' \X “"Ecole IRISA" : distributed
algorithms and models
Course 1 : some fundamentals

C. Jard, October 2006

- 1.1 Distributed programs

- 1.2 Abstract behaviour

» 1.3 Causality

1.4 Lamport's coding

- 1.5 Vector clocks

» 1.6 Interval approximation

» 1.7 Notion of state for a distributed run
- 1.8 Global checking of traces

- 1.9 Distributed checking

mtype = {a,b,c,d}

1. A simple protocol (in Promela/Spin) :

a first distributed program

active proctype A()

active proctype B()

/* a: connect_request do
b : disconnect_request d°_' . AB?bf
¢ : distant_disconnect_request " AB“' " AB?“'
d : disconnect_confirm if if
* BA?c; :» AB?b; BAId;
:t ABIb; if i BAlc
chan AB = [3] of {mtype}; i+ BA?C; fi
chan BA = [1] of {mtype} f BA?d) od
|
fi
} od 2 AB y
L1
?c

Example of scenario

Spin Version 4.0.7 -— 1 August 2003 —-- Codec
pwb-cj[27]% spin -a Codec
pwb-cj[27]% cc -o pan -DNOREDUCE -DSAFETY pan.c
pwb-cj[27]1% ./pan

(Spin Version 4.0.7 -- 1 August 2003)

Full statespace search for:

, never claim - (none specified)
assertion violations +
E cycle checks - (disabled by -DSAFETY)

invalid end states +

State-vector 28 byte, depth reached 11, errors: O
13 states, stored
8 states, matched
21 transitions (= stored+matched)
O atomic steps
hash conflicts: O (resolved)
(max size 2°18 states)

12

13

14
15

18

1.533 memory usage (Mbyte)
20
unreached in proctype A
line 25, state 13, "-end-"
(1 of 13 states)
unreached in proctype B
line 37, state 11, "-end-"
(1 of 11 states)

24

25

26

27

28

33

Abstract state graph
(only sendings of a,b
and ¢ have been considered
as observable)
= How recover
the causalities?

'\3 Causality between observable events'g
(Lamport 78)

N sequential processes (P, toP,)

Processes perform events during their life. Some of them are
traced (the observable events)

Communication by passing messages synchronises the process
activity

o
o®
50

< On-the-fly observation of causality

4.’: Partial order relation of causality: x <y iff it
exists a path linking x to y in the chronogram

Causal past: | x = {y | ysx} (xsy <> |xC|y)

C f s
P, - O = - >
\\ 9
NI L\ g = {abedfg)
P5 - >

Canonical form

Bottom-up
drawing

Transitive
reduction

The Hasse diagram

g _Oh

— 1
ic Od Oe
Ob Oa

Size: 15

_ g Lamport's approximate coding (1978)

-
lécommunications =

L(x) = height(|x) (length of the longest path)
L(x) = max {L(y) /y < x} + 1
x <y =>L(x) < L(y)

c(2) £(3). -

P, < i g
P2 () ’\ >

‘~ h(4)
L. =0 Li = Li#l L= max(L,.L;)

Weak order = chain in

which some elements
are replaced by
antichains

A level structured
order

Size: 24 (9 added comparabilities)

D. The Fidge & Mattern's exact

coding (1988)
!| = MUX)=(Ix NP) s (“vector clock")
+ x<y<=>M(x)< M(ly) (Dilworth's theorem, 1950 : an order

of width n can be decomposed into n disjoint chains)

c(110) ?(210\)

P, O - >
P, j\ ———— >

g —:\6. The quest of a constant size coding:

lécommunications =

the interval timestamps (Diehl & Jard 1992) v

The order given by the g h
Lamport's timestamps is an
interval order:

[L(x), L(x)+1]
Hence, the idea to change \
the sup to improve the
accuracy of the
approximation, while keeping \
a constant size timestamp ->

“interval timestamping”

11

I'(x)= x| -1

I*(x) = min {I-(y) / x <y}

Theorem: if the causal order is an interval
order, it is an exact coding scheme

/0\9[4,«1 O h[5,of g h
f12,4] £ e
12l Od, Oeresl [le d

Obroal O a[o2] b a

Size : 16

12

= How to achieve an on-line mechanism?
= = The RPC case

C

pp —ob——— 1240
b / \ d
P3 —o ‘o

O—h

a e

Questions : /9497
* Define the

timestamping algorithm d

- Does it exist an exact ¢
coding of size 2? \

Ob Oa 13

7. Notion of state for a distributed run

* The role of state is to code the past (cuts)
* Only consistent cuts are reachable
+ These are downward-closed subsets:

XCE/ X=X
P, >
9
P, S >
P3 o >

14

consistent

The state lattice

* The set of consistent cuts, ordered by set
inclusion is a distributive IaTTiqg P

d e 0 v
O O {a})
{a,b}
{a,c}
{a,c,d}
o b {a,b,c}
¢ {a,b,c,d}
{a,b,c,e}
5a {a,b,c,de}
P1 P2

(Hasse diagram) (cons. cuts) (state graph)

States with only one
predecessor are in
bijection with the
observable events

- Their coordinates are the
vector clocks

Its on-line construction
[Jard & Rampon 1993]

Can be built in linear time w.r.t. its size (exponential in the size of the
order)

Allows us to build in linear time the abstract state graph of a deterministic
system: compare with the exponential state explosion of automata networks

/\
Me) X
AN\ T

I(x)

R

17

8. Trace checking
(regular properties)

Property @ = <X,Q,q0.F 5>,

defines a langage L(®) = {u € =* | *(u,q,) € F}

State graph: transitions labelled with Z,

given a state I, Paths(I) is the set of words leading to I
I satisfies @ iff Paths(I) intersects L(®)

Equivalently: I satisfies @ iff ®(I) intersects F

where ®(I) is the set of states of the automaton ® reachable
by paths ending at T

A trace satisfies ® iff the maximal state (Z) satisfies ®

19

®(I) can be computed from the ®s of the immediate
predecessors in the lattice (requires a causal observation) :

®(I) = { 6(label(J->I),q) forqe ®(J)and J € |I}
Checking is done on-the-fly during the lattice construction

a

\ /
Ta ot

>Nay 7 >\{q}

20

~\ | ocal distributed or global checking? S

Diagnosis Diagnosis

Diagnhosis
GLOBAL

Diagnosis 21

Informatique:

lécommunications =

Distributed checking
[Jard & Raynal 1995]

lobal :

» Causal dependency
tracking

- On-line construction of
the state lattice

Verification during
construction

Local :

- Restricted class of
properties (causal
flows)

Distributed verification
(timestamps extended
with a state
information)

22

N\

9. Distributed trace checking
(local regular properties)

* Properties are on the causal past of the observable

events

*+ An observable event x satisfies a property @ iff it

exists a path ending in x in the Hasse diagram of the
observed order such that the corresponding path is
accepted by @

- Causal ordering case
» Can be computed on-the-fly and in a distributed

manner

23

Principle

The automaton @ is know from all the processes

- x satisfies @ is locally computed on the process
which has produced x

The state information is acquired (and piggybacked)
by the messages of the observed execution

Each process Pi maintain 2 arrays: LOi[l..n] and

SLOI[1..n]. LOIi[j] is the rank of the the last event observed
Pj in the current past of Pi. SLOI[j] is the corresponding state
information (of ®) (when LOi[j] is maximal)

24

Algorithm (on Pi)

Data: LOIi[1..n] of integer; SLOI[1..n] of set of states
 Init: forall j, LOI[j1:=0; SLOI[j]:={q0}

Upon observation of event x:

LOI[i]:=LOi[i]+1;

SLOI[i]:={d(q,x)} forall k, forall q in SLOI[K];

forall j#i, SLOI[j1:={}
When sending a message to Pk:

LOi and SLOi are added to the message

25

lécommunications =

* Upon reception of msg(LOk,SLOk) from Pk:
forall j, if
LOI[j LOK[j] then SLOI[j]:=SLOK[]]; LOI[j]:=LOK[j]
LOI[j]PLOK[j] then skip
LOI[j1=LOKLj] then
if SLOI[j1#{} and SLOK[j]={} then SLOi[j]:={}

i AN AN AN
P V/ \// \// > SLOI[j] O X 4 X
. . SLOK[] X X {}

New SLOI)] {} X {} {}
LOI[jILOKIj]

26

