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3 rue Joliot-Curie - Plateau de Moulon,

91192 Gif sur Yvette Cedex, France†

Abstract. Due to singularities of the likelihood function, the maximum likeli-
hood approach for the estimation of the parameters of normal mixture models is an
acknowledged ill posed optimization problem. Ill posedness is solved by penalizing
the likelihood function. In the Bayesian framework, it amounts to incorporating
an inverted gamma prior in the likelihood function. A penalized version of the
EM algorithm is derived, which is still explicit and which intrinsically assures that
the estimates are not singular. Numerical evidence of the latter property is put
forward with a test.
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1 Introduction

Mixture models are a well fitted tool for clustering the observations together into
groups for discrimination or classification : the mixture proportions then represent
the relative frequency of occurrence of each group in the population. Mixture
models also provide a convenient and flexible class of models for estimating or
approximating distributions.

In particular, independent identically distributed (i.i.d.) mixture models well fit
several problems in signal and image processing, covering a wide range of appli-
cations. In [1] a Bernoulli-Gaussian mixture model is adopted in a deconvolution
problem, while [2] highlights the important role of mixture models in the field of
cluster analysis. An example of the application of mixtures in biological (plant
morphology measures) and physiological (EEG signals) data modeling is presented
in [3]. Markovian mixture models are also commonly used, as in [4] where an ap-
plication to medical image segmentation is considered.

The present contribution summarizes two of our previous works [5, 6], which
focus on i.i.d. mixtures of univariate normal densities. Parameters are estimated
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with a penalized maximum likelihood approach, by mean of the EM algorithm [7].

2 Mixture model

We consider a sample x = {x1, . . . , xT } of an i.i.d. mixture of N univariate normal
densities

f (x; θ) =
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. θ = {θ1, . . . , θN} are

the mixture parameters, belonging to the parameter space
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Given x, the maximum likelihood estimate of the mixture parameters is defined
as:

θ̂T | f(x; θ̂T ) = sup
θ∈Θ

f (x; θ) (1)

where

f (x; θ) =

T∏

k=1
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2
i

)
(2)

is the likelihood function.

3 Likelihood function degeneracy

Likelihood function degeneracy toward infinity is a well known problem for mix-
tures of Gaussian distributions, first put forward with a simple example in [8] (see
also [9]). Such an example considered a two class mixture model with a corre-
sponding likelihood function given by

f (x; θ) =

T∏
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Intuitively, the degeneracy is due to the fact that in the sum of Gaussian densities
the variance parameter appears in the denominator. Indeed, couples such as (σ2

i =
0, µi = xk) yield singularities, in the sense that f tends to infinity as θ approaches
one of the corresponding points, located at the boundary of Θ, as rigorously stated
by the following property.
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Property 3.1 Let us consider the likelihood function (2), then

∀x ∈
� T , ∃ θ0 ∈ Θ̄ | lim

θ→θ0

f (x | θ) = +∞

where Θ is the parameter space, Θ̄ is the closure of the parameter space, θ0 ={
a, µ = xk, σ20

= 0
}

∈ Θ̄ is a point in the closure of the parameter space, and

θ =
{
a, µ, σ2

}
∈ Θ is a point in the parameter space.

Consequently, the maximum likelihood estimator (1) cannot be defined. In prac-
tice, unboundedness of f (x; θ) is a cause of failure of commonly used optimization
algorithms, for instance of EM [9] and gradient types.

We will specifically refer to the EM algorithm, which iteratively compute the
maximum likelihood estimates by mean of the following re-estimation formulas
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/f
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and j indicates the iteration.

4 Bayesian solution to degeneracy: penalized likelihood function

A Bayesian solution is proposed to solve the degeneracy of the likelihood function
in the origin of any of the variance parameters. The latter are considered as i.i.d.
random variables, leading to a penalized likelihood function

fP (x, θ) = f
(
x, σ2; a, µ

)
= f

(
x|σ2; a, µ

) N∏

i=1

g
(
σ2

i

)
(7)

where g is the common prior probability density of variance parameters.
Our goal is to adjust g so that the penalized likelihood is a bounded function that

can be locally maximized by mean of an EM algorithm (which can be referred to
as a “penalized” EM algorithm). In other words, g must satisfy the requirements
of

1. being a proper probability density function,

2. tending appropriately to zero to compensate for the likelihood singularities,

3. and allowing to maintain explicit re-estimation formulas for the resulting
penalized EM algorithm.
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The inverted gamma distribution

g
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=
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where i = 1 . . .N , is proved to satisfy the three conditions.
On the other hand, the inverted gamma distribution is known as the conjugate

prior for the variance of a scalar Gaussian density [10].
As regard Point 1, the inverted gamma is assured to be proper by constraining

the choice of its parameters: α > 0 and β > 1, as discussed in [10].
As regard Point 2, the following property states the boundedness of fP on Θ

(whereas, from Property 3.1, f is an unbounded function under the same condi-
tions), and it assures that the points of singularity do not maximize fP.

Property 4.1 The penalized likelihood is bounded above over the parameters space.
Hence, the penalized likelihood function does not degenerate in any point of the
closure of parameters space Θ̄. Moreover it tends to zero as σ2 → 0. Hence, no
σ2

i = 0, i ∈ {1 . . .N} maximizes the penalized likelihood function.

Proof 4.1 For the sake of simplicity the proof refers to a two class mixture model,
without loss of generality.

Akin to the likelihood function, the penalized version (7) may degenerate only in

the origin of any of the parameters σ2. Let us note K = (2π)
−

T
2 α2(β−1)/Γ (β − 1)

2
,

and let us consider the likelihood function (3) penalized by a proper inverted
gamma distribution (7)
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On every compact domain contained in the parameter space, fP is bounded.
This is a straightforward consequence of the fact that fP is the product of two
functions which are bounded on such domains (the product of sum of gaussian
distributions and the product of inverted gamma distributions). Hence, it is suffi-
cient to prove that fP remains bounded on the boundaries of Θ, and more precisely
that it remains bounded in the points of singularity.

From the inequality exp
{
− (xk−µ1)

2

2σ2

1

}
≤ 1 the likelihood function can be bounded
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By considering that

lim
σ2→0
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it is straightforward to see that the penalized likelihood function tends to zero as
σ2 → 0. Therefore, it is bounded in the point of singularity and its boundedness
on the whole parameter space follows. �

Therefore, the existence of the penalized maximum likelihood estimator is as-
sured, and such an estimator falls within the parameters space Θ (the boundaries
are excluded by the null value of the likelihood).

Moreover, the penalized likelihood estimator has recently been proved to be
consistent [6].

5 Penalized EM algorithm

As regard Point 3, explicitness directly follows from constrained adjustment of
g. However, a more thorough analysis reveals that the re-estimation equations
remain explicit because g is chosen as the conjugate prior of the likelihood of the
complete data.

Indeed, the EM algorithm is based on the maximization of a criterion Q which
depends indirectly on the likelihood function and which guarantees the maximiza-
tion of the latter. Explicitness of the re-estimation equations is related to the form
of the terms contained in such a criterion. In the case of mixture models, one of
these terms is the likelihood function of the complete data (i.e., f

(
x|c, a, µ, σ2

)

where c indicates to which class belongs each element xi of the sample x). By
applying a penalization, such a term changes to f

(
x, σ2|c, a, µ

)
, becoming pro-

portional to the a posteriori likelihood of the complete data. On the other hand,
the conjugate prior g (θ) of a distribution f (x|θ) is, by definition (see [10]), the
prior that gives an a posteriori distribution f (θ|x) belonging to its same fam-
ily. Moreover, in the case of gaussian mixtures, f

(
x|c, a, µ, σ2

)
and g

(
σ2
)

have,

5



6 A. RIDOLFI AND J. IDIER

with respect to σ2, the same structure. Hence, by substituting f
(
x|c, a, µ, σ2

)

with f
(
x, σ2|c, a, µ

)
, no ”structural” changes are made and the explicitness is

maintained.
The re-estimation equations of the penalized EM algorithm are not only explicit,

but they also correspond to a very slight alteration of the standard ones. Indeed,
equations (4) and (5) remain unchanged, while equation (6) becomes

σ2
i

j+1
=

2α +
∑T

k=1

(
xk − µj

i

)2 a
j
i
f(xk;µj

i
,σ2

i

j)
f(xk;θj)

2β + M
(
θj
) (10)

Therefore, penalization of the EM does not increase the computational burden:
this is an extremely important aspects in the case of large samples or image pro-
cessing.

Moreover, from equation (10) it is straightforward to see that every maximizer
(either global or local) of the penalized likelihood function yields strictly positive
variance estimates σ̂2

i ≥ σ2
min(T ) > 0, where σ2

min(T ) tends to 0 as T tends to
infinity.

6 Numerical results

We have tested the penalized and non penalized EM algorithm on a 2 class mixture
model, defined in (3).

Eight-hundred samples of length fifty have been randomly generated from two
gaussian distribution, having parameters a = [0.5 0.5] , µ = [0 2.5] , σ2 = [1 2].

For each sample, the starting point of the EM iterations was chosen automati-
cally. Such a choice is based on partioning the empirical histogram of the data, as
proposed in [11]. As in [12], the EM algorithm was considered to have converged
whenever the maximum of the relative stepsize

|ai
j+1 − ai

j |/ai
j , |µi

j+1 − µi
j |/µi

j , |σ2
i

j+1
− σ2

i

j
|/σ2

i

j

for i = 1 . . .N , became less or equal than 10−5.
Figure 1 depicts the histograms for the values of the non-penalized estimates of

σ2
1 and σ2

2 , and the histograms for the values of the penalized ones. By comparing
the histograms, the efficiency of penalization becomes evident. Without penaliza-
tion, the distribution of the estimates spreads toward the singularity (σ2 = 0, hence
log σ2 = −∞), and for 13 times the EM algorithm converges to the singularity
itself. On the other hand, coherently with the theoretical results of Property 4.1,
the estimates computed by the penalized EM algorithm are concentrated around
the true value and none of them is a singularity.

By increasing the length of the samples the number of convergence of the stan-
dard EM algorithm to singularities is reduced (probably as a consequence of a
restriction of the attracting domain of the degeneracy point), but it is still greater
than zero. Table 1 summarizes the results for samples of length fifty and one-
hundred of the non-penalized (a) and penalized (b) EM algorithm.

6



PENALIZED MLE FOR MIXTURE MODELS 7

−∞ −6 −5 −4 −3 −2 −1 0 1 2 
0

20

40

60

80

100

120

140

160

180

log σ 2
1

non penalized ML
(800 samples of length 50)

−∞ −6 −5 −4 −3 −2 −1 0 1 2 
0

20

40

60

80

100

120

140

160

log σ 2
2

non penalized ML
(800 samples of length 50)

−∞ −6 −5 −4 −3 −2 −1 0 1 2 
0

50

100

150

200

250

300

log σ 2
1

penalized ML
(800 samples of length 50)

−∞ −6 −5 −4 −3 −2 −1 0 1 2 
0

50

100

150

200

250

300

log σ 2
2

penalized ML
(800 samples of length 50)

Figure 1: histograms of EM σ2
1 and σ2

2 estimates, where the solid line indicates
the true value while the dashed line indicates a rupture toward infinity of the
x axis. The top two histograms and the bottom ones refer to the values of the
non-penalized and penalized estimates, respectively. Penalization evidently avoid
spreading toward the singularity (σ2 = 0, hence log σ2 = −∞) of the σ2 estimates.

Table 1: non penalized (a) and penalized (b) EM algorithm results for samples of
length fifty and one-hundred.

800 samples of length: convergence to singularities:
(a) 50 13

100 1

800 samples of length: min value of σ2:
(b) 50 0.3951

100 0.4247
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7 Concluding remarks

Penalization of the likelihood has revealed itself to be an efficient and simple
solution to likelihood degeneracy.

Theoretical properties assured the existence of the maximum likelihood estima-
tor as well as its belonging to the parameter space.

The choice of the conjugate prior of the likelihood of the complete data as pe-
nalization term conducted to explicit EM algorithm re-estimation formulas. While
the role of conjugate priors is acknowledged in Bayesian sampling schemes, includ-
ing in mixture problems [13], putting forward the link between conjugate priors
and explicit penalized EM schemes is an original contribution, as far as we know.

Numerical examples put in evidence the existence of the singularities and the
efficiency of the penalized solution.

Concerning the asymptotic behavior of the penalized maximum likelihood esti-
mate, we know from [14] that the penalization does not alter asymptotic properties
such as consistency. Hence, local consistency of the penalized estimate is a direct
consequence of local consistency of the non penalized one (see [14]). On the other
hand, global consistency cannot be similarly deduced, since non penalized maxi-
mum likelihood estimate is globally not even defined and classical theorems, as [15]
and [8], cannot be applied. Although not trivial, proof of global consistency has
recently been achieved [6].

To our best knowledge, Hathaway’s EM re-estimation formulas [12] are the only
preexisting non-degenerate alternative to our penalized version. It is based on
constrained maximization of the likelihood, within an appropriately chosen subset
of Θ. However, Hathaway’s version is substantially more complex to derive and
to implement, and the resulting numerical cost is higher.
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