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Abstract—In this paper, we propose a Bayesian sampling solu-
tion to the noisy blind separation of generalized hyperbolic signals.
Generalized hyperbolic models, introduced by Barndorff—Nielsen
in 1977, represent a parametric family able to cover a wide range of
real signal distributions. The alternative construction of these dis-
tributions as a normal mean variance (continuous) mixture leads
to an efficient implementation of the Markov chain Monte Carlo
method applied to source separation. The incomplete data struc-
ture of the generalized hyperbolic distribution is indeed compatible
with the hidden variable nature of the source separation problem.
Both overdeterminate and underdeterminate noisy mixtures are
solved by the same algorithm without a prewhitening step. Our al-
gorithm involves hyperparameters estimation as well. Therefore, it
can be used, independently, to fitting the parameters of the gener-
alized hyperbolic distribution to real data.

Index Terms—Blind source separation, generalized hyperbolic
distributions, Gibbs sampling, noisy mixture, underdeterminate
mixture.

I. INTRODUCTION

N this paper, we consider the blind source separation
I problem as the reconstruction of the sources from the noisy
linear instantaneous mixture

xt:Ast—I—'n,t, tzl,,T (1)
where z,,s; and n, are, respectively, the (m X 1) observation
vector, the (nx 1) unknown source vector, and the (mx 1) un-
known noise vector at instant ¢. A is the (m X n) unknown
mixing matrix. m can be lower or greater than n. The chal-
lenging aspect of the blind source separation (BSS) problem is
the absence of any exact information about the mixing matrix A.

Based on independent identically distributed (i.i.d.) source
modeling, many proposed algorithms are designed to linearly
demixing the observations x;_ . The separation principle in
these methods is based on the statistical independence of the
reconstructed sources [independent component analysis (ICA)]
[1]-[3]. However, ICA is designed to efficiently work in the
noiseless case. In addition, with the i.i.d. assumption, the sep-
aration capability necessarily relies on high-order statistics al-
lowing at most one source to be Gaussian. The noisy case was
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treated with the maximum likelihood approach using the expec-
tation maximization (EM) algorithm [4]-[6], the sources being
modeled by finite Gaussian mixture. The exact implementation
of the EM algorithm leads to a high computational cost. Other
stochastic EM variants are used in [6] in order to accelerate the
algorithm convergence. However, the choice of the number of
Gaussian components remains a difficult task and limits the use
of the separation method to some particular types of real signals
(e.g., audio signals, piecewise homogeneous images [7]).

Putting the i.i.d. assumption aside, source separation can be
achieved with second-order statistics. For instance, second-
order correlation diversity in the time domain [8], frequency do-
main [9], or time-frequency domain [10] are successfully used
to blindly separate the sources. Nonstationary second-order-
based methods are also proposed in [11]-[14]. Stationarity and
decorrelated nonstationarity can approximately be seen as dual
under Fourier transformation. For instance, based on the cir-
cular approximation, it can be shown that a finite sample cor-
related temporal stationary signal has a Fourier transform with
nonstationary decorrelated samples. Recently, a maximum like-
lihood method has been proposed to separate noisy mixture
of Gaussian stationary sources exploiting this temporal/spectral
duality [15], [16]. The Gaussian model of sources allows an ef-
ficient implementation of the EM algorithm [17].

The original contribution of this work is to efficiently im-
plement a sampling Bayesian solution in the noisy case, the
sources being i.i.d. modeled. The Markov chain Monte Carlo
(MCMC) sampling algorithm yields an ergodic Markov chain
that has the target posterior distribution as its equilibrium
distribution in the stationary regime. From this chain, one can
build an estimator based on a selected cost function, without
being constrained to the maximum a posteriori (or maximum
likelihood) estimator as is the case with the EM algorithm.
The proposed separating algorithm yields an estimation of the
mixing matrix, the parameters of the source distributions, and
the noise covariance matrix. The key point is the use of gen-
eralized hyperbolic (GH) distributions of Barndorff-Nielsen
[18]. Their normal mean-variance continuous mixture repre-
sentation is remarkably compatible with the hidden structure of
the source separation problem. Moreover, the same algorithm
can be applied to overdeterminate and underdeterminate cases
without any prewhitening step. As the underdeterminate case
can be solved exploiting the sparsity of sources [19], the GH
distributions represent a well appropriate parametric model
for sources able to capture their heavy tails and also their
skewness. In addition, a different tail behavior or skewness
between sources will enhance their statistical diversity and thus
ameliorate the separation performance. The method implicitly
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incorporates a denoising procedure, and it is consequently
robust to high-level noise. The double interpretation of this
statistical modeling as stationary non-Gaussian and Gaussian
nonstationary gives a new insight into the unification of the use
of nonstationary second-order statistics and stationary higher
order statistics to solve the blind source separation problem. In
addition, this leads to an efficient Bayesian Gibbs sampling im-
plementation as the conditionals of the sources and the mixing
matrix are Gaussian. To this extent, we obtain a generalization
of the finite Gaussian mixture modeling while preserving the
benefit of normal conditioning in the Gibbs sampling solution.
This work also generalizes the Gibbs separating algorithm in
[20], where sources are modeled by t-Student distributions
as they are a particular class of the generalized hyperbolic
modeling.

This paper is organized as follows. Section II is devoted to
generalized hyperbolic processes and their properties. In this
section, we present an original Bayesian algorithm to fit the
parameters of the generalized hyperbolic distribution to an ob-
served finite time series sample. In Section III, we present the
Bayesian blind source separation algorithm in the noisy case. In
Section IV, some simulation results corroborating the efficiency
of the proposed algorithm are presented.

II. GENERALIZED HYPERBOLIC PROCESSES

A. Description and Properties

In this paragraph, we briefly describe the generalized hy-
perbolic distributions and their main properties (for more de-
tails refer to Barndorff—Nielsen’s original work [18] or Bibby
and Sorensen [21]). Generalized hyperbolic distributions form
a five-parameter family GH(\, «, 8, 6, 1) introduced by Barn-
dorff-Nielsen. If the random variable X follows the distribution
GH(\, a, 3,6, 1), then its probability density function reads

e Y o R
VarKA(57) (/5 + (2 — P/t »

zeR (2

where v? = a? — 3% and K (- ) is the modified Bessel function
of third kind

1 [ -
Ki(y) = —/ wrLe—zy(utu™) g
0

The validity parameter domain is as follows:

§>0,a>0,a%2>p2% forA>0
A ER, §>0,a>0a2> 3% forA=0.
§>0,a>0,02> 3% forA<0

GH distributions enjoy the property of being invariant
under affine transformations. If X ~ GH(\, «a,(,6,u),
then the random variable a X + b follows the distribution
GH(A, a/a, 3/a,ad,ap + b). Many known subclasses can be
obtained, either by fixing some parameters or by considering
limiting cases: A = 1 and A = —1/2, respectively, yield the
hyperbolic and the NIG distributions (the latter being closed
under convolution); A = 1 with § — 0 provides the asymmetric
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Fig. 1. Examples of the GH distributions. (a) Hyperbolic case: A = 1, =
1,8 = .5,6 = .001,x = 0. (b) Cauchy case: A = —.5,a = .01,8 =
.001,6 = .01, = 0. (c) Studentcase: A =3, 0 =1,8=1,6 =1, = 0.
PDFs appear on top row, log densities on bottom row. The dashed line corre-
sponds to the Gaussian distribution with the same mean and variance.

Laplace distribution; A = —1/2 with « — 0 corresponds to
the Cauchy distribution; the asymmetric scaled t-distribution
is obtained for « = |f|, etc. Thus, varying the parameters of
the GH distributions yields a wide range of tail behaviors, from
Gaussian tails to the heavy tails of the Student t-distributions.
Fig. 1 depicts examples of GH distributions. One can note that
a wide range of tail behaviors is covered and the possibility of
modeling the distribution asymmetry (via the parameter [3).

An important feature of the GH distribution is its expression
as a continuous normal mean-variance mixture

GH(Xv )‘: Q, /87 67 lj/)

= / N(x;p+ Bw,w) GIG(w; A, v, 6)dw  (3)
Jo

where the variance W of each Gaussian component follows a
generalized inverse Gaussian (GIG) distribution

A
{GIG(w; A 7,0)= 2(;(/127) SawAL exp[—%((ﬁzw_l—}—'}ﬂw)] .
w >0

In other words, the generalized hyperbolic process can be seen
as a double stochastic process.

1) First generate! W ~ GIG(A, 7, 6).

2) Then generate X ~ N (u + W, W).

The normal mean-variance expression of the GH distribution
will be a key point both in the estimation of the parameters and
when incorporating this modeling in the blind source separation
problem.

B. Parameter Estimation

Based on an i.i.d. GH sample {z;};—1. v, the estimation of
the parameters (A, i, 3, 6, 1) is a difficult task. As reported in
[22] and [23], this difficulty is essentially due to the flatness of
the likelihood with respect to the parameters and particularly

I Among the Matlab files freely available from the first author, the program
rGIG.m efficiently simulates a GIG random variable.
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with respect to the parameter A. For instance, Barndorff-Nielsen
gives an example in [24] where an hyperbolic distribution (A =
1) is almost identical to an NIG distribution (A = —1/2). Con-
sequently, using standard optimization methods as gradient-like
algorithms fails to solve the inference problem as the gradient
is too small. Therefore, most of the previous contributions are
restricted to a given subclass (typically, A is set constant). Blae-
sild and Sorensen propose in [25] the algorithm “hyp” to es-
timate the parameters of hyperbolic distributions. However, in
addition to the restriction A = 1, this method suffers from a
high computational cost in the multivariate case as was reported
by Prause [23], who proposed another restriction to symmetric
distributions (/5 = 0) able to handle the multivariate case. Re-
cently, Protassov [26] exploits the incomplete data structure of
the problem (3) to propose an EM algorithm [17] allowing an
efficient implementation in the multivariate case. The EM al-
gorithm is, however, restricted to work within the subclass of
NIG distribution (A = —1/2). A Bayesian sampling solution is
proposed in [27] and [28] for the case of NIG distribution. How-
ever, the proposed algorithm cannot be applied for other values
of A. In this paper, we propose an original contribution to Gen-
eralized Hyperbolic parameter estimation, without restrictions,
exploiting the latent problem structure and based on Gibbs sam-
pling. We propose a new reparametrization in order to sample ef-
ficiently the conditionals. The proposed algorithm outperforms
the EM algorithm of Protassov [26] in several respects.

1) The conditional sampling steps can be incorporated in
more general problems in a hierarchical way. For instance,
when solving the blind source separation problem in the
next section, the parameters of the sources models are
updated, through iterations, according to the same condi-
tionals as in this paragraph.

2) It has the possibility to avoid local maxima.

3) Atconvergence, one can be aware of the inference problem
difficulty by plotting the marginal posteriors.

4) Although, in practice, it may still be more convenient to set
the value of \ constant, due to the flatness of the likelihood
with respect to this parameter, the Bayesian algorithm in-
cludes an optional step for the estimation of .

In the following, we outline the Gibbs sampling algorithm for
estimating the parameters n = (\, «, (3, 6, 1) based on an i.i.d.
samples {z;};=1. . The Bayesian solution consists in sam-
pling the a posteriori distribution of the parameter 7 (‘r](k) ~
p(n|z1.n),k =1...K). Then, based on the parameter sam-
ples {n*)} I each estimator E[h(n) | 71 n] can be approxi-
mated by its empirical sum

K
1 .
Blh(n) |1x] = = b (™). )
k=1
From the Bayes rule

p(n|z1..~) o< p(z1..n (1) p(N)

one can easily note the difficulty of sampling the posterior be-
cause of the complicated form (2) of the likelihood function.
However, using the hidden structure of the generalized hyper-
bolic distribution (3), we can take advantage of the powerful
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tool of MCMC methods [29]. This can be obtained by imple-
menting a Gibbs sampling algorithm which consists in alter-
nating the sampling of the hidden variances w; (given the
parameters 77) and the conditional sampling of the parameter of
interest 7 (given the variances). The proposed algorithm, called
GibbsgHyp, has the following scheme:

Set initial values 5(®) and w
Repeat until convergence

(0)
1..N

(k)

1. Sample the variances: wL__N ~p (wl___N | xl___N,'r](k’l))
2. Sample the variances: n(¥) ~ p (7] ‘ T1..N, wgk)N) )

&)

Hence, under weak conditions, the empirical sum

i{:l h(n®))/K converges to the expectation E[h(n) |21, x
as K goes to oo (almost sure convergence). The convergence
of the empirical sums needs weaker conditions than the conver-
gence of the underlying Markov chain. In fact, the invariance
and the irreducibility of the transition kernel are enough to
ensure this convergence.

1) Sampling the Variances According to p(w1. N | 1. N, 1):
The first step of the Gibbs algorithm (5) consists in a posteriori
sampling the hidden variances. The a posteriori distribution is,
according to the Bayes rule

P(wl...N | $1...N;7l>

x p(x. .~ |wi. N, plwi. N |n)

N
x H./\/(a:l, p~+ Bw;, w;) GIG(w;; A, v, 6)

=1

~
o HGIG(wi;/\ —1/2,7% + 3%, 6% + (z; — n)?)
i=1

Q)

where we note that the GIG density plays the role of a conjugate
prior (the a posteriori density remains in the family of the a priori
distribution). The sampling of the variances relies then on the
efficient sampling of the GIG distribution. This is performed by
the ratio method, which is an exact rejection sampling method
based on the calculation of sup, v/ f(z) and sup, |z|\/ f(2),
where f(-) is a function proportional to the density to sample
from. For details of this method and its application to sampling
the GIG distribution, see Appendix VI.

Remark 1: In the particular case of Student t-distributions
(y = B = 0), the variances are also a posteriori distributed
according to an inverse gamma distribution

1. Sample w,, ~ Gamma(1/2 — A, 1)
— 2

2. Vp = unm

3w, =1/v,

VYn=1...N,

2) Sampling the  Parameters  According to
p(n|z1..~n, w1 n): The second step of the Gibbs al-
gorithm (5) consists in sampling the parameter 7 according to
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its conditional a posteriori distribution p(n|z1. N, w1 N),
which reads

p("l|$1...N7w1...N)
o8 p(xl...N;wl...N |7I)P(7l)
x p(z1.~|wi.~,pwB) plwi. N | Ay, 0)p(m) (7

where p(n) is the a priori distribution of the parameter 7. A key
point in the proposed Gibbs sampling is the reparametrization
of the hyperbolic distribution £ = ¢(n) = (A, a, b, B, p):

L=A=m

m==&
52:a:7/6:\/77§—77§/7]4 2 = /& + &2
G=b=vb= s —mm | s = 4
Ea=0=mns M= VEs/e
& =pn=ms s = &5

With the new parametrization, we assume a Gaussian prior
for the couple (u, 3), a gamma prior for b and a GIG prior for a
given b [28]

(1) ~Atom,. 1,
b ~ Gamma((, x)

alb~ GIG(=1/2, \/bip, /b )

where (m,, R,,(, x,w, ) are additional fixed hyperparame-
ters. The gamma and GIG priors ensure the positivity constraint
on the parameters a and b. The a posteriori distribution of the
parameter € becomes

p(§|$1...N,w1...N)
o p(z1..5|wi.n,p B) plwr. N | A a,b)

o N ((g) ;mgng) f(X,a,b) ®)

where we note that the posterior is separable into two subvectors
(1, B) and (A, a, b). The first subvector has a Gaussian distribu-
tion with the following mean and covariance:

my, = Ry(R;'ma+ R, 'm,)
Ry = (RJI +R;1)_1

where the data-dependent quantities m, and R, have the fol-
lowing expressions:

md:Rd<Z§iﬁi>* R(;l:N(Zinf %>

and hence the couple (u, 3) can be exactly sampled. However, to
sample the distribution f( -) of the second subvector, we need
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another Gibbs cycle of the three parameters (A, a, b). In other
words, we adopt the following scheme:

(o™ [Twi)”

1. Aa,b~ f(A) x AOL

2.a|\ b~ GIG (N/\—l/Z, b(Zwi—i—m/;)

\/ b(>wit+ w/w)>

bC—le—%b(a Zw,—l—% E'w;1+2x>
Kx(b)N

3.b|Aan~ f(b) x

C))

where the sampling of the parameters A and b is performed by

- the ratio method as in the GIG case.

III. BAYESIAN BLIND SEPARATION

In this section, we assume that n sources modeled by the gen-
eralized hyperbolic distribution (2) are indirectly observed. The
collected data are a noisy linear mixture of the sources. The for-
ward model of the observation process can be cast in the simple
matrix form (1) or, equivalently

X=AS+N

where the (m x T')-matrix X contains the m observed rows,
the (n X T')-matrix S contains the n unobserved source rows,
and N is the noise corrupting the observations. We assume that

each source row s; = (s;(1),...,s;(T)) follows a generalized
hyperbolic distribution H(A;, &4, 55,6, 1;) and that each
noise row m; = (n;(1),...,n;(T)) is white and Gaussian

with a variance 0]2» (i.e., at time ¢, the noise covariance is
R, = diag(o?,...,02)). This source model, in the context
of the blind source separation problem, is mainly motivated by
the flexibility and the normal mean-variance mixture form of
the GH distribution. In fact, as will be seen later in this section,
the hidden structure of the normal mixture is compatible with the
BSS structure, yielding an efficient implementation of the
Gibbs sampling algorithm. In addition, the GH model is able to
capture both the heavy tails and the asymmetry of the sources.
Thus, it provides an implicit way to exploit the sparsity and
skewness of the sources and enhance their statistical
diversity. The identification problem is very ill posed as the
(m x n)-mixing matrix, the sources S, and their corresponding
hyperparameters g = (\;, aj, B, 65, j1)’}—; are unknown.

The Bayesian formulation is adapted to this ill-posed problem
as it consistently takes the structure of the observation process
into account. The noise is indeed modeled in the inference
process and any additional prior information can be incorpo-
rated. Given the observations X, the a posteriori distribution
of the unknowns 6 = (A, R,,, S, n), according to the Bayesian
rule, is

(0 X,Z) ocp(X [0, T)p(6]| 1) (10)



SNOUSSI AND IDIER: BAYESIAN BLIND SEPARATION OF GENERALIZED HYPERBOLIC PROCESSES

where 7 contains the prior information such as the noisy mix-
ture, the generalized hyperbolic density of sources, the white-
ness of the noise, and so forth.

In general, (10) yields a complicated non linear function
of the parameters to estimate. However, the Bayesian sam-
pling tool is efficient to deal with the challenging inferential
task. For instance, the Gibbs sampling is appropriate for
the separatlon problem. It produces a Markov chain gk =
(A R (k) S(k) W(k) ~(k)), which converges, in distri-
butlon, to the target a posterlori (10). This can be seen when
considering the sources S as the missing variables to estimate
the parameters (A, R,,) and that both the sources .S and the
hidden variances W are the missing data for the estimation
of the hyperparameters 7. Thus, we have a data augmentation
problem with two missing variables shells. The formulation
of the generalized hyperbolic density as a continuous mean-
variance normal mixture leads to an efficient implementation
of the Gibbs sampling as the conditioning of the sources is
Gaussian and that of the hyperparameters is implementable
with the ratio method. In the following, we outline the Gibbs
sampling scheme for the source separation problem.

A. Gibbs Algorithm

The cyclic sampling steps are as follows:

1. Sample S ~ p(S| X, A, R,, W, %)
2. Sample W ~ p(W | S, %)
3. Sample 7} ~ p(n| S, W)

4. Sample (A, R,)) ~ p(A,R,, | X, S). (11)

1) Sampling the Sources: Given the data X and the
remaining components of #, the sources are temporally in-
dependent and their a posteriori distribution is multivariate
Gaussian, obtained by applying the Bayes rule

p(S|X.0)

T
X HN(-"?t;ASan)N(St;M + B © wy, diag(w;))
t=1

s (1)) (12)

st7 I"’e

Hmﬂ

where © is the element by element multiplication operator. The
means and the covariances of the sources at time ¢ have the
following expressions:

L. (t) =

Bo(t) =

where P,, = diag(w;) is the a priori source covariance and
1+ B ® w; is the a priori mean.

2) Sampling the Variances and the Hyperparameters: The

conditioned sampling in the second and third steps of the Gibbs

algorithm (11), given the sampled sources S, are the same as in
the previous Section II. In fact, given the sources, the variances

[A*R,'A+ P,

13
() (AR o + P (it Bow)] )
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W and the hyperparameters 7 are independent of the data X,
as they are not related to the mixing process. They are spatially
independent and for each component j = 1...n, the variances
row w; is sampled according to a GIG distribution as in (6)
and the hyperparameters 1; = (A}, &, B, 6;, f1;) are sampled
according to the distributions (8) and (9).

Remark 2: The Gibbs sampling scheme (11) can be improved
by integrating with respect to the sources S when sampling the
variances W. The a posteriori distribution of the variances is
then

f(W) xp(W|X,n,A,R,)
x p(X |W,A R,)p(W |n)

x [ p(X,S|W,AR,)dSp(W |n)

T
x H./\/(.’Bt;
t=1

x p(W|mn)

where P,, is the diagonal covariance diag(w;). As an exact
sampling procedure for this distribution is not available, we can
implement a hybrid version of Gibbs/Hasting-Metropolis ver-
sion where the instrumental distribution g( - ) is the first one pro-
posed in the Gibbs algorithm (11), that is

g(w; (1)) = GIG(w; (£); A; = 1/2,7} + 57,8}

+(s4(t)

The new hybrid version has the following scheme:

— 11)%).

1. Sample W ~ g(W)

accept W with probability p
(W) (W)
g(W)t (WD)
2. Sample S ~ p(S| X, A, R,,,W,7)
3. Sample n ~ p(n| S, W)
4. Sample (A, R,) ~ p(A,R,, | X, S).

=min| 1,

(14)

The gain of performance of the hybrid version (14) with respect
to the first Gibbs scheme (11) can be shown when considering
the effective number of subvectors in the Gibbs sampling cycle.
For instance, in the scheme (11), the number of subvectors is
three: 1) sample S, 2) sample 7, 3) sample (W, A, R,,) [steps
2 and 4 are independent]. However, in the hybrid version, as-
suming the first step is exact, the number of effective subvectors
is onlytwo: 1) sample (W, .S) and 2) sample (5, A, R,,).

3) Sampling the Parameters A and R,,: The sampling of the
mixing matrix and the covariance matrix given the data and the
sources is the same as in [7]. For sake of completeness, we report
hereafter the sampling distributions. For a Jeffrey prior (see [30]
for details of Fisher matrix computation)

n— (m+1)

p(A,R O(|R 1|
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the a posteriori distribution of (A, R;;") is Normal-Wishart
p(ARY) = N(A; A, To)Wy, (R, 51, 5,
with parameters

A, = R..R_}
{ L, = 7R @R,
v,=T —n
{ Ep = % (sz - stR;Slex)

where ® is the Kronecker product [31] and R,; denotes the
empirical covariance between vectors a and b for 7" samples

1 T
Rab = ?;atb:

Remark 3 (Overrelaxation): The covariance I', of the
mixing matrix is inversely proportional to the signal-to-noise
ratio (SNR). Thus, in the case of high SNR, the covariance
is very small leading to a slow convergence of the Markov
chain. In other words, the conditional distribution of the mixing
matrix is very picky around a mean value depending on the
sampled sources due to a high correlation with the latter. The
Markov chain is then unable to efficiently explore the parameter
domain. To alleviate this problem, a general solution proposed
by Adler [32] for the Gaussian case (and reconsidered by Neal
[33] for more general conditional distributions) consists in
overrelaxing the chain by introducing a negative correlation
between the updates. If the parameter to be updated 6 has a
Gaussian distribution A/(m, LL"), the retained value at itera-
tion k is the following:

0" =m+a(m—-0""V)+/1-a?Lu

where u is a standard Gaussian vector and o has a value in the in-
terval [0, 1[ controlling the overrelaxation degree. The modified
Markov chain is still ergodic and has the posterior as its equi-
librium distribution [33]. In the BSS algorithm (11), we only
modify the update steps 1 and 4 corresponding to the condi-
tional Gaussian sampling of the sources and the mixing matrix.
The remaining non-Gaussian steps are kept unchanged.

Remark 4: 1In its algorithmic aspect, the separating method
relies on matching the empirical data covariance R, to its
theoretical expression AP, AT + R, where P, = diag(w;)
is the nonstationary source covariance simultaneously updated
through the Gibbs iterations. This represents an unification
between the use of higher order statistics and nonstationary
second-order statistics. In fact, virtually introducing the hidden
variances w1 makes the sources Gaussian but not stationary.
The log-likelihood is then the Kullback—Leibler divergence
between the matrices R, and AP, AT + R,,. As the variances
are sampled through the Gibbs iterations, the effective distribu-
tion of the sources, at convergence, is temporally stationary but
not Gaussian.
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B. Source Estimation

In the noisy mixture case, the estimation of the mixing ma-
trix is not equivalent to the estimation of the sources. The ma-
trix 21_1 is not a separating matrix. In other words, the signals
A_lX are not a consistent estimate of the sources. However,
the Bayesian framework allows an efficient consistent joint es-
timation of the sources. After convergence in distribution (after
aburn in period ky), the Gibbs algorithm (11) yields a sequence
(Zl(k), R, (k), S'(k), W<k) , f](k))kzko distributed according to its
a posteriori p(A, R,,,S,W,n| X,T). Based on this sequence,
two estimates can be simply obtained: the posterior mean (PM)
minimizing the expected quadratic loss and the conditional pos-
terior mean minimizing the conditional quadratic loss.

1) Posterior Mean: The expected quadratic loss is the pos-
terior mean of the quadratic error and is defined as follows:

C(8) = BI(S - §) | X, 1]
_ / (S — 5)?p(8" | X,T)dS".

s

Minimization of C(S) yields the posterior mean estimate
Spn approximated by the empirical mean of the sequence

(8" ) k>ko

Spu = E[S| X, 1]

1 e 4
k=kq

Remark 5: The sequence (S(k))kz ko 1s obtained through the
Gibbs sampling in an augmented variable procedure. The aug-
mented variables are the remaining components of 8 (6\s =
(A, R,,,W,n)). The variance of the empirical mean estimate
can be further reduced by using instead the sequence of condi-
tional expectations of the sources given the sampled parameters

éiks) This is known as the Rao—Blackwell scheme [29]

K

Srp_pM = % Z E[S|é§];)7X:|)k>k0
k=kg B

where the conditional expectations are simply obtained from
(13).

2) Conditional Posterior Mean: Given an estimate of the
mixing matrix, the noise covariance, the hidden variance, and
the GH hyperparameters

1 o (k) 1 o (k)
A:?ZA ; R,,,:FZRn;
k=ko k=ko

1 e~ (k)
W:EZW

k=kg

1 K
N ()
n—K:n

z~
I
o

o
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the conditional distribution of the sources is a multivariate
Gaussian at each instant ¢. Therefore, minimizing the expected
quadratic loss C(S| 9\5) is equivalent to maximizing the a
posteriori distribution and yields the following linear (with
respect to data) estimate:

where P, is the prior diagonal covariance of the sources
varying in time

P, = diag[w,].

IV. SIMULATION RESULTS

A. Parameter Estimation

In this paragraph, we illustrate the performance of the
Bayesian sampling algorithm GibbsgHyp (5) proposed in
Section II-B. Raw data are observed and our purpose is the
estimation of the generalized hyperbolic parameters. Following
the example in [27], we consider the estimation of the param-
eters of an NIG distribution, in which case A is set to —1/2
rather than sampled. A time series of 5000 i.i.d. samples is
considered. The true values are « = 2,0 = 1,6 = 1,4 = 2.
The hyperparameters are fixed as follows: m, = (0,0),R, =
I, = 0.1,x = 0.1,w = 0.01,% = 0.2. In Fig. 2, the first
column illustrates, from top to bottom, the NIG time series,
its empirical histogram, and the estimated log-distribution
superimposed to the true log-distribution. One can note the
heavy tails, the asymmetry of the distribution, and the accuracy
of its identification. In the second column, we have plotted the
evolution of the parameters Markov chains *) and in the third
column the evolution of their corresponding empirical sums.
We note the convergence of the empirical sums near the true
values. Table I contains the posterior mean estimates of the
GH parameters. In order to quantify this accuracy, it is more
meaningful to evaluate the closeness of the estimated distribu-
tion to the true distribution in a parametric-free way. In Table I,
several divergence measures between densities are computed:
Kullback-Leibler divergence, Kolmogorov distance (maximum
of the absolute difference between cumulative distributions),
and the L1 and L2 distances. We note the performance of the
proposed algorithm in terms of the free parametric accuracy
evaluation.

In order to illustrate the difficulty of estimating the parameter
A, the likelihood (for the same sample x ) with respect to A
when the other parameters are fixed

L) =plx1.n| A o, B,6,p1)

= ﬁ 7/6 ) KA—%(Q 82+ (z; — 1)?)
SEVRTKA(8Y) (V82 A+ (i — )2/ a)z A
eB@i—p)
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is plotted in Fig. 3 for different values of the remaining parame-
ters in 7). As clearly appears in Fig. 3, the likelihood is peaked at
a position which is strongly dependent on the values of the other
parameters. When the parameters are set to their true values, the
likelihood profile is concentrated around its value (A\* = —0.5).
However, when the parameters are not set to their true values,
the position of the peak is not close to the true parameter.

B. BSS: Low SNR

In this paragraph, we illustrate the performance of the Gibbs
separating algorithm on simulated data in a very noisy con-
text. The number of sources is equal to the number of detec-
tors. Three sources are generated according to the GH model
(2). The number of samples is 5000. They are artificially mixed
by a mixing matrix

0.59 0.27 0.24
0.59 0.82 0.12
0.53 0.49 0.96

A" =

and corrupted by a white noise (R, = 2 I) such that the SNRs
are 0, 4, and 4 dB for the three detectors, respectively. Given
only the observed data, the Gibbs algorithm yields a Markov
chain (A(k) R, * S(k) w ,71™) eny based on which one
can obtain the estlmatlon of the mixing matrix, the noise covari-
ance, the sources, and their probability densities. Fig. 4 shows
the convergence of the empirical sums of the mixing matrix
Maflfg)v chains near their true values. The norm of the columns
of A*" is set fixed to one in order to fix the scale indeterminacy
of BSS. The empirical mixing matrix mean is

0.5761 0.2788 0.2485
0.5990 0.8223 0.1310
0.5553 0.4954 0.9591

A=

Moreover, Fig. 5 shows the evolution of a performance 1ndex

that evaluates the closeness of the matrix product P = A A*
to the identity matrix. Following [34], it is defined by (when P
approaches the identity matrix, the index converges to zero)

(Y Pul”
- — max; [P |?
|Pi;[?
TRy
+ EJ: (zl: max; |P;|?

N | =

The convergence of the empirical mean of the performance
index to —18 dB corroborates the effectiveness of the separating
algorithm in estimating the mixing matrix. At convergence, the
product P is

. 1.0682 —0.0096 —0.0175
P=A A"=| -0.0464 1.0094 —0.0007
—0.0331 —-0.0002 1.0141
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Fig. 2. From top to bottom, the first column, respectively, illustrate a portion of a simulated time series of NIG distribution, the empirical histogram, and the
estimated distribution superimposed with the true sampling distribution. The second column shows the Markov chains of the parameters (v, 3. 8, ), respectively.
The third column contains the corresponding empirical sums, which converge near the true values.

Fig. 6 illustrates the convergence of the empirical mean of
the noise variance Markov chain &%k) close the true value o}:.
Therefore, the Gibbs separating algorithm does not need a pre-
vious knowledge of the noise covariance, unlike the proposed
methods in literature (FastICA [35] and SOBI [8]) dealing with
the noisy case. In Fig. 7, the estimated source log-distributions
(corresponding to ) = (1/K) Y. #™) are superimposed to
the true sampling distributions. We note the heavy tails and

the asymmetry of the distributions and the accuracy of their
estimation. In Table II, we have reported the estimated GH
parameters for the three sources, within the true values. In
order to better quantify the accuracy of the hyperparameter
estimation, different measures of closeness between distribu-
tions are reported in Table III: Kullback-Leibler divergence,
Kolmogorov distance (maximum of the absolute difference
between cumulative distributions), L1 and L2 distances. The
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TABLE I
THE ESTIMATED PARAMETERS 7 ARE CLOSE TO THE TRUE PARAMETERS 7*.
DIFFERENT MEASURES OF DISTRIBUTION CLOSENESS CORROBORATE THE
ACCURACY OF THE DISTRIBUTION ESTIMATION

D(pllp*) ]
Kullback — Leibler | 0.0002 al 2 [2.06
Kolmogorov 0.0034 611 | 0.97
L1 0.0104 S 1]105
L2 0.0045 w2 | 2.00

sources can be estimated by either the posterior mean Spa

(approximated by the empirical mean of the sequence S (k)), its
Rao—Blackwellized version S'RB_pM, or the conditional poste-
rior mean S'CPM (see expressions in Section III-B). The mean
quadratic error between the estimate and the true sources is
—3.66 dB, —3.66 dB, and 0 dB for Spyi, Sre_pu, and Scpu,
respectively. The accuracy of the source estimation is less
impressive than the estimation of their probability distributions.
This can be expected, as the noise level is high and the size
of the estimated matrix S is equal to the size of the observed
matrix X. In other words, the number of unknowns is equal
to the number of observed data. However, one can note that
the performance of the posterior mean estimate S'pM is better
than the conditional posterior mean S'CPM as all the remaining
parameters are integrated over within the former estimate.

C. BSS: Underdeterminate Case

The proposed Gibbs algorithm (11) represents an efficient so-
lution to the difficult case of noisy underdetermined mixture
with a high SNR. In fact, the generalized hyperbolic distribution
provides a flexible parametric framework to exploit the sparsity

of the sources. Three GH sources are generated and artificially
mixed by a (2 x 3) mixing matrix A* = 1 é 015 LA
white Gaussian noise, such that the SNR is 26 dB, is added to
the mixture. Five thousand samples are considered. In order to
fix the scale indeterminacy, the first raw of the mixing matrix is
fixed to [1, 1, 1].

The convergence of the empirical means of the Markov chains
produced by the Gibbs algorithm is shown in Fig. 8. One can
note the convergence of the empirical posterior mean near the
true value of the mixing matrix. However, as was shown in [7],
the convergence (in distribution) of the Markov chain is very
slow in the high SNR case. In fact, the mixing matrix covariance
is proportional to the inverse of the signal to noise ratio. There-
fore, the Markov chain does not explore the parameter space
efficiently. Fortunately, the Markov chain is often stacked near
the global mode of the posterior distribution. At convergence,
the posterior mean estimator is

a_( 1 1 1
~\ 10014 3.0519 0.4872 )"

The Gibbs algorithms yields an accurate estimation of the
source distributions as well. In Fig. 9, the estimated log-den-
sities are superimposed to their true shapes. Quantitative
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Fig. 3. The profile of the likelihood (incomplete likelihood) p( MM~ n) is
peaked around a value which is highly dependent on the current values of the
remaining GH parameters. (a) A-likelihood p(A| 1. n,9*) with true param-

eters (a* = 2,8* = 1,6 = 1,p* = 2); (b) A-likelihood with parame-
ters (e = 1,8 = 0.2,6 = 0.1, = 0); (c) A-likelihood with parameters
(a=1573=0508=2pu=1).

evaluation is illustrated in Tables IV and V, where the estimated
GH parameters 7) and several density divergences are reported.
The proposed Gibbs algorithm is thus able to blindly estimate
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Fig. 6. Convergence of the empirical mean of the noise variance Markov chain
near the true value o) = 2.

the heavy tails and the asymmetry (within its sign) of the
sources.

densities (in solid lines).

V. CONCLUSION AND FUTURE RESEARCH

To conclude, we have proposed a Bayesian sampling solution
to the source separation problem. The proposed algorithm has
shown promising results in two difficult cases: low SNR and
underdeterminate mixture. The key point of this contribution
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. TABLEII
EMPIRICAL MEANS (&, 3, 6, fi) OF THE GH MARKOV CHAINS AND THEIR
TRUE VALUES (a*, 3%, 6%, u*)

Source 1 Source 2 Source 3
o 7 n" n n* n
«a 0.3 ] 0.3056 0.2 | 0.1715 0.2 0.3291
3 0.1 | 0.0903 0.01 | 0.0055 —0.1 | —0.1154
0 1 |1.1634 1 0.8328 1 0.9473
I 0.0385 0 | —0.0418 0.0776
TABLE III

DIFFERENT DENSITY DIVERGENCE MEASURES BETWEEN THE TRUE
DISTRIBUTION (WITH PARAMETER 7*) AND THE ESTIMATED ONE
(WITH PARAMETER 1})
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Fig. 9. True log-densities (in dashed lines) superimposed to the estimated log-
densities (in solid lines) in the underdetermined case.

__ TABLEIV
EMPIRICAL MEANS (¢, 3, 6, /i) OF THE GH MARKOV CHAINS AND THEIR
TRUE VALUES (a*, 8%, 6, ) IN THE UNDERDETERMINED CASE

D(pllp*) Source 1 | Source 2 | Source 3
Kullback — Leibler | 0.0048 0.0062 0.0033
Kolmogorov 0.0304 0.0372 0.0310
L1 0.1106 0.1126 0.1048
L2 0.0418 0.0462 0.0396
11
1.05
0.95 0.5 1 1.5 2 25
x10*
3.3
3.2
3.1
3 ......................................................
29 0.5 1 1.5 2 25
x10*
0.54
0.52
0.5 [--errmmssrrrms o
048 n/\/\v/’//\__\
0 0.5 1 1.5 2 2.5
x10*

Fig. 8. Convergence of the empirical means of the mixing coefficient Markov
chains in the underdetermined case. The first raw of A( k) is set fixedto [1, 1, 1].

is the modeling of sources by the generalized hyperbolic pro-
cesses. The GH process is a five-parameter distribution able to

Sourcel Source2 Source3
| m n n" n n* n
« 0.2 ] 0.1901 0.5 | 0.4767 0.2 | 0.1603
"B | 0.1]0.0654 0.1 | 0.0995 —0.1 | —0.0862
5 1 | 1.2196 1 | 0.92528 1 0.8433
I 0.9076 —0.1354 0 —0.7417
TABLE V

DIFFERENT DENSITY DIVERGENCE MEASURES BETWEEN THE TRUE
DISTRIBUTION (WITH PARAMETER 7*) AND THE ESTIMATED ONE
(WITH PARAMETER 7)) IN THE UNDERDETERMINED CASE

D(p||p*) Source 1 | Source 2 | Source 3
Kullback — Leibler | 0.1851 0.0096 0.1644
Kolmogorov 0.2740 0.0638 0.2594
L1 0.8023 0.1423 0.6713
L2 0.3631 0.0740 0.3119

cover a wide range of tail behaviors as well as the asymmetry
characteristics. Its normal mean-variance continuous mixture is
compatible with the hidden variable structure of the source sep-
aration problem. Therefore, the Gibbs sampling is efficiently
implemented. Morover, this provides us with an original uni-
fication of the exploitation of the high-order statistics and the
nonstationary second-order statistics to solve the BSS problem.
Taking into account the noise in the model and the joint esti-
mation of its noise covariance are the main reasons of the ro-
bustness of the proposed method in a high noisy environment.
Although we have proposed a sampling step for the parameter A
of the generalized hyperbolic distribution, the Gibbs algorithm
yields poor results when this parameter is not set to a fixed value.
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We have noted this behavior also in the estimation of the GH
parameters of an observed raw sample as shown in Fig. 3. Fur-
ther research should be done to clarify the role of the parameter
A and the possibility of incorporating its sampling in the sep-
arating Gibbs algorithm. Extending the generalized hyperbolic
model to incorporate a temporal correlation is also an interesting
direction to investigate in order to improve the separating algo-
rithm performance.

APPENDIX
RATIO METHOD

The ratio method is an acceptation/rejection sampling proce-
dure [36]. Let f(x) the density to sample from and assume we
have the expression of A(z) o f(x). Consider the set Sy,

Sy ={(u,v)]0 < u < +/h(v/u)}.

Then, we have the following theorem.
Theorem 1: If k,, = sup,, v/h(x) and k,, = sup,, |z|\/h(z),
then we have the following statements.
* The rectangle (0, k,,; —k,, k,) encloses the set Sj,.
o If h(z) = 0 for z < 0, the enclosing rectangle is
(0, ki 0, k).
¢ Let the point (U, V') be sampled uniformly within the rec-
tangle (0, k.; —ky, ky,) (or (0, k0, k). If (U, V) € Sy,
then X = V/U is distributed according to f(z).
The ratio rejection algorithm is then the following:

1. Compute k,, = sup \/h(z) and k,, = sup |z|\/h(z).
2. Sample uniformly U and V in [0, k,,] and [0, k. ].
3. IfU < \/h(X),accept X = V/U, else return to 2.
15)

Example 1 (GIG Sampling): Let f(x) x
22 Lexp(—0.5(y2x + 6%z71)) be a GIG distribution
to sample from. First, assume A > 0; the case A < 0 will be
studied later. Then, let the following transformation:

{6276
n="/6

which leads to the following function h(z)

h(z) = 22~ exp(—0.5b(nz + n~'z™1))

where we note that we can sample z according to p(z)
h(z) = x*~Yexp(—0.5b(z + 1)) and then transform z to
x/n.

Now, the key point of the sampling procedure is the fact that
we have explicit formula for the maximizers of /h(z) and

|/ h(z)

A—1+/(A—1)2 b2

T = arg max,

h(z) =

b—— . (16)
Ym = argmax,|z|[\/h(z) = LIW
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Then, compute k,, and &, according to

h(xm)

k, =
{ ky = |ym| V h(ym)

and perform the two remaining steps of the algorithm (15). The
obtained z is divided by the parameter 7).

The case of A < 0 is simply obtained as follows.

1. Sample y ~ GIG(—A\,b,1).

2. Putz = 1/y.

3. Replace = by z /7.
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