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ABSTRACT

Different approaches have been considered so far to cope
with the temporal correlation of fMRI data for brain activ-
ity detection. However, it has been reported that modeling
this serial correlation has little influence on the estimate of
the hemodynamic response function (HRF). In this paper,
we examine this issue when performing a joint detection-
estimation of brain activity in a given homogeneous region
of interest (ROI). Following [1], we adopt a space-varying
AR(1) temporal noise model and assess its influence, on
both the estimation of the HRF and the detection of brain
activity, using synthetic and real fMRI data. We show that
this model yields a significant gain in detection specificity
(lower false positive rate).

1. INTRODUCTION

Within-subject analysis in fMRI consists generally in an-
swering two questions: first, which parts of the brain are
activated by a given stimulus and second, what is the tem-
poral dynamics of the brain response during activations.
These two points are often addressed separately, while they
clearly depend on each other. In [2], we have developed
a Bayesian detection-estimation approach to perform these
two tasks simultaneously in a region-based analysis.
It has been shown that the noise component of the fMRI
time series is correlated in time [3]. Nonetheless, the au-
thors of [4] have outlined that the noise correlation struc-
ture has little influence on the HRF estimation. Therefore
in [2], we have considered a spatially varying Gaussian white

noise (SVGWN) model.
In this work, we address the question of the impact of

the noise correlation on our procedure and choose the most
commonly adopted model [3, 5]. In fact, we consider a spa-
tially varying first-order autoregressive noise (SVAR(1)N)
model for the errors, and assess its influence on both es-

timation and detection of brain activity. The detection of
brain activity is achieved using a mixture of two Gaussian
distributions as a prior model on the “neural” response lev-
els (NRLs), while the HRF is constrained to be smooth in
the time domain with a Gaussian prior. All parameters of
interest as well as hyperparameters are estimated from the
joint posterior distribution using Gibbs sampling and poste-
rior mean estimates (PMEs). We compare the performances
of the SVGWN and SVAR(1)N models, both on synthetic

and real fMRI datasets. This comparison demonstrates the
necessity of modeling the temporal correlation of fMRI time
series in the context of joint estimation-detection of brain
activity. In fact, we first observed a strong influence in the
detection results and second, unlike [4], we also noted some
impact on the HRF shape estimation.

2. REGIONAL MODELING OF FMRI DATA

2.1. Problem formulation

Let us define yj = (yj,tn
)n=1:N as the fMRI time course

measured in voxel Vj at time tn. Here, we consider that
a functionnally homogeneous ROI R = (Vj)j=1:J is char-
acterized as a first approximation by a single HRF shape
h = (hd∆t)d=0:D and second by a task and voxel depen-
dent magnitude adjustment of the HRF (called the NRL)
described by parameter am

j for voxel Vj and condition m.
Then in R the model reads:

yj =

MX
m=1

a
m
j X

m
h + P lj + bj , ∀ j = 1 : J, (1)

where Xm = (xm
tn−d∆t)

d=0:D
n=1:N is a binary matrix corre-

sponding to the arrival times for the mth condition. Note
that P lj models the trend. In [2], for simplicity reason,
we have just considered a SVGWN model. Here, a more
sophisticated modeling is introduced using an autoregres-
sive process to account for the serial correlation of fMRI
time series. Following [3, 5], bj is a SVAR(1)N process i.e.,

bj,tn
= ρj bj,tn−1 + εj,tn

, ∀j, t, where εj ∼ N (0, σ2
εj

).

2.2. Likelihood

Let us denote θ0,j = (ρj, σ
2
εj

) and θ0 = (θ0,j)j=1:J . Since
we assume the fMRI time series y to be statistically inde-
pendent and identically distributed in space, the likelihood
function reads:

p(y |h, a, �, θ0)
Y

j

|Λj |
1/2

σ
−N
εj

exp
“
−

ỹt
jΛj ỹj

2σ2
εj

”
,

where ỹj = yj −
P

m
am

j Xmh − P �j , and σ−2
εj

Λj denotes
the inverse of the autocorrelation matrix of bj . According
to [6], we have |Λj | = 1 − ρ2

j and:

(Λj)1,1 = (Λj)N,N =1, (Λj)l,l = 1 + ρ2
j , ∀ l = 2 : N − 1,

(Λj)l+1,l = (Λj)l,l+1 = −ρj, ∀ l = 1 : N − 1,
(Λj).,. = 0 otherwise.

10480-7803-9577-8/06/$20.00 ©2006 IEEE ISBI 2006

 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

1



3. THE DETECTION-ESTIMATION PROBLEM

Assuming that the given ROI R has homogeneous vascula-
ture properties, we propose to estimate a single HRF shape
h, the corresponding voxel and condition dependent gain
factors (NRLs) and simultaneously classify the voxels in R
as either activated or not using the posterior distributions
of the NRLs. Here, we propose an extension of [2] that
accomodates the temporal correlation in fMRI time series
and we study the gain brought by this novel joint detection-
estimation approach. In what follows, we first present the
prior information, derive the joint posterior distribution,
and summarize our approach.

3.1. Prior information

The HRF. According to [7], the HRF can be charac-
terized as a causal slow-varying function which returns to
its baseline after about 25 sec. These assumptions lead
to select a Gaussian prior on h∼N (0, ‖∂2h‖2/2σ2

h), where
(∂2h)d∆t≈

1
(∆t)2

(h(d+1)∆t−2hd∆t+h(d−1)∆t), ∀d = 1 : D−1.

The NRLs. We assume that different types of stimuli in-
duce statistically independent neural responses: p(a; θa)=Q

p(am; θm) with a = (am)m=1:M , am = (am
j )j=1:J and

θa = (θm)m=1:M , where vector θm denotes the set of un-
known hyperparameters related to the prior probability den-
sity function (pdf) of the NRLs for the mth stimulus type.
Since only a few voxels of the ROI may be activated by a
given condition, we introduce couples of random variables
zm

j =(qm
j , am

j )m=1 : M
j=1 : J where qm

j is a binary random variable
and indicates whether voxel Vj is activated or not by condi-
tion m (respectively qm

j =1 or qm
j =0). Conditionally to qm

j ,
am

j is modelled as a Gaussian random variable that repre-
sents the NRL for voxel Vj and condition m. We therefore
introduce a two-class Gaussian mixture prior distribution:
p(am

j | θm) =
P

i=0,1Pr(qm
j = i |λi,m)N (µi,m, σ2

i,m),

with Pr(qm
j = 1) = λ1,m, Pr(qm

j = 0) = λ0,m = 1 − λ1,m

and θm =
ˆ
λ1,m, µ1,m, σ2

1,m, σ2
0,m

˜
. We set µ0,m = 0 (as the

mean of the NRLs for unactivated voxels).

The low-frequency drift. Vector � = (�j)j=1:J defines
the unknown parameters of the orthonormal basis function
P . We assume that � is a random process independent of
h such that p(�; η2) =

Q
j N (0, η−2IQ).

The hyperparameters. The set of hyperparameters is
denoted Θ =

ˆ
ε2, ρ, σ2

h , η, θa

˜
. For these parameters, we

resort to the following uninformative priors:
p(σ2

h, η2, ε2j ) = (σhηεj)
−1, p(ρj) =

�
(−1,1)(ρj) and p(θm) ∝

σ−1
1,mσ−1

0,mλ
−1/2
1,m λ

−1/2
0,m .

3.2. The joint posterior distribution

Considering the constructed model and assuming no further
prior dependence between parameters, formal application of
the chain rule yields:

p(h,a, �, Θ|y)∝p(y|h, a, �, θ0)p(a|θa)p(h|σ2
h)p(�|η2)p(Θ)

p(h, a, �,Θ|y)∝ σ
−D
h

η
−JQ

Y
j

„ `
1 − ρ2

j

´1/2

σN+1
εj

�
(−1,1)(ρj)

«

exp

„
−

htR−1h

2σ2
h

−
X

j

“
1

2σ2
εj

ỹ
t
jΛjỹj +

1
2η2

‚‚�j

‚‚2
”«

Y
m

„
p(θm)

Y
j

1X
i=0

λ
1/2
i,mλ

−1/2
1−i,m

σ2
i,mσ1−i,m

exp

„
−

(am
j − µi,m)2

2σ2
i,m

««
,

(2)
3.3. The Gibbs sampling algorithm

To draw realizations of the posterior pdf (2), we use a Gibbs
sampler which consists in building a Markov chain deriving
from the target distribution (2), by sequentially generating
random samples from the full conditional pdfs of all the
unknown parameters and hyperparameters. Finally, PMEs
are computed from these realizations after discarding the
first part of the Markov chain (a burn-in period = I).

The HRF and its scale. h is N (µ
h
,Σh)-distributed.

Σ−1
h

= σ−2
h

R−1 +
P

j
σ−2

εj
St

jΛjSj (with Sj =
P

m
am

j Xm)

and µ
h

= Σh

P
j
σ−2

εj
St

jΛj(yj − P �j).

σ2
h is sampled according to an inverse Gamma pdf: p(σ2

h |h)∼
IG

`
D/2, htR−1h/2

´
.

The nuisance variables and the scale η2. Vectors �j

are independent, their sampling is achieved in parallel ac-
cording to N (µ�j

,Σ�j
) with: Σ−1

�j
=η−2IQ + σ−2

εj
P tΛjP

and µ�j
= σ−2

εj
Σ�j

P tΛj(yj − Sjh).

η2 is simulated according to: IG((QJ + 1)/2,
P

j

‚‚�j

‚‚2
/2).

The NRLs. Sampling the mixture is done sequentially
for each voxel Vj and condition m using two nested loops.
Since the likelihood and the prior are Gaussian with respect
to the NRLs, it can be shown that p(am

j |rest = remaining
variables ) is a Gaussian mixture as well:

p(am
j | rest) ∼

X
i=0,1

λ
m
i,jN

`
µ

m
i,j , (σ

m
i,j)

2´
,

with: (σm
i,j)

−2 = σ−2
i,m + σ−2

εj
gt

mΛjgm,

µm
i,j = (σm

i,j)
2
`
σ−2

εj
gt

mΛjem,j + i µi,mσ−2
i,m

´
,

λm
i,j =

`
1 + λ̃m

1−i,j/λ̃m
i,j

´
−1

,

λ̃m
i,j = λ2

i,mλ1−i,mσ−1
i,mσm

i,j exp
`
(µm

i,j)
2/2(σm

i,j)
2
´
,

where gm=Xmh and em,j=yj −P �j −
P

m′
�=m am′

j gm′ . We
first sample the binary label qm

j which consists in generating
um

j from the uniform pdf U([0, 1]) and then in applying the
following rule: um

j ≤ λm
1,j =⇒ qm

j = 1, otherwise qm
j = 0.

Then, we sample the NRL am
j conditionnally to qm

j = i

according to N (µm
i,j , (σ

m
i,j)

2).

The noise variances. Sampling σ2
εj

amounts to drawing

variables according to IG((N + 1)/2, ‖ỹj‖
2
Λj

/2).

The AR parameters. For each voxel Vj , we have:

p(ρj | rest)∝ (1 − ρ
2
j )

1/2 exp(−
Aj

2σ2
εj

(ρj −
Bj

Aj

)2)
�
(−1,1)(ρj),

(3)
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where Aj =
PN−1

n=2 ỹ2
j,n and Bj =

PN−1
n=1 ỹj,nỹj,n+1. Unfor-

tunately, (3) is not a referenced pdf. We therefore propose
to approximate p(ρj | rest) by a Beta distribution g(ρj) ∼
B(αj , βj) defined over (−1, 1)1, whose parameters have to
be set in an appropriate way. Hence, g is of the form:

g(ρj) ∝ (1 + ρj)
αj−1(1 − ρj)

βj−1
, ∀|ρj | < 1.

Calculating this approximation amounts to deriving a Beta
pdf, say B(aj , bj), close to the exponential term in (3). For
doing so, we calculate second order Taylor expansions of
log(1 + ρj) and log(1 − ρj) about mj = Bj/Aj :

log(1 ± ρj) ≈ log(1 ± mj) ±
ρj − mj

1 ± mj

−
1

2

(ρj − mj)
2

(1 ± mj)2
,

Then, let us find some scalars (aj , bj , cj) such that

aj log(1 + ρj) + bj log(1 − ρj) + cj ≈ −
Aj

2σ2
εj

`
ρj − mj

´2
,

After some straightforward calculations, we are able to iden-
tify the pair (aj , bj): aj = Aj

`
1 − m2

j

´
(1 + mj) /2σ2

εj
and

bj = Aj

`
1 − m2

j

´
(1 − mj) /2σ2

εj
. Then, we have:

g(ρj) ∝
`
1 − ρ

2
j

´1/2
(1 + ρj)

aj (1 − ρj)
bj

�
(−1,1)(ρj)

with αj = aj + 3/2 and βj = bj + 3/2.
We finally resort to a Metropolis-Hastings algorithm [8] that
uses g(ρj) as instrumental distribution.

The weighting probabilities. Sampling the probabil-
ities λ =(λ1,m)m=1:M can be parallelized. Drawing a re-
alization of λ1,m consists in sampling from a Beta pdf:
B(J1,m +3/2, J0,m +3/2),. Note that C1,m and C0,m stand
for the sets of activated and unactivated voxels, respectively,
for condition m. Ji,m = Card [Ci,m], with

P
i
Ji,m = J .

The mixture parameters. For every condition m:
p(σ2

0,m | zm)∼IG
`
(J0,m − 1)/2, ν0,m/2

´
, where

ν0,m =
P

j∈C0,m
(am

j − η0,m)2 and η0,m = J−1
0,m

P
j∈C0,m

am
j .

p(σ2
1,m | zm) ∼ IG

`
(J1,m − 1)/2, ν1,m/2

´
, where

ν1,m=
P

j∈C1,m
(am

j − η1,m)2 and η1,m=J−1
1,m

P
j∈C1,m

am
j .

p(µ1,m | σ2
1,m, zm) ∼ N

`
η1,m, J−1

1,mσ2
1,m

´
.

4. RESULTS

4.1. Simulation results

Two sets of trials were generated, each of them correspond-
ing to a specific stimulus type (M=2). The ROI R consisted
of J=60 voxels, with J1,1=22 (activated voxels) and J0,1=38
for condition 1 and J1,2=J0,2=30 for condition 2. The dis-
tributions of the NRLs were set as follows: a1

j∈C1,m=1
∼

N (µ1,1=10, σ2
1,1=3), a1

j∈C0,m=1
∼N (0, σ2

0,1=1), a2
j∈C1,m=2

∼

N (µ1,2 = 2, σ2
1,2 = 0.3), a2

j∈C0,m=2
∼ N (0, σ2

0,2 =0.4).
These settings provided us with various realistic combina-
tion of signal, noise and signal to noise ratio. For all voxels,
the binary stimulus sequence was convolved with the canon-
ical HRF hc

2, whose exact shape appears in Fig. 1(a) and
(b) in �-line. A space varying low frequency drifts P �j and
a SVAR(1)N bj were then added to the stimulus-induced
signal

P
m am

j Xmh in every voxel Vj . All AR parameters

1
If x ∈ (0, 1) and x ∼ B(α, β) then ρ = 2x−1 is said B(α, β)-

distributed over (−1, 1).
2
used in SPM2 www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. (a)-(b) provide the HRF estimates using the
SVGWN and SVAR(1)N models, respectively. Symbols �

and ◦ represent the true hc and the corresponding HRF
estimate, respectively; (c)-(d) provide the NRL estimates
for the first condition using the SVGWN and SVAR(1)N
models, respectively; (e)-(f) provide the same results for
the second condition. Symbols ∗ and ◦ represent true and
estimated NRLs, respectively. The error bars correspond to
± the sampled posterior standard deviations.

were set to the same value: (ρj)j=1:J =0.4, which is com-
patible with the serial correlation observed on actual fMRI
time series. The PMEs of the HRF yielded by our Gibbs
sampler are plotted in Fig. 1(a)-(b) for the SVGWN and
SVAR(1)N models, respectively. The corresponding NRL
estimates are depicted in Fig. 1(c)-(d) for condition 1 and
in Fig 1(e)-(f) for condition 2, respectively. Our simulation
results first show that the correlated noise model provides
a HRF estimate closer to the true shape. Second, the AR
coefficients estimates are close to the true value (0.4) and
third, we obtained more accurate estimates of the NRLs
with smaller error bars when modeling the temporal corre-
lation (compare first Fig. 1(c)-(d) and second Fig. 1 (e)-(f)).

4.2. Experimental results

The experiment is a fast event-related paradigm, performed
on a 3-T whole-body system (Bruker, Germany), which con-
sisted of a single session of N=125 scans lasting TR=2.4 s

each. The main goal of this experiment was to quickly map
several brain functions such as motor, visual and auditory
responses, as well as higher cognitive functions like compu-
tation. Here, we focus on two stimulus types: audio and
video. The chosen ROI is a SPM cluster obtained from
t maps (thresholded at P=0.001 corrected for multiple com-
parisons) based on standard SPM activation detection using
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a canonical model, least squares estimation and inference on
relevant contrasts (these results were obtained with SPM2).
The 632 voxels of R1 are located around the voxel of Ta-
lairach coordinates in millimeters: (X=−63, Y=−21, Z=3).
For the SVGWN model, the HRF estimate corresponding
to R1 is plotted in Fig. 2(a). For the same ROI, the corre-
sponding HRF estimate yielded by the SVAR(1)N model
is depicted in Fig. 2(b). In R1, Fig. 2(c)-(d) show the
maps of the NRLs difference between the SVGWN and
SVAR(1)N models for the audio and video conditions, re-
spectively. These figures suggest that the white noise (WN)
model may lead to over estimated NRLs, a phenomenon also
observed in figure 1(c)-(d). Note that the absolute value for
the audio and video conditions reflect the choice of a region
responding more to audio stimulus compared to video one.
As a matter of fact, we expect little activity in the temporal
gyrus due to visual condition. Our Gibbs sampler provides
us with a PME (p̄m

j = 1
K0−I+1

PK0
k=I

(qm
j )k, K0 is the number of

iterations). We use this criterion for brain activation detec-
tion and classify voxel as active if it is more likely to belong
to the class 1 distribution, as inactive otherwise. Note that
this does not control for the type I risk of error, but simply
inform on the most likely label for each voxel.
These maps are reported for the audio stimulus in Fig. 2(e)-
(f) and for the video stimulus in Fig. 2(g)-(h). In all these
panels, we compare the classification results using both
noise models. The comparison of Figs. 2(e)-(f) show only
little difference between the two noise models. Neverthe-
less, (f) does show more voxels labelled ”active” suggesting
that our SVAR(1)N model leads to increased sensitivity.
The activity detection maps for the video condition (Figs.
2(g)-(h)) appear less homogeneous in space, with ”patchy”
cluster of unactivated voxels (class 0 in black). As expected,
it is clear that modeling the correlated noise increases the
classification scheme specificity. This is inferred since this
region should show very little ”class 1” voxels under the
video condition. This number is drastically reduced when
the AR(1) model is used (panel (h)) compared to the WN
model (panel (g)), and much less voxels appear in white
(class 1) in (h) than in (g). Incidentally, this results also
suggest that the classification scheme using the common au-
toregressive noise model, although performing much better
than the WN model, is still likely to overestimate the num-
ber of false positive. This is the topic of future research.

5. CONCLUSION

We have shown that the SVAR(1)N model brings some im-
provements in both sensitivity and specificity at the expense
of some computational load, since AR coefficient as well as
drift parameters are now sampled. Our simulations have
illustrated that this noise model has an influence over the
PMEs of the NRL and their error bars, as well as on the
HRF shape estimation. We have checked that these conclu-
sions still hold on real fMRI data.
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