
1

“Ecole IRISA” : distributed
algorithms and models

Course 1 : some fundamentals

• 1.1 Distributed programs
• 1.2 Abstract behaviour
• 1.3 Causality
• 1.4 Lamport’s coding
• 1.5 Vector clocks
• 1.6 Interval approximation
• 1.7 Notion of state for a distributed run
• 1.8 Global checking of traces
• 1.9 Distributed checking

C. Jard, October 2006

2

1. A simple protocol (in Promela/Spin) :
a first distributed program

mtype = {a,b,c,d};

/* a : connect_request
 b : disconnect_request
 c : distant_disconnect_request
 d : disconnect_confirm
*/

chan AB = [3] of {mtype};
chan BA = [1] of {mtype};

active proctype B()
{
 do
 :: AB?b;
 :: AB?a;
 if
 :: AB?b; BA!d;
 :: BA!c
 fi
 od
}

active proctype A()
{

 do
 :: AB!a;
 if
 :: BA?c;
 :: AB!b; if
 :: BA?c;
 :: BA?d
 fi
 fi
 od
}

3

Example of scenario
pwb-cj[27]% spin -a Codec
pwb-cj[27]% cc -o pan -DNOREDUCE -DSAFETY pan.c
pwb-cj[27]% ./pan
(Spin Version 4.0.7 -- 1 August 2003)

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid end states +

State-vector 28 byte, depth reached 11, errors: 0
 13 states, stored
 8 states, matched
 21 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.533 memory usage (Mbyte)

unreached in proctype A
 line 25, state 13, "-end-"
 (1 of 13 states)
unreached in proctype B
 line 37, state 11, "-end-"
 (1 of 11 states)

4

2. Abstract state graph

Concrete state space

Abstract state graph
(only sendings of a,b
and c have been considered
as observable)
⇒ How recover
 the causalities?

5

3. Causality between observable events
(Lamport 78)

• N sequential processes (P1 to Pn)
• Processes perform events during their life. Some of them are

traced (the observable events)
• Communication by passing messages synchronises the process

activity

c

e

f
P1

P2

P3
a

b d

g

h

6

On-the-fly observation of causality
(by instrumentation)

• Partial order relation of causality: x ≤ y iff it
exists a path linking x to y in the chronogram

• Causal past: ↓x = {y | y≤x} (x≤y <=> ↓x ⊆ ↓y)

P1

P2

P3
a

b d

g

h

↓g = {abcdfg}

b b

b a

c

e

f

bcf

7

The Hasse diagram

• Canonical form
• Bottom-up

drawing
• Transitive

reduction

 a

 e

 h

 b

 d

 g

 c

 f

Size: 15

8

4. Lamport’s approximate coding (1978)

• L(x) = height(↓x) (length of the longest path)
• L(x) = max {L(y) / y < x} + 1
• x ≤ y => L(x) ≤ L(y)

P1

P2

P3
a(1)

b(1) d(2)

g(4)

h(4)
Li = max(Li,Lj)

Li

c(2)

e(2)

f(3)

Lj

Li = 0
Li := Li+1
L(e) = Li

9

The weak-order approximation

• Weak order = chain in
which some elements
are replaced by
antichains

• A level structured
order

 a

 e

 h

 b

 d

 g

 c

 f

Size: 24 (9 added comparabilities)

10

5. The Fidge & Mattern’s exact
coding (1988)

• M(↓x) = (|↓x ∩ Pi |)i=1..n (“vector clock”)
• x ≤ y <=> M(x) ≤ M(y) (Dilworth’s theorem, 1950 : an order

of width n can be decomposed into n disjoint chains)

P1

P2

P3
a(001)

b(010) d(020)

g(231)

h(213)
Mi = max(Mi,Mj)

Mi

c(110)

e(012)

f(210)

Mj

Mi = 000
Mi := Mi[i]+1
M(e) = Mi

11

6. The quest of a constant size coding:
the interval timestamps (Diehl & Jard 1992)

• The order given by the
Lamport’s timestamps is an
interval order:
 [L(x), L(x)+1[

• Hence, the idea to change
the sup to improve the
accuracy of the
approximation, while keeping
a constant size timestamp ->
“interval timestamping”

 a

 e

 h

 b

 d

 g

 c

 f

12

• I-(x) = |↓x| - 1
• I+(x) = min {I-(y) / x < y}
• Theorem: if the causal order is an interval

order, it is an exact coding scheme

 a[0,2[

 e[2,5[

 h[5,∞[

 b[0,1[

 d[1,4[

 g[4,∞[

 c[1,2[

 f[2,4[

 a

 e
 h

 b

 d

 g

 c

 f

Size : 16

13

How to achieve an on-line mechanism?
The RPC case

c

e

f
P1

P2

P3
a

b d

g

h

 a

 e

 h

 b

 d

 g

 c

 f
Questions :
• Define the
timestamping algorithm
• Does it exist an exact
coding of size 2?

14

7. Notion of state for a distributed run

• The role of state is to code the past (cuts)
• Only consistent cuts are reachable
• These are downward-closed subsets:

X ⊆ E / ↓X = X
c

e

f
P1

P2

P3
a

b d

g

h
consistent unconsistent

15

The state lattice
• The set of consistent cuts, ordered by set

inclusion is a distributive lattice

(Hasse diagram)

P1 P2

d e

c
b

a

{}
{a}
{a,b}
{a,c}
{a,c,d}
{a,b,c}
{a,b,c,d}
{a,b,c,e}
{a,b,c,d,e}

(cons. cuts)

a

c

c

b

b

b

d

d

d

e

e
{a,b,c,d}

(state graph)

16

Can be embedded in a n-dimensional grid

• States with only one
predecessor are in
bijection with the
observable events

• Their coordinates are the
vector clocks

ab
d

e

h

 c

g

f

 001

P1

P3P2

17

Its on-line construction
[Jard & Rampon 1993]

• Can be built in linear time w.r.t. its size (exponential in the size of the
order)

• Allows us to build in linear time the abstract state graph of a deterministic
system: compare with the exponential state explosion of automata networks

x(M(x))

I(x)
x

x

18

An example of on-the-fly construction

P1 P2

d e

c
b

a

a

c

c

b

b

b

d

d

d

e

e

a
a

b
a

b d

a

d

d

b

b

c

a

c

c

b

b

b

d

d
e

19

8. Trace checking
(regular properties)

• Property Φ = <Σ,Q,q0,F,δ>,
defines a langage L(Φ) = {u ∈ Σ* | δ*(u,q0) ∈ F}

• State graph: transitions labelled with Σ,

 given a state I, Paths(I) is the set of words leading to I
• I satisfies Φ iff Paths(I) intersects L(Φ)
• Equivalently: I satisfies Φ iff Φ(I) intersects F
 where Φ(I) is the set of states of the automaton Φ reachable

by paths ending at I
• A trace satisfies Φ iff the maximal state (Σ) satisfies Φ

20

The (global) algorithm “trace checking”

• Φ(I) can be computed from the Φs of the immediate
predecessors in the lattice (requires a causal observation) :

 Φ(I) = { δ(label(J->I),q) for q ∈ Φ(J) and J ∈ ↓I }
• Checking is done on-the-fly during the lattice construction

0

abd
e

h

 c

g

f
1

a

g∑\{a} ∑\{g}

0

1
0

0 01
0

0 01
01

01
0

01
01

0
01

0

01

0 01 01

0

21

Local distributed or global checking?

P1 P2

P3

Obs

Diagnosis

P1 P2

P3

O1 O2

O3

Diagnosis Diagnosis

Diagnosis

GLOBAL LOCAL

22

Global :
• Causal dependency

tracking
• On-line construction of

the state lattice
• Verification during

construction

Local :
• Restricted class of

properties (causal
flows)

• Distributed verification
(timestamps extended
with a state
information)

Distributed checking
[Jard & Raynal 1995]

23

9. Distributed trace checking
(local regular properties)

• Properties are on the causal past of the observable
events

• An observable event x satisfies a property Φ iff it
exists a path ending in x in the Hasse diagram of the
observed order such that the corresponding path is
accepted by Φ

• Causal ordering case
• Can be computed on-the-fly and in a distributed

manner

24

Principle

• The automaton Φ is know from all the processes
• x satisfies Φ is locally computed on the process

which has produced x
• The state information is acquired (and piggybacked)

by the messages of the observed execution
• Each process Pi maintain 2 arrays: LOi[1..n] and

SLOi[1..n]. LOi[j] is the rank of the the last event observed
Pj in the current past of Pi. SLOi[j] is the corresponding state
information (of Φ) (when LOi[j] is maximal)

25

Algorithm (on Pi)

• Data: LOi[1..n] of integer; SLOi[1..n] of set of states
• Init: forall j, LOi[j]:=0; SLOi[j]:={q0}
• Upon observation of event x:
 LOi[i]:=LOi[i]+1;
 SLOi[i]:={δ(q,x)} forall k, forall q in SLOi[k];
 forall j#i, SLOi[j]:={}
• When sending a message to Pk:
 LOi and SLOi are added to the message

26

• Upon reception of msg(LOk,SLOk) from Pk:
 forall j, if
 LOi[j]<LOk[j] then SLOi[j]:=SLOk[j]; LOi[j]:=LOk[j]
 LOi[j]>LOk[j] then skip
 LOi[j]=LOk[j] then
 if SLOi[j]#{} and SLOk[j]={} then SLOi[j]:={}

Pi

Pk

Pj

LOi[j]LOk[j]

SLOi[j] {} X {} X

SLOk[j] {} X X {}

New SLOi[j] {} X {} {}

