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“Ecole IRISA” : distributed
algorithms and models

Course 1 : some fundamentals

• 1.1 Distributed programs
• 1.2 Abstract behaviour
• 1.3 Causality
• 1.4 Lamport’s coding
• 1.5 Vector clocks
• 1.6 Interval approximation
• 1.7 Notion of state for a distributed run
• 1.8 Global checking of traces
• 1.9 Distributed checking

C. Jard, October 2006
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1. A simple protocol (in Promela/Spin) :
a first distributed program

mtype = {a,b,c,d};

/* a : connect_request
   b : disconnect_request
   c : distant_disconnect_request
   d : disconnect_confirm
*/

chan AB = [3] of {mtype};
chan BA = [1] of {mtype};

active proctype B()
{
        do
           :: AB?b;
           :: AB?a;
              if
              :: AB?b; BA!d;
              :: BA!c
              fi
        od
}

active proctype A()
{

        do
           :: AB!a;
              if
              :: BA?c; 
              :: AB!b; if
                       :: BA?c;
                       :: BA?d
                       fi
              fi
        od
}
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Example of scenario
pwb-cj[27]% spin -a Codec 
pwb-cj[27]% cc -o pan -DNOREDUCE -DSAFETY pan.c
pwb-cj[27]% ./pan
(Spin Version 4.0.7 -- 1 August 2003)

Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        cycle checks            - (disabled by -DSAFETY)
        invalid end states      +

State-vector 28 byte, depth reached 11, errors: 0
      13 states, stored
       8 states, matched
      21 transitions (= stored+matched)
       0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.533   memory usage (Mbyte)

unreached in proctype A
        line 25, state 13, "-end-"
        (1 of 13 states)
unreached in proctype B
        line 37, state 11, "-end-"
        (1 of 11 states)
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2. Abstract state graph

Concrete state space

Abstract state graph 
(only sendings of a,b 
and c have been considered
as observable)
⇒ How recover 
    the causalities?



5

3. Causality between observable events
(Lamport 78)

• N sequential processes  (P1 to Pn)
• Processes perform events during their life. Some of them are

traced (the observable events)
• Communication by passing messages synchronises the process

activity
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On-the-fly observation of causality
(by instrumentation)

• Partial order relation of causality: x ≤ y iff it
exists a path linking x to y in the chronogram

• Causal past: ↓x = {y | y≤x} (x≤y <=> ↓x ⊆ ↓y)
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The Hasse diagram

• Canonical form
• Bottom-up

drawing
• Transitive

reduction
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4. Lamport’s approximate coding (1978)

• L(x) = height(↓x)               (length of the longest path)
• L(x) = max {L(y) / y < x} + 1
• x ≤ y => L(x) ≤ L(y)
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The weak-order approximation

• Weak order = chain in
which some elements
are replaced by
antichains

• A level structured
order
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5. The Fidge & Mattern’s exact
coding (1988)

• M(↓x) = (|↓x ∩ Pi |)i=1..n              (“vector clock”)
• x ≤ y <=> M(x) ≤ M(y)     (Dilworth’s theorem, 1950 : an order

of width n can be decomposed into n disjoint chains)
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6. The quest of a constant size coding:
the interval timestamps (Diehl & Jard 1992)

• The order given by the
Lamport’s timestamps is an
interval order:
    [L(x), L(x)+1[

• Hence, the idea to change
the sup to improve the
accuracy of the
approximation, while keeping
a constant size timestamp ->
“interval timestamping”
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• I-(x) = |↓x| - 1
• I+(x) = min {I-(y) / x < y}
• Theorem: if the causal order is an interval

order, it is an exact coding scheme
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How to achieve an on-line mechanism?
The RPC case

c

e

f
P1

P2

P3
a

b d

g

h

 a

 e

 h

 b

 d

 g

 c

 f
Questions :
• Define the
timestamping algorithm
• Does it exist an exact
coding of size 2?
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7. Notion of state for a distributed run

• The role of state is to code the past (cuts)
• Only consistent cuts are reachable
• These are downward-closed subsets:

X ⊆ E / ↓X = X
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The state lattice
•  The set of consistent cuts, ordered by set       

inclusion is a distributive lattice

(Hasse diagram)
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Can be embedded in a n-dimensional grid

• States with only one
predecessor are in
bijection with the
observable events

• Their coordinates are the
vector clocks
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Its on-line construction
[Jard & Rampon 1993]

•  Can be built in linear time w.r.t. its size  (exponential in the size of the
order)

•  Allows us to build in linear time the abstract state graph of a deterministic
system: compare with the exponential state explosion of automata networks
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An example of on-the-fly construction
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8. Trace checking
(regular properties)

• Property Φ = <Σ,Q,q0,F,δ>,
defines a  langage L(Φ) = {u ∈ Σ* | δ*(u,q0) ∈  F}

• State graph: transitions labelled with Σ,

  given a state I, Paths(I) is the set of words leading to I
• I satisfies Φ iff Paths(I) intersects L(Φ)
• Equivalently: I satisfies Φ iff Φ(I) intersects F
     where Φ(I) is the set of states of the automaton Φ reachable

by paths ending at I
• A trace satisfies Φ iff the maximal state (Σ) satisfies Φ
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The (global) algorithm “trace checking”

•  Φ(I) can be computed from the Φs of the immediate
predecessors in the lattice (requires a causal observation) :

       Φ(I) = { δ(label(J->I),q) for q ∈ Φ(J) and J ∈  ↓I }
• Checking is done on-the-fly during the lattice construction
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Local distributed or global checking?

P1 P2

P3
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Diagnosis
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Global :
• Causal dependency

tracking
• On-line construction of

the state lattice
• Verification during

construction

Local :
• Restricted class of

properties (causal
flows)

• Distributed verification
(timestamps extended
with a state
information)

Distributed checking 
[Jard & Raynal 1995]
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9. Distributed trace checking
(local regular properties)

• Properties are on the causal past of the observable
events

• An  observable  event x satisfies a property Φ iff it
exists a path ending in x in the Hasse diagram of the
observed order such that the corresponding path is
accepted by Φ

• Causal ordering case
• Can be computed on-the-fly and in a distributed

manner
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Principle

• The automaton Φ is know from all the processes
• x satisfies Φ is locally computed on the process

which has produced x
• The state information is acquired (and piggybacked)

by the messages of the observed execution
• Each process  Pi maintain 2 arrays: LOi[1..n] and

SLOi[1..n]. LOi[j] is the rank of the the last event observed
Pj in the current past of Pi. SLOi[j] is the corresponding state
information (of Φ) (when LOi[j] is maximal)
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Algorithm (on Pi)

• Data: LOi[1..n] of integer; SLOi[1..n] of set of states
• Init: forall j, LOi[j]:=0; SLOi[j]:={q0}
• Upon observation of event x:
      LOi[i]:=LOi[i]+1;
      SLOi[i]:={δ(q,x)} forall k, forall q in SLOi[k];
      forall j#i, SLOi[j]:={}
• When sending a message to Pk:
      LOi and SLOi are added to the message
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• Upon reception of msg(LOk,SLOk) from Pk:
    forall j, if
        LOi[j]<LOk[j] then SLOi[j]:=SLOk[j]; LOi[j]:=LOk[j]
        LOi[j]>LOk[j] then skip
        LOi[j]=LOk[j] then
                 if SLOi[j]#{} and SLOk[j]={} then SLOi[j]:={}

Pi

Pk

Pj

LOi[j]LOk[j]

SLOi[j] {} X {} X

SLOk[j] {} X X {}

New SLOi[j] {} X {} {}


