"Ecole IRISA" : distributed algorithms and models Course 1 : some fundamentals

- 1.1 Distributed programs
- 1.2 Abstract behaviour
- 1.3 Causality
- 1.4 Lamport's coding
- 1.5 Vector clocks
- 1.6 Interval approximation
- 1.7 Notion of state for a distributed run
- 1.8 Global checking of traces
- 1.9 Distributed checking

1. A simple protocol (in Promela/Spin) : a first distributed program
mtype $=\{a, b, c, d\} ;$
```
/* a: connect_request
    b : disconnect_reques }
    c: distant_disconnect_request
    d:disconnect_confirm
*/
```

chan $A B=[3]$ of $\{$ mtype $\}$; chan $B A=[1]$ of $\{m$ type $\} ;$
active proctype $A()$
\{

do

:: AB!a;
if
:: BA?C:
: AB!b; if
$:: B A ? c$
:: BA?d
fi
od
\}

active proctype $B()$
\{
do
:: AB?b;
:: AB?a:
if
:: AB?b; BAld;
:: BA!c
fi
od
\}
\}

B
2
A

Example of scenario

Spin Version 4.0.7 -- 1 August 2003 -- Codec
pwb-cj[27]\% spin -a Codec
pwb-cj[27]\% cc -o pan -DNOREDUCE -DSAFETY pan.c pwb-cj[27]\% ./pan
(Spin Version 4.0.7-- 1 August 2003)
Full statespace search for:

```
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +
```

State-vector 28 byte, depth reached 11, errors: 0
13 states, stored
8 states, matched
21 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)
1.533 memory usage (Mbyte)
unreached in proctype A
line 25, state 13, "-end-"
(1 of 13 states)
unreached in proctype B line 37, state 11, "-end-" (1 of 11 states)

2. Abstract state graph

Concrete state space

Abstract state graph (only sendings of a, b and c have been considered as observable)
\Rightarrow How recover
the causalities?
3. Causality between observable events in min (Lamport 78)
N sequential processes (P_{1} to P_{n})
Processes perform events during their life. Some of them are traced (the observable events)

- Communication by passing messages synchronises the process activity

On-the-fly observation of causality (by instrumentation)

Partial order relation of causality: $x \leq y$ iff it exists a path linking x to y in the chronogram

- Causal past: $\downarrow x=\{y \mid y \leq x\}(x \leq y<=>\downarrow x \subseteq \downarrow y)$

The Hasse diagram

- Canonical form
- Bottom-up drawing
- Transitive reduction

Size: 15

The weak-order approximation

- Weak order = chain in which some elements are replaced by antichains
- A level structured order

Size: 24 (9 added comparabilities)

5. The Fidge \& Mattern's exact coding (1988)

$M(\downarrow x)=\left(\left|\downarrow x \cap P_{i}\right|\right)_{i=1 . n}$
 ("vector clock")

$x \leq y<=>M(x) \leq M(y) \quad$ (Dilworth's theorem, 1950 : an order of width n can be decomposed into n disjoint chains)

\pm 6. The quest of a constant size coding: the interval timestamps (Diehl \& Jard 1992)

The order given by the Lamport's timestamps is an interval order:

$$
[L(x), L(x)+1[
$$

- Hence, the idea to change the sup to improve the accuracy of the approximation, while keeping a constant size timestamp -> "interval timestamping"

$I^{-}(x)=|\downarrow x|-1$
- $I^{+}(x)=\min \left\{I^{-}(y) / x<y\right\}$
- Theorem: if the causal order is an interval order, it is an exact coding scheme

Size: 16

How to achieve an on-line mechanism? The RPC case

Questions:

- Define the
timestamping algorithm
- Does it exist an exact coding of size 2?

=

7. Notion of state for a distributed run

- The role of state is to code the past (cuts)
- Only consistent cuts are reachable
- These are downward-closed subsets:
$X \subseteq E / \downarrow X=X$

The state lattice

2. The set of consistent cuts, ordered by set inclusion is a distributive lattige

(Hasse diagram) (cons. cuts)
$\}$
$\{a\}$
$\{a, b\}$
$\{a, c\}$
$\{a, c, d\}$
$\{a, b, c\}$
$\{a, b, c, d\}$
$\{a, b, c, e\}$
$\{a, b, c, d, e\}$

(state graph)

Can be embedded in a n-dimensional grid

States with only one predecessor are in bijection with the observable events

- Their coordinates are the vector clocks

Its on-line construction [Jard \& Rampon 1993]

Can be built in linear time w.r.t. its size (exponential in the size of the order)

Allows us to build in linear time the abstract state graph of a deterministic system: compare with the exponential state explosion of automata networks

A. An example of on-the-fly construction

8. Trace checking (regular properties)

Property $\Phi=<\Sigma, Q, q_{0}, F, \delta>$, defines a langage $L(\Phi)=\left\{u \in \Sigma^{\star} \mid \delta^{\star}\left(u, q_{0}\right) \in F\right\}$

- State graph: transitions labelled with Σ, given a state I, Paths(I) is the set of words leading to I
- I satisfies Φ iff Paths(I) intersects $L(\Phi)$
- Equivalently: I satisfies Φ iff $\Phi(I)$ intersects F where $\Phi(I)$ is the set of states of the automaton Φ reachable by paths ending at I
- A trace satisfies Φ iff the maximal state (Σ) satisfies Φ

The (global) algorithm "trace checking"
$\Phi(I)$ can be computed from the Φs of the immediate predecessors in the lattice (requires a causal observation) : $\Phi(I)=\{\delta(\operatorname{label}(J->I), q)$ for $q \in \Phi(J)$ and $J \in \downarrow I\}$

- Checking is done on-the-fly during the lattice construction

Diagnosis
Diagnosis

GLOBAL

-Global:

- Causal dependency tracking
- On-line construction of the state lattice
- Verification during construction

Local:

- Restricted class of properties (causal flows)
- Distributed verification (timestamps extended with a state information)

9. Distributed trace checking (local regular properties)

Properties are on the causal past of the observable events

- An observable event x satisfies a property Φ iff it exists a path ending in x in the Hasse diagram of the observed order such that the corresponding path is accepted by Φ
- Causal ordering case
- Can be computed on-the-fly and in a distributed manner

Principle

The automaton Φ is know from all the processes

- x satisfies Φ is locally computed on the process which has produced x
- The state information is acquired (and piggybacked) by the messages of the observed execution
- Each process Pi maintain 2 arrays: LOi[1..n] and SLOi[1..n]. LOi[j] is the rank of the the last event observed Pj in the current past of Pi . SLOi[j] is the corresponding state information (of Φ) (when LOi[j] is maximal)

Algorithm (on Pi)

Data: LOi[1..n] of integer: SLOi[1..n] of set of states

- Init: forall $\mathrm{j}, \mathrm{LOi}[j]:=0 ; \mathrm{SLOi}[j]:=\{q 0\}$
- Upon observation of event x :

LOi[i]:=LOi[i]+1;
SLOi $[i]:=\{\delta(q, x)\}$ forall k, forall q in SLOi[k]; forall j\#i, SLOi[j]:=\{\}

- When sending a message to Pk:

LOi and SLOi are added to the message

Upon reception of $m s g(L O k, S L O k)$ from Pk :

```
forall j, if
LOi[jkLOk[j] then SLOi[j]:=SLOk[j]; LOi[j]:=LOk[j]
LOi[j]>LOk[j] then skip
LOi[j]=LOk[j] then
if SLOi[j]#{} and SLOk[j]={} then SLOi[j]:={}
```


