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ABSTRACT
In functional Magnetic Resonance Imaging (fMRI), the He-
modynamic Response Function (HRF) represents the im-
pulse response of the neurovascular system. Its identifica-
tion is essential for a better understanding of cerebral acti-
vity since it provides a typical time course of the response
to a stimulus in a given region of interest (ROI). In recent
work [1], the authors have developed an HRF estimation
method based on a single time course. Here, we propose an
extension that takes the spatial homogeneity of the HRF into
account. Our hypothesis based on biological results is that a
ROI can be characterized by a single HRF but varying ma-
gnitude in space. Our goal is to estimate those magnitudes
that could then be interpreted as a correlate of the neural
response. We are thus faced with a semi-blind deconvolu-
tion inverse problem since the time arrivals of the neural
response are known : they correspond to stimuli timing. To
cope with this issue, we introduce specific prior information
about the HRF and the neural response. Finally, we develop
a MCMC approach to approximate the posterior mean es-
timates of unknown quantities. Simulation results show the
improvement brought by our formulation compared to the
approach developed in [1].

1. INTRODUCTION

Despite numerous investigations, the relation between
the neuronal activity, in response to cognitive or behavio-
ral tasks, and the Blood Oxygen Level-Dependent (BOLD)
response [2], as measured with fMRI, is not completely un-
derstood [3]. A better quantification of the brain neuronal
activity is still needed. The whole brain is usually modelled
as a stationary, linear “black-box” system characterized by
its impulse response, the HRF [4]. The HRF models infor-
mation transfer from reception of the stimulus to measure-
ment of the BOLD signal.

Neighbor voxels belonging to an homogeneous ROI of
the brain demonstrate close shapes of the HRF but poten-
tially different signal amplitudes. Taking this aspect into ac-
count should provide a more robust estimation of the HRF.

The purpose of this paper is to estimate a single HRF shape
in a given ROI and a scale factor for every voxel and sti-
mulus type, that may better represent the neural response.
This problem can therefore be identified as a semi-blind de-
convolution inverse problem where the input sequence is the
neural response and the filter is the HRF given the biologi-
cal hypotheses. Since the stimuli timing is known, structural
knowledge on the input sequence is available to constrain
HRF estimation, leading to a partially blind problem.

To get a robust estimation of all parameters, we develop
a Bayesian approach using physiological prior information.
The HRF is modelled as a smooth function. The stimulus-
dependent neural response levels are assumed to be inde-
pendent across voxels as well as across stimulus types or
conditions. The hyperparameters that govern Gaussian prior
distributions as well as noise variances (one per voxel) have
to be estimated in an appropriate way. To address this issue,
we derive the posterior distribution and reliable estimates
of both the hyperparameters and of the parameters of inter-
est. For simplicity reasons, we compute posterior mean es-
timates from samples of the unknown quantities, generated
using a Gibbs sampler algorithm. This approach is tested on
realistic simulated data. Compared to [1], a significant gain
is achieved in terms of accuracy and computational cost. It
also corresponds to a simpler model since a single HRF for
each ROI and all conditions is estimated instead of one per
voxel and condition as in [1].

2. PROBLEM FORMULATION

2.1. Voxel-based model

In event-related fMRI with synchronous inter-stimulus
interval, the BOLD time course

� � � � 	 �  �  �
is measured in

any voxel of the brain at times
� � � � � � � 	 �  �  �

,
� �

being the Repetition Time, while stimuli occur with a fixed-
delayed impulse signal

� " � � 	 �  �  �
. The sampling period

is then
� �

when the stimuli occur at times of acquisition.
In asynchronous experiments, the presented stimuli oc-

cur at any time during scanning. In such cases, the data and
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the trials are combined on a finer temporal grid defined by
a sampling period � � �

TR. The occurrences of the stimuli� � � � � � � �
match time points on this grid such that two stimuli

never occur at the same time. Assuming the neurovascular
system linear and time-invariant, the fMRI data are related
to the stimulus sequence as follows :

� � � 	
��	 �  � 	 � � � � � � � � � � � � � � � � ! # $ � ' ' ' � * ,

(1)

where - � � 	 / � � � � � � � 0 � � � ' ' ' � � � � 0 � � � 4 6
and 7 	/ �  � � � � � ' ' ' � � � � � 4 6

.
� � �

is the
�
th sample of a zero-mean

Gaussian AR(1) noise process 8 independent of 7 . Let 9 be
the AR coefficient, 8 is the ouput of the linear system defi-
ned by

 � : � 	 � $ < 9 : 0 �
�

0 �

, whose input sequence = is> � ? � @ AB D �
-distributed. This noise model is appropriate to

account for temporal correlation of fMRI data due to phy-
siological artifacts. Let E 	 / - � � � ' ' ' � - � H 4 6

, (1) can be
written in a matrix equation :I 	 E 7 � 8 �

with 8 L > � ? � @ AP Q � �
(2)

where Q is the covariance matrix of an AR(1) process. The
stationarity of the system is ensured by the following condi-
tion :

� $ < 9 A � @ AP 	 @ AB .

2.2. Region-based model

In functional neuroimaging, we are primarily interested
in detecting functionally homogeneous clusters of voxels
involved in the same way in a given cognitive task. Once
such an homogeneous ROI has been found out, we search
for the canonical time response of this ROI. There exist se-
veral concurrent approaches to perform this analysis. The
most widespread consists in computing a spatial summary
of the data (e.g., the mean) over the ROI to get a single time
course before estimating the corresponding HRF [5]. Here,
we propose a ROI-based HRF estimate without spatial ave-
raging of the data. To this end, we introduce a generaliza-
tion of (2) that accounts for a voxel-dependent signal and
noise levels but assumes a single HRF shape over the re-
gion. Let T 	 # V � � ' ' ' � V Y ,

be the ROI with [ voxels andI \ the fMRI data of voxel
V \ , model (2) becomes :I \ 	 _ \ E 7 � 8 \ � � ` ! # $ � ' ' ' � [ , '

(3)

where
_ \ stands for the neural response level in

V \ . Note that
the experiment consists of several occurrences of the same
stimulus. Since we assume a time-invariant neurovascular
system, parameter

_ \ is constant in time. As shown in [6],
this assumption is a tenable and useful approximation.

Several noise models can be considered for T depen-
ding on its spatial properties. The simplest is an independent
and identically distributed (i.i.d.) AR(1) model, specified

by the above mentioned parameters
� 9 � @ AB �

. Nonetheless,
due to partial volume effect1 in fMRI data, the noise le-
vel may strongly vary from one voxel to another. This re-
quires a slightly more complicated model, in which a spe-
cific noise variance

@ AP d or equivalenty
@ AB d is attributed to

each voxel
V \ . Vector e Af 	 g @ AB � � ' ' ' � @ AB i j 6

is unknown and
should be estimated as well. For computational reasons, we
do not consider spatially non-stationary AR processes, even
if they may better reflect the gray-white matter interface of
the brain [7].

2.3. Multicondition extension

Actual fMRI experiments consist of several stimulus ty-
pes or conditions (visual, auditory,..).We further extend mo-
del (3) to estimate neural impulse levels that vary with the
stimulus type. Let k E m o p q � r o r s be the different stimulus-
dependent matrices, corresponding to the previous E ma-
trix but implementing a condition specific model, and then
suppose that the responses to stimulus t in

V \ , add in a li-
near way, then the generalization of (3) is given byI \ 	

s�
o � �

_ o\ E m o p 7 � 8 \ � � ` ! # $ � ' ' ' � [ , '
Note that 7 is not stimulus-dependent. To estimate the HRF
and the neural response levels x 	 � _ o\ �

� r o r s
� r \ r Y

, we first
need to take this model into account through the definition
of the likelihood function. If the fMRI time series y 	/ I � � ' ' ' � I Y 4

are supposed to be statistically independent,
the likelihood z � y | 7 � x �

reads :

z � y | 7 � x � e Af � 	

Y~\ � � z � I \ | 7 � x � e A\ � 	

Y~\ � �
� � � @ AP d �

0 � � A
| Q | 0 � � A � � � k < Y�\ � � | | I \ < s�

o � �
_ o\ E m o p 7 � | | A� � � � � @ AP d q (4)

� Y�\ � �
@ 0 �B d | � | � � A � � � k < � Y\ � � | | I \ < � s

o � � _ o\ E m o p 7 � | | A �� @ AB d q
where the inverse of the autocorrelation matrix Q is [8] :

� �	 Q 0 �
	

����������
�

� � � � � � � � � � �� � � � � � � � � . . .
...� . . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
�

...
. . .

� � � � � � � � �� � � � � � � � � � �

�          
¡

'

Maximum likelihood (ML) estimation of
� 7 � x �

is a bi-
linear inverse problem since z � y | 7 � x � e Af �

is linear with

1Gray and white matter are mixed in variable proportion in different
voxels.
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respect to � when � is fixed and vice-versa. In addition, this
problem is ill-posed since the ML solution

� � � � � � �
is not

unique. For instance, any couple
� � � � � � � � � � �

defines a
solution in the ML sense. By contrast, structural prior infor-
mation is available both on � and � . To solve this ill-posed
problem, we develop in the following a model within the
Bayesian framework.

3. A SEMI-BLIND DECONVOLUTION APPROACH

3.1. Prior information

The HRF. As physiologically advocated in [3], the cano-
nical BOLD response to a stimulus i.e., the HRF, can be
characterized by the following features [1] : (i) its varia-
tions are smooth ; (ii) the HRF is causal and returns to a ba-
seline after about 25 sec : its amplitude is close to zero at the
first and end time points. To fullfil conditions (i)-(ii), we use
a Gaussian distribution � � � 	 � �
 � � � � � � � � � �
 � �

where� � � � �� � � �
 �

and
� � is the truncated second-order fi-

nite difference matrix to account for � � �

� � � � � �
.

The “neural” responses. It is reasonable to assume that
different types of stimulus induce statistically independent
neural responses [3]. Thus we choose � � � 	 � � � � � � � � � � � � �

with
� � � � � � � � � � � � � � � �

. For condition � , the neural res-
ponse level is assumed to be

� � � � � � �� �
-distributed. Mo-

reover, vector
� � is a set of independent realizations since

we do not model any spatial correlation between the res-
ponse levels of neighbor voxels.

The hyperparameters. The complete set of hyperpara-
meters to be estimated is denoted � � � �  � � � �

. It consists
of voxels noise variances on one hand, and location and sca-
ling parameters � � � � � � � � �� �

of � � � � � � � �
on the other

hand. For � � , we resort to non informative priors such as
Jeffreys pdf for

� �� . Other hyperparameter
� � �
 � " �

are set
empirically. We have chosen

� �
 � $
to solve for the scale

ambiguity encountered in blind deconvolution problems [9].
For simplicity reasons, the AR coefficient is set to " � � � �
to account low-frequency drift in an appropriate way.

3.2. Posterior distribution

The posterior pdf of
� � � � � � �

reads :

� � � � � � � ' ( � ) � � ( ' � � � � � � � � � � � � � � ' � � � � � � � � � � � � � �
Due to the bilinearity aspect of � � � � � � � ' ( �

, we do not
choose the Maximum A Posteriori estimate of

� � � � �
. In-

deed, its computation requires stochastic optimization since
many local maxima may exist in the energy landscape of� � � � � � � ' ( �

. Moreover, MAP estimation does not pro-
vide any response to hyperparameter tuning. We rather pro-
pose a Gibbs sampling algorithm, which has shown to be

relevant in the context of blind deconvolution problems [9].
We generate realizations of � � � � � � � ' ( �

using sequential
sampling from the conditional posterior pdfs. To do that, we
account for the bilinearity and draw samples from the Gaus-
sian distributions � � � ' ( � � � � �

and � � � ' ( � � � � �
. Finally,

for ( � , � ) we compute an estimate of the a posteriori ex-
pectation (EAP), which is different from the MAP since the
posterior pdf is not Gaussian. For hyperparameters � , we
also resort to posterior mean estimates.

3.3. Computational details

The conditional posterior distribution of � , � and � � 
is

simply proportionnal to the product of the likelihood (4) and
their relative priors � � � �

, � � � 	 � � �
and � � � � � � / 0 � � � �2 3 �

� / 0 �  �2 3 , in accordance with Bayes rule. We get� � � ' ( � � � � � � 4 � � � 
 � 5 
 �

5 
 � � �  � 6 ! 0 ' ' !
�

� �0 8 9 � ; ' ' � < � � �2 3 �
 �

� " �

� 
 � 5 
 ! 0 � !
�

� �0 8 9 � ; � � 5 = 0 � � �2 3 �
� � � ' ( � � � � � � � / 0 # � � � 0 ' = 0 � � � � �2 3 � 4 � � � $ 3 � 5 $ 3 � ' � ( �

5  �

$ 3 � * � 5 * � � �2 3 6 , . 0 2 @ �  �� � 4 4 4 � �  �A B
� $ 3 � 5 $ 3 8 * � 5 = 0 � � �2 3 6 @ � � � � �� � 4 4 4 � � A � � �A B � : �

� � � �2 3 ' = 0 � � � � 0 � 4 < = �
C D � ' ' = 0 E !

�
� �0 8 9 � ; � � ' ' � < � D � � � ? �

where
* � � 8 9 � ; � ' 4 4 4 ' 8 9 A ; � �

. To estimate
� � and� �� , we use the following proposition (cf. [10, p. 187]).

Proposition 1 If vector
� � is a set of

� � � � � � �� �
-distribu-

ted i.i.d. observations, the posterior distribution of
� � � � � �� �

associated with the prior distribution @K � � � � � � � � �  �

� is� � ' � �� � � � � A � 4 � � � � � � ��
� M �

(8)� �
� ' � � � A � 4 < = � � M E $ � � D � A � � D �

(9)

where
� � � P

�0 Q � � �0 � M and
A � � P

�0 Q � � � �0 E � � � �
are

sufficient statistics.

We summarize the Gibbs sampling algorithm as follows :
(1) Initialization : choose � � � � � � � � � � � � .
(2) Iteration C : draw samples � S � � S � � � � � S � � S� from

the conditional posterior distributions (5)- (9).
(3) Iterate until maximum iteration number D � is achie-

ved.
Finally, we compute posterior mean estimates using the fol-
lowing approximation :EF G I K �

� MT
S Q N

F S � � D � E P 6 $ � � U F V R � � � � � � 2 � S $ � � �$ T
where

P
defines the discarded burn-in period2.

2The corresponding samples are not drawn from the target posterior
distribution.
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4. SIMULATION RESULTS

We tested our method using realistic synthetic data and
compared it to previous work [1]. We considered a ROI
composed of � � � �

voxels. We simulated a random in-
ter mixed sequence of indices coding for � � �

different
stimuli. Two sets of trials (for � � �

and � � �
) were

generated, each of them corresponding to a specific stimu-
lus. These binary time series were multiplied by a stimulus-
dependent scale factor. For � � �

, the stimulus was not
homogeneous in space to assess the robustness of our ap-
proach. We used scale factors

� � �� �
divided into two spatially

homogeneous subsets : magnitudes
� �

� � � � � � �
and

� �
� � � � � � � � were

drawn from
	 � � �

� � � � �� � � � � �
and

	 � �� �
� � � � �� � � � � �

,
respectively. For � � �

, the stimulus was homogeneous in
space and followed a

	 � � � � � � � � � �� � � � � �
distribution.

Both time series were then convolved with the so-called ca-
nonical HRF � 
 (see Fig. 1(c)) used in the SPM99 soft-
ware3. In all voxels, the number of data is

� � � � �
in all

cases. A correlated Gaussian noise
� � �� � � � � � � � � � � � 	 �

has
been added to the data. The corresponding signal-to-noise
ratio is similar to those encountered in real fMRI data.

Fig 1(a)-(b) show the estimated neural response levels
for both conditions in all voxels. These estimates accurately
match the true values despite the spatial inhomogeneity in-
troduced for the first condition. The HRF estimate plotted in
Fig 1(c) is very close to � 
 that appear on the same graph in
dotted line. The stimulus-dependent HRF estimates depic-
ted in Fig. 1(d) have been computed from the spatial average
of the data over the ROI using the previous approach [1].
These estimates are very similar to the scaled true HRFs� �


 � 
 and
� � 
 � 
 , respectively, with

� � � � � � ��  � . We
therefore show that we can retrieve spatially varying res-
ponse magnitude while this cannot be easily achived with
method [1] since a voxel-based approach would be time-
consuming and too noisy. Spatial selectivity is of primary
interest in fMRI since the ROI is often not homogeneous for
some stimulus type. As illustrated, our approach provides an
efficient and appropriate response to take the spatial varia-
tion of the neural response into account.

5. CONCLUSION

We have proposed an original method for semi-blind de-
convolution of impulse neural response in functional neu-
roimaging. This method extends previous work [1] to deal
with regional HRF estimation in a efficient way while mo-
deling the spatial variability of the neural response for each
type of stimulus. We have validated this approach on rea-
listic synthetic data. Future work will investigate its use on
real fMRI data.

3www.fil.ion.ucl.ac.uk/spm/spm99.html
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Fig. 1. (a)-(b) estimates of neural response levels
� �� and

� �� ;
(c), true HRF � 
 (- -), regional HRF estimate (–) ; (d) true
HRFs (- -) : � �
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 � 
 � � � � � �

and voxel-based HRF
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