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ABSTRACT

In this paper, we propose a new methodology to generate

random variables distributed according to a Gaussian with

positive support. We narrow the study to the univariate case.

The method consists in an accept-reject algorithm in which

a previous step is added consisting in choosing among sev-

eral proposal distributions the one which gives the highest

average probability of acceptance for given parameters of

the target distribution. This results in a very fast method

since it generates low reject.

1. INTRODUCTION

We propose an accept-reject algorithm to simulate positive

normal variables in the univariate case. The target distribu-

tion (of parameters µ and σ2) is given by:

f(x) =
1

C
exp

(

− (x − µ)2

2σ2

)

1R+ (1)

where C is a normalization constant allowing f(x) to have

an integral equal to one.

C =

√

πσ2

2

[

1 + erf

(

µ√
2σ2

)]

.

Note that the value of C is not needed for the implementa-

tion of the method. The shape of the distribution is varying

with respect to µ and σ2. The mean and the variance of the

normal distribution truncated at zero are:

E[x] = µ +

√

2σ2

π

exp
(

−µ2/2σ2
)

1 + erf
(

µ/
√

2σ2
) ,

Var[x] = σ2 +
µ2

4
−





µ

2
+

√

2σ2

π

exp
(

−µ2/2σ2
)

1 + erf
(

µ/
√

2σ2
)





2

.

This work originates from the problem of (blind) de-

convolution of positive sparse spikes arising in applications

such as optical spectroscopy [1, 2] or DNA sequencing [3].

In such a case, the signal to restore may be modeled as a

Bernoulli-positive Gaussian process. Using an MCMC me-

thod requires to generate samples following a positive nor-

mal distribution. Another example is the blind separation of

positive sources with positive mixing coefficients arising in

chemical mixture analysis applications [4].

In [5, 6], it is proposed to use the inversion method,

which generates u ∼ U[0,1], then computes:

x = µ +
√

2σ2erf−1
(

u + erf(µ/
√

2σ2)(u − 1)
)

where erf is the error function. This method has the advan-

tage to give an explicit expression and to be mathematically

exact. However, in practical applications, the use of erf can

be inefficient if −µ is too large since the precision of the ap-

proximation of erf strongly matters [7] (see also section 4).

Another approach consists in using an accept-reject me-

thod. Of course, the simplest proposal distribution is the

normal distribution, but this method is only suited to the

case where µ is large enough (see figure 2). Robert [7]

presents an approach whose proposal distribution is an ex-

ponential. Contrary to the normal distribution, this one is

suited to the case where µ tends toward −∞ (see figure 2).

Thus, it appears that depending on the shape of the target

distribution, different proposal distributions have to be used

to get a high APA (average probability of acceptation). This

is the main idea of the proposed approach which consists in

determining among different proposal distributions a priori

chosen the one which is the best suited to the target distri-

bution.

In section 2, we present the proposed approach in a gen-

eral setting and apply it to the considered case of simulating

positive normal variables in section 3. Section 4 presents
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some comparison with the inversion and other accept-reject

methods and illustrates that the proposed approach performs

well for all the possible situations which may occur in posi-

tive normal variable simulation. Finally, section 5 concludes

the paper and gives some perspectives to this work.

2. PROPOSED APPROACH

The accept-reject algorithm needs a proposal distribution g
and a constant M such as

∀x ∈ S, M ≥ f(x)/g(x) (2)

where S is the support of f . Necessary, the proposal distri-

bution g is non-zero on S because M needs to be finite to

have a non-zero APA (see equation (4)). The accept-reject

algorithm results from the following lemma:

Lemma 1 [5, 7, 8] The random variable x resulting from

the following algorithm is distributed according to f :

1. generate z ∼ g(z) and u ∼ U[0,1],

2. compute ρ(z) = f(z)/Mg(z),

3. if u ≤ ρ(z): x = z (accept),

else: go back to step 1 (reject).

The choice of the proposal distribution is deciding for

the method performances. First of all, the proposal distri-

bution should be easily simulated, otherwise the method

looses its interest. In particular, they should be simulated

with a probability of acceptation of 1; otherwise, the APA

of the proposal distribution has to be taken into account

to evaluate the final APA. Then, one can choose common

distributions (in our example: the normal and exponential

distributions), or build particular distributions which can be

easily simulated (in our example: a normal distribution cou-

pled with a uniform one). Also the choice of the proposal

distribution has to be made regarding to the complexity of

the algorithm: some distributions, interesting at a first sight,

turn out to be inadequate because the determination of M
or the calculus of its parameters can be difficult, time con-

suming, or even impossible!

Considering the determination of M , any constant sat-

isfying the equation (2) suits; however, M should be the

smallest to have a high APA (see equation (4)). The optimal

value for M is then:

M = max
x∈S

f(x)/g(x).

Unfortunately, M is not always computable. Knowing M ,

one can then compute the probability of acceptation ρ:

ρ(x) = f(x)/Mg(x). (3)

At last, the APA ρ = E[ρ(x)] allows to define a measure of

the algorithm efficiency. The higher the APA is, the better

the algorithm works.

ρ ,

∫

ρ(x)g(x)dx =
1

M

∫

f(x)dx =
1

M
. (4)

Note that if g is close to zero, then M increases and the

APA decreases: the algorithm efficiency depends on the ad-

equation between f and g. In particular, g has to have a

heavier tail than f to keep M finite. However, the differ-

ence between f and g should not be too important, unless

M becomes too high and then the APA becomes too low [8].

Sometimes, the expression of the probability of accep-

tance depends on the parameters of the proposal distribution

(for example, the parameter α of the exponential distribu-

tion in our particular case: see section 3). In that case, one

has to compute the parameters which maximise the proba-

bility of acceptance.

As mentioned before, the main idea of the proposed ap-

proach is to choose a priori some proposal distributions and

then to determine the one which is the best suited to the tar-

get distribution. Among every proposal distributions, only

one gives the best APA for some particular parameters of the

target distribution. Then, one has to compute the parameter

intervals on which the corresponding proposal distribution

yields the best APA. So, the proposed algorithm is iden-

tical to the accept-reject algorithm but with a previous step

added, consisting in selecting among a set of p different pro-

posal distributions the best one:

1. determine the proposal distribution g
i
∈ {g1, . . . , gp

}
according to the parameters of the target distribution,

2. compute M
i
,

3. generate z ∼ g
i
(z) and u ∼ U[0,1],

4. compute ρ(z) = f(z)/M
i
g

i
(z),

5. if u ≤ ρ(z): x = z (accept),

else: go back to step 3 (reject).

In section 3, this approach is applied to the simulation

of variables following a positive normal distribution, that is

a normal distribution truncated at t = 0. However, before

going further, let us note that if f is truncated at t 6= 0,

the method can be adapted by simply shifting the random

variable. For example, in the case of simulating positive

normal variables:

X ∼ N (µ, σ2) / X ∈ [0,+∞[

⇔ Y = X + t ∼ N (µ + t, σ2) / Y ∈ [t,+∞[.
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Without loss of generality, we may restrict our attention to

the case σ2 = 1, since the other cases result from a scale

change:

X ∼ N (µ, 1) / X ∈ [0,+∞[

⇔ Y = Xσ ∼ N (µσ, σ2) / Y ∈ [0,+∞[.

3. SIMULATION OF POSITIVE NORMAL

VARIABLES

Four proposal distributions, shown on figure 1, are consid-

ered:

¬ The normal distribution:

g1(x) =
1√

2πσ2
exp

(

− (x − µ)2

2σ2

)

;

­ The normal distribution coupled with the uniform one

(it is a distribution defined on R
+, uniform on [0, µ[

and distributed according to a normal law N (µ, σ2)
on [µ,+∞[):

g3(x) =
1R+

µ +
√

πσ
2

2

{

1 if 0 ≤ x < µ

exp
(

− (x−µ)2

2σ
2

)

if x ≥ µ

with µ ≥ 0 ;

® The normal distribution truncated at the mean:

g2(x) =
2√

2πσ2
exp

(

− (x − µ)2

2σ2

)

1[µ,+∞]

with µ ≤ 0 ;

¯ The exponential distribution [7]:

g4(x) = α exp(−αx)1R+

where the value of α corresponds to the one that max-

imises the APA (see appendix A):

α =
(

√

µ2 + 4σ2 − µ
)

/2σ2. (5)

The techniques used to generate variables from these pro-

posal distributions are discuted in the appendix B.

Our choice is motivated by the fact that the distribu-

tions ¬ and ¯ are expected to yield a very high APA for

|µ| ≫ 0, and the distributions ­ and ® are expected to

improve the APA around zero (see figure 2). For each distri-

butions, we have to compute the expression of the constant

M and of the probability of acceptance ρ (table 1). Calcu-

lus are detailed in appendix A. The APA for each proposal

distribution are drawn with respect to µ on figure 2.
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coupled with the uniform

one (µ = 1, σ2 = 1)
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truncated at the mean

(µ = −1, σ2 = 1)
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Fig. 1. Proposal distributions (dashed line) used to simulate

a normal distribution truncated at zero (plain line).
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Fig. 2. Average probability of acceptance for the four pro-

posal distribution (σ2 = 1).

The three intersection points µ
A

, µ
B

, and µ
C

allow us

to define the best proposal distribution for a given µ. They

are obtained by equaling the different APA:

ρ4(µA
) = ρ3(µA

) ρ3(µB
) = ρ2(µB

) ρ2(µC
) = ρ1(µC

)

Authorized licensed use limited to: University of Nantes. Downloaded on March 11,2010 at 09:32:27 EST from IEEE Xplore.  Restrictions apply. 



40

proposal

distrib.
M ρ(x)

¬
√

2πσ2/C 1 if x ≥ 0, 0 unless

­

(

µ +
√

πσ2/2
)

/C

{

exp
(

−(x − µ)2/2σ2
)

if 0 ≤ x < µ

1 if x ≥ µ

®
√

2πσ2/2C 1 if x ≥ 0, 0 unless

¯ exp
(

α

2 (2µ + ασ2)
)

/αC exp
(

− (x−µ)2

2σ
2 − α

2 (2µ − 2x + ασ2)
)

Table 1. Expression of the constants M and the probabilities of acceptance ρ for the four proposal distributions.

The calculus are straightforward for µ
B

and µ
C

and yields:

µ
B

= 0, µ
C

=
√

πσ2/2.

Section C details the calculus for µ
A

and yields an approx-

imated solution:

µ
A
≈ −0.257σ.

The APA of the method corresponds to the top of the curves

in figure 2. The lowest APA corresponds to µ = µ
A

and is

equal to about 0.797, which remains a very good probability

of acceptance: the proposed algorithm is then very fast since

it generates low reject.

4. NUMERICAL EXPERIMENTS

In this section, we compare the proposed approach with the

inversion method and with other accept-reject algorithms.

All the simulations are performed with Matlab; in particular,

the function erf is the one defined by [9], and the normal

and uniform variable generation are made using functions

randn and rand respectively.

As mentioned before, the inversion method [5, 6] is math-

ematically exact and has an APA of 1 since every gener-

ated value is accepted. But the method could be ineffi-

cient in practical applications because of the function erf
which is known only through approximations, resulting in

numerical problems. To illustrate this, consider the genera-

tions of 100,000 positive normal variables with parameters

µ = −7.5 and σ2 = 1 via both methods. The histograms

are shown on figure 3 (infinite values are not plotted), and

the truncated normal distribution is overlaid for compari-

son. It is clear that the inversion method is inefficient while

the proposed approach works well. The performances of

the inversion method could be improved by using a better

approximation of the erf function, yielding a greater com-

putational burden.

Moreover, for some parameter values, the inversion me-

thod could give negative results (about 0.07 % of the gen-

erated variables are negative for µ = −8 and σ2 = 1).

Practically, it does not matter since these values can be re-

jected and replaced by new ones (therefore the APA is less
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Fig. 3. Histogram of 100,000 variables with µ = −7.5 and

σ2 = 1, and the truncated normal distribution overlaid.

than one). But they are also cases where the inversion me-

thod gives only infinite values (for example with µ = −8.5
and σ2 = 1). It is clear that in such a case, the inversion

method cannot be applied.

We now compare the proposed approach with three ac-

cept-reject algorithms having only one proposal distribu-

tions (distributions ¬, ­ and ¯). We just compare for dif-

ferent µ the computation time, which, in fact, is directly

linked with the APA. The results are presented in table 2

and correspond to the simulation of 10,000 variables with

σ2 = 1.

In these four cases, the computation times are coherent

with the APA as shown in figure 2, except for µ = 0.5 where

the normal distribution is faster than the normal distribution

coupled with the uniform one, while its APA is expecting to

be worse. This is due to the fact that the computation time of

generating a normal variable is faster than generating a vari-

able distributed according to distribution ­, but this differ-

ence depends on the software. Then, it seems difficult to de-

termine the range of the different proposal distribution using

the computation time, that is why we preferred to determine

it using the theoretical APA. Nevertheless, the difference is

small and the computation time between the proposed ap-

proach and the accept-reject algorithm using distribution ¬

is negligible and particular to the case µ = 0.5.
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PA ¬ ­ ¯

µ = −2 0.36 s 11.094 s (µ < 0!) 0.39 s

µ = 0 0.406 s 0.485 s 0.422 s 0.454 s

µ = 0.5 0.406 s 0.375 s 0.422 s 0.515 s

µ = 2 0.281 s 0.297 s 0.531 s 0.813 s

Table 2. Comparison of computation time for the proposed

approach (PA) and accept-reject algorithm with a normal

distribution ¬, a normal distribution coupled with the uni-

form one ­ and an exponential distribution ¯.

5. CONCLUSION

This paper presents a new approach to simulate variables

having a distribution whose shape is significantly varying

according to the values of its parameters. Basically, the idea

is to use an accept-reject algorithm whose proposal distri-

bution is selected among a set of different distributions cho-

sen a priori. It is then applied to the generation of random

variables distributed according to a normal distribution trun-

cated in zero. Four different proposal distributions are con-

sidered and the intervals on which they give the highest APA

(and consequently on which they should be used) are calcu-

lated. Numerical simulations have been used to illustrate

that the method performs well and fast for all the possible

situations.

Regarding the perspectives of this work, a first point

that has to be addressed concerns the possible use of other

proposal distributions such as a normal distribution coupled

with a polynomial function, or a normal distribution trun-

cated at the mean with parameters differing from µ and σ2

and determined to maximize the APA. Also, future works

could be directed at considering the case of the two-sided

truncated normal distribution which may be useful in the

processing of censored data and at investigating the multi-

variate case.

6. REFERENCES

[1] S. Gulam Razul, W.J. Fitzgerald, and C. Andrieu,

“Bayesian model selection and parameter estimation of

nuclear emission spectra using RJMCMC,” Nucl. Inst.

Meth. A, vol. 497, pp. 492–510, 2003.

[2] V. Mazet, J. Idier, and D. Brie, “Déconvolution impul-
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A. DETAILS OF CALCULUS OF M AND ρ

The calculus of the constant M and the probability of ac-

ceptance ρ(x) are straightforward for distributions ¬, ­,

and ®. For distribution ¯, we have for x ≥ 0:

f(x)

g(x)
=

1

Cα
exp

(

− (x − µ)2

2σ2
+ αx

)

,

for which the maximum is reached for x = ασ2 + µ. We

obtain the best constant M :

M =
1

Cα
exp

(α

2

(

2µ + ασ2
)

)

,

leading to the probability of acceptance:

ρ(x) = exp

(

− (x − µ)2

2σ2
− α

2

(

2µ − 2x + ασ2
)

)

.

The best value of α is the one which maximises the APA

ρ = 1/M whose derivative is:

∂ρ

∂α
= C exp

(

−α

2

(

2µ + ασ2
)

)

[

1 − αµ − α2σ2
]

.

So, the derivative is zero for (remember that α > 0):

α =
(

√

µ2 + 4σ2 − µ
)

/2σ2.

B. GENERATING VARIABLES FROM THE

PROPOSAL DISTRIBUTIONS

A random variable x distributed according to distribution ­

sets either in the uniform part (of area A
u

), or in the normal

part (of area A
g
):

A
u

=
µ

µ +
√

πσ2/2
A

g
=

√

πσ2/2

µ +
√

πσ2/2
.
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By remarking that A
u

+ A
g

= 1, the following algorithm

generates a random variable x distributed according to dis-

tribution ­:

1. generate u ∼ U[0,1],

2. if u < A
u

, then x is in the uniform part, so:

generate v ∼ U[0,1], and compute x = µv.

otherwise x is in the normal part, so:

generate v ∼ N (0, σ2) and compute x = |v| + µ.

A random variable x distributed according to distribu-

tion ® is build by adding µ to the absolute value of a cen-

tered normal variable y:

x = |y| + µ where y ∼ N (0, σ2).

The inversion method [5] is used to simulate the expo-

nential distribution ¯: generate u ∼ U[0,1], then compute:

x = − ln(1 − u)/α.

C. CALCULUS OF µ
A

Equation (5) can be rewritten as:

2σ2α + µ =
√

µ2 + 4σ2,

from which we have:

(2σ2α + µ)2 = µ2 + 4σ2,

⇔ 4σ4α2 + 4σ2αµ + µ2 = µ2 + 4σ2,

that is:

µ =
1 − σ2α2

α

By equaling the APA of distributions ® and ¯ and replacing

µ given above, we obtain:

ασ exp
(

−1 + σ2α2/2
)

=
√

2/π

which simplifies to:

ασ exp
(

σ2α2/2
)

= e
√

2/π

We now obtain the following system:

{

ασ exp
(

σ2α2/2
)

= e
√

2/π,

µ = (1 − σ2α2)/α,

We did not find an explicit solution to the first equation,

but using a zero finding algorithm yields the approximated

solution ασ ≈ 1.137, from which we get µ
A
≈ −0.257σ.

The Matlab code of this method is available free at:

http://mtde.cran.uhp-nancy.fr/Personnes/Perso Mazet/rpnorm-en.htm
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