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Three-Dimensional Edge-Preserving Image
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Abstract—Computed tomography (CT) images exhibit a vari-
able amount of noise and blur, depending on the physical charac-
teristics of the apparatus and the selected reconstruction method.
Standard algorithms tend to favor reconstruction speed over res-
olution, thereby jeopardizing applications where accuracy is crit-
ical. In this paper, we propose to enhance CT images by applying
half-quadratic edge-preserving image restoration (or deconvolu-
tion) to them. This approach may be used with virtually any CT
scanner, provided the overall point-spread function can be roughly
estimated. In image restoration, Markov random fields (MRFs)
have proven to be very flexiblea priori models and to yield impres-
sive results with edge-preserving penalization, but their implemen-
tation in clinical routine is limited because they are often viewed
as complex and time consuming. For these practical reasons, we
focused on numerical efficiency and developed a fast implementa-
tion based on a simple three-dimensional MRF model with convex
edge-preserving potentials. The resulting restoration method pro-
vides good recovery of sharp discontinuities while using convex
duality principles yields fairly simple implementation of the op-
timization. Further reduction of the computational load can be
achieved if the point-spread function is assumed to be separable.
Synthetic and real data experiments indicate that the method pro-
vides significant improvements over standard reconstruction tech-
niques and compares well with convex-potential Markov-based re-
construction, while being more flexible and numerically efficient.

Index Terms—Edge-preserving convex potentials, half-
quadratic criteria, Markov random fields, three-dimensional
image reconstruction, three-dimensional image restoration, x-ray
tomography.

I. INTRODUCTION

M ODERN medical imaging systems such as computed to-
mography (CT) or magnetic resonance imaging (MRI)

provide the practitioner with high-resolution images that can
be used as powerful diagnostic tools or—more recently—as
sources of three-dimensional (3-D) anatomical data for appli-
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cations like computer-aided surgery, model design for surgery
planning, or custom-fitted articular implants. The precision one
can expect from these data is limited by the resolution of the
device used to collect them. Experimental investigation of the
characteristics of a typical commercial CT scanner showed that
the precision is of the order of 1.4 mm [1], which is satisfac-
tory for most common clinical uses of scanners such as, e.g.,
diagnosis. However, in some situations, a greater precision is
required. Such is the case in the application that motivated this
study, where the geometry of the knee joint has to be acquired
with a submillimeter accuracy in order to design and manu-
facture personalized prostheses. Therefore, the images need to
somehow be enhanced.

To increase the precision of the images, one approach
would consist of performing two-dimensional (2-D) or 3-D
reconstruction directly from the projection data with methods
that are more accurate than the backprojection-type techniques
generally implemented in commercial scanners. For instance,
recently proposed edge-preserving reconstruction methods
based on Markov random field (MRF) models (see, e.g.,
[2]–[4]) demonstrate impressive results on simulated examples.
Nevertheless, two main reasons could limit their clinical use.

The first reason is merely practical. Reconstruction methods
require access to the projection data, which commercial CT
scanners scarcely allow. The second reason is that recon-
struction techniques are specific to a given device because
they require knowledge of its exact characteristics, which
may prove difficult to obtain from the vendor. For instance,
although modern CT scanners usually share the same structure
(rotating X-ray tube coupled with a circular detector array),
reconstruction algorithms have to take into account the exact
geometry of the imaging system (diameter of the detector array,
distance between the source and the detectors, etc.), which is
seldom available to the end-user. Both reasons are particularly
important when one wants to work in several hospitals equipped
with different imaging systems.

In order to achieve greater precision, another option consists
of processing the already reconstructed images under adequate
assumptions about the nature of the degradations that affect
them. One such assumption is the linearity of the degradation
process [5]. In this framework, distortions can be easily identi-
fied in an experimental manner with the use of an appropriate
phantom, as explained in [1]. Therefore, as illustrated in Fig. 1,
since the PSF can be estimated by the user, this approach be-
comes highly portable and may be applied on any system. This
is the reason why it is adopted here.

Within the framework defined above, image enhancement be-
comes an image restoration problem. Our goal is to develop an
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Fig. 1. Method comparison.

image restoration method that complies with the following con-
straints.

• Accurate restoration of image discontinuities. This is an
obvious requirement in order to improve the precision of
the images, and is even more important since edge loca-
tion conveys important anatomical and geometrical infor-
mation.

• Ability to process 3-D data at a reasonable computational
cost. Most biological structures investigated with imaging
systems such as CT scanners are 3-D in nature and are,
therefore, better characterized in a 3-D framework. This
becomes a strong requirement when one is interested in
the geometry of such structures. In addition, as illustrated
in the sequel, explicitly accounting for the 3-D nature of
the objects under investigation tends to increase the quality
of the results.

Image restoration is known to be an ill-posed problem [6],
which needs to be regularized in order to yield good quality re-
sults. Regularization can be achieved by the addition ofa priori
constraints to the problem and its solution. Here, we adopt a
Bayesian approach in which thea priori constraints are speci-
fied under the form of probability density functions (PDFs) of
the original object to be restored and of the noise that unavoid-
ably corrupts the data. In our problem, the PDF of the noise
process does not have a strong impact on the quality of the re-
sults and a simple noise model is generally satisfactory. On the
other hand, selecting an adequatea priori model of the object is
more complicated. Non-Gaussian MRFs have proven to be ade-
quate models for media composed of homogeneous regions sep-
arated by sharp discontinuities, such as many biological media,
and to yield good edge preservation. In addition, these models
are based upon local pixel interactions [7] that can be easily cus-
tomized, thereby offering flexibility to tailor the model to the
problem at hand. However, MRFs designed to restore sharp dis-
continuities often yield nonconvex criteria [8] and require com-
plex optimization techniques, which is a severe drawback for
efficient processing of 3-D data. In order to improve the nu-
merical efficiency of MRF-based image restoration methods,
Geman and Yang [2] and Geman and Reynolds [9] proposed
simulated annealing techniques based on convex duality princi-

ples for maximizing the objective function. However, the com-
putational cost still remains high. For similar purposes, Bouman
and Sauer [10] proposed to use specialconvex potentialMRFs
that can still provide adequate edge preservation while yielding
a convex criterion, thereby simplifying the optimization consid-
erably. Nonetheless, in both cases, the numerical cost may de-
pend directly on the spatial extent of the linear distortion.

Here, we propose a 3-D image restoration method that com-
bines convex potential MRFs and duality-based maximization
along the lines presented in [11]. First, we make assumptions
on the image formation process so as to simplify its mathemat-
ical formulation without jeopardizing the quality of the results.
Second, in order to fully account for the 3-D nature of the struc-
tures under investigation, we define a 3-D MRF prior model
with convex potentials, which simplifies the optimization while
yielding adequate edge preservation. Third, we derive a single
site update (SSU) algorithm based on the above assumptions
and on convex duality principles. As illustrated by results ob-
tained with synthetic and real data, the resulting method is able
to process 3-D data in a reasonable amount of time on low-end
computers while providing adequate edge preservation.

The remainder of this paper is organized as follows. In Sec-
tion II, we present some background material on Bayesian es-
timation and define the models of the image formation process
and of the 3-D MRF priors. In Section III, we then focus on the
choice of the minimization method. In Section IV, we present
the algorithm we developed to cope with the increased numer-
ical complexity of 3-D data. Results obtained on synthetic and
real data are presented in Section V and conclusions are drawn
in Section VI.

II. FRAMEWORK

A. Image Formation

Here, we consider a discrete real-valued 3-D object
; ob-

served through a CT scanner as a series of CT images
. As often, we assume that the imaging system is linear

with a point-spread function (PSF). We then make the fol-
lowing important assumptions regarding the PSF of the imaging
system.

• The PSF is assumed to be 2-D. Actually, the physical func-
tioning of CT scanners implies that a given image de-
pends on the object density inside the X-ray beam (and,
likely, somewhat outside due to diffusion in neighboring
regions). However, in practical cases, as long as the width
of the beam is smaller than the distance between two con-
secutive images, we can consider that a given slice of the
observed data (i.e., a given image) depends only on the
corresponding slice of the original discrete object.

• The PSF is assumed to be spatially invariant. The reason
is twofold. On the one hand, within the region of interest,
which is small compared to the whole field of view of
the CT scanner, the PSF does not vary much (less than
7% change in the full width at half maximum along both
tangential and radial axes according to [1]). On the other
hand, we have found the variations of the PSF induce neg-
ligible effects on restoration (see Section V for an illustra-
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tion). This relatively weak assumption allows us to model
the observation process by a simple space-invariant con-
volution operation.

Thus, the image formation process with additive noise can be
written in matrix form as

(1)

where is the convolution matrix constructed from the PSF.

B. Bayesian Estimation

In the Bayesian framework introduced in the previous section,
the prior knowledge on the image to be restored is specified
through PDF , while the information about the observed
data and the image formation process is contained in conditional
PDF . Using Bayes rule, one can write

(2)

and PDF represents all knowledge available on the un-
known quantity once all sources of information are accounted
for. Since manipulation of a complete PDF may be intractable in
practice, is often used to define a point estimator. Here,
we choose themaximum a posteriori(MAP) estimator because
it yields a very effective and adaptable criterion. The MAP es-
timate is defined as

(3)

and we now specify PDFs and .
only depends on the image formation process defined

in (1) and on the noise PDF . Although the noise of re-
constructed images turns out to be correlated, we noticed that
the simplest model of additive white Gaussian noise provided
satisfactory results for our restoration approach. In that case,
the only free parameter is the noise variance, which can
be estimated from regions where biological tissues are uniform
enough. In these regions, the intensity variations in CT images
directly reflect the additive noise. With that model, can
be expressed as

(4)

where denotes the appropriate normalizing factor.
The choice of ana priori PDF of the object to be restored

is more delicate. As explained in Section I, we selected MRF
models in order to account for and restore sharp discontinu-
ities present in the original image. Under a positivity condi-
tion, which is generally fulfilled in practice, a convenient way of
specifying the PDF of an MRF is to use the Gibbs formulation
that takes the form [12]

(5)

where denotes the Gibbs potential defined on each setof
voxels which are mutual neighbors (called a clique), and where

is the normalizing factor. Substituting (4) and (5) into (3)

Fig. 2. Chosen 3-D neighborhood of a given voxel (gray region) and
corresponding two-element cliques.

yields the formal expression of the estimate, which, after ap-
plying a neglog operation, is more conveniently expressed as

(6)

with

(7)

Despite the formal simplicity of criterion , its minimization
may be either straightforward or quite unwieldy depending on
the choices made for the set of cliquesand the potentials

. Firstly, the choice of the clique system determines the
range of interactions between pixels. For example, in a 2-D
setting, the most studied neighborhoods are isotropic and
ordered: first order for the nearest four pixels, second order
for the nearest eight ones, etc. In most cases, third-order and
higher order schemes yield complex criterion and that is the
reason why they are scarcely used. Second and maybe more
importantly, many kinds of potentials have been proposed;
they correspond to various tradeoffs between quality of the
restoration and ease of minimization of the resulting criterion.
For continuous-valued MRFs, they fall into three main groups
of increasing complexity and quality, i.e., quadratic, convex,
and nonconvex. In practical cases, the choice of both the clique
system and potentials determines the numerical cost of the
method. We found that, in order to deal with 3-D data, we had
to adopt the simplifying choices described below.

C. Simplified 3-D MRF Model

First, we define a neighborhood system with the cor-
responding set of cliques. Then, we describe the Gibbs
potentials defined on the cliques.

As is modeled as a 3-D field, the neighborhood of a given
voxel extends in 3-D into the neighboring slices. Since the cross-
slice distance is greater than cross-voxel distances within the
same slice, we choose the eight nearest voxels from the same
slice and the single nearest voxels of the upper and lower slices,
as shown in Fig. 2.

Even with a limited neighborhood like this one, the set of all
possible cliques includes several three-element cliques and one
four-element clique. Here, we choose to consider only two-el-
ement cliques because they make it easier to define Gibbs po-
tentials conveying local smoothness. For larger cliques, more
complicated interactions are also more difficult to interpret. For
example, Geman and Geman [13] proposed an elaborated model
with four-element cliques, but it involves line variables, thus in-
creasing numerical complexity. Therefore, another reason why
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using only two-element cliques is to keep the computational cost
as low as possible.

We, thus, define Gibbs potentials only on, the set of two-
voxel cliques, as penalty functionsof the gradient inside
the cliques

(8)

where and , respectively, denote the difference of the
values and the distance of the two voxels in clique. With our
choice of cliques, which is shown in Fig. 2, can only take
three different values, i.e., for two nearest voxels of the same
slice, for a diagonal clique in the same slice, and
for a clique between two different slices. The criterion becomes

(9)

The choice of penalty function is guided not only by the
accuracy of thea priori model, but also by practical consider-
ations, i.e., the simplicity of optimization of the resulting crite-
rion . Indeed, once is defined, image restoration simply con-
sists of solving . With slices of
pixels, is composed of voxels. Even with a convex
criterion, optimization can be numerically burdensome.

In Section III, we show that optimization can be carried out
with local iterative algorithms and that a low numerical cost can
be achieved by replacing the original criterion by an equivalent
augmented one.

III. H ALF-QUADRATIC APPROACH

A. Local Iterative Optimization

Although we obtained the criterion in (9) in the Bayesian
framework of MAP estimation, it could equivalently result from
other stochastic (e.g., penalized maximum likelihood) or de-
terministic (e.g., constrained least squares) approaches. In our
case, we carefully chose the model in order to ensure the con-
vexity of and the uniqueness of its minimum. However, due to
the size of the objects involved, finding efficient minimization
methods is a challenging numerical problem that is crucial for
practical applications.

When global update algorithms such as standard, conjugate
or pseudoconjugate gradient algorithms [14], [15] are used for
minimizing (9), each iteration requires the computation of the
gradient and at least one time the computation of
the criterion depending on the line search minimization
method. Fast convolution techniques [using fast Fourier trans-
form (FFT)] and separable PSFs can considerably reduce the
computational cost, but memory requirements of global itera-
tive algorithms remain high (roughly speaking, from three times
to six times the image size) and domain constraints are difficult
to introduce.

On the contrary, SSU algorithms like relaxation or
Gauss–Siedel [16] are less memory demanding twice the
image size in 2-D) and hard domain constraints can be easily
introduced. Besides, local minimization is well suited to MRFs

TABLE I
OVERVIEW OF THE ALGORITHM

because there is no long-range interaction between voxels. The
sphere of influence of a given voxel is thus determined by the
size of the PSF. For these reasons, we use the same approach as
Besag [7] and Bouman and Sauer [10] and choose an iterative
relaxation method. In addition, we adopt an over-relaxed
scheme since such a choice has been shown to yield faster
convergence [11], [15].

The problem with local iterative methods is that, for any
penalty function , there is no closed-form expression for
the minimum of with respect to a given voxel. The only
well-known exception is when is quadratic, but it yields re-
stored images that are too smooth for our application. However,
in Section III-B, we show that simple results of convex analysis
allow us to derive a local minimization strategy that is proven
to converge, although it does not require any line search step.

B. Augmented Criterion

A recent approach has been to reformulate the restoration as
the minimization of an equivalent criterion derived from the pre-
vious criterion (9) through the application of convex analysis re-
sults. Both criteria are equivalent in the sense that they share the
same global minimum. However, the nice thing about the aug-
mented criterion is that its local minimization becomes straight-
forward for a much larger class of penalty functionsincluding
edge-preserving functions quite suitable for our application.

Indeed, by introducing auxiliary variables, as in [2], [9],
[11], and [17], the original criterion can be replaced by
an augmented criterion with the following properties:

(10)

is quadratic with respect to (11)

can be easily minimized with respect to (12)

Due to property (11), such a criterion is called half-quadratic
and the corresponding approach is called half-quadratic regu-
larization.

Here, we give only the assumptions and convex analysis re-
sults needed to carry out the minimization. For detailed mathe-
matical justification and convergence proofs, see [18].
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Fig. 3. Estimated widths of the PSF of a CT scanner in tangential and radial directions as a function of radius in polar coordinates.

The required assumptions on the penalty function are the fol-
lowing:

is even (13)

is strictly concave on (14)

is continuous near zero and is (15)

If these conditions are met, which is the case for several penalty
functions found in the literature, we can define an auxiliary
function by the relationship

(16)

By construction, is the concave conjugate of [19].
Since the latter is concave (14), it is, in turn, the concave conju-
gate of , which yields

(17)

From (17), it is obvious that, by introducing an auxiliary vari-
able for each two-element clique, the augmented criterion
defined by

(18)

satisfies (10). In addition, is quadratic as a function ofand
we show in Section IV that minimization of with respect to a
given auxiliary variable is a local and inexpensive operation
defined by closed-form expression (21). Therefore,fulfills
conditions (10)–(12).

These properties ensure that local minimization ofwith
respect to and with respect toare simpler than the local min-

imization of the original criterion with respect to alone.
Concerning global minimization, if is convex, is convex
in , and its global minimum can be reached by local iterative
minimization. The question is now whether this property is also
shared by . If is convex, it is obvious that is both convex
in when is fixed and in when is fixed, but this does not
necessarily implies global convexity, which is often overlooked.
Nevertheless, it is shown in [18] that whenis convex and a
few other technical requirements are satisfied,is also convex
up to a change of variables. Therefore, it is rigorously possible
to reach its global minimum by alternate minimization with re-
spect to the intensity variablesand to the auxiliary variables.

Another very appealing aspect of this approach is that the
various numerical recipes developed for quadratic optimization
can be directly adapted to half-quadratic regularization. De-
pending on the simplifying assumptions available in a given
practical case, tailored techniques can be used to achieve faster
or more efficient convergence. This allowed us to develop an
optimized recursive algorithm for separable PSFs—presented
in Section IV—that requires significantly fewer operations per
iteration, especially with large PSFs, than the corresponding
algorithm without simplifications.

IV. A LGORITHM

A. Update Strategy

As a function of , is a quadratic function; its minimum
value can be expressed in closed form and is reached at
defined by

(19)
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Fig. 4. (a) Test phantom made of enamel wires to estimate the PSF of a CT scanner. (b) CT image of the phantom with the two selected samples. (c) Sample PSF
close to the center(radius� 30 mm). (d) Sample PSF far from the center(radius� 90 mm).

and solving for yields an explicit expression [11]

(20)

where the sums extend to the neighborhood of the currently vis-
ited voxel , and where and , respectively, denote the
th element of vector and element (, ) of matrix .

As a function of the auxiliary variables, reads
, which is independently minimized with

respect to each auxiliary variable. The minimum is reached for

(21)

according to a simple duality result [2], [9], [19, Ch. 7], [20].
The whole procedure alternates updates ofand according

to (20) and (21). A classical over-relaxation scheme may in-

crease the convergence speed. Instead of directly updating
with , a larger correction is applied, i.e., with

(in our experiments, was set to 1.7). An overview of
the whole algorithm in the unconstrained case is given in Table I.
Note that like many SSU algorithms, this procedure lends it-
self well to the introduction of separable constraints through a
simple modification of step (e2), e.g.,

corresponds to a positivity constraint. The proposed procedure
performs SSU on the augmented criterion. Recently, it has
been put forward that the same procedure also has the struc-
ture of an SSU algorithm on the original criterion[21, pp.
142–144]. More precisely, it is closely connected to iterative
coordinate descent (ICD) procedures proposed by Bouman and
Sauer in [22]. However, it has a significantly simpler structure
since it neither requires line search, root extraction, nor any
nested iteration, each update being performed using a constant
step size.
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TABLE II
DETAILED ALGORITHM

From an implementation standpoint, the auxiliary variables
require only an insignificant amount of additional memory
if the updates are carefully intertwined. For example, with a
column-wise raster scan, it is never necessary to store more
than one column of auxiliary variables for first-order cliques,
and not more than three columns for second-order cliques. In
addition, since does not depend on the current value
of , this quantity can be pre-computed and stored. Only the
Gibbs part of the criterion (which includes only a few voxels)
and quantity have to be updated at each iteration. For
a PSF of size , the latter requires multiplications for
each visited voxel, which comes down to , thanks to central
symmetry of , which is the 2-D autocorrelation function
of the PSF.

For large PSFs, evaluation of this term can be burdensome
because it is repeated for each voxel and iteration. Even with
PSFs of moderate sizes, this is the main limiting factor in the
performance of the algorithm. To tackle this problem, we pro-
pose to use the assumption of separability of the PSF in order to
reduce the amount of computation required for evaluation of the
convolution term and thereby allow to process large
datasets in 3-D. In Section IV-B, we show how close to sep-
arable the PSF of our CT scanner is and we describe how to
compute the convolution term in that case.

B. Efficient Convolution Using a “PSF Separability”
Assumption

In many cases, the PSF can be assumed to be separable to
make computation simpler. In [1], a phantom made of thin
enamel wires (0.25 mm in diameter) was used to estimate the
PSF of a CT scanner. As expected, the mechanical acquisition
process and the reconstruction algorithm result in a rotational
symmetry of image properties. Indeed, in this case, the PSF
has two axes of symmetry, i.e., the radial and tangential axes.
The full width at half maximum was estimated in those two

Fig. 5. (a) Computer-rendered image of model used for our experiments.
(b) Profile of the model with the numbering of the 35 slices that were simulated
and acquired with the CT scanner.

Fig. 6. Shape of the potential function (solid line) compared to its quadratic
and linear asymptotes (dashed line).

TABLE III
NORMALIZED QUADRATIC ERRORS FOR ALLTESTED METHODS

(SIMULATED DATA SET, 35 127� 127 SLICES)

directions by fitting a 2-D Gaussian curve to the acquired PSF.
The results were that the PSF was slightly more elongated in the
tangential direction and that this asymmetry grew larger as the
distance from the center increased. However, for a 20-cm field
of view (large enough for the knee), the maximum difference
between PSF widths estimated in the two directions was less
than 3%, as reported in Fig. 3. As an example, Fig. 4 shows the
phantom used for this experiment and two sample PSFs, one
close to the center, the other one at the periphery of the field
of view. Both PSFs are almost circular and can, therefore, be
assumed to be separable.

In the following, we assume that the PSF is separable, i.e.,
that can be expressed as

where (respectively, ) denotes the vertical (respectively,
horizontal) generating vector of . We then show that separa-
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Fig. 7. (a) Graph of 2-D normalized quadratic errorse for all tested methods applied to the simulated data set. (b) Zoom on the lower part of previous graph.

bility property yields an efficient way of computing
from the autocorrelation vectors (, ) of compo-

nents ( , ) defined by

for (22)

for (23)

This scheme could also be used for a 3-D separable PSF, but,
according to our model, we only consider a 2-D PSF and present
the optimized algorithm in each slice.

In model definition, we assumed that the image formation
process was completely 2-D, which means that a given tomo-
graphic image depends only on the corresponding slice of the
object. Moreover, since we model the tomograph as a linear
system with spatially invariant PSF, the relationship between
an observed image and the corresponding slice of the (dis-
cretized) object is given by a simple 2-D convolution

(24)

Lining up the columns (or rows) of the matrices into vectors
yields the equivalent expression

(25)

where is the convolution matrix built from the PSF. Finally,
concatenating the vectors corresponding to all the slices results
in the global model we used thus far (1).

Although it appears to be a 3-D relationship, it is merely a
collection of 2-D relationships. Therefore, is built from
and it is easy to show that

...
(26)

Thus, the computation of for a given voxel corre-
sponding to pixel (, ) in slice reduces to the computation
of . In the following equations, we omit reference
to the current slice for the sake of simplicity and develop the
convolution product using the matrix representing the current
slice.

Let us introduce an auxiliary vector of length
defined by

(27)

for . It is easy to check that

(28)

As autocorrelation vectors,and are symmetric. Thus, (27)
and (28) only involve and multiplications, respectively. The
point in introducing this auxiliary vector is the shift invariance

, which is a straightforward consequence of
the definition of (27). Therefore, during the scan of a whole
column, for all , was already com-
puted for the previous voxel. Indeed, after each update of a voxel

, one only has to update accordingly and to calculate
.
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Fig. 8. Slice #22 from the test data set (127� 127 images). (a) Slice of the simulated 3-D object. (b) Filtered back-projection 2-D reconstruction. (c) Gaussian
MRF 3-D reconstruction. (d) Half-quadratic MRF 3-D reconstruction. (e) Half-quadratic MRF 2-D restoration. (f) Half-quadratic MRF 3-D restoration.

Finally, this provides a very efficient way of updating the
voxels by recursive scanning of the columns, as described in
Table II (a transposed form can also be derived).

V. RESULTS

A. Simulated Images

Our first concern was to validate the restoration approach
against the reconstruction approach. In Section I, we advocated
the advantages of restoration in terms of portability and ease of
use for clinical applications. However, quantitative comparison
with existing reconstruction methods is necessary to assess the
interest of our approach.

In order to investigate the performance of the selected
methods in reasonably realistic 3-D configurations, we sim-
ulated a 3-D object intended to roughly approximate the
distal part of a femur with simple geometric features while
introducing significant estimation difficulties (smooth areas,
edges, grooves, convex and concave parts). The resulting
design is presented in Fig. 5(a). From this model, slices were
computed in 35 planes evenly spaced every 2 mm along its
main axis and digitized into 127 127 images. For each slice,
90 projections using 141 parallel rays were then evaluated
along 90 evenly spaced angles. Finally, Gaussian noise with
a standard deviation of 3.0 was added to the projections; this
corresponds to a signal-to-noise ratio of approximately 25 dB,

where the signal-to-noise ratio is defined as the ratio between
the power of the noise and the power of the centered noiseless
projection data. This data set actually represented a whole scan
of the object and was the common starting point of the three
reconstruction methods that we selected as follows.

• Filtered back-projection (FBP 2-D recon.): This technique
is very fast and can be considered the standard since it
is implemented in most commercial CT scanners. In our
experiments, the filter cutoff frequency was set to half the
projection sampling frequency.

• Inversion of the projection operator with 3-D quadratic
regularization or equivalently 3-D Gaussian priors
(Gauss 3-D recon.): Such a technique can be imple-
mented very efficiently, but tends to smooth out the
images, which can blur the edges and reduce the actual
resolution.

• Inversion of the projection operator with 3-D priors iden-
tical to the one presented in Section II-C (half-quad. 3-D
recon.).

Our restoration method was then applied to the images most
resembling those produced by a standard CT scanner, i.e., im-
ages obtained by the filtered back-projection method. In all sim-
ulations, the PSF was a 2-D Gaussian function whose character-
istics were derived from the simulated reconstructions of point
objects. For comparison purposes, both 2-D (half-quad. 2-D



1284 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003

Fig. 9. Slice #32 from the test data set (127� 127 images). (a) Slice of the simulated 3-D object. (b) Filtered back-projection 2-D reconstruction. (c) Gaussian
MRF 3-D reconstruction. (d) Half-quadratic MRF 3-D reconstruction. (e) Half-quadratic MRF 2-D restoration. (f) Half-quadratic MRF 3-D restoration.

resto.) and 3-D (half-quad. 3-D resto.) approaches were tested.
For all half-quadratic methods, thea priori model was either a
2-D or 3-D version of the MRF described in Section II-C. The
potential selected for our experiments is quadratic toward zero
and linear for large values (Fig. 6). Such potentials have been
found to present a good tradeoff between convexity and edge
preservation. Several functions with the same general behavior
have been proposed in the literature (see, e.g., [10]) and they all
produce quite similar results. The following form, which obvi-
ously fulfills conditions (13)–(15), was implemented:

(29)

where is a scaling factor determining the transition between
the quadratic and linear regions. In our experiments, the values
of tuning parameters and [see (9)] were determined em-
pirically so as to produce the best visual results (
and in 2-D and 6.65 10 in 3-D).

With this experimental setup, each slice of the original 3-D
object was known. For comparison purposes, the normalized
quadratic error between theoretical and reconstructed or
restored slices was evaluated. This normalized quadratic error
between a given experimental resultand the original object

can be evaluated either in 2-D for each slice or

in 3-D for the whole set of slices according to the
following expression:

where

(30)

The computed error values for all tested methods are sum-
marized in Table III and Fig. 7. As expected, the lowest error
values are obtained with the half-quadratic 3-D reconstruction
method. However, the results from half-quadratic reconstruction
and restoration are very close to each other both numerically
(same order of magnitude) and visually. The behavior of the
two techniques is illustrated in Fig. 8, where both of them pro-
duce similar results, and in Fig. 9, where half-quadratic 3-D re-
construction performs noticeably better than half-quadratic 3-D
restoration. Nonetheless, this comparison validates the restora-
tion approach when access to projection data is hardly possible.

The higher numerical complexity of half-quadratic methods
with respect to quadratic approaches is fully justified when
looking at the images in Figs. 8 and 9. With Gaussian recon-
struction, substantial noise reduction could be achieved only at
the expense of smoothing out the edges in an unacceptable way.
Arguably, this poor result is partly due to the fact that the noise
level used in our simulations may be higher than in typical
CT images. This choice was made in order to discriminate
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TABLE IV
NORMALIZED QUADRATIC ERRORSWHEN PSF SIZE IS CHANGED (SIMULATED DATA SET, 35 127� 127 SLICES)

Fig. 10. Graph of 2-D normalized quadratic errorse for the proposed restoration method applied to CT images of the PVC phantom in water.

better between the various methods, and our results illustrate
the ability of half-quadratic potentials to produce a high level
of regularization without smoothing out the edges. Therefore,
such techniques are very well suited to the reconstruction or
restoration of CT images.

Another issue is the comparison between 2-D and 3-D
restorations. On the one hand, the overhead for 3-D processing
amounts to approximately 20% of the total computing time.
On the other hand, although the restored images in 2-D and
3-D look quite similar (see Fig. 8 and 9), the error is noticeably
lower in 3-D. This improvement can be measured by the
overall 3-D error ( 12%) and by the mean 2-D error (28%).
However, the results are very variable from one slice to another.
By comparing the profile of the phantom [see Fig. 5(b)] with
the error curve (Fig. 7), one can notice that the 3-D approach
is particularly efficient when two successive slices are similar
(slices 1–5 and 20–25). This can be interpreted as the effect of
regularization along the-axis, which is included in the 3-D
MRF model, but not in the 2-D MRF model.

The dependency of the results with respect to the size of the
PSF was also tested by running the same examples with two
other PSF sizes (double or half the size estimated from point ob-
jects). The results summarized in Table IV show that, even with
such a large range of variation, the performances of restoration
are only slightly disturbed (around 10% increase of 2-D error,
even less for 3-D error). Visual estimation of the size of the PSF
(from sharp edges or bright spots) would be more precise than
this and, thereby, would enable accurate restoration in practical
cases.

B. Real CT Images

Our restoration method was also applied to real CT data. The
images were obtained with a Picker PQ 5000 tomograph used
in planar mode on a phantom made from the 3-D design al-
ready described in Section V-A [see Fig. 5(a)]. Among easy-to-
process materials, polyvinyl chloride (PVC) was selected be-
cause its opacity to X-rays is very close to that of bone tissue.
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Fig. 11. Samples from the CT scan of the PVC phantom in water (256� 256 images): slice #23 with an air bubble and slice #26 with a zoom to show the
sharpness of the edges. (a) Raw CT image. (b) Restored image with half-quadratic 3-D MRF. (c) Ground truth from the phantom design.

The phantom was placed in water in order to approach X-ray
opacity of soft tissues. The CT scanner was used in planar ac-
quisition mode and the reconstruction settings were set tobone
because this mode is designed for orthopedic applications and
because it gives the sharpest images (at the expense of a slightly
higher level of noise than thesmoothor standardsettings). Pre-
cise alignment of the phantom, elimination of positioning ambi-
guities, and monitoring of the accuracy of the table movements
were made possible by the presence of two grooves perpendic-
ular to the main axis of the phantom [see Fig. 5(a)]. This setup
allowed us to compare theoretical phantom slices with experi-
mentally reconstructed ones.

The values for the normalized 2-D error are plotted in
Fig. 10 and sample images are shown in Fig. 11 ( and

). The noise is almost completely suppressed and,
as expected, the edges are preserved. On the average, the error
is almost divided by a factor of two between the raw CT im-
ages and restored images, except when air bubbles are stuck

in one of the phantom corners, as illustrated in Fig. 11. It can
be observed that the improvement is not as large as with simu-
lated images, which may be explained by at least two reasons.
First, there is always a residual error due to imperfect registra-
tion between the real CT images and the 3-D model, as well
as imperfect dimensions of the actual PVC phantom. Second,
in real CT images, nonlinear distortions appear, such as partial
volume effects that blur the edges when the size of slices change
rapidly, which could explain the larger errors in slices 16–23.
3-D half-quadratic restoration partly corrects for these deficien-
cies and, therefore, may appear as a flexible and inexpensive
way of improving the quality of standard CT images for dedi-
cated purposes.

VI. CONCLUSION

In this paper, we have proposed a method to enhance CT im-
ages in order to increase the accuracy of edge localization. We
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have chosen to use image restoration (or deconvolution) of CT
images rather than reconstruction from X-ray projections essen-
tially for practical reasons. Indeed, in most cases, the practi-
tioner only has access to already reconstructed (and filtered) CT
images. In order to estimate the PSF of the imaging system, one
can use a simple phantom made with enamel wires, as presented
in Fig. 4. However, since restoration results are not very sensi-
tive to the exact parameters of the PSF, as shown on simulated
examples in Table IV, rough estimation from edges and bright
spots of CT images may be sufficient.

The restoration method that we have proposed implements
half-quadratic regularization because it allows to use convex
edge-preserving potentials that exhibit quite an interesting
tradeoff between image quality and computational efficiency.
On the one hand, experimental results show that the edges
are indeed very much sharper in the restored images. On the
other hand, since the bulk of the computations occurs in the
convolution term depending on the PSF size, simplifying
assumptions, such as the PSF separability, have to be made to
decrease the computational burden significantly.

Reducing the numerical complexity was the key factor that
allowed us to use a 3-D MRF as ana priori model. The clique
structure was simplified as much as possible so as to make the
algorithm easier to interpret and to tune without jeopardizing
image quality. Significantly better results were obtained with a
3-D prior model than with a 2-D MRF because of regularization
along the three directions. Using 3-D processing, CT images
from the whole scan of a patient can be manipulated as a unique
3-D volume and enhanced as a whole. The tuning parameters
can be set once for the whole 3-D object, thereby simplifying
the use of the method. Further investigations aiming at making
the technique fully unsupervised are currently under way. Other
avenues of research encompass extension of these techniques to
spiral and multislice CT scanners, which are becoming prevalent
in clinical settings.

REFERENCES

[1] S. Doré and Y. Goussard, “Experimental determination of CT point
spread function anisotropy and shift-variance,” inProc. 19th Annu. Int.
IEEE Engineering in Medicine and Biology Society Conf., Chicago, IL,
Oct. 1997, pp. 788–791.

[2] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,”IEEE Trans. Image Processing, vol. IP-4, pp. 932–946,
July 1995.

[3] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,”IEEE
Trans. Image Processing, vol. 6, pp. 298–311, Feb. 1997.

[4] A. H. Delaney and Y. Bresler, “Globally convergent edge-preserving reg-
ularized reconstruction: An application to limited-angle tomography,”
IEEE Trans. Image Processing, vol. 7, pp. 204–221, Feb. 1998.

[5] A. Kak and M. Slaney,Principles of Computerized Tomographic
Imaging. New York: IEEE Press, 1987.

[6] B. Hunt, “The application of constrained least squares estimation to
image restoration by digital computer,”IEEE Trans. Commun., vol.
COM-22, pp. 805–812, Sept. 1973.

[7] J. E. Besag, “On the statistical analysis of dirty pictures (with discus-
sion),” J. Roy. Statist. Soc. B, vol. 48, no. 3, pp. 259–302, 1986.

[8] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA:
MIT Press, 1987.

[9] S. Geman and G. Reynolds, “Constrained restoration and recovery of
discontinuities,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp.
367–383, Mar. 1992.

[10] C. Bouman and K. Sauer, “A generalized Gaussian image model for
edge-preserving MAP estimation,”IEEE Trans. Image Processing, vol.
2, pp. 296–310, July 1993.

[11] S. Brette and J. Idier, “Optimized single site update algorithms for image
deblurring,” inProc. Int. Image Processing Conf., Lausanne, Switzer-
land, 1996, pp. 65–68.

[12] J. E. Besag, “Spatial interaction and the statistical analysis of lattice
systems (with discussion),”J. Roy. Statist. Soc. B, vol. 36, no. 2, pp.
192–236, 1974.

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,”IEEE Trans. Pattern Anal.
Mach. Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.

[14] F. Beckman, “The solution of linear equations by the conjugate gradient
method,” inMathematical Methods for Digital Computers, A. Ralston,
H. Wilf, and K. Enslein, Eds. New York: Wiley, 1960.

[15] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical
Recipes in C, the Art of Scientific Computing, 2nd ed. New York:
Cambridge Univ. Press, 1992.

[16] D. M. Young, “Iterative solution of large linear system,” inComputer
Science and Applied Mathematics. New York: Academic, 1971.

[17] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Two
deterministic half-quadratic regularization algorithms for computed
imaging,” inProc. IEEE Int. Conf. Image Processing, vol. 2, 1994, pp.
168–172.

[18] J. Idier, “Convex half-quadratic criteria and interacting auxiliary vari-
ables for image restoration,”IEEE Trans. Image Processing, vol. 10,
pp. 1001–1009, July 2001.

[19] D. Luenberger,Optimization by Vector Space Methods, 1st ed. New
York: Wiley, 1969.

[20] R. T. Rockafellar,Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.

[21] M. Allain, “Approche pénaliseé en tomographie hélicoïdale. Applica-
tion à la conception d’une prothèse personnalisée du genou,” Ph.D. dis-
sertation, Univ. Paris-Sud, Orsay, France, 2002.

[22] C. A. Bouman and K. D. Sauer, “A unified approach to statistical to-
mography using coordinate descent optimization,”IEEE Trans. Image
Processing, vol. 5, pp. 480–492, Mar. 1996.


