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Abstract—Analysis of functional magnetic resonance imaging
(fMRI) data focuses essentially on two questions: first, a detec-
tion problem that studies which parts of the brain are activated
by a given stimulus and, second, an estimation problem that
investigates the temporal dynamic of the brain response during
activations. Up to now, these questions have been addressed inde-
pendently. However, the activated areas need to be known prior to
the analysis of the temporal dynamic of the response. Similarly,
a typical shape of the response has to be assumed a priori for
detection purpose. This situation motivates the need for new
methods in neuroimaging data analysis that are able to go beyond
this unsatisfactory tradeoff. The present paper raises a novel
detection-estimation approach to perform these two tasks simul-
taneously in region-based analysis. In the Bayesian framework,
the detection of brain activity is achieved using a mixture of two
Gaussian distributions as a prior model on the ‘“neural” response
levels, whereas the hemodynamic impulse response is constrained
to be smooth enough in the time domain with a Gaussian prior.
All parameters of interest, as well as hyperparameters, are esti-
mated from the posterior distribution using Gibbs sampling and
posterior mean estimates.

Results obtained both on simulated and real fMRI data demon-
strate first that our approach can segregate activated and nonac-
tivated voxels in a given region of interest (ROI) and, second, that
it can provide spatial activation maps without any assumption on
the exact shape of the Hemodynamic Response Function (HRF), in
contrast to standard model-based analysis.

Index Terms—Bayesian analysis, detection-estimation, event-re-
lated fMRI, Gibbs sampling, HRF modeling, semi-blind deconvo-
lution.

I. INTRODUCTION

HE overall aim of functional magnetic resonance imaging

(fMRI) is to advance in the understanding of the relation
between functions (cognitive or sensori-motor ones) and struc-
ture in the humain brain. To this end, current fMRI paradigms
consist of various stimulus types or conditions (visual, auditory,
etc.) presented to the subject while brain volumes are acquired
(typically every few seconds). Each stimulus induces a neu-
ronal activation, which itself is responsible for some changes
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of physiological parameters (blood flow, blood volume, deoxy-
hemoglobin concentration, etc.) leading to a local increase of
blood oxygenation, which is referred to as the blood oxygenated
level-dependent (BOLD) effect [1].

The fMRI data can be analyzed using exploratory methods
(Cluster analysis [2], [3], principal component analysis (PCA)
[4], [5], and independent component analysis (ICA) [6], [7]),
but the most popular approach is based on massively univariate
(voxelwise) regression techniques implemented in many
paradigms such as statistical parametric mapping (SPM) [8],
the FMRIB Software Library (FSL), and Analysis of Functional
Neuroimages (AFNI). In this latter framework, once a model
has been specified, Student-¢ or Fisher statistics are calculated
over the whole brain in order to identify the regions that are
activated in response to a given contrast of experimental con-
ditions. However, methods to estimate the temporal dynamic
in brain regions have received less attention and have yet to be
further developed in neuroimaging. In this paper, we propose
to merge detection and estimation of the dynamic in one step
in a Bayesian framework.

For detection purposes, a general linear time invariant (LTT)
model, coding for the so-called design matrix, is built to assess
the link between the fMRI data and the expected BOLD signal
(regressors) in any voxel of the brain. Typically, each column of
this matrix defines a regressor, which is computed as the con-
volution of a specific stimulus sequence with an a priori Hemo-
dynamic Response Function (HRF), modeling the impulse re-
sponse of the neurovascular system.

Once the brain activity has been well localized for every
contrast of interest, analysis of the HRF shape may help to
understand the dynamic of the physiological process in terms of
activation delay (time to peak), undershoot, and putative initial
dip [9]. Over the last few years, a great deal of attention has
been paid to the development of voxel-wise methods for HRF
estimation. Recently, a nonlinear differential equation system
(i.e., the Balloon model) has been proposed to explain the
hemodynamics changes based on the mechanically compelling
model of an expandable venous compartment [10] and the
standard Windkessel theory [11]. Several studies have proposed
a state-space equation framework first to identify the parameters
of such nonlinear models and, second, to predict nonlinearities
in the BOLD response [12], [13]. Assuming a nonlinear model
between the fMRI time course and the stimulus sequence is
necessary to account specially for a refractory period that may
occur when the interstimulus interval (ISI) is shorter than 1 s.
As shown in [12], other hemodynamic nonlinearities may also
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appear at about 8 sec poststimulus, which are attributed to a
high deoxyhemoglobin concentration during the flow undershoot
following the first stimulus. Nonetheless, most of fMRI studies
rely on an experimental design that makes the exploration of
BOLD nonlinearities unreachable. In such cases, linear modeling
constitutes asimpler and satisfactory approximation of the BOLD
dynamics, especially when the ISI is more than 2 s.

Pioneering works have embedded parametric models of the
HRF shape in a linear framework [14]-[16], [21]. Fitting the
parameters in the least square sense has provided an easy way
to get the dynamic of the response [16], [17], [21]. Nonetheless,
fMRI modeling requires flexibility since the HRF may vary from
region to region, task to task, and subject to subject [18]-[20].
Flexibility in parametric linear models has been achieved through
the use of a function basis [21], [22]. However, the function basis
set imposes a hard constraint on the detectable HRF shapes. To
overcome these problems, more adaptive parametric models
have been introduced first for fixed epoch fMRI experiments
[23], [24]. Recently, these works have been extended to any kind
of fMRI experiment in [25]. In this contribution, Woolrich and
colleagues have generalized the HRF parameterization of [23]
using a half-cosine basis, allowing isolation of different shape
characteristics of the HRF. Other contributors have considered
nonparametric formulations [26]-[29] in the Bayesian setting
and, more specifically, in a state-space framework [30], [31]. All
these studies impose a temporal constraint on the regularity of the
HRF since the underlying physiological process is slow-varying
in time.

A strong limitation that arises in the above-mentioned methods
is their lack of robustness, mainly due to the low signal-to-noise
ratio (SNR). HRF estimation turns out to be reliable only in
high SNR voxels. To increase this ratio, one solution consists of
pooling voxels. However, this procedure still requires to select
voxels with high SNR values. This can be achieved using testing
procedures with constraint models for HRF. On the other hand,
two noticeable features have been pointed out [28], [29]. First,
for a given stimulus type, the shape of the HRF tends to be
spatially homogeneous. Second, the fluctuation of the HRF esti-
mate from one condition to another in a given voxel essentially
relies on a magnitude modulation. To account for these features
in an efficient and robust way, we have derived a region-based
formulation of the HRF estimation problem in [32]. In this latter
work, we have characterized the vasculature of a given region of
interest (ROI) by a single HRF shape but allowed for variation
in the magnitude of the response. We have also introduced stim-
ulus-dependent magnitude coefficients for each voxel of a ROI
to model the space-varying response level to a given stimulus
type. This coefficient defines a pseudo-neural response and may
better represent the actual “neural” response level (NRL), as
seen by deconvolution of the BOLD response [13]. A noticeable
limitation of [32] is that the average activity is computed from
all the voxels in a ROIL. However, for a given region, some voxels
may not be activated for one or several conditions. Therefore,
in this paper, we develop a new formulation that allows us to
perform the detection and estimation steps at the same time. As
explained further, this model, which is embodied in a Bayesian
approach, is able to segregate activated voxels within a region
from nonactivated ones.
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Following [27] and [28], the HRF is assumed to be a slowly
time-varying function using a Gaussian prior distribution. The
NRLs are supposed to be statistically independent from one
stimulus type to another. In this work, no spatial correlation is
introduced between pseudo-neural responses in nearby voxels
because such a model should be based on measured activity, and
until now, it is not clear what correlation will be observed. In
any case, such a spatial model would preferably be considered
on cortical geodesic distance rather than on voxel Euclidean dis-
tance. Akin to [33] and [34], in order to solve for the detection
of activated voxels in response to a given condition, we con-
sider a two-class Gaussian mixture as a prior probability den-
sity function (pdf) on the NRLs. For any condition of interest,
the role of the mixture is to efficiently discriminate activating
areas from not activating ones in the ROI. Modeling the deacti-
vation process is beyond the scope of this paper, but it could be
addressed in the future using a third class in the mixture (see,
for instance, [33]).

All parameters of interest (the HRF and the NRLs), as well
as hyperparameters, which govern the prior laws, and space-
varying parameters (the deterministic trend due to physiolog-
ical artifacts and the noise variances) should be estimated in an
appropriate way. To this end, a Bayesian joint detection-estima-
tion approach is proposed, as explained in the following.

The rest of the paper is organized as follows. Section II re-
visits the LTT voxelwise modeling of the HRF proposed in [28].
Some notations that will be used throughout the paper are also
introduced in this section. Section III focuses on the modeling
of fMRI signal across voxels in a given ROL. In Section IV, we
present how detection-estimation can be jointly performed. Sec-
tion V provides the main steps of our Gibbs sampling algorithm.
Section VI illustrates the performances of our approach on syn-
thetic data in comparison with previous works [27], [28]. In Sec-
tion VII, the behavior of our method is analyzed on experimental
fMRI data. In Section VIII, we discuss the possible extensions
of the proposed method.

II. VOXELWISE FORMULATION

A. Notations

The notations used in this paper are summarized in Table I. In
what follows, all vectors are considered as columns by default.
Moreover, we will use the notation / = m : n as a shorthand
for{ = m,...,n.

B. LTI System

Let us define y; = (yj.,)n=1.~ as the BOLD fMRI time
course measured in voxel V; at (not necessarily uniformly sam-
pled) times #,,, and define (2} ),—1.~ as the corresponding bi-
nary vector for the mth condition: it =1 if t,, is an onset (i.e.,
an arrival time) for the mth condition. In classical voxel-depen-
dent approaches [28], [35], a convolution model is assumed be-
tween the stimuli and the data

M D Q

_ m m . .

Yjjtn = E E N AN E Ptoalai + bjt,-
m=1d=0 q=1
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TABLE 1
LIST OF NOTATIONS

y; €RN Data fMRI time series acquired in voxel V;

y=ly1, ..., ys] Matrix of size N x J representing fMRI time series acquired in all
voxels of the ROI

b; € RN Gaussian noise vector in voxel Vj

D+1 Number of HRF coefficients

xm Binary “onsets matrix” of the mth condition of size N x (D + 1)

h HREF to be estimated

M Number of different conditions in the experiment

a}" NRL for voxel V; and condition m

Q Number of drift parameters

P =[p,, ..., po]Low frequency orthogonal matrix of size N x Q

£; € R? Nuisance parameter vector for voxel V;

e? Noise variance for voxel V;

A = (A,m)m=1:m Vector of the weighting probabilities

Mean value of NRLs for activated voxels in condition m

Variance of NRLs for activated voxels in condition m

Variance of NRLs for nonactivated voxels in condition m
J1,m-dimensional vector of activated voxel indexes in condition m
Jo.m-dimensional vector of nonactivated voxel indexes in condition m

Vector h?’ = (h;-’_‘d Ar)d=0:D represents the unknown HRF in
voxel V; corresponding to the mth condition. In matrix form,
this relation reads

M
y;= > X"h]'+ Pl +b; (1)

m=1

where X™ = (2" _j7;)n=1:N,d=0:p isa N X (D + 1) binary
matrix corresponding to the arrival times for the mth condition.
Equation (1) is the sum of three terms.

e The first one represents the stimulus-induced BOLD
signal. More precisely, each term X mh;-n represents the
activation response in voxel V; to condition m.

*  P{; is the confounds part (deterministic trends).

*  b; models the noise term.

The goal of our method is to extract the first term from the other
two. In the next paragraphs, we describe our assumptions for
each of these two terms.

C. Drift Model

In neuroimaging experiments, the fMRI data are contami-
nated by a low-frequency drift, mainly due to physiological ar-
tifacts [36]. Breathing and cardiac pulses are aliased since the
sampling frequency of the data is below Nyquist’s bound. A
highpass filter is generally used to remove these trends before
estimating the HRF. These baseline techniques are merely pre-
processing steps to eliminate drifts in the fMRI data. A relevant
alternative was also proposed in a semi-parametric framework
[37] and is adopted in this paper to model the trend. This ap-
proach relies on matrix P = [p;,...,pg] (Q depends on the
lowest frequency attributable to the drift term), which consists
of an orthonormal basis of functions p, = (pg(tn))n=1.~. To
each voxel is attached an unknown weighting vector £;.

D. Noise Model

Several temporal noise models may be considered. For
a given ROI R, the simplest noise model is a zero-mean
Gaussian white process b of unknown variance €2, independent

of h (b ~ N(0,¢%I)). Nonetheless, it is well known that
fMRI time series are correlated in time [38]. Several authors
have proposed to estimate the temporal covariance matrix of
the noise using an autoregressive model [39], [40]. In [41], a
spatially varying first-order AR model has been considered.
In the present paper, we will only consider a spatially varying
white noise model since it was actually demonstrated in [42]
that various noise correlation structures have little influence
on the performances of the HRF estimation. This means that a
specific noise variance ef is assigned to each voxel V}, allowing
for spatially varying artifacts (such as the partial volume effect)
to be treated in an appropriate way. Hence, we will need to

estimate vector €* = (7 ) ;1. of noise variances.

III. PROPOSED REGIONAL MODEL

A. Motivation

In [28], the authors have described a method for voxel-spe-
cific HRF estimation or, more generally, from a given time
series in the context of event-related paradigms. This approach
only focused on the temporal aspects, i.e., spatial features were
not considered. Results of this method on actual fMRI data
showed that HRF estimates, which are computed in neighbor
voxels, have approximately the same shape up to a magnitude
factor. This property of shape similarity was also observed,
in numerous cases, for HRF estimates computed in the same
voxel but for different stimulus types [28], [29]. However, in
some experimental paradigms such as repetition-suppression
ones, because of the habituation phenomenon, estimated HRFs
in neighbor voxels may show differences with respect to (w.r.t.)
the activation delay or the peak intensity.

Brain regions activated by a given stimulus usually spread
over a number of contiguous voxels. A study of the response
over an homogeneous region seems therefore reasonable. This
region could be defined anatomically or functionally by some
brain parcellation technique [43] or clustering algorithm [44].
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Fig. 1.

B. Assumptions

(H1) We consider a LTI model.

(H2) We assume that the fMRI time series y = [y, ..., Y]
are statistically independent and identically distributed
(i.i.d.) in space. We also consider that there is no noise
correlation in space.

We do not model any spatial correlation between the
NRLs of neighbor voxels. In the recent litterature, sev-
eral contributions have introduced spatial priors either
on the activation height [24], [45] or on the labels of the
classes associated with the mixture model [46], [47].
This latter idea seems relevant to remove isolated false
positives since it encodes the prior belief that neigh-
boring voxels are likely to belong to the same class.
We could also extend our model to spatial mixtures
that should be preferably defined on the cortical sur-
face using a two-dimensional (2-D) Markov random
field.

Generally, fMRI experiments consist of several con-
ditions (visual, auditory, etc.). We assume that the re-
sponses to different stimuli combine in a linear way.

(H3)

(H4)

C. Problem Statement

Once an homogeneous ROI is defined, our purpose is to es-
timate its canonical time response. More precisely, we charac-
terize the ROI by a single HRF shape and a magnitude coeffi-
cient for each voxel and stimulus type. It is likely that this coef-
ficient may better represent the NRL. To this end, we introduce
a special case of (1) that accounts for stimulus/voxel-dependent
signal and voxel-dependent noise levels but assumes a single
HRF shape over the region. Letting R = (V;),=1.s be the ROI,
then (1) reads

M
y;j=> aX"h+Pl+b;, Vj=1:J]

m=1

@

where a?" stands for the NRL in voxel V; for condition m. Fig. 1
summarizes the main features of model (2).

IV. A PRIORI MODEL AND THE
DETECTION/ESTIMATION PROBLEM

Assuming that a given region has homogeneous vasculature
properties, we propose to estimate the corresponding HRF and
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Drift & noise

Pli+b1
l BOLD
Signal
_)®
h Drift & noise
Pl+by
l BOLD
Signal
_)®

ROI-based model. & is the single HRF for all the voxels of the ROI. a7* defines the NRL for voxel V; and stimulus type (or condition) m.

to simultaneously classify voxels in the ROI as either activating
or not activating. This classification task has already been ap-
plied to fMRI data either using a nonspatial mixture model [34]
or a spatial one [33], [46], [47]. Following [34], we introduce
a two-class mixture model: one for activated voxels (class 1)
and the other for nonactivated ones (class 0). In this framework,
we need to estimate the label attached to each voxel of the ROI
and the corresponding NRL. Since this model stands for a given
stimulus type, we consider M two-class mixtures, each of them
being coupled to a single stimulus type.

The estimation of the NRLs and the HRF may be thought of
as a multichannel, semi-blind deconvolution problem. Indeed,
the different channels correspond to the available voxels and
“semi-blind” refers to the prior knowledge of the arrival times of
the “neural” responses. In contrast, arrival times have to be iden-
tified as well in some other applications of sparse spike decon-
volution such as geophysics [48]. For all parameters of interest,
the respective a priori models are described in the following.

A. HRF

As physiologically advocated in [49], the HRF can be char-
acterized as follows [28], [35]:

1) Its temporal variations are smooth. Quantification is
achieved by setting Gaussian prior for the norm of
the second derivative of the HRF, whose variance is
adjusted by hyperparameter U'Ql. More precisely, we
assume h ~ N(0, ||0h||?/(20})). Following usual

practice, ||0%h||? can be discretized as

hay1yar — 2hant + ha—1)at
(At)?

(agh)(mt ~
Vi=1:D —1.

Taking into account (i), we obtain in matrix form
0%h = D>h, where D is the truncated second-order
finite difference matrix of size (D — 1) x (D — 1)
that depends on At [35]. Hence, ||0h||*> = KR 'h,
where R = (D4D5)~" is symmetrical positive defini-
tive.

It is causal, and its amplitude vanishes at the first and
the end time points (hg = hpat = 0), which corre-
sponds to a duration of about 25 s.

1)
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Furthermore, akin to [50], we impose a normalization con-
straint i.e., h = 1, to remove the scale ambiguity encountered
in blind deconvolution problems [48].

B. “Neural” Response Levels

According to (H3), we have p(a;8,) = [[p(a™;0,,) with
a = [a!,...,aM],a™ = (a}')j=1.7, and 8a = (0.)m=1.0,
where vector 8,,, gathers the hyperparameters related to the prior
pdf of the NRLSs for the mth stimulus type. These hyperparam-
eters are unknown and will be further specified.

In some cases, a few voxels of the ROI are activated by a
given condition, whereas others may not be. We therefore con-
sider couples of random variables 27" = (¢7*,a}'),j = 1 :
J,m =1 : M. Parameter ¢} is a binary random variable that
indicates whether voxel V; is activated or not by condition m
(respectively, ¢i* = 1 or ¢j* = 0). Conditional on ¢j*, aj" is
a Gaussian random variable that represents the NRL for voxel
V; and condition m. To model this prior knowledge about the
activation process, we introduce a two-class Gaussian mixture
prior distribution

)\Lm./\/ ([1,1 m> 01 m) + )\0 mN (0, U(%,m) 3
where Vj € {1,...,J},Aim = Pr(¢]" = 1), and Ao, =
1 — A1 . According to (H3), A1, is a condition-dependent
factor, but it is not voxel-dependent.

As implied by (3), we attribute a Gaussian prior model to the
NRLs

) ~ N (/l/l,m7 U%,m)

(af'] " =1
0) ~N(0,07,,) -

(af"] "

Note that we set ji9,, = 0 since this parameter represents
the mean of the amplitude levels for nonactivated voxels,
which, by definition, should be zero. Thus, four hyperparam-
eters describe this mixture prior model for each condition:
0 = [, b1, OF s 0.1n)- Such a model is a generaliza-
tion of the Gaussian pfior distribution for the NRL’s advocated
in [32].

C. Low-Frequency Drift

Vector £ = [{y,...,¢ ] gathers the unknown regression co-
efficients of the function basis P. We assume that £ is a random
vector independent of h, such that p(£;77) = [I; p(&;; 7 %) and
£; ~ N(0,771). In this paper, the calculatlons will be pro-
Vlded in the noninformative case, that is, when 77 — +oc. In
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this case, the prior pdf becomes flat, which simplifies the expres-
sion of the full posterior pdf after integrating the drift parameters
£ out (see Section V).

D. Hyperparameters

The complete set of hyperparameters to be estimated is de-
noted ® = [e?,07,0,]. For all these parameters, we resort
to noninformative Jeffreys priors that meet the reparametriza-
tion-invariance requirement [51, p. 132]

HP =11
= Hp(0
=[IrOimp

p(Mm) o B(1/2,1/2)

-1
- Ul,m’

p(oh) = o5

(Ml,m;Uim)p (U(Q),m) )

-1

P (ﬂl,m; O—im) p (0-37771) = JO,m'

V. ALGORITHM
A. Likelihood
According to (H1)—(H2), the likelihood function reads

p(y|h7a7l7€ Hp y] |ha 3 ])
HefNeX —LH~ — Pt
J p 2¢2 Y, ]
j J
where §; = y; — >, a7*X"h. Maximum likelihood (ML)

estimation of (h,a) is a bilinear inverse problem since (2) is
linear w.r.t. h when a is fixed and vice-versa. In addition, the
ML solution (h*,a*) is not unique. For instance, every couple
(h*/C,a* x C) defines another pair of solutions in the ML
sense. By contrast, structural prior information is available both
on h and a. Therefore, we resort to the Bayesian framework.

B. Joint Posterior Distribution

Considering the constructed model [cf. H1)-H4)] and as-
suming no further prior dependence between parameters, formal
application of the chain rule yields (4), shown at the bottom of
the page.

Since (2) is linear w.r.t. vectors £; of nuisance variables, they
can be easily integrated out. We therefore focus on the marginal
distribution p(h,a, ® |y) = [ p(h,a,f, ® |y)dl in order to get

p(h,a,l,0 |y) x<p(ylh,a,l,e)
i i=0

Pl II?

1
HHZMa;"/iq;"’ =

-N-1| _-D
x He J 0, €xp

htR 'h -y Iy]
J J

I
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fewer parameters to sample. Moreover, due to the Rao-Black-
wellization property [52], the marginalization step reduces the
variance of the remaining parameters to be sampled and yields

p(h,a,© |y)

-D tR
x 0, " exp ——h

Z iQiY;

/\ /\1 i,m

G LY i

m =0

(a7 = pim)”

2
20i7m

7mUl i,m

I

X exp | —

where Q; = e*Q(IN — PPt), and the orthogonality of P (i.e.,
P'P = Iy) has been accounted for. As mentioned earlier in
Section IV-C, choosing an informative prior for £ would have
modified the term Hj e?_N_l inp(h,a, ® | y), making its sam-
pling w.r.t. noise variances more tricky.

Due to the bilinearity of model (2) w.r.t. h and a, we do not
consider the maximum a posteriori (MAP) estimate of (h, a).
Indeed, its computation would require stochastic optimization
since p(h,a,® |y) may possess many local maxima. “Joint
MAP” estimation has already been addressed in blind deconvo-
lution problems with fixed hyperparameters [53], [54], but the
proposed method suffers from shortcomings w.r.t. local minima
and nonuniqueness of the solution. More importantly, the issue
of hyperparameter tuning would not be easily addressed using
the MAP approach. In fact, it was shown that simultaneous
signal estimation and hyperparameter identification is achieved
in this framework by maximizing the generalized likelihood
whose maximizer is not statistically consistent [55]. Consid-
ering all aspects of this problem, we rather choose to compute
an estimate of the posterior mean of the unknown parameters
as well as the hyperparameters. Direct sampling from the joint
posterior pdf is impossible. Therefore, we resort to Monte
Carlo Markov chain methods [52] and, more specifically, to
Gibbs sampling for which the full conditional pdfs needs to be
derived.

C. Numerical Inference Using Gibbs Sampling

Gibbs sampling has already been applied in the context of
blind deconvolution problems [48]. It consists of starting with a
seed vector and sequentially modifying one (scalar or multidi-
mensional) component at a time by sampling according to the
full conditional pdf of that component given the remaining vari-
ables (denoted as rest in the following) and the data. Samples
are composed of the set of all vectors whose components have
been updated an equal amount of iterations.

A key issue with Gibbs sampling is to partition the vector
of parameters into blocks whose full conditional sampling
can be performed easily. In our case, we exploit the bi-
linearity of model (2) w.rt. h and a that makes the full
conditional pdfs p(h|y,a,®) and p(a|y,h,®) Gaussian,
given the noise model and the priors. Then, the derivation of
the full conditional pdfs corresponding to the chosen clus-
tering is straightforward. As detailed in Table II, the updating
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TABLE 1II
STEPS OF THE GIBBS SAMPLING ALGORITHM

a®, X%, (e2)°,60.
ak’ Ak, (EQ)IC

« Setting up: choose h°,

« Iteration k: draw samples h¥, , 8% from the full conditional

posterior pdfs:
- HRF: h* ~ p(h* |y, a*~1, (e2)*1), ¢f. Eq. (7).
- HREF scale: (07)F ~ p(o3)¥ | h¥), cf Eq. (8).
— NRLs: for every condition m and every voxel j,
w (u* ~ U0,1] 5 if (k< (ATY)F, then
(q] ) =0.
* (af)* | (g)F = i~ N ()%, ((075)2)), (i =
— Noise variances: for every voxel j,
(€)F ~ p(()* | y;, h*, af). of. Eq. (11).
— Mixture parameters: for every condition m,
* Weighting probability:
M m ~ PO 1 [y, 15 0¥, (€)F). of. Eq. (12).
x Variance of NRLs for nonactivated voxels:
(@8 m)* ~ P08 1) |96 > V) f: Eq. (13).
* Variance of NRLs for activated voxels:
(0¥,7n)kNp((U‘12m |n1m7'/1m) Cf Eq (14)
* Mean of NRLs for activated voxels
(Nl,m)k ~ p((/-"l,m)k | (U%,m 771 mo V1 m) Cf Eq 15).
o Iterate until maximum iteration number K is achieved. Finally, we com-

pute posterior mean estimates using the following approximation (Samples
0',...,07 are discarded: they correspond to the so-called burn-in period):

(q}”)k = 1 otherwise

0,1), cf Eq. (9).

Ko

Zek =Ky—I+1, V9¢€{h,a,0)}

steps are performed on the following unknown variables:
h,oZ, 2 = (q]',a]"), e?, Ams Ugm, J%M, and f11,,. We
therefore need access to the corresponding full conditional pdfs
whose closed forms are given in Appendix A.

Once the Gibbs sampler has converged, these quantities are
approximated by their sample counterparts, as emphasized in
Table II. To check the convergence of our algorithm, we have
plotted the values of several scalar parameters (a noise variance
as well as other hyperparameters) w.r.t. iterations. Once the rel-
ative norm of these parameters is lower than a given threshold
(a = 107%), it was decided that the sampling scheme could
stop. Following [29], we could implement more sophisticated
convergence diagnosis if necessary. However, in practice, we
did not experience convergence problems.

VI. SIMULATION RESULTS
A. Generation of Synthetic Datasets

We simulated a random-intermixed sequence of indexes
coding for two different stimulus types (M = 2). Each index
m corresponded to a specific stimulus. The timing of the trials
was random since the retained inter-stimulus intervals (ISIs)
were uniformly distributed on [1.5, 2.5] sec. For such ISI
values, the linear approximation of the response is valid. For
the simulation, we also took one session of N = 100 time
points (e.g., scan number). The sampling interval §¢ of the trial
onsets was set to 0.5 s. The onsets arrival times are put in the
ndt grid by moving them to the nearer time points on this grid.

The ROI R consisted of J = 60 voxels. As indicated in
Table I, C1 ., and Cy ,,, = R\C4 ., are the sets of activated
and nonactivated voxels in R for condition m, respectively. For
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% of BOLD signal change

5 10 15 20 25

time in s
Fig. 2. Symbols B and o represent the true k. and the corresponding HRF
estimate, respectively.

the two conditions, we chose the following distributions for the
NRLs:

a}ecm ~ N (p1,1 = 10,07, = 3)
a}GCo.l N (0,08, =1)
a?ecm ~N (p2=2.07,=0.3)
a?ecm2 N (0,05, =0.4)

For Condition 1, there were Ji ,, = 24 activated voxels and
Jo,m = 38 nonactivated ones. For condition 2, there were as
many as activated voxels as nonactivated ones (Jo,m =Jim=
30). For all voxels, the binary stimulus sequence was convolved
with the canonical HRF h.,! whose exact shape appears in Fig. 2
as the B-line. A white Gaussian noise b; was then added to the
stimulus-induced signal > m @' X™h in every voxel V. The
noise variances (e ) j=1:] were set as follows. Let us 1ntroduce
the definition of space varying contrast-to-noise ratio (CNR),
based on the L;-norm of the signal:

Zd m |a hdAt|

CNR;
(D = 1)e¢;

We restricted our simulations to constant CNR; in space:
CNR; = CNR, Vj. Since the NRLs were sampled from a target
distribution (e.g., p(a}"ecq__m) for condition m and class 7), the
signal norm was different from one voxel to another. To achieve
constant CNR, we adapted the noise variances €; accordingly.
Two values of CNR were investigated (CNR = 1.3 and CNR =
0.3), leading first to a simpler synthetic case and, second, to a
more realistic one.

Space-varying low-frequency drifts P¢; were added to the
fMRI time courses. They were generated from a cosine trans-
form basis whose coefficients £; were drawn from a normal
distribution. The amount of low-frequency signal was tuned to
be significant: We checked that the ratio between the quadratic
norm of the drift components P¢; and the quadratic norm of the
drift-free data ), a7 X™h + b; was no less than 50%. The
trials of the two conditions were well distributed over time such
that collinearity with the low-frequency signal is unlikely.

lused in the SPM2 software www.fil.ion.ucl.ac.uk/spm/spm2.html
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Fig.3. (a)and (b) provide the NRLs for the first (m = 1) and second (m = 2)

conditions, respectively. Symbols * and o represent true and estimated NRLs,
respectively. The error bars are derived from the sampled posterior variances
given by (5).

The chosen cut-off period (COP) related to the drift term was
70 s. corresponding to () = 4. Synthetic data were then obtained
after undersampling the sequences at a [TR/6t] rate, the inter-
scan interval being TR = 2 s.

Akin to [28], the sampling rate of the HRF estimate was set to
At = 6t to avoid estimation bias due to instant-matching error.

B. High CNR (CNR = 1.3)

As shown in Fig. 2, the HRF estimate matches the canonical
time course h, very well.

Fig. 3(a) and (b) shows the NRL estimates for both condi-
tions. Since the simulated average activity is stronger for m =
1(p11 = 10), Fig. 3(a) demonstrates that the response magni-
tudes of activated voxels are estimated accurately. Indeed, the
error bars v} attached to the estimated NRLs and computed as
the sampled variances of the NRLs

Ky
1 2 .
vt = i Z ((a’j")k — a;.”) Vj, m, with
k=T
1 Ko k
7= g 2 (@) ®)
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Fig. 4. (a) and (b) describe the histograms of activation probabilities p7* for
m = 1,2, respectively. Filled bars represent nonactivated voxels belonging
to Co,m (i)}“ < 0.5), whereas white bars represent activated voxels (i.e.,
belonging to Cy ).

are small enough to embed the true magnitudes depicted in ().
In contrast, Fig. 3(b) illustrates the influence of a lower mean
activity (p1,2 = 2) both on the estimated NRLs and on the
corresponding error bars: A small amount of bias, as well as
larger sampled variances v, are observed because of a lower
CNR for the second condition. On the other hand, our method
behaves normally for nonactivated voxels since estimated and
true NRLs overlap.

Fig. 4 shows histograms of activation probabilities p’" that
are computed by averaging the labels ¢ over iterations

i, m. (©6)

Each bar depicted in Fig. 4(a) and (b) returns the number of
voxels corresponding to a given value of ]3} and ]3]2», respectively.
Filled bars show nonactivated voxels (i.e., belonging to Co .,
because of (§7")"™ = 0) for which pj* < 0.5, whereas white
bars represent activated voxels belonging to C' .

As expected, the histogram depicted in Fig. 4(a) for nonac-
tivated voxels spreads over the left part of the probability axis
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% of BOLD signal change

time in s

Fig.5. Symbols B and o represent true k. and estimated HRF h, respectively.

because of o2 ; = 1. The middle part of this graph shows that
p} = 0.5 for two voxels, indicating that our algorithm hesi-
tates to classify these voxels in class C ;. The right part of the
histogram demonstrates that 24 voxels have been assigned to
class C 1, as expected. Fig. 4(b) corresponds to an easier case
where activated and nonactivated voxels for the second condi-
tion are clearly separated and well classified (30 voxels within

each class). This results from our variance choice o3 , = 0.4.

C. Low CNR (CNR = 0.3)

The HRF estimate plotted in Fig. 5 is a slightly oversmoothed
version of h. about its peak because of the regularization con-
straint.

Fig. 6(a) and (b) shows the NRL estimates for both condi-
tions. For activated voxels, the estimated magnitudes are more
biased for lower CNR. The noise level also has an influence on
the confidence intervals, which appear broader for both condi-
tions but, more significantly, for the second one. In contrast, the
results for nonactivated voxels show no significant difference in
comparison with the first simulation.

Fig. 7 shows histograms of activation probabilities for both
conditions. It appears that lower CNR values induce detection
of false positives for condition 1, whereas we found 30 voxels
in both classes for condition 2. As expected, the number of
misclassified voxels is larger for the first condition because of
0371 = 1. In Fig. 7(b), it appears that the distribution of nonac-
tivated voxels has a broader dispersion for this CNR in compar-
ison with the first simulation.

VII. RESULTS ON REAL fMRI DATA
A. MRI Parameters

The experiment was performed on a 3-T whole-body system
(Bruker, Germany) equipped with a quadrature birdcage radio
frequency (RF) coil and a head-gradient coil insert designed
for echoplanar imaging. Functional images were obtained with
a T2*-weighted gradient echo, echo planar imaging sequence
(TR = 24 s, TE = 30 ms). A 3-D volume is composed
of 64 x 64 x 32 voxels. A high-resolution (1 x 1 x 1.2 mm)
anatomical image using a 3-D gradient-echo inversion-recovery
sequence was also acquired for each subject.



3496

(a)
20 T
18 *
16 %
o 14p *ox . *
Q
- 1oL * § § ? *§ %f § * ;f
= § * §§ §
S 10 Ea ?
3} ?%
E s
D) H
S e &
g ¥ ¥
4
2 ¥
¥ & ® ¥
o L* = ¥ oW i‘%f“*y s
0 10 20 30 40 50 60
voxels
(b)
3 :
*x
25 * * * *
? *
2r ]
~ *
L 15 ?{ E
=
2
13} al
E
)
o
O 05}
*
O E ME  ERE AU B R F R R
-05 : ‘ , ‘ , :
0 10 20 30 40 50 60
voxels
Fig.6. (a)and (b) provide the NRLs for the first (m = 1) and second (m = 2)

conditions, respectively. Symbols * and o represent true and estimated NRLs,
respectively. The error bars are derived from the sampled posterior variances
from (5).

B. Experimental Paradigm

The experiment is a fast event-related paradigm. It consisted
of a single session of 125 trials (N = 125) lasting TR = 2.4
sec each. The main goal of this experiment was to quickly map
several brain functions such as motor, visual, and auditory re-
sponses, as well as higher cognitive functions like computation,
but here, we will focus only on four stimuli: right-hand button
click, left-hand button click, audio, and video.

The chosen ROIs are SPM clusters obtained from ¢ maps
(thresholded at P = 0.001 corrected for multiple comparisons)
based on standard SPM activation detection using a canonical
model, least squares estimation, and inference on relevant con-
trasts.

In the following, we choose to study two contrasts: (right
click minus left click) contrast and (audio minus video) contrast.
ROIs R; and R, were defined using the MARSBAR toolbox.2
The 178 voxels of the (right click minus left click) R; are lo-
cated around the voxel of Talairach coordinates in millimeters:
(X = —=36,Y = —21, Z = 48). The 632 voxels of the (audio
minus video) Ro are located around the voxel of Talairach co-
ordinates in millimeters: (X = —63,Y = —21, 7 = 3).

2www.sourceforge.net/projects/marsbar
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Fig. 7. (a) and (b) describe the histograms of activation probability p* for
m = 1,2, respectively. Filled bars represent nonactivated voxels belonging

to Co,m (i)}“ < 0.5), whereas white bars represent activated voxels (i.e.,
belonging to C'y ,,).

C. Results

In Figs. 8(a) and 9(a), the HRF estimates corresponding to
the two selected ROIs (R and R) are plotted. These HRF
estimates have a regular shape, as enforced by the prior model.
Figs. 8(b)—(c) and 9(b)—(c) show the maps of the NRL estimates
computed for the right and left clicks in /R ; and for the audio and
video conditions in R, respectively. Note the different scaling
in these figures, and as expected, high values are found for the
right click condition in R defined with a (right click minus left
click) contrast, whereas positive or negative values close to 0
are found for the left click. The same apply for the (audio minus
video) contrast.

Figs. 8(d)—(e) and 9(d)—(e) show the voxels classification in
class 0 (red) andin class 1 (white). Classification was based on the
maximum likelihood principle (e.g., voxels with greater chance
to be in class 1 than in class O are classified in 1). It is crucial
to note that voxels classified in class 1 [for instance, for the left
click in Fig. 8(c)] are not necessarily “activated” in the usual
sense used in neuroimaging results but can only be said to be more
likely inclass 1. Whether they are “activated” depends on whether
class 1 can be differentiated from class 0. Indeed, as shown in
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right click left click

Fig. 8. Estimation results for the (right click minus left click) contrast using raw (unsmoothed) data. From top to bottom and from left to right. (a) HRF estimate
for R defined from the (right click minus left click) contrast. (b) Right click voxels NRLs estimates. (c) Left click voxels NRLs estimates. (d) and (e) Classification
results for the right and left click stimulus, respectively (red: class 0, white: class 1). (f) and (g) Classes distributions of the right and left click stimuli, respectively.
Dashed lines: class 0. Solid lines: class 1. Values are only plotted for voxels in the chosen ROI and not for all voxels in the brain.

Fig. 8(f)—(g), the estimated distributions of the two classes may implemented a classical test of the null hypothesis to keep voxels
be too close to each other to make their discrimination from the  that survive a 5% risk of false positive threshold, as illustrated in
neural response levels efficient. To cope with this issue, we have  Fig. 9(f)—(g). Clearly, the region of interest is almost entirely sig-
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Fig. 9. Estimation results for the (audio minus video) contrast using raw (unsmoothed) data. From top to bottom and from left to right. (a) HRF estimate for R
defined from the (audio minus video) contrast. (b) and (c) Audio (resp. video) voxels NRLs estimates. (d) and (e) Classification results for the audio and video
stimulus, respectively (red: class 0, white: class 1). (f) and (g) Statistical test results for the audio (resp. video) stimulus after at the 5% risk of error. Significantly
activated voxels are in white, and nonsignificant voxels are in red. Values are only plotted for voxels in the ROI and not for all voxels in the brain.

nificantly activated for the audio condition, whereas few voxels Our approach was also tested using data smoothed with a
survive this threshold for the video condition. 6-mm isotropic Gaussian kernel. Essential results conveyed the
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same information, with a greater spatial homogeneity observed
in all results (voxels NRL activity, voxels classifications, sig-
nificant voxels). Results are not reported here but are available
from the authors.

The a priori classification in two classes may seem as a con-
straint. Since no formal model testing is performed to choose
between a model including only one class with the model that
includes two classes, the interpretation of the data classified in
class 1 is not straightforward when, for a given condition, the
ROI is actually made up of nonactivated voxels. In this case, a
model with only one class would be more suitable. However, we
showed that a simple hypothesis testing procedure can be used
for the detection of “activated” voxels. Besides, the implementa-
tion of a Bayesian information criterion would also easily raise
this limitation. Note also that a threshold corrected for multiple
comparison can be used if a strong specificity is needed from
the analysis. In our experimental results, classes 1 and 0 were
straightforwardly close or different because of our ROI choice.
This may not be the case in other experimental conditions or if
ROIs are selected on an anatomical basis.

The knowledge of the alternative hypothesis estimation (class
1 estimated model) is information that is to date not normally
used in neuroimaging analyses but allows one to ask some dif-
ferent classes of questions to the data that cannot be answered
in the null hypothesis testing framework. For instance, one may
ask whether a given voxel activity is indeed not activated (its
value is close to zero within a given confidence interval); this is
information that is not obtainable from the “nonrejection” of the
null hypothesis. Furthermore, one would also be able to control
for the risk of false negative by setting a threshold based on the
alternative distribution.

VIII. CONCLUSION

In this paper, we have proposed an original method for semi-
blind deconvolution of impulse pseudo-neural response in func-
tional neuroimaging. This method extends a previous work [28]
to deal with regional HRF estimation in an efficient way while
modeling the spatial variability of the pseudo-neural response
for each stimulus type. Mixture modeling provides us a way of
estimating the distributions of activated and nonactivated voxels
from the data itself. Indeed, detection is performed on the esti-
mated class O (centered on 0) and class 1 distribution param-
eters. To our knowledge, it is the first time that a Bayesian
joint detection-estimation approach is proposed for the anal-
ysis of fMRI data. We have validated this approach on both
synthetic and real fMRI data. The method is general enough to
deal with all specific features of fMRI data (several sessions per
subject, voxel specific noise variance, asynchronous timing be-
tween event onsets and scanning time, physiological artifacts,
and so on). Our optimization scheme is also efficient enough to
allow for large fMRI time series to be processed. Furthermore,
this approach provides a tool to compare estimated activity be-
tween conditions, regions, or subjects.

Compared with standard detection techniques (like SPM),
this paper introduces the joint estimation of the shape of the
HRF and the associated spatial map and, therefore, should yield
more precise estimations of voxel activity. Our modeling also
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permits the use of the estimated distribution of activity under
the “alternative” hypothesis in a Bayesian framework. In this
regard, this approach provides the neuroscientist with a method
that is able to answer questions that are not tractable in the clas-
sical null hypothesis framework [21]. Another advantage of es-
timating the “alternative” distribution is that it allows some ad-
justement for modeling assumption violations. In the case of im-
perfect modeling of the noise characteristics, for instance, the
null distribution may have a different form from what is cur-
rently assumed in the null-hypothesis testing framework [21].
However, mixture modeling-based approaches may fail when
the data does not meet the distributional assumptions, whatever
the source of discrepancy (non Gaussianity, three-class mixture
model, ...). This point is critical in our approach for stimulus
types that do not elicit activation in any voxel of the selected
ROL. This could be solved using a model selection step that re-
quires the estimation of the parameters of the simpler one-class
model described in [32].

The method can be extended in several ways. First, spatial
regularization could be introduced on the spatial map of clas-
sification labels using 2-D (based on the cortical surface) or
three—dimensional (3-D) (based on the volume) Markov random
fields. The specific use of Pickard random fields could be par-
ticularly interesting to automatically tune the amount of regular-
ization from the data without facing the estimation of the parti-
tion function [56]. Another solution has been recently proposed
to cope with the same issue [47].

Second, the model presented here assumes that the NRLs are
constant in time. However, phenomena such as adaptation or
learning may be better modeled by including the time dimension
in more sophisticated models. This is the subject of future re-
search. Third, anatomical information (grey/white matter) have
yet to be considered. However, we know that activation should
be localized in the grey matter of the brain, and sophisticated
segmentation tools of anatomical data are now available (see,
for instance, the Brainvisa software?). If good registration be-
tween the anatomical and functional data can be achieved, this
information should be taken into account in the model formula-
tion as a prior.

Last, white noise is assumed in this paper. We have started
to develop an extension that accounts for serial correlation of
fMRI time series using a spatially varying first-order AR model
of errors [41]. First, this extension is more computationally de-
manding since AR, as well as drift parameters, now need to
be sampled. Our first tests on simulations have shown that this
modeling has an influence over the posterior error bars of the
NRLs. More precisely, for correlated synthetic datasets, we get
smaller error bars when modeling this correlation. Nonetheless,
our first tests on real fMRI data yielded no major improvement
compared with the results described in Section VII.

APPENDIX

A. Computational Details

We will use specific notations to make reference to usual dis-
tributions (see Table III). In the following, we derive the poste-

3http://brainvisa.info/index.html
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TABLE III
LIST OF DISTRIBUTION NOTATIONS

U uniform distribution

N Gaussian distribution

7G Inverse Gamma distribution
B Beta distribution

rior full conditional distributions from which we sample in our
algorithm.

1) Hemodynamic Response Function: The full conditional
posterior pdf p(h |y, a, ®) can be identified from the full pos-
terior pdf p(h,a, ® |y), assuming that (a, ®,y) are constant,
while h may still vary: p(h|y,a,®) < p(y|h,a,e)p(h).
Since the likelihood and the prior are Gaussian, h also follows
a Gaussian conditional distribution p(h |rest) ~ N (mp, X4),
with

S l=0°R! +ZStQ S5,

mp =3,y Sngyj (7
J

where §; = a7 X™.In practice, drawing realizations from
p(h|rest) is a three-step procedure [51].

1) Compute the square root of matrix 3j. This can
be achieved using Cholesky factorization such that
Yp= LL', where L is a lower triangular matrix.

2) Generate a Gaussian vector k ~ A (0,Ip_1).

3) Compute h = my+ Lk to geta sample from N (mp,, Zp,).

2) HRF Scale: Sampling the hyperparameter o3 amounts to

simulating according to

(on|rest) = p (oh| h) ~IG(D/2,R°R™"R/2).  (8)

3) “Neural” Response Levels: The sampling scheme of the
NRLs relies on two nested loops, where the inner corresponds to
the stimulus types (e.g., index m) and the outer to voxels (e.g.,
index j). The basic operation is to sample each a]* from the
conditional distribution

p (a?"|rest) :p(

This pdf is the marginal distribution of an a posteriori Gaussian
mixture:

(o

y_]7h 0m7 ]7 ;n?ém) :

m;ém
y]7h0m7 i _7 )

= Z P (a}” q" =i,y h,ej7 zi" ;ﬁm) Pr(qj* = 1)
i=0,1

~ 3NN (i (o)) ©)

i=0,1

After some straightforward calculations, we get the expression
of the mixture parameters

(07) * = 072 + 94.Q 9,
/1'?,1]: ( )2(ng em,]+Z/1'1 ""0-17%1)
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where g, = X™h,and e, j =y, — > ., 1t @ gm =y, +
a’'g,,. The weighting probability A;"; of the two distributions
can be expressed as follows:

AT = (1+ A ”/Xg'jj)_

2
Sm AimAl—im

) 2%
Oim

xexp ((u)"/2(01)"), =01

As indicated in (9), we first need to sample the binary label ¢7"
For doing so, we generate u" from ¢([0, 1]), and the following
rule applies:

ul' <A = ¢j" =1, otherwise ¢}* = 0.

Then, the sampling of the NRL o ] is based on the full condi-

tional pdf p(al* [ ¢]* = 4,9y, h, ¢ €2 m#”).

p(aqu_;m:L,y]h,omef)NN(N%,(O’z’mj)z) LZO,l
(10)

4) Noise Variances: Sampling the noise variances o2 can

be performed in parallel. Let us denote a; = (a;”)mzl: M-
Then, drawing a sample from p(ofJ | rest) is straightforward,
according to

p(¢j|rest) = p (f]y;. h.a;) o< p (y; [h.aj. €])
~ TG ((N+1-Q)/2 152 ppe/2) (D)

5) Weighting Probabilities: Sampling the weighting proba-
bilities A can be parallelized as well since A, is independent of
m' # m. For simplicity, drawing a realization of \,,, consists of
sampling from a Beta distribution

where ¢ = (q;”) j=1:g. Ji m stands for the number of voxels
in class C; ,,, for condition m. Note that .J,_; ,,, = .J — .J; ,,, for
i =0,1.

6) Mixture Parameters: Here, we focus on the generation of
realizations of hyperparameters ngm and (f11 m, 07 ,,) attached
to classes Co,r,, and C ,,,, respectively: '

P (0'0 m| rest) = p (o§7m| z™)

2 m
p (llfl,m7 Ul,ml I'CSt =P (llfl,m7 Ul,ml z

where 2™ = (a™,¢™). Note that both the labels ¢™ and the
corresponding NRLs a” have to be known to be sampled from
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the right posterior distribution for condition m. Bayes’ rule en-
ables us to derive the closed-form expression of these pdfs:

P (08 |2™)
xp(a™|q¢™,y,00..) Pr(@™)p (05.n)
x oo [ p(af|a =0.9.05,.)
i€Co.m
P (H1m, 07 ] 2™)
xp(a™|q™,y, 11,m, 0%, ) Pr(q

oy [ plafla =
JECT m

™p (t1.m, 07 )
17 Y, L1,m; U%m) .

Forz = 0,1, let

Vim = Z
€eC;,
1

J—

" —fim)”  and

Ni,m =

€Ci,m

According to (10), {a}'}jec,,, are iid. variables, each
being distributed accordlng to N(0, 0§ n)-distributed. The
ensuing posterior pdf of o2 .m therefore reads

JO ,m -1 Yo,m
my 7 .
)~ 19 (Fm =t M)
For class C ,,, we need to sample from the joint pdf of

(11,m, 07 m) This can be decomposed in two steps using ([51,
Prop. 4.4.1, p 187]).

1) Draw a sample for the variance from p(o7 ,,, | 2™)

m 1 m
m)NIg<J12 ,V12>.

2)  Draw a sample for the mean from the conditional pos-

13)

(Gg,m| z

(14)

(07 m|2

terior pdf
2 m O-% m
p (B1,m |01,m,z ) ~ N 71,ms 7 : . (15)
1,m
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