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ABSTRACT
We present a new approach for spatially varying blur identi-
fication using a single image. Within each local patch in the
image, the local blur is selected between a finite set of candi-
date PSFs by a maximum likelihood approach. We propose
to work with a Generalized Likelihood to reduce the number
of parameters and we use the Generalized Singular Value De-
composition to limit the computing cost, while making proper
image boundary hypotheses. The resulting method is fast and
demonstrates good performance on simulated and real exam-
ples originating from applications such as motion blur identi-
fication and depth from defocus.

Index Terms— Blur identification, motion blur, depth
from defocus, spatially varying blur, coded aperture

1. INTRODUCTION

Recorded images are often subject to spatially varying blur
coming from defocus, camera or object motions or atmo-
spheric turbulence. It produces an inhomogeneous image
quality with local variations due to external characteristics
such as scene depth or motion.

Identification of the local PSF (Point Spread Function) of-
fers a way to segment the field of view according to depth or
object motion, which are useful clues for many robotic vision
purposes. Besides, it allows a local deconvolution step to ob-
tain a motion deblurred image or an image with an extended
depth of field.

In this paper, we propose a new method for local blur
identification from a single image. The overall image is di-
vided into local patches, on each patch we assume a homo-
geneous PSF that belongs to a finite set of known candidate
PSFs. Candidate PSFs may result from a calibration step [1]
or from a parametric model using a finite set of candidate pa-
rameters, for instance Gaussian PSF with a set of standard
deviations or 1D motion blur with a set of fixed lengths [2].

We have designed a generalized likelihood criterion to se-
lect the best PSF candidate on each patch. Our likelihood
“integrates out” the input scene patch and thus only depends
on PSF and SNR parameters. We propose an efficient and

accurate approach for likelihood evaluation and optimization,
using Generalized Singular Value Decomposition (GSVD).

Our method is generic enough to handle any kind of PSF
shapes as those resulting from motion blur, defocus blur, or
even multi-modal PSF encountered in coded aperture im-
age processing [1]. Efficiency of the proposed approach is
demonstrated on synthetic and real data.

1.1. Related work

Single image blur identification can be related to blind decon-
volution ([3, 4, 5] and references therein) as both the scene
and PSF are unknown. Moreover, dealing with local blurs
means that identification has to be done on image patches
with a very limited number of data. Such a severly under-
determined problem requires additional assumptions on the
scene patch and on the PSF.

A popular approach is to model PSF using a reduced set
of parameters. Gaussian PSF models are often used to deal
with defocus blur [6, 7], while motion blur is often adressed
with 1D box functions PSF [2]. Local identification methods
dealing with more general PSF shapes are rare, an example is
ref. [8] which only assumes a unimodal PSF. Recently, meth-
ods able to deal with multimodal PSFs have been proposed
in the context of extended depth of field with coded aperture
(EDFCA) [1]. Most of these works, except [1, 9], are ded-
icated to a particular PSF model, while we propose here a
generic approach able to handle any kind of PSF shape, or
even various PSF shapes in the same image, as encountered
in multi-motion scenes.

Dealing with EDFCA, [1] uses a calibrated PSF set and
proposes depth estimation based on deconvolution error. This
approach yields good results on real images but requires a
learning stage to fix some parameters. Besides, the deconvo-
lution assumes a natural prior for the scene, leading to very
time consuming large-scale non convex optimizations.

Our approach is more closely related to [2, 9, 10] where
the PSF is selected locally thanks to a maximum likelihood
criterion (ML). [2] deals with single image motion blur iden-
tification, but is limited to image having only one moving
object, contrarily to the approach proposed here. In [9], an
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EDFCA method is described. It is based on a marginalized
likelihood which depends on scene parameters estimated di-
rectly from image data. Very good results are obtained on real
images but the method seems to be tractable only for a lim-
ited number of holes in the coded aperture mask, while our
approach has constant cost whatever the PSF shape.

Finally, in contrast to [2, 9, 10] which are dedicated to a
particular application, our approach is generic: we demon-
strate it on motion blur identification and EDFCA depth esti-
mation. In this context, our main methodological contribution
concerns the design of an original likelihood criterion associ-
ated to an efficient maximization algorithm.

2. PSF IDENTIFICATION

2.1. Data model

The relation between the scene and the recorded image is usu-
ally modeled as a convolution with a PSF. In the case of spa-
tially varying blur, we consider that this model is valid only
locally in the image. The local relation between scene and
image is usually written in the matrix form:

y = Hkx + n, (1)

where y collects the N pixels inside some local patch of the
image in the lexicographical representation, x the M corre-
sponding scene pixels and n the noise process. Hk is a N×M
convolution matrix within the PSF family {H1, ...,HK}.

As we consider small patches, care has to be taken con-
cerning boundary hypotheses. In particular the usual periodic
model associated to Fourier approaches is not suited here. In
the sequel we use "valid" convolutions where the support of x
is enlarged with respect to the one of y according to the PSF
support so that M > N [11, Section 4.3.2].

2.2. Local criterion

We propose to conduct PSF identification within a ML frame-
work where the unknown scene patch is marginalized out [4,
9]. For simplicity we drop the index of the convolution matrix
and use the general notation H .

We assume an isotropic Gaussian prior on the object’s gra-
dients so the probability density functions of the object is:

p(x, σ2
x) ∝ exp

(
−||Dx||2

2σ2
x

)
.

where D is a first order horizontal and vertical derivative op-
erator. Besides, the noise is modeled as a zero-mean white
Gaussian noise (WGN) with variance σ2

b . For PSF identifi-
cation we use a marginal likelihood function where the input
patch is marginalized out of the problem. The calculation of
the integral gives:

p(y|H,σ2
b , α) = (2πσ2

b )−
N
2 det+(I −B(α))−

1
2 e
−S(α)

2σ2
b (2)

where det+ corresponds to the product of the nonzero eigen-
values of I −B(α) and

S(α) = yT (I −B(α))y,

B(α) = H(HT H + αDT D)−1HT .

α = σ2
b/σ2

x is a regularisation parameter that allows adaptiv-
ity according to the Signal to Noise Ratio (SNR). The likeli-
hood depends on H and on two other parameters. To reduce
the number of parameters we maximize the likelihood with
respect to σ2

b in order to deal with a generalized likelihood
that depends only on H and α [11, Section 3.8.2]. This maxi-
mization leads to: σ̂b

2 = S(α)/N . Reporting this expression
in (2) we obtain that maximizing the likelihood is equivalent
to minimize the generalized likelihood function (GL):

GL(H,α) =
yT (I −B(α))y

det+(I −B(α))1/(N−n)
. (3)

Where N − n is the number of nonzero eigenvalues of the
matrix I −B(α) (here n = 1). A more detailed derivation of
(3) can be found in [12]. We propose to select the PSF label
k̂ that corresponds to the joint minimization:

(k̂, α̂) = arg min
k,α

GL(Hk, α). (4)

2.3. Implementation

Direct calculation of the function (3) is costly because of the
dimensions of matrix HT H + αDT D. The Fourier decom-
position is a popular approach for diagonalization of matrices
HT H and DT D [2]. Fourier approach assumes that the scene
is periodic which may be inaccurate for patches whose size is
of the same order of the PSF size specially for 2D patches (see
section 3). Instead, we propose a decomposition that makes
no approximation: the generalized singular value decomposi-
tion (GSVD) [12]. For two matrices, H of dimension N × P
and D of dimension P ×M , the GSVD writes

H = UCXT D = V SXT CT C + ST S = I (5)

where U (respectively V ) is a N × N (resp. P × P ) unitary
matrix and S and C are diagonal rectangular matrices. With
this decomposition we have:

B(α) = UC(CT C + αST S)−1CT UT , (6)

and the GL can be written as:

GL(α) =

∑N
i=1,i 6=j

αs2
i

c2
i +αs2

i
z2
i∏

i,i 6=j

(
αs2

i

c2
i +αs2

i

)1/(N−n)
. (7)

With c2 = diag(CCT ), s2 = diag(SST ) and z = UT y and
j is such as sj = 0. Note that the matrices U ,V ,C,S and X
are independent of α. Thus, it is possible to compute all these
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matrices off-line and to store the values of s2, c2 and U . The
on-line processing consists in decomposing the whole image
in patches, then for each patch the best couple (k̂,α̂) is found
by exhaustive search over k and a 1D minimization algorithm
over α. Once all patches have been processed a map of the
local PSF label is obtained. We propose to reject patches that
contains no texture using a Canny filter. Indeed, those regions
are insensitive to the PSF, so the GL calculation is useless.

3. EXPERIMENTS

3.1. Simulated examples

To simulate the case of 1D PSF identification we built a PSF
database composed of horizontal 1D PSF, with a length vary-
ing from 1 to 10 pixels. Each line of the output image shown
in Fig. 1(a) is obtained by 1D convolution of a line of a natu-
ral object (with gray level between 0 and 1) with a PSF whose
length is growing from bottom to top. Zero-mean WGN with
standard deviation σ = 0.01 is added to the result. In Fig. 1(b)
and (c) are presented the estimated length maps that maximise
the proposed GL criterion and the ML criterion of [2] for
patch size 1 × 45. The GL approach yields significantly bet-
ter results with a percentage of correct identification of 65%
to be compared to 44% for the other approach. In our view,
this difference can be explained by the approximate periodic
boundary hypothesis implied by Fourier decomposition in [2].

The second simulation test concerns single image EDFCA.

(a) (b) (c)

Fig. 1. 1D PSF identification simulation: (a) simulated image.
(b) GL with GSVD decomposition. (c) ML algorithm of [2].

(a) (b) (c)

Fig. 2. 2D PSF identification simulation: (a) simulated image.
(b) GL with Fourier decomposition, (c) GL with GSVD.

We use the aperture proposed in [1] and the PSFs are obtained
with a simulation of the optical system. The focal length is
set to 35 mm and the focal plane put at 1.9 m. We consider a
set of PSFs that corresponds to depth varying with a step of
0.1 m from 2.4 m to 3.8 m. In Fig. 2 the scene is composed
of a white Gaussian noise and a natural image, the gray level

of the whole image varies between 0 and 1. Each vertical
segment of the output image shown in Fig. 2(a) is obtained
by 2D convolution of a patch of the scene with a PSF of the
set, the depth increasing from left to right. Zero-mean WGN
with standard deviation σ = 0.01 is added to the result. The
patch size for identification is 21 × 21 pixels and so are the
PSFs size. Fig. 2(b) presents the estimated depth maps using
the proposed GL criterion with the Fourier decomposition and
Fig. 2(c) the same result with the GSVD. Computation of GL
with the GSVD leads to very good identification results. The
Fourier transform approach is correct only for high frequency
regions of the images, where the periodic model is valid.

Fig. 3(a) shows a collection of natural scenes extracted
from the web. Synthetic images are generated by convolu-
tion of each of these scenes (with a normalized intensity) with
each coded PSF from the previous set and addition of zero-
mean WGN of standard deviation 0.01. Fig. 3(b) gives the
mean and the standard deviation of estimated depth vs. true
ones. Mean values are very close to the true depths and the
standard deviation ranges from 10 to 20 cm.

(a) (b)

Fig. 3. 2D PSF identification simulation: a) object. (b) esti-
mated depths vs. truth (mean value and error bars).

3.2. Tests on real images

3.2.1. Motion blur

The first example shown in Fig. 4(a) is an image from [2]. The
PSFs are 1D rectangular functions of length ranging from 1 to
8 pixels. The result of our method is shown in Fig. 4(b) with
1D patches of size 1× 61 pixels and 30 % overlap. The result
is obtained in 4 min in a Matlab implementation given an im-
age size of 900 × 600 pixels. The jogger is clearly identified
in the image and his mean motion corresponds to a PSF of 4
pixels which is the PSF announced in [2].

Our approach allows us to handle the case of various mov-
ing objects in the same image. Fig. 4(c) shows an image
225×210 with two moving objects: the vertical object on the
lower part is moving horizontally while the other one moves
vertically at a lower velocity. We consider a set of 19 binary
2D PSFs of size varying from 1 × 1 to 10 × 10 pixels, with
only one row or one column non zero. Fig. 4(d) shows our
PSF identification results for the image (c) obtained in 1 min.
The patch size is 25× 25 pixels. The green color corresponds
to horizontal movements (PSF label from 2 to 10) and the blue
color to vertical movements (PSF label from 11 to 19). In our
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result we clearly distinguish the two objects with the correct
direction of movement. Besides, the object in the upper part
is correctly classified as slower than the other.

a) b)

c) d)

Fig. 4. (a) and (c) Real images: (a) is drawn from [2]. (b) and
(d) are GL results. Label 0 denotes PSF not estimated.

3.2.2. Defocus blur

In this section we test our method on defocus blur identifica-
tion. Fig. 5 shows results with the PSFs set and images of size
1170× 1760 provided in [1] where a coded aperture is added
to a camera. Fig. 5(b) shows the depth maps produced by our
method. The colorbar gives the depth corresponding to the
color label in cm. The patch size is 25× 25 pixels with 50 %
overlap. On textured patches our results are similar to the raw
depth maps shown in [1, Figure 8.(b)]. Note that we have cho-
sen to reject textureless regions, while [1] provides interpo-
lated labels, thanks to a non convex deconvolution. However
their computation time is much higher (few hours compared
to 3 min for our method) and our result could be smoothed a
posteriori using graphcuts techniques as in [1, 7].

4. CONCLUSION

We have proposed to address the identification of spatially
varying blur using a single image by the means of a local
likelihood to be maximized with respect to a PSF label and
a SNR parameter. The PSF label is related to a set of candi-
date PSFs which has to be defined beforehand by calibration
or modeling. The main technical contribution is an efficient
algorithm for likelihood computation and maximization with-
out resorting to inadequate periodic boundary conditions. The
resulting identification method is fast and has demonstrated
good performance on simulated and real examples originat-
ing from motion blur identification and depth from defocus.
The proposed criterion could be used directly in a regularisa-
tion framework for depth or motion segmentation.
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a) b)

Fig. 5. a) Real images taken from [1]. b) Depth maps obtained
with our method (label 0 denotes PSF not estimated).
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