphabet, c¢) the outputs are numbered by the same stamps, d) the in-
puts are not changed by the transformation. Thus, Jw € Traces(A(st(S))),w.(z,length(c)) &
Traces(A(st(S))) which implies Jw € Traces(A(st(S))), (z,length(o)) € Out(A(st(I) after w),
and (z,length(o)) & Out(A(st(S) after w). u

Test generation We have proved in proposition 2.2 that for any specification S we can build
an input complete one Comp(S) with the same set of conformant implementations. Theorem 4.1
now says that if we assume a communication with the environment with one FIFO in each
direction, an IUT [ is conformant to Comp(S) if and only if A(st(I)) is conformant with
A(st(Comp(S))).

There exists test generation algorithms implemented in tools [12, 15], which applied to S will
produce test suites which are unbiased with respect to S and ioconf (only non conformant
implementations are rejected by test cases) and (theoretically) exhaustive (assuming bounded
fairness of implementations, all non conformant implementations may be rejected by a test case).
Using these algorithms on A(st(Comp(S))) will thus produce a test suite which is unbiased and
exhaustive with respect to A(st(Comp(S))) and ioconf. Moreover, this test suite has exactly
the same testing power as the synchronous test suite.

5 Remote asynchronous testing with synchronous test
cases

A drawback of tests generation from A(st(Comp(S))) is the state space explosion due to the
asynchronous transformation and the unfolding caused by st. A second drawback is the rele-
vance of test cases. When testing the conformance of I with respect to S in a remote testing
architecture, we are mainly interested in traces of S but not in all traces of A(st(Comp(S))),
even if we have to consider these traces as possible ones. In particular in the example of figure 3,
7a.70.(z, 1) and ?a.(lx,1).7b are both sequences of A(st(Comp(S))). So one could generate a
test with the sequence !a.!b.(?x,1). But this test would be artificial because as S sends x after
the input a, it is preferable to wait for « before sending . One way to achieve this, is to use test
purposes which accept traces in Traces(S) in order to select test cases from A(st(Comp(S))).
A completely different way is explained below.

First, local synchronous test cases are generated from Comp(S). Then, Test cases are then
decorated with counters using the transformation st. They can then be played in a remote
asynchronous testing architecture with a kind of decoding mechanism which rebuilds sequences
of I from sequences of A(st([)) using the transformation st defined in section 4. The idea is
that from a sequence of events of A(st(I)), st can reconstruct, with a certain latency due to the
asynchronous communication, the sequence of events which occurred on I. Thus this sequence
can be checked on test cases produced from S to check the conformance of I with respect to S
and ioconf as in a local synchronous testing architecture (an illustration is given in figure 6).
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The mechanism necessitates some attention. In fact the difference between synchronous local
testing and asynchronous testing is that the control of the tester on the TUT is weakened.
Inputs of the IUT cannot be completely controlled by the tester. This can be illustrated on the
example of figure 3. According to the specification, the tester may choose an output (say a).
st(?a) = (¢,7a). But between the output !a by the tester and its corresponding input 7a by
the IUT, the IUT may decide to perform the output !y associated with the counter 0. When
receiving (y,0), st(?a.('y,0)) = (ly, 7a). Thus the tester knows that the IUT has performed !y
first and will later receive a. The TUT has thus chosen a different behavior from the one chosen
by the tester. Nevertheless, the tester must evolve according to the behavior of the IUT but
also to its own past behavior. In particular, a has been sent and this cannot be cancelled. Thus
the tester will have to wait for a new input from the IUT or choose a new output according to
the sequence !y.?a. All this information is contained in st(?a.(ly,0)).

The tester thus computes st(w) on-the-fly. Only st(w)[1] should be used for verdicts because
it is a sequence of I. The information on the sequence of inputs of the IUT of st(w)[2] is not
complete as outputs can be intercalated in the sequence. The tester may sometimes choose
to wait for an output of the IUT to complete its information. But this is not always possible
because the IUT may also wait for an input. So outputs of the tester must be chosen and this
is done according to st(w)[1].st(w)[2].

A fundamental difference with synchronous local testing is that test cases are controllable in
synchronous local testing: a test case never has the choice between two outputs and an input
and an output. This comes from the fact that the tester controls the inputs of the IUT. This is
not the case in an asynchronous environment and in any state all possible outputs of the IUT
must be taken into account. The controllability property thus has to be relaxed.

Definition 5.1 An IOLTS is semi-controllable if in any state at most one output is possible
and all possible inputs are considered: Yo € (A")*, In(M aftero) = A}' N\ |Out(M aftero)| < 1.

Specifications have to be input complete or completed by Comp because if st(w)[1] = 0.1z €
Traces(I), either z & Traces(S after o) and in this case !z should produce a fail verdict, or
z € Traces(S after o) and st(w)[1].st(w)[2] must be in Traces(S). As st(w)[2] is composed of
inputs, input completeness always ensures this.

Notice that the first component of st is monotonic for the prefix ordering i.e. w < ' for the
prefix ordering implies st(w)[1] < st(w")[1].

The algorithm which has to be performed on the tester is described below. It uses two sequences
o1 and oy which respectively contain the two components of the sequence of events w performed
by the tester: oy = st(w)[l] and oy = st(w)[2]. The variable w is only used to describe the
invariant.
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B Input: TC: test case. Output: verdict
Invariant oy = st(w)[1] and oy = st(w)[2]
Initialization: w :=¢€; 01 :=¢; 09 := ¢; verdict:= nil
(* st(e) = (e,€) )
while verdict = nil do
non-deterministic choice
if Out(TC after oy.09) # 0
send(a) where {a} = Out(TC after 0,.03)
(* a is unique as test cases are semi-controllable *)
w = w.?a; 0y := 09.7a; (*ie. st(w.?a) = (st(w)[1], st(w)[2].7a*)
if input queue is not empty
receive((z,1))
w=w.(l2,1)
let o)), 0l s.t. length(oy.0h) =i and 0y = ob.0}
o1 := 01.04.12; 09 1= oy (* st(w.(!z,1)) = (st(w)[1].05.12,08) *)
verdict := verdict (T'C' after oy)

end
ST pco  Tester
Synch.
TUT?x/ Env?a/ ST||  Test
Env!(Ix,CT); D CT:=CT4+; L LT
CT :=CT++ IUT!(?a)

Figure 6: Architecture for “remote local” testing

6 Towards generalization to multiple PCOs

We have described how remote asynchronous testing with counters could have the same testing
power as local synchronous testing in the case were the communication between the IUT and the
environment is done through one PCO. This can be generalized but needs more sophisticated
mechanisms. The general idea is that in order to reach the same testing power as in the
synchronous case, the tester needs to reorder events of the IUT. We suppose that the IUT can
transmit information to the tester only with its outputs by piggybacking. In theory, the tester
needs to know the sequence of events of the IUT which precedes the output made by the IUT
(see figure 7). Thus a theoretical instrumentation consists in associating to each output of the
IUT the sequence of its predecessors in the IUT. Upon reception of an output of the IUT, the
tester exactly knows the sequence of events on the IUT up to this output.
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Figure 7: Theoretical instrumentation in the general case

Sending the complete sequence of predecessors of an output of the IUT is certainly not realistic
because this induces redundant information and the sequence grows. A simplest instrumentation
is to segment the information into sub-sequences between two consecutive outputs. But as an
output can be overtaken by a following one, the order of this output in the sequence should be
associated as in st.

The information captured by the tester in the case of one bidirectional FIFO communication
was decoded by the function st which separates it into two parts. In the general case st should
be separated into three components informally described here:

e the complete sequence of interactions since the initial state up to an output for which
all preceding outputs have been received. This information can be used to emit verdicts
because it is exactly a sequence of the IUT.

e a sequence composed of subsequences of unknown interactions and subsequences of known
interactions. Subsequences of known interactions are composed of outputs of the IUT
received by the tester and preceded by inputs piggybacked in these outputs. Unknown
ones are composed of those which precede the last received output of the IUT (thus their
number is known by the counting mechanism) but which are not precisely known because
outputs of the IUT which carry them have not been received yet. This partial information
may be used for the computation of verdicts by replacing all unknown interactions by a
7 action and applying a 7-reduction and determinization. It can also be used in order to
refine the knowledge of the tester on the behavior of the IUT in order to choose subsequent
outputs. When this second component starts with a known subsequence, it is removed
and added in the first component.

e the third part is composed of inputs of the IUT corresponding to outputs of the tester
which have not yet been piggybacked in an output of the IUT received by the tester. In
particular all inputs in the preceding unknown subsequences are contained in this sequence.

This mechanism of instrumentation and decoding is illustrated in figure 8. Some more work is
needed to precisely define it and prove its correctness.
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Figure 8: A possible implementation of instrumentation and decoding

Another prospect is timers management. Deadlocks and output quiescence are considered as
outputs in the testing theory [5]. This is because it is an observable event of the IUT. This
gives a new conformance relation zoco which is identical to toconf after a transformation of the
specification which consists in adding a special output ¢ in S in any quiescent state. Gener-
ated test cases thus contain inputs of 6 which correspond to timeouts. In our framework of
asynchronous instrumented testing, inputs of test cases which are outputs of the TUT carry
counters. This must be generalized to timeouts but suggests that timers should be managed by
the instrumentation of the IUT. Moreover starting and cancelling a timer must be done by the
instrumentation but initiated by the tester with messages. In [12] we suggested to create one
timer for each waited input (¢ is only a special case) in the test case. Starting and cancelling
operations were incorporated in events. We suggest here to consider them as normal outputs so
that counters allow to order their reception by the instrumentation of the IUT with respect to
outputs of the IUT.
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