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ABSTRACT

In this contribution, we propose a Bayesian sampling solution to
the problem of noisy blind separation of generalized hyperbolic
(GH) signals. GH models, introduced by Barndorff-Nielsen in
1977, represent a parametric family able to cover a wide range of
real signal distributions. The alternative construction of these dis-
tributions as a normal mean-variance (continuous) mixture leads
to an efficient implementation of the MCMC method applied to
source separation. The incomplete data structure of the GH distri-
bution is indeed compatible with the hidden variable nature of the
source separation problem. Our algorithm involves hyperparame-
ters estimation as well. Therefore, it can be used, independently,
to fit the parameters of the GH distribution to real data.

1. INTRODUCTION

In this paper, we consider the blind source separation problem
as the reconstruction of sources from a noisy linear instantaneous
mixture:

xt = Ast + nt, t = 1, ..., T,

where xt, st and nt are respectively the (m×1) observation vec-
tor, the (n× 1) unknown source vector and the (m× 1) unknown
noise vector at instant t. A is the (m × n) unknown mixing ma-
trix. A challenging aspect of the BSS problem is the absence of
information about the mixing matrix A.

Many proposed algorithms are designed to linearly demixing
the observations x1..T on the basis of independent identically dis-
tributed (iid) source modeling. The separation principle in these
methods relies on the statistical independence of the reconstructed
sources. This is the case of Independent Component Analysis
(ICA) [1]. However, ICA is designed in a noiseless framework.
In addition, the separation necessarily relies also on higher order
statistics, allowing at most one source to be Gaussian. In [2], the
noisy case was tackled with the maximum likelihood approach us-
ing the EM algorithm, the sources being modeled by finite Gaus-
sian mixture. However, exact implementation of the EM algorithm
is computationally expensive. In addition, the choice of the num-
ber of Gaussian components remains a difficult task and limits the
use of the separation method to some particular types of real sig-
nals (e.g. audio signals, piecewise homogeneous images [3]).

Our contribution is to efficiently implement a maximum like-
lihood solution in the noisy case, the sources being iid. The pro-
posed method is based on the estimation of the mixing matrix,
the source distribution parameters and the noise covariance ma-
trix. Thus, the same algorithm can be applied to overdetermi-
nate as well as underdeterminate cases without any prewhitening
step. As the underdeterminate case can be solved by exploiting

the sparsity of sources [4], the generalized hyperbolic (GH) dis-
tributions are well appropriate to model the sources and capture
their heavy tails and also their skewness. The method implicitly
incorporates a denoising procedure and it is consequently robust
to high level noise. The key point is the use of Barndorff-Nielsen’s
Generalized hyperbolic distributions [5]. Their representation
as normal mean-variance continuous mixture models is remark-
ably compatible with the hidden structure of the source separation
problem: they can be interpreted either as stationary non Gaus-
sian, or as Gaussian non stationary processes. This provides a
new insight into the unification of the use of non stationary sec-
ond order statistics and stationary higher order statistics to solve
the problem of blind source separation. In addition, this leads to
an efficient Bayesian Gibbs sampling implementation, as the con-
ditionals of the sources and the mixing matrix are Gaussian. To
this extent, we obtain a generalization of the finite Gaussian mix-
ture modeling while preserving the benefit of normal conditioning
in the Gibbs sampling solution. This work also generalizes the
Gibbs separating algorithm in [6] where sources are modeled by
t-Student distributions, since the latter form a subclass of the GH
family.

The paper is organized as follows. Section 2 is devoted to the
GH law and to its properties. More specifically, we present an orig-
inal Bayesian algorithm to fit the five parameters of the GH distri-
bution from an observed finite sample. In Section 3, a Bayesian al-
gorithm is introduced to solve the blind source separation problem
in the noisy case. Finally, some simulation results corroborating
the efficiency of the proposed algorithm are presented.

2. GENERALIZED HYPERBOLIC PROCESSES

2.1. Description and properties

In this paragraph, we briefly describe the GH distributions and
their main properties. The GH law is mainly used to fit financial
data. It corresponds to a five parametric family H(λ, α, β, δ, µ) in-
troduced by Barndorff-Nielsen [5]. A random variable X belongs
to H(λ,α, β, δ, µ) if its pdf reads:
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The valid domain for the parameters is as follows:

λ, µ ∈ �
,

8<:
δ ≥ 0, α > 0, α2 > β2 for λ > 0,
δ > 0, α > 0, α2 > β2 for λ = 0,
δ > 0, α ≥ 0, α2 ≥ β2 for λ < 0.

GH distributions enjoy the property of being invariant under affine
transformations:

X ∼ H(λ,α, β, δ, µ) =⇒ aX +b ∼ H
“
λ,

α

a
,
β

a
, aδ, aµ+b

”
.

Many known subclasses can be obtained, either by fixing some pa-
rameters or by considering limiting cases: λ = 1 and λ = −1/2
respectively yield the hyperbolic and the NIG distributions (the lat-
ter being closed under convolution) ; λ = 1 with δ → 0 provides
the asymmetric Laplace distribution ; λ = −1/2 with α → 0
corresponds to the Cauchy distribution ; the asymmetric scaled t-
distribution is obtained for α = |β|, etc. Figure 1 depicts examples
of GH distributions. One can note that a wide range of tail behav-
iors is covered.
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Fig. 1. Examples of the GH distributions:
(a) hyperbolic case: λ = 1, α = 1, β = .5, δ = .001, µ = 0 ;
(b) Cauchy case: λ = −.5, α = .01, β = .001, δ = .01, µ = 0 ;
(c) Student case: λ = 3, α = 1, β = 1, δ = 1, µ = 0.
Pdfs appear on top row, log densities on bottom row. The dashed
line corresponds to the Gaussian distribution with the same mean
and variance.

An important feature of the GH distribution is its expression
as a continuous normal mean-variance mixture:

H(x;λ, α, β, δ, µ) =

Z
∞

0

N (x;µ+βw, w)GIG(w; λ, γ, δ) dw

(2)
where the variance W of each Gaussian component follows a Gen-
eralized Inverse Gaussian (GIG) distribution (w > 0):

GIG(w; λ, γ, δ) =
(γ/δ)λ
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In other words, the GH process can be seen as a doubly stochastic
process:

1. First generate1 W ∼ GIG(λ, γ, δ).

2. Then generate X ∼ N (µ + βW,W ).

Such a property will be a key point both in the estimation of the
parameters and in the BSS problem.

2.2. Parameter estimation

The estimation of parameters η = (λ, α, β, δ, µ) from an iid GH
sample {xi}i=1..N is a difficult task. As reported in [8], this dif-
ficulty is essentially due to the flatness of the likelihood with re-
spect to the parameters and particularly with respect to the param-
eter λ. In the literature, several contributions are restricted to the
estimation of parameters within particular subclasses (fixing the
value of the parameter λ). Recently, Protassov [9] used the incom-
plete data structure of the problem (2) to propose an EM algorithm.
The EM algorithm is however restricted to work within subclasses,
that is for fixed λ. A Bayesian sampling solution is proposed by
Lillestol [10] for the case of NIG distribution. However, the pro-
posed algorithm is restricted to λ = −1/2. In this paper, we pro-
pose an original contribution to GH parameter estimation, without
restrictions, exploiting the latent problem structure and based on
Gibbs sampling. We propose a reparametrization of the GH distri-
bution in order to efficiently sample the conditionals2. The Gibbs
sampling algorithm for estimating the parameters η consists in al-
ternating the sampling of the hidden variances w1..N (given the
parameter η) and the conditional sampling of the parameter of
interest η (given the variances). The a posteriori distribution is,
according to the Bayes rule,

p(w1..N | x1..N , η) =

NY
i=1

GIG

„
wi; λ − 1

2
, γ2 + β2, δ2 + (xi − µ)2

«
(3)

where we note that the GIG density is a conjugate prior (the a pos-
teriori density belongs to the same family). The sampling of the
variances relies then on the efficient sampling of the GIG distri-
bution. This is performed by the Ratio method [11] which is an
exact rejection sampling method [7]. The second step of the Gibbs
algorithm consists in sampling the parameter η according to its
conditional a posteriori distribution p(η | x1..N , w1..N ) which is
written as,

p(η | x1..N , w1..N ) ∝ p(x1..N , w1..N | η) p(η) (4)

where p(η) is the a priori distribution of the parameter η that we
suppose flat in the sequel (p(η) ∝ cte). A key point in the pro-
posed Gibbs sampling is the reparametrization of the hyperbolic
distribution: ξ = φ(η) = (λ, a, b, β, µ):8>>>><>>>>:

ξ1 = λ = η1

ξ2 = γ/δ =
p

η2
2 − η2

3/η4

ξ3 = γ δ =
p

η2
2 − η2

3 η4

ξ4 = β = η3

ξ5 = µ = η5

⇐⇒

8>>>><>>>>:
η1 = ξ1

η2 =
√

ξ2ξ3 + ξ4

η3 = ξ4

η4 =
p

ξ3/ξ2

η5 = ξ5

1Among the Matlab files freely available from the first author, the pro-
gram rGIG.m efficiently simulates a GIG random variable based on the
ratio method [7].

2this reparametrization is different from that considered in [9].
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3. BAYESIAN BLIND SEPARATION

In this section, we assume that n GH sources are indirectly ob-
served. The collected data are a noisy linear mixture of the sources.
The forward model of the observation process can be cast in the
following simple matrix form:

X = AS + N ,

where the (m × T )-matrix X contains the m observed rows, the
(n×T )-matrix S contains the n unobserved source rows and N is
the noise. We assume that each source row sj = (sj(1), .., sj(T ))
follows a GH distribution H(λj , αj , βj , δj , µj) and that each noise
row nj = (nj(1), .., nj(T )) is white with a variance σ2

j . The
identification problem is very ill posed as the (m × n)-mixing
matrix, the sources S and their corresponding hyperparameters
η = (λj , αj , βj , δj , µj)

n
j=1 are unknown.

The Bayesian formulation is adapted to this ill posed problem
as it consistently takes the structure of the observation process into
account. The noise is explicitly modeled in the inference process
and any additional prior information can be incorporated. Given
the observations X , the a posteriori distribution of the unknowns
θ = (A, Rn, S, η), according to the Bayesian rule is:

p(θ | X ,I) ∝ p(X | θ, I) p(θ | I), (5)

where I contains the prior information such as the noisy model,
the GH density of sources and the whiteness of the noise.

The posterior likelihood (5) incorporates our knowledge about
the unknowns, but it does not provide a specific estimation proce-
dure. In general, expression (5) corresponds to a complicated, mul-
timodal function of the parameters. Bayesian sampling is an effi-
cient tool to tackle this challenging inference problem. More sce-
cifically, Gibbs sampling is well suited to the separation problem.

It produces a Markov chain θ̃(k) = (Ã(k), R̃n
(k)

, S̃(k), W̃ (k), η̃(k))
that converges, in distribution, to the a posteriori distribution (5).

The formulation of the GH density as a continuous mean-
variance normal mixture leads to an efficient implementation of
the Gibbs sampling as the conditioning of the sources is Gaussian
and that of the hyperparameters is implementable with the ratio
method. In the following, we outline the Gibbs sampling scheme
for the source separation problem.

3.1. Gibbs algorithm

The cyclic sampling steps are as follows:

1. Sample S ∼ p(S | X , Ã, R̃n, W̃ , η̃)

2. Sample W ∼ p(W | S̃, η̃)

3. Sample η ∼ p(η | S̃, W̃ )

4. Sample (A, Rn) ∼ p(A,Rn | X , S̃)

(6)

Given the data X and the remaining components of θ, the
sources have temporally independent, a posteriori multivariate Gaus-
sian distribution. This is obtained by applying the Bayes rule:

p(S | X , θ̃) ∝
TY

t=1

N (st ; µs(t),Γs(t)). (7)

The means and covariances of the sources at time t have the fol-
lowing expressions:8<: Γs(t) =

`
A∗R−1

n A + P −1
w

´
−1

µs(t) = Γs(t)
ˆ
A∗R−1

n xt + P −1
w (µ + β 	 wt)

˜

where Pw = diag(wt) is the a priori source covariance and [µj ]+
[βj ] 	 wt is the a priori mean.

The conditioned sampling in the second and third steps of the
Gibbs Algorithm (6), given the sampled sources S̃, are the same
as in the previous Section 2. In fact, given the sources, the vari-
ances W and the hyperparameters η are independent of the data
X as they are not related to the mixing process. They are spatially
independent and, for each component j = 1..n, the variances row
wj is sampled according to a GIG distribution as in equation (3).

The sampling of the mixing matrix and the covariance matrix
given the data and the sources is the same as in [3]. For a Jef-
frey’s prior (see [12] for details of Fisher matrix computation), the
a posteriori distribution of (A,R−1

n ) is Normal-Wishart:

p(A,R−1
n ) = N (A ; Ap,Γa)Wm(R−1

n ; νp,Σp)

with parameters:8<:Ap = RxsR
−1
ss ,

Γa = 1
T

R−1
ss ⊗ Rn,

8<:
νp = T − n,

Σp = T
T−n

(Rxx − RxsR
−1
ss Rsx)

where ⊗ is the Kronecker product and

Rxx =
1

T

X
xtx

∗

t , Rsx =
1

T

X
stx

∗

t , Rss =
1

T

X
sts

∗

t .

Remark 1 (over-relaxation) The covariance Γp of the mixing ma-
trix is inversely proportional to the signal to noise ratio. In the
case of a high signal to noise ratio, the covariance is very small,
which leads to a slow convergence of the Markov chain. In other
words, the conditional distribution of the mixing matrix is very
sharp around a mean value depending on the sampled sources due
to a high correlation with this latter. The Markov chain is then
unable to efficiently explore the parameter domain. To tackle this
problem, a general solution proposed by Adler [13] in the Gaus-
sian case consists in over-relaxing the chain by introducing a neg-
ative correlation between the updates. If the parameter to be up-
dated θ has a Gaussian distribution N (m,LL∗), the retained
value at iteration k is the following:

θ
(k) = m + α (m − θ

(k−1)) +
p

1 − α2 Lu,

where u is a standard Gaussian vector and α ∈ [0 , 1] controls
the degree of over-relaxation.

Remark 2 Formally, the separation method matches the empiri-
cal data covariance Rxx to its theoretical expression APwAT +
Rn, where Pw = diag(wt) is the covariance of the non sta-
tionary sources simultaneously updated through the Gibbs itera-
tions. This represents an unification between the use of higher
order statistics and non stationary second order statistics.

3.2. Simulation Results

In this paragraph, we illustrate the performance of the Gibbs sepa-
rating algorithm on simulated data, in a very noisy context. Three
sources are generated according to the GH model (1). They are

artificially mixed by a mixing matrix A∗ =

„
1 1 1
1 3 .5
.9 1.8 4

«
and cor-

rupted by a white noise such that the SNR is respectively −0.4,
4 and 2 dB for each of the three detectors. Figure 2(a) shows the
convergence of the empirical sums of the mixing matrix Markov

V - 231



chains to their true values. Figure 2(b) shows the evolution of a
performance index that evaluates the closeness of the matrix prod-
uct P = bA−1A∗ to the identity matrix. Following [14], it is
defined by (when P approaches the identity matrix, the index con-
verges to 0):

1

2

"X
i

 X
j

|Pij |2
max

l
|Pil|2

− 1

!
+
X

j

 X
i

|Pij |2
max

l
|Plj |2

− 1

!#
.

The convergence of the empirical mean of the performance index
to −20 dB corroborates the effectiveness of the separating algo-
rithm.

In Figure 3, the estimated source log-distributions are super-
imposed to the true sampling distributions. We note the heavy tails
and the asymmetry of the distributions and the accuracy of their es-
timation. In order to quantify the accuracy of the hyperparameters
estimation, different measures of closeness between distributions
are reported in Table 1: Kullback-Leibler divergence, Kolmogorov
distance (maximum of the absolute difference between cumulative
distributions), L1 and L2 distances.
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Fig. 2. (a) Convergence of the empirical means of the mixing co-
efficients Markov chains. (b) Convergence of the logarithm of the
performance index to a satisfactory value of -20 dB.
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Fig. 3. Estimated log densities (in dashed lines) are almost identi-
cal to true log densities (in solid lines).

p
D(p̂||p∗) Source 1 Source 2 Source 3

Kullback − Leibler 0.03 0.07 0.04
Kolmogorov 0.01 0.02 0.02

L1 0.04 0.10 0.06
L2 0.02 0.03 0.02

Table 1. The estimated parameters η̂ are close to the true param-
eters η∗. Different measures of distribution closeness corroborate
the accuracy of the distribution estimation.
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