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Multichannel Seismic Deconvolution

Jéréme Idier and Yves Goussard, Member, IEEE

Abstract— This paper deals with Bayesian estimation of two-
dimensional (2-D) stratified structures from echosounding signals.
This problem is of interest in seismic exploration, but also for non-
destructive testing or medical imaging. The proposed approach
consists of a multichannel Bayesian deconvolution method of the
2-D reflectivity based upon a theoretically sound prior stochas-
tic model. The Markov-Bernoulli random field representation
introduced in [1] is used to model the geometric properties of
the reflectivity, and the emphasis is placed on representation of
the amplitudes and on deconvolution algorithms. It is shown
that the algorithmic structure and computational complexity
of the proposed multichannel methods are similar to those of
single-channel B-G deconvolution procedures, but that explicit
modeling of the stratified structure results in significantly bet-
ter performances. Simulation results and examples of real-data
processing illustrate the performances and the practicality of the
multichannel approach.

I. INTRODUCTION

his paper deals with deconvolution of two-dimensional
T(2-D) signals which represent the inner structure of
layered media. This problem arises when the structure of
an unknown propagation medium is estimated from acoustic
measurements performed at its boundaries, and is a basic issue
in many areas of applied physics such as geophysics, nonde-
structive testing, and ultrasonic medical imaging. Assume that
the general orientation of the layers is horizontal, i.e., that most
of them are only slightly bent from the horizontal direction. We
also assume that incident acoustic waves are emitted from the
upper boundary, and that the reflected waves are observed on
the same boundary (see Fig. 1). Under reasonable assumptions,
and after adequate preprocessing of the data, the observations
constructed from the reflected waves can be considered as
the noise-corrupted convolution product of two signals: the
wavelet, and the reflectivity. The wavelet is a one-dimensional
(1-D) vertical signal which represents the waveshape that
scatters through the medium, and the reflectivity, defined as
the vertical logarithmic derivative of the acoustic impedance,
is a 2-D signal which characterizes the medium.

The object of multichannel deconvolution is to estimate the
2-D reflectivity from the observations and from the knowledge
available on the wavelet and on the noise. Here, it is assumed
that the wavelet and the probability distribution of the noise are
perfectly known. Even under these simplifying assumptions,
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Fig. 1. Seismic exploration: The problem is to characterize a layered

structure from acoustic measurements performed at its surface.

multichannel deconvolution presents serious difficulties for
two major reasons:

1) Estimation of the reflectivity is an ill-posed inverse
problem; this means that even an accurate input-output
model of the physical process is not sufficient to provide
a reliable estimate of the reflectivity. In order to obtain
an acceptable behavior of the estimates, introduction of
a priori information on the solution is necessary.

2) In most application domains mentioned earlier, and
particularly for geophysical applications, very large
amounts of data must be processed, which imposes
that the estimation algorithms present a low numerical
complexity. Clearly, proper choice of prior information
is critical, as it should both capture the essential charac-
teristics of the solution and yield numerically tractable
estimation methods. Here, the major characteristic of
the unknown medium is its stratified structure, to which
we add the simplifying assumption that the layers are
homogeneous in the vertical direction.

A common approach to the multichannel deconvolution
problem consists of breaking it into independent vertical 1-D
deconvolution problems. This is possible because the wavelet
is a 1-D vertical signal. In the vertical direction, a 1-D
reflectivity signal appears as a sparse spike train where each
spike (i.e., reflector) corresponds to a boundary between two
adjacent homogeneous layers. Several types of methods have
been developed for deconvolution of such signals. In the
early 1980’s, Mendel and his students introduced a Bayesian
approach which proved very fruitful [2], [3]. It consists of
performing the maximum a posteriori (MAP) estimation of
the 1-D reflectivity which is modeled as a Bernoulli-Gaussian
(B-G) random process [4], [5]. B-G processes can adequately
represent sparse spike trains, and yield tractable estimation
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procedures, thanks to their Gaussian component. In addition,
B-G representations present a hierarchical structure: the ge-
ometry of the reflectivity, i.e., the location of the reflectors, is
controlled by the Bernoulli part of the model, while amplitude
of the reflectors is defined conditionally to their location.

In two dimensions, the reflectors, which are located along
boundaries between layers, generally form smooth lines with a
preferential orientation in the horizontal direction. Application
of 1-D restoration methods to such 2-D signals is clearly
suboptimal, as the essential information of continuity of the
layers is not accounted for. Capturing such properties with a
mathematical model presents important difficulties and to our
knowledge, existing multichannel methods such as [6] or [7]
strongly rely on empirical treatments. The goal of this paper
is to propose a multichannel restoration method based upon
a theoretically sound prior model of the 2-D reflectivity. This
method retains the essential characteristics of single-channel
B-G deconvolution. It is a Bayesian technique, and the 2-
D statistical prior model comprises two parts organized in a
hierarchical manner: the higher level of the model controls
the geometry of the reflectivity and accounts for stratification,
while the lower level represents the amplitude of the reflectors
and is defined conditionally to the geometric component of
the model. Here, the Markov-Bernoulli random field (MBRF)
representation introduced in [1] is used to model the geometric
properties of the reflectivity, and the emphasis is placed on rep-
resentation of the amplitudes and on the corresponding restora-
tion algorithms. Two amplitude models are proposed. The first
one is an exact 2-D extension of the 1-D B-G representation,
while the second one is more consistent with the physical
properties of the underlying phenomena. For each prior model,
a restoration algorithm which implements a suboptimal MAP
estimator of the reflectivity is derived, and its general charac-
teristics and performances are investigated. It is shown that
the algorithmic structure and computational complexity of
the multichannel methods are similar to those of 1-D B-G
deconvolution procedures, but that explicit modeling of the
stratified structure results in significantly better performances.

The paper is organized as follows: the modeling assump-
tions and problem statement are given in Section II. In
Section III, background material on Markov random fields
and MBRF’s is presented, and two forms of complete prior
reflectivity models are proposed. The corresponding MAP
restoration algorithms are presented in Section IV. In order to
highlight the similarity between these algorithms and single-
channel B-G deconvolution techniques, all restoration proce-
dures are jointly derived from a unique algorithmic structure.
In Section V, simulation results and examples of real-data
processing illustrate the performances and the practicality of
the multichannel approach. Concluding comments are given
in Section VI

II. PROBLEM FORMULATION

As stated in the introduction, it is assumed that the raw data
have been adequately preprocessed so that the observations
can be considered as the noise-corrupted convolution product
of the wavelet and of the reflectivity. Therefore, one has

z=hxr+n 1)

where z,h and r, respectively, denote the observed dataset,
the wavelet, and the reflectivity. All data are assumed to
be discrete; z and r are 2-D arrays (z;;) and (ri;), 1 <
i < I,1 < j < J, and wavelet h is 1-D vector (h;),
0 < 4 < p, which is assumed to be invariant in both horizontal
and vertical directions for the sake of simplicity. Additional
noise n = (n;;),1 <i < I,1 < j < .J represents unmodeled
physical phenomena (structural noise), imperfections of the
measurement system (observation noise), and modeling errors.
It is assumed that n is independent from r, white, Gaussian,
zero mean with variance equal to o2. Here, only simple
deconvolution is considered and consequently, k and o2 are
assumed to be known.

Since h is a 1-D vertical signal, 2-D convolution product
of (1) can be separated into independent 1-D convolution
products, and the input—output equation can be rewritten as

vie,J],

n°

zj=hxr; +n; )

where z;,r; and n; denote the jth column of z,r and
n, respectively. Equation (2) can be put in the following
matrix form:

Vje[l,]]., Z_]’:H'I‘j-l-n]' 3)

in which matrix H contains shifted samples of the wavelet.

The object of the deconvolution procedure is to estimate
r. Here, only MAP-type estimators are considered, and the
solution # is defined by

7 2 argmaxP(R = r|Z = z). “
T

Throughout the rest of the paper, random variables and their
realizations will be, respectively, denoted by corresponding
upper and lowercase letters; in addition, the shorthand notation
P(z]y) will be used for conditional probability P(X =
z|Y = y) whenever unambiguous. Applying Bayes’ rule to
(4) immediately yields

7 = argmax P(z|r)P(r). S)
T
A straightforward consequence of the statistics of the noise

is that P(z|r) is white Gaussian, with mean value Hr and
variance 2. Using (3), P(z|r) can be expressed as

1
P(z|r) = ot
1 J
X eXp 4 T5 5 > (2 — Hrj)'(z; — Hr))

(6)

where the prime sign denotes the transpose operator. Equation
(6) can be further factored as

J
1
P(z|r) = ]1;[1 o

X exp{—zi2 (z; — Hr;) (z; — Hr]-)} (7a)

J
= [ PGzilry).

i=1

(7b)
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If the prior density of the 2-D reflectivity can also be factored
as

J
P =] Prs) ®
j=1

then it is clear that the optimization problem defined by
(5) can be separated into J independent 1-D maximization
problems which each correspond to MAP restoration of a
vertical reflectivity sequence. The assumption that P(r) can
be factored according to (8) is implicit when 1-D Bayesian
methods, such as B-G deconvolution, are used for restoration
of 2-D reflectivity sections. However, (8) indicates that vertical
reflectivity signals r; are statistically independent from each
other, and that no account is taken of the strong lateral
organization of the stratified propagation medium. In order to
correct for this deficiency, we now propose prior probability
distributions of the reflectivity which explicitly model its
layered structure.

III. PRIOR MODELS OF THE REFLECTIVITY

In recent years, Markov random fields (MRF’s) have
emerged as a powerful tool for accounting for local interactions
and inhomogeneities with a statistical model. Since the notions
of continuity of the layers and of lateral correlation between
reflectivity columns which characterize stratified media are
essentially local, MRF’s appear as a particularly suitable class
of models for specifying our priors. Some background material
on MRF’s is presented hereafter.

A. Markov Random Fields

Consider a stochastic process X = {X,,1 < n < N}
defined on a lattice A = {s,,1 < n < N}. Each element
s, of the lattice, or site, is in one-to-one correspondence
with elementary variable X,,, and the ordering of the sites
is arbitrary. The Markov property expresses the fact that the
conditional distribution of any elementary variable X, only
depends upon a—preferably small—set of neighbors of s,.
In order to formalize this property, define a system N E
{N,,1 <n< N}, where N, is any subset of A Nisa
neighborhood system if the following two conditions hold:

Vn, sn €Np;
VYm,V¥n, sn € Np & 8m € Np.

X is a MRF with respect to the neighborhood system N
if and only if, for any site s, and for any joint realization
z = (21,7, 2N),

Pzn|zy,-- -, zn) = P(2n|Tm, 5m € Na).

©

Any set of sites which either consists of a single site or
in which every pair of distinct sites are neighbors is called a
cligue.

MRF’s as defined above represent the most general class
of Markov processes on finite lattices. Several subclasses
with specific properties have been introduced in the past two
decades. For an exhaustive overview, see [8].

3 Tn—1sTn+1y"
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Property (9) provides an easy way of checking whether
a random process is a MRF and, if it is, to determine its
neighborhood system. On the other hand, specification of
a neighborhood system and of local conditional probability
measures P(Zp|Tm,Sm € Nn) generally does not yield a
consistent joint probability measure P(z). In order to ensure
the validity of the statistical model, two approaches may be
employed. The first one is based upon the equivalence between
MRF’s and Gibbs random fields. Since Gibbs distributions can
be explicitly expressed using local functionals (namely, Gibbs
potentials), the Markov—Gibbs equivalence provides a gen-
eral way of specifying local conditional probability measures
which are consistent with a valid MRF structure. This approach
has been widely employed, particularly for image processing
and computer vision applications. However, it presents two
limitations: 1) the Markov—Gibbs equivalence holds only if
P(z) never vanishes, or, in other words, if MRF X does
not present any forbidden configuration; 2) the corresponding
estimation methods are generally computationally intensive
(e.g., simulated annealing [9] or GNC [10]), which is a severe
disadvantage in the application domains which are in the scope
of this study.

The second approach for specifying a valid statistical model
consists of repeatedly applying Bayes’ rule so as to factor the
joint probability measure of X as

N
P(z) = P(z1) H P(2n|T1, " Tn1)

n=2

(10)

and of assuming that each conditional probability P(zn|z1,
-+, &n_1) only depends upon a small subset Py, of predeces-
sors of current site s,. Then it is straightforward to show
that X is a valid MRF whose set of maximal cliques is
{P,U{s,},1 < n < N} (maximal cliques are those which
are not subsets of any larger ones). Such MRF’s are referred
to as unilateral MRF’s (UMRF’s). One of the drawbacks of
UMRF’s is that the ordering of the sites required by the
unilateral characterization (10) is arbitrary and may introduce
privileged directions which are not related to any physical
property of the system under study. On the other hand, by
construction, probability distributions of UMRFs can always
be expressed as
N
P(z) = P(a1) [[ P(@nlm, sm € Pn) (11)
n=2
and this factored form is particularly suitable for recursive data
processing. UMRF’s present several other interesting features.
For more details see, e.g., [1], [11], and [12].

As mentioned earlier, it is always desirable that a prior
model be as simple as possible while adequately capturing the
essential characteristics of the system under study. For MRF’s,
this simplicity requirement applies to the structure of the
neighborhood system and to the parameterization of the joint
probability distribution. For layered media characterization, an
important step toward simplicity can be made by structuring
the model in a hierarchical manner. This can be achieved
by explicitly introducing an auxiliary random field G which
represents the geometric characteristics of the medium (i.e., the
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Fig. 2. Discrete binary representation of layer boundaries: Black squares
denote the presence of a layer boundary on the corresponding site.

location of the layers or of their boundaries), and by defining
the probability distribution of reflectivity R conditionally
to G. Specifying the priors is now equivalent to defining
P(G = g, R = r) which is factored as

P(g,r) = P(g)P(rlg).

As noted in the introduction, such a hierarchical structure is
present in the Bernoulli-Gaussian model used for 1-D decon-
volution. In addition, G plays a role similar to that of hidden
variables in speech recognition [13] and of line processes in
Markov modeling of images [9]. Such stochastic models have
proved very effective in accounting for discontinuities (such
as, here, the layer boundaries) and in reducing the size of the
neighborhood sets. Here, a Markov—Bernoulli random field
(MBREF) representation is used to describe the statistical prop-
erties of the geometric properties of the complete prior model.
MBRF’s belong to the class of UMRF’s and were specifically
designed to model the geometry of stratified structures. Unlike
other UMRF’s, the enumeration of the sites of MBRF’s is
chosen in accordance with the general orientation of the layers,
and does not introduce any artificial privileged direction.
Before proceeding with the derivation of the complete prior
model, we give a more precise definition of MBRF’s and
highlight their main features.

(12)

B. Markov-Bernoulli Random Fields

In this subsection, most results are stated without proof.
For the complete derivation of MBRF’s and investigation of
their properties, the reader is referred to [1]. MBRF models
comprise two kinds of binary variables: location variables and
transition variables. The role of location variables @ = {Q;; },
which are sampled on a rectangular lattice A°, is to indicate
the position of the layer boundaries. Location variables are set
to one if the corresponding site belongs to a boundary, and
to zero otherwise, as shown in Fig. 2. The role of transition
variables T is to indicate explicitly whether adjacent location
variables belong to the same layer boundary or not. They
are set to one in the first case and to zero otherwise. Since
the general orientation of the layers is horizontal, transition
sites are defined only between every pair of diagonally and
horizontally adjacent location sites, according to the scheme
represented in Fig. 3.

Let A/, A~ and A\ denote the sets of diagonally ascending,
horizontal and diagonally descending transition sites, and let

{T/},T~ = {T;} and T\ = {T}}} denote the
correspondlng transition variables. The probability distribution

/ O (Q1—1j+1 ’ Ri—lﬁl)

)Oilo(%ﬂ,

lj+1

ST RSP

Fig. 3. Introducing transition variables T ;: Transition variables are placed
between pairs of reflectors which are either diagonally or horizontally adjacent.

They are meant to indicate whether two adjacent layer boundary sites belong
to the same layer boundary.

wle DN,
N 2

Fig. 4. Generic cells on lattice A: The unilateral joint characterization
of T,Q is based on the decomposition of P(t,q) as a product of local
probabilities on these cells.

of the complete geometric model G 2 {T,Q} defined on
nonrectangular lattice A £ A° UA/ UA~ UA\ is given by

J I
Bl

j=1li=1

t1is)

X T(qij|[’i/+1]_17t;jf]7tz\—lj—l) (13)

where 7 is an invariant probability measure defined on the
basic cells depicted in Fig. 4. Note that in the above equation,
lattice boundary effects have been neglected. For the sake of
clarity, the same approximation is made throughout the rest
of the paper, but rigorous expressions corresponding to a free
boundary assumption can be found in [1].

From (13), it can be shown that {T",Q} is a valid UMRF
with a simple neighborhood structure, and that its maximal
cliques correspond to the basic cells shown in Fig. 4. {T'.Q}
can also be considered as a first-order vector Markov chain,
since (13) can be rewritten as

P(t.q) = P(q,) [ P(t;la;)Plg;alty)  (14)
j=1
where each probability in the RHS of (14) is defined as

1

P(g;) =[] r(an) (15a)
i=1
I

P(t;la;) = [ 7(t 150 tislais) (15b)
=1
I

q]+l‘t ) - HT ql]+1|tl+1] f’z\ l]) (ISC)

i=1

However, in order to obtain an adequate geometric prior
model [1], probability measure = must fulfill the following
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separability property:

Tt ¢, 6N = ()Tt 7)T(EY). (16)

Under this condition, each column Q]-ST/- , T; and T} is
white and Bernoulli distributed marginally from the rest of the
field. The respective characteristic parameters of the Bernoulli
distributions are given by

A=71(g=1) (17a)
p =r(t/ =1)
pm =Tt =1)

p\ =7t = 1). (17b)

The marginal Bernoulli distribution of columns Q; indicates
that MBRF’s are consistent with the Bernoulli distribution of
reflector locations which is assumed in 1-D B-G deconvolution
methods.

If (16) holds, the joint probability of {T', Q} is left invariant
by simultaneous reversion of horizontal and vertical indices.
In addition, if T presents a horizontal symmetry, ie.,

gt/ t7,8) = (g, 1\, 17, 1) (18)

then P(t,q) is left unchanged by independent reversion of
horizontal or vertical indices. From a practical standpoint, such
symmetry propetties are desirable, since the direction in which
the sites are indexed is not connected to any physical property
and therefore should not affect the prior model. In order to
fully define T, it is sufficient to impose that

@ =0,t" =0,t\=0jg=0)=1
(g = 1|t/ =0, =0,t'=0)=ec.

(19)
20

Equation (19) simply indicates that isolated transition variables
cannot be set to one, and this is consistent with their definition.
Equation (20) authorizes some discontinuities (corresponding
to geological faults or inclusions, for example) along layer
boundaries. Through an appropriate application of Bayes’
rule, it is possible to deduce all values of gt/ 17, t\)
from (17b), (19), and (20). Therefore, the set of parameters
{u/, e} fully describes the family of MBRF’s. These
four parameters take their values between zero and one,
and each of them can be given a physical interpretation:
W, and p\ are the probabilities of occurrence of upward,
horizontal, and downward transitions, while & represents the
probability of occurrence of discontinuities along layer bound-
aries. Characteristic parameter X introduced in (17a) is related
to {p/,u~,u\, €} by the following relationship:

A=1-(1-p)A-p)1-p)(1-e). @D

It should be stressed that MBRF’s {T',Q} also present a
hierarchical structure, and that transition variables play the
role of hidden variables or line processes. These transition
variables are crucial in the derivation of a tractable model,
as they express the relationship between adjacent columns
of location variables using local interactions. The hierarchy
between T and Q is underlined by the fact that marginally
from Q, T remains a UMRF with local neighborhood system,
whereas the converse is not true: marginally from T, Q is not
a MRF with local neighborhood sets [1].

965

C. Amplitude Field R

We now turn to the derivation of the complete reflectivity
model (T, Q, R) which of course should retain the attractive
features of MBRF’s, such as their UMRF structure or the
locality of the interactions. At this point, it is useful to
specify the prior distribution of the amplitude of the reflectors
independently from one another. Here, it is assumed that this
distribution is Gaussian. The validity of this hypothesis has
been severely questioned, especially in the field of geophysics
[14]. However, it is retained in this study because it consider-
ably simplifies the derivation of the compete prior model and
of the corresponding restoration algorithms.

Another open question concerns the independence of the

reflector amplitudes in the vertical direction. The validity of
such an assumption for different types of applications will
not be discussed here, but two models will be proposed. The
first one is based upon the assumption of independence of the
reflector amplitudes in the vertical direction, and constitutes
a true 2-D extension of the 1-D B-G model. In the second
model, correlation is introduced in the vertical direction on
the basis of simple physical considerations.
1) White Gaussian Reflectivity Sequences (M-B-G I): We start
by precisely defining the amplitude distribution of the re-
flectors independently from one another. Since no distinction
is made a priori between reflectors, there is no reason for
assuming any heterogeneous distribution of the amplitudes,
and we assume that the following condition is in force:

Homogeneity condition: Marginally from the rest of the
field, the amplitude of each reflector is sampled from a unique
probability distribution.

Since it was assumed that the reflector amplitudes are
normally distributed, the marginal probability density function
of the amplitudes of the reflectors is Gaussian with zero mean
and variance equal to 0.

We now proceed with the explicit specification of condi-
tional model P(r|t,q) which together with MBRF P(t,q)
constitutes the complete prior model. Clearly, P(r|t, g) should
preserve the UMRF and vector Markov chain structures of
P(t,q) and also introduce proper interactions between reflec-
tors located on the same layer boundary. We first extend the
first-order vector Markov chain structure (14) of (T, Q) to the
conditional distribution P(r|t, q) as follows

J
P(rlt,q) = P(rilay) [ P(rila; tia.mi-1)-

i=2

(22)

Since reflectivity values r;; are assumed to be correlated
only with reflectors located on the same boundary, we natu-
rally factor the conditional probabilities in the RHS of (22)
according to

I
P(rjla; ti-1,7j-1) = [ ] Plrijlag ti-1mi-1).

i=1

23)

Now it only remains to specify the scalar conditional proba-
bility functions in the RHS of (23). Such functions must be
defined in order to introduce proper correlation between 7
and reflectivity values in the previous column. More precisely,
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the proper form of correlation depends on the local geometry
of the layers, which is fully described by elements of the binary
vectors ¢;_1 and g;. In order to clarify this point, we first give
the following definition:

Definition: If transition variable t{ 411 (respectively,
tiis t,\_]kl) is set to one, then reflector r,; is referred to as
a successor of Tiy1;_1 (respectively, Ti—1sTimi,—1); Symmetri-
cally, the latter is referred to as a predecessor of ;.

Then, depending on the existence and uniqueness of succes-
sors and predecessors, the elementary conditional probabilities
in the RHS of (23) can be easily separated into four categories
(C1)~HC4):

(C1) If ¢;; = 0, then r;; = 0: there is no reflector at position
(4.7)-

(C2)If ¢;; = 1 and if r; is the unique successor of a unique
predecessor r.H_,h-vj#l(—l < di < 1), then r;; is sampled from
a first-order AR process, conditionally to r;14: j—1

Tij = QTi4dij—1 +n, (24)
where a € [0, 1] controls the degree of correlation between
amplitudes of reflectors along the same boundary. n,. follows
a Gaussian distribution with zero mean and variance equal
to (1 — a?)o?, so as to fulfill the homogeneity condition and
ensure that the variance of the AR process defined by (24)
is equal to o2, This case corresponds to interactions along a
single layer boundary.

(C3) If q;; = 1 and if »;; has no predecessor, then 7;; is
sampled from the basic Gaussian distribution A/(0, o?). This
happens in three cases: i) for the reflectors of the first column
r1; ii) when a reflector appears within A°® with probability e,
according to (20); iii) at horizontal and vertical boundaries of
A°, because of the free boundary assumption.

(C4) If ¢;; = 1 and if 7;; has more than one predecessor, or
symmetrically when r;; is not a unique successor, then r;; is
sampled from the basic Gaussian distribution A/(0, o?). This
configuration corresponds to the most difficult cases, and it
would seem natural to correlate 7;; with its predecessors. How-
ever, the relevant form of correlation is difficult to determine.
For instance, one might think of a mere linear combination
of the values of the predecessors. Unfortunately such a choice
does not guarantee the whiteness of reflectivity columns, and
not even the fulfillment of the homogeneity condition. On the
other hand, nonlinear combinations are incompatible with the
assumed homogeneous Gaussianity. In fact, we have found
that the proposed choice is the only consistent one.

It should be stressed that P(ri;|q;.2;-1.7;-1) does not
depend on complete vectors ¢;_;.q; and r;_;, but only on
a small number of their elements. It is easy to check that

P(rijlg; ti-1.1j-1)

!

_ / - \ - \
= P(Tij|Qi_i't’zflj—1‘tz—1171'f’i-lj—l -1 -1 b1

fz/+1j—1~tiv+1j71~f>+1j—1-7'i~11’71-7’i./71-Ti+1.jf1)- (25)
Since the conditional probabilities in the RHS of (22)
are Gaussian, they are fully characterized by their first two

moments. We now give the expressions of the corresponding
mean vectors m; and covariance matrices M; which will be

used in the derivation of the deconvolution algorithms. Define

_ o o E{Ria:} ifj=1
mj= (m,”)_{E{R]"q]‘,t]‘ﬁl,‘l‘jfl} for any 7>1
(26)
N E{R,R}|q,} — mim} ifj=1
M; = (M},)=4 E{R;R}lq;, for any j > 1
tj_1,7j-1} — m;m;
(27)

Then, in the four cases defined above, we obtain the following
expressions of these quantities:

(C1): my; =0, M} =0
(C2) . mij; = aTiy+di,j—1- Mljl = (1 - a2)02 (28)
(C3)&(C4): my; =0, M} = o?

and M; is a diagonal matrix (this is obvious from the
conditional statistical independence stated in (23)).

By recursion along the columns, it is almost immediate to
check that the above definition of the conditional probability
guarantees that the homogeneity property holds and that the
reflectivity columns are white. In addition, since each column
Q; is Bernoulli distributed, it follows that each reflectivity
column (@, R;) is a B-G process, with characteristic param-
eters (/\,05). The complete model X = (T,Q,R) will be
referred to as M-B-G 1. Remarkably enough, it can easily be
checked that the B-G model is a special case of the M-B-G
I representation, in which lateral correlation is canceled by
choosing an underlying MBRF with parameters

W o=p = ph=0=>X=¢ (29)
2) White Gaussian Log-Impedance Sequences (M-B-G II) :
Model M-B-G T provides a true 2-D extension of the 1-D
B-G representation. However, it is difficult to give a physical
interpretation to the choice of amplitude distribution in the case
of multiple junctions, i.e., to condition (C4). In order to correct
for this deficiency, we introduce a new kind of amplitude
variables Y;; which are related to reflectivity variables R;;
by first-order differentiation in the vertical direction:

1
Rij =Yy

> (30)

- Yi—lj)-
Note that variables Y;; must be defined even for 7 = 0 to
ensure that (30) holds for every R;; on A°. Equation (30) can
be rewritten in matrix form as

1
RjziDYJ,
1 1 0 --- 0
WhereDg 0
: . 0
0 -~ 0 -1 1

and Y;2(V;;).0<i< I (31)

Variables Y;; have an appealing physical interpretation:
it is shown in [15] that the relationship between reflector
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Log-impedance

| | | Reflectivity

Fig. 5. Correspondence between reflectivity R and log-impedance Y
Reflectivity columns are half the first-order differences of the log-impedance
sequences, so sparse reflectivity columns R, correspond to blocky
log-impedance sequences Y ;.

amplitudes R;; and acoustic impedance values I;; can be
reliably approximated as:

1 I
Ri'z_l )
72 H(Ii—1j>

when reflectivity values are small with respect to one. Com-
parison of (30) and (32) shows that variables Y;; are approxi-
mately equal to the logarithm of acoustic impedance, to within
an arbitrary additive constant. Therefore, ¥ will be referred to
as the field of log-impedance. Obviously, sparse reflectivity
columns R; correspond to log-impedance columns Y'; that
are constant within layers (see Fig. 5). This characteristic,
which is called blockyness in [15], has been accounted for by
several authors in the form of Markov [15] or semi-Markov
[16] chains. These models generally assume that the values
of the acoustic impedance of different layers are independent.
The same assumption is made in this subsection.

In order to derive the second model, referred to as M-
B-G 1II, local interactions are defined using impedance (or
log-impedance) variables, which have a physical meaning.
The reflectivity model is deduced afterwards from (30). The
following set of assumptions is used:

(A1) The first-order vector Markov chain structure (14) of
geometric model (7', Q) extends to the whole field (T, Q,Y")
as follows:

(32)

J
P(ylt,q) = P(wila:) [[ P(w;la;.ti-1,9,-1)-

=2

(33)

(A2) If a layer is created at column j, its log-impedance
value is sampled from a Gaussian distribution with arbitrary
mean (zero for sake of simplicity) and variance 202. This
happens in five cases, graphically represented in Fig. 6: i) in
the first column Y';; ii) at horizontal and vertical boundaries
of A°, because of the free boundary assumption,; iii) when new
layers appear due to layer boundary splitting; iv) when a new
boundary is created with probability € (the upper and lower
new layers are assigned independent log-impedance values);
v) symmetrically, when a boundary vanishes.
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(i)

®

®

@\/’N‘.

Fig. 6. Special cases to be handled in the M-B-G II approach: When the
seismic section is examined from left to right, new log-impedance values
are introduced in columns where new layers arise. This may happen in five
different cases i)-v), described in Section II-C2. In the example depicted
here, the arrows point at the beginning of each layer and the labels refer to
the relevant case.

(A3) If a layer of column j already exists in column j—1, the
associated log-impedance value y is sampled from a first-order
AR process, conditionally to the previous value yp:

Y = ayp + np (34

where n,, follows a Gaussian distribution with zero mean and
variance equal to (1—a?)202, and where @ € [0, 1] controls the
degree of correlation between log-impedance values across the
same layer. [t may seem simpler to impose a = 1,ie,y = Yp,
so that log-impedance is rigorously constant within layers. But
it is preferable to introduce some degree of variability from
one column to the next, so as to account for possible slow
changes across the reflectivity section, and in order to prevent
instabilities of the estimation procedures induced by modeling
err1ors.

Note that (A2) and (A3) yield an implicit specification
of the conditional probabilities in the RHS of (33); explicit
specification of these conditional probabilities would have
been much more difficult. Given such specifications, it is
straightforward to check that the following two properties
hold:

(P1) In each column Y, the log-impedance is constant
within each layer and independently distributed among dif-
ferent layers.

(P2) The marginal distribution of log-impedance values is
Gaussian with zero mean and variance 202, The marginal
distribution of the reflector amplitudes is also Gaussian with
zero mean, and their variance is still o2, However, within a
column, the reflector amplitudes are no longer independent.
The amplitudes of adjacent reflectors are correlated, and the
correlation coefficient is equal to —o?2/2. More precisely, the
covariance matrix P; = (P},) éE{R]‘RjI lg;} of reflectivity
column R; given the location column @; = g; and marginally
from the rest of the field is defined by:

qij=1=>Pi]i20'2,

VZ,Vk,k >i7(qija-~'aqkj‘) i
=(1,0,---,0,1) = P}, = P}, = —0%/2,

all other entries of P; are equal to zero

(35)
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which gives matrix P; the following structure:

01
1
0
0
0
1
0
ro 7
1 0 0 —1/2
0 0 0 0
. 0 0 0 0
- —1/2 0 0 1 0 71/2
0 0 0
—1/2 0 1 0
0 0
L : N

(36)
Finally, it is useful to determine whether the Markov chain
structure imposed on (T', Q,Y") implies that (T, Q, R) is also a
Markov chain, i.e., whether (33) implies (22). Rigorously, this
implication does not hold because linear equation (31) cannot
be inverted exactly: y; can be deduced from a reflectivity
column r; only to within an arbitrary additive constant.
However, as we assume that the log-impedance is zero mean,
we can always choose the constant so that the mean value
of y; is zero. As a consequence, we shall consider that (22)
is also fulfilled for the M-B-G II model. Mathematically, this
corresponds to the following approximation:
P(rjlg; tj-1,mj-1) = P(rilg;,ti-1,9,0)  (37)
where 4,_,) is the most probable log-impedance sequence
compatible with reflectivity sequence r;_;. Log-impedance
Y;_1 can be obtained by inversion of the following linear
system:

i 39)

here d Ali 1 }
A where ¢;_,=| —|.
q;'_l?lj—l =0 i1 q

-1
The first equation expresses the relationship between y,_, and
;-1 (see (30) and (31)); the second equation imposes that the
mean-value of log-impedance §;_; be zero. Inversion of (38)
can be trivially computed in two steps:

1) Yoj—1=0and §;;_y =;_y;_1 + 2ri;_1, forany i > 1
(392)

o
. _ q; 1Y,

2) For any ¢,9;;_1 = Yij—1— Jl—fl (39b)
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As for the M-B-G I model, we now compute the mean val-
ues and covariance matrices which characterize the Gaussian
conditional probabilities in the RHS of (22) and (33). We first
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define the conditional mean-value vector s; and covariance
matrix S; of Y; as

s.:(s..)g{E{Ylml} ifj=1
’ Y E{Y;lq;,t;-1,y,_,} foranyj>1
(40)
S-:(Sj)é E{Y1Y'|q;} - 515} ifj=1
J tk E{Y]-Y'j|qj,t]'_1,yj,1} —s;8, forany j > 1
(41)
Then, using assumptions (A2) and (A3), we easily obtain
Case (A2): s; =0 Sl =202 “2)
Case (A3): s; = ayp, S% =(1-a?)?20?

sj is a piecewise-constant vector whose constant sections
correspond to the position of each layer. S; is a block-
diagonal matrix whose constant diagonal blocks take their
values according to (42) and are in correspondence with the
constant sections of s;. For instance, (37) gives the following
structure for s; and S;:

o1
Ypl
0
0
s;=a 0 .S =24?
Yp2
Yp3
Yp3
"1—(17 1-a?
1—ad? 1-a?
1 11
111
x 111
1-a?
1-a®> 1-a?
1—a? 1-a?

43)
Then m; and M; (defined in (26) and (27)) are deduced from
s; and S using (31) and take the following form:

1
m; = -2—D LY
1
M;=.DS;D. (44)

IV. MULTICHANNEL M-B-G DECONVOLUTION

In the previous section, a new class of 2-D statistical repre-
sentations of layered reflectivity sections has been introduced.
More precisely, two models have been proposed. The M-B-G I
representation can be thought of as the most natural extension
of 1-D B-G models, while the M-B-G 1I representation has
more physical consistency. In this section, we address the
problem of deconvolution of reflectivity sections modeled as
M-B-G fields. The Bayesian framework defined in Section II is
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used, and efficient algorithms are derived for the computation
of MAP estimates of the reflectivity. Whenever possible, the
algorithms are given in a unique formulation which is valid
for both M-B-G I and M-B-G II priors, and extends previous
results relevant to 1-D B-G deconvolution [17].

A. MAP Estimation

1) Exact Expression of the MAP Criterion: Let J(z) 2
P(x|z) denote the a posteriori likelihood of a realization
of a M-B-G field X = (T, Q, R) given the observed data z.
Using Bayes’ rule, one obtains

J(z) x P(z|z)P(z) = J(z) x P(z|r)P(z)  (45)
since P(z|z) and P(z|r) are identical, as indicated by (1).
This again reflects the fact that the geometric part (T, Q) of

M-B-G models is a hidden variable of the estimation problem.
Using (14) and (22), prior probability P(z) can be factored as

J
P(z) = P(rilq,)P(q,) H P(r;lg;,tj-1,75-1)
j=2
x P(g;[t;-1)P(tj-1lg;-1)
J
= P(gy.m1) [[ Ptj-1.;,75la,-1m5-1)  (46)

=2

which together with the expression of P(z|r) given in (7),
yields the following factored form of J(z):

J(z) o< P(z1|r1)P(qq,711)

J
1 P(zjlri)P(ti-1,a;,75la;-1,mim1).  (47)
] =2

In order to compute the exact MAP solution, the a posteriori
likelihood criterion J(z) must be maximized over the whole
state-space of X. One can take advantage of the factored
form given in (47) and maximize J(z) in a recursive manner
using a Viterbi algorithm [18]. From a theoretical standpoint,
application of such a procedure does not present any difficulty,
as (T, Q) is a hidden Markov chain with a finite number of
states. However, the state-space of vector Markov chain (T,
Q) has such a large dimension that the computational cost of
the corresponding Viterbi algorithm is beyond the capabilities
of computers available now or in the foreseeable future. To our
knowledge, no other exact optimization procedure can reason-
ably be implemented, and maximization of J(z) must be car-
ried out in some suboptimal manner. In the sequel, we propose
a suboptimal column-recursive restoration algorithm which
takes advantage of the factorization of J(z) given in (47).

2) Suboptimal Maximization of the MAP Criterion: We start
by defining partial likelihood criteria J; as

Ji(gy,71) £ Pgy, 71, 21)
Vj€2,J),Ji(t-1,4575,45-1,Ti-1)
A
= P(tj—1>ijrjvzjlqj—larj—l)'

(48)
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Bayes’ rule allows us to rewrite (47) as a function of the
partial criteria:

J

J(z) o< J1(qq,71) H Jj(tj—l)qg‘vrj»q]‘—larj—l)'
j=2

(49)

Obviously, maximization of the partial likelihood criteria in-
dependently from one another is impossible, as each argument
g; and r;, 2 < j < J, enters the expression of more than one
partial criterion. This simply reflects the 2-D nature of the M-
B-G prior model. However, recursive formula (49) suggests
the following maximization procedure:

(1) Initial step:  (g,,71) = argmax J1(qy,71) (50a)

q,.T
(ij—lyqj'vi-j)
= argmax J;(t;-1,9;,75,8;_1,Fi—1)
tj~17qjvr1

) j€2,J):

(50b)

In the above algorithm, the data are processed in a column-
recursive manner: reflectivity column r; and corresponding
hidden binary vectors £;_1 and g; are determined from the
current observed trace z; and from the estimates of the
previous reflectivity columns. As indicated by (50), each
recursion involves maximization of a single partial criterion.
The procedure is clearly suboptimal since i) partial criterion
J; is maximized only with respect to ¢;_1, g; and r;: all
previously estimated quantities are frozen and ¢;_; and r;_,
which also enter the expression of .J;, are set to the values g;_,
and ¥;_; obtained at the previous recursion; ii) determination
of the jth reflectivity column is based on observations only
up to trace z;, and not on the whole set of observed data. /For\
instance, #; is evaluated without accounting for z;4; which
is undoubtedly very informative about r; because of strong
lateral correlation in the layered medium. These drawbacks
are common to all such decision-directed procedures, which
nonetheless have been shown to perform well in a 1-D
framework as long as the operating conditions are not too
extreme [19]-[21]. The degree of suboptimality of procedure
(50) will be further commented upon in Section V on the
basis of deconvolution results. On the other hand, the proposed
procedure is much simpler than global maximization of J(z),
since a set of 1-D maximization problems has been substituted
for the original 2-D optimization problem.

B. Maximization of Partial Likelihood Criteria

1) Detection-Estimation Strategies: ~ The methodological
problems associated to the maximization of partial criteria
J; are essentially similar to those encountered in 1-D B-
G deconvolution. Procedure (50) involves a detection step
(determination of binary variables ¢;_; and ¢;) and an
estimation step (determination of amplitudes r;). Due to
conditionally Gaussian distribution of the amplitudes, the
estimation step is rather easy to solve and the solution is
available in closed form. The detection step has a crucial
importance, because it presents great algorithmic difficulties,
but also because the quality of the detection has a major
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impact on the overall performances of the restoration method.
In this respect, it should be underlined that partial criteria
J; correspond to joint probability distributions of binary and
amplitude variables, and that maximization of such criteria
has been reported to lack robustness and to often produce a
large number of false alarms in 1-D B-G problems [3], [20].
The problem can be alleviated by performing detection and
estimation sequentially: detection is carried out first through
maximization of a modified marginal likelihood function, and
estimation is performed in second step using the result of the
detection operation. The sequential approach can be derived
as follows: using Bayes’ rule, the expression of partial criteria
is rewritten as

Ji(q1,m1) = P(q1,21)P(r1]21,9;)
V] € [25 ']]7Jj(tj—lvq]‘ﬂrjaqj—lsrj—l)
= P(t;_1,9;,2;lg;_1,7j-1)
P(r]"zj’tj—lvqjvqj—lﬂrjml)

(1)

J; appears as the product of two probability distributions. The
first one can be expressed as

Mi(q,) 2 le(Qp"'l)d"'l = P(qy,21)

Vj € [25 J]rM](tj-laqjaqj—l'rj—l)
2 [ Ji(tj-1.9;,75,4-1,7j-1)dr;
= P(tj-1,4;,25lq;-1,7j-1)

(52)

and is proportional to the joint posterior distribution of hidden
binary vectors ¢;_; and g¢;. It can be considered as a partial
marginal conditional likelihood in which the amplitudes are
treated as nuisance parameters and are integrated out of
the detection problem. It constitutes the partial detection
criteria which are maximized in the first step of the sequential
approach. In (51), the second term of the product represents
the posterior density of the amplitude variables conditionally
to the knowledge of the binary variables. It is Gaussian under
the assumptions stated in Section III and the solution can be
written in closed form. Its computation constitutes the second
step of the sequential approach, which can be summarized as
follows:

detection : ¢, = argmaxM(q;)
(1) First column: L . ! .
estimation: #; = argmax J1(q;,71)
L
(53a)
detection: (£;-1,4;)
= argmax
tJ—lqu
. Mj(tj—l»qjﬂq]‘—lvij—l)
estimation: f;
= argmax J;(t;_1,8;.75,q;_1.Fj-1)

r.?
(53b)

2 jel2J]:

As simulation results (not reported here) have confirmed the
superiority of the sequential approach over the simultaneous
scheme, only the former is described in the sequel. Transpo-
sition of the following derivations to simultaneous detection-
estimation is fairly straightforward and can be performed in a
way similar to the one described in [17].

2) Explicit Forms for Detection-Estimation: We now give
the detailed expressions of criteria M; used for detection of
binary vectors t;_; and gq;, and of the estimated reflectivity
values #;. These expressions are valid for both M-B-G I and
M-B-G II prior models, as the two representations only differ
by the structure of the mean vector and covariance matrix
which characterize the Gaussian part of the model. Moreover
the derivations are also valid for 1-D B-G deconvolution since,
according to (29), the B-G model is a special case of the
M-B-G I model.

When vectors #;_1,q; (respectively, q;) and r;_; are
known, it is clear by inspection of (51) that maximizing
J; with respect to the reflectivity values is equivalent to
maximizing a posteriori density P(r;|z;,t_1,4;,¢;-1.Tj—1)
(respectively, P(r1|z1,¢q;)). Since the prior distribution of
r; is Gaussian, and since the relationship between r;
and z; is linear with additive Gaussian noise (see (3)),
P(z;j|tj-1,4;,4;_1,7j—1) (resp. P(z1]qy)) is also Gaussian
and the estimate of r; is given by the classical MAP formulas
in a linear and Gaussian setting:

#; =m;+ M;H'(HM;H +o311) 7' (z; — Hm;) (54)

where Iy denotes the identity matrix of size (N,N); m;
and M, respectively, denote the prior mean value and co-
variance matrix of r; which are given by (28) in the M-
B-G I case and by (42)~(44) in the M-B-G II case. The
mean value b; and covariance matrix B; which charac-
terize P(2;|tj_1,q,,q4;_1.7;—1) (respectively, P(z1|q;)) are
expressed as

b]’ = Hmj (553.)
B; = HM;H' +ol1; (55b)

and (54) can be written in the following simpler form:
#; =m; + M;H'B;'(z; — b)). (56)

In order to derive the expression of marginal detection
criteria M, the formulas given in (52) are transformed using
Bayes’ rule. One has

Mi(q,) x P(z1lq:)P(4:1)

vjel2J],

M;(ti-1,q;,4;-1,7i-1) x P(zj[tj-1,75-1,9;)

P(q]'|tj—1)P(tj—1\‘Ij~1)

As noted above, the conditional distributions of z; which
appear in (57) are Gaussian with mean value b; and covariance
matrix B;. They can therefore be written in the following
logarithmic form, to within an additional constant indicated
by the sign “#™:

In(P(z1]q,))# — e1/2 = 3 In(|B1])

7

V.] € [2,J],ln(P(z]|t],1,rj,1,q])) (58)
#—¢;/2— 31n(|B;))
where
e; £ (2 — b;) B, '(z; — b)). (59)

We now need to find the explicit forms of the conditional
probabilities of the geometric part of the model. This can be
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done by using the factored form of the MBRF distribution (15)
and the definition of basic measure 7 given in (16), (17), (19),
(20). The result can be expressed as a function of five scalar
quantities defined as follows:

I;: number of nonzero samples of Bernoulli sequence g;

I;: number of nonzero samples of g, with no predecessor

I ]/ : number of nonzero samples of Bernoulli sequence t§

I : number of nonzero samples of Bernoulli sequence ¢

I J\ number of nonzero samples of Bernoulli sequence t}.

It should be noted that there is an implicit dependence between
I% and t;_4, and that the five quantities defined above do not
form a redundant set, as they are related through inequalities
only. The conditional distributions of the binary quantities take
the following logarithmic form:

(P 125
Y j €2,J],In(P(q;ltj—1))#I; In(e) — I;In(1 — ) (60b)

Vie2Jd) n(Ptilg; 1) #1]_,1 (1 //>
+1;_11n(1f; )+ I ( ) 5)1n(e)

(60c)
Note that derivation of (60c) makes use of the number of
nonzero samples of ¢;_; which do not have any successor.
Such a quantity need not be defined explicitly, since it is equal
to I;_3 + I — I;. From (57)~(59), one finally obtains the
logarithmic form L; of marginal detection criteria M; as an
explicit function of £;_; and g;:

(60a)

1-A

Lna# - 2 - Sm(Bi) - 1 1n( ) (612)

Vie€l2Jd, Li#-1,9)# — 5 — *1n(|B b

—
_Ijln(s(l—s))+2[§ln(e)—lj(_lln(1 lt>

w

1—p~ 1-
_Ij_lln( M_'u ) —I]\_lln( \ﬂ
In the case of a M-B-G I model, Li(q,) is identical to the
detection criterion used for B-G deconvolution. This is not
surprising, as no lateral interactions are accounted for in the
determination of the first reflectivity column. It can also be
checked that when the parameters of the MBRF are chosen
so that lateral correlation vanishes (see (29)), all criteria L;
become identical and equal to the B-G detection criterion.
This indicates that the column-recursive approach introduced

in Section IV-A2 is a 2-D extension of B-G deconvolution.
In order to determine the jth reflectivity column according
to (53b), one must first maximize detection criterion L; with
respect to £;_; and g; and second evaluate r; using (56). Since
the number of possible configurations of £;_, and g¢; is finite,
L; always admits a maximum. Unfortunately, this maximum
cannot be expressed in closed form, and optimal detection

\
)(élb)
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requires that L; be evaluated for all possible configirations
of the binary variables. Practical implementation of such a
scheme presents two major difficulties. First, the total number
of possible configurations of £;_; and q; varies from 27 to
87 where I denotes the number of samples per trace. In
most applications, I ranges between a few hundred and a
few thousand, and this corresponds to a totally unrealistic
number of trials. Clearly, only a subset of the state-space
of (¢;_1,q;) can be explored. Second, evaluation of L; for
a single configuration of ¢;_, and g; is computationally
burdensome, as (I, I)-dimensional matrix B; must be inverted.

In order to circumvent these difficulties, we propose a
deterministic suboptimal maximization procedure which can
be seen as an extension of the SMLR-type methods used in
B-G deconvolution [3]. The core of the method consists of
numerically efficient formulas which relate the criterion values
and amplitude estimates of two neighboring configurations
(tj-1,q;) and (#;-1,;)- At this point, neighboring sequences
need not be defined precisely, as the formulas are valid as
long as (¢;-1,q;) and (#;-1,§;) are different from one another.
Then, the state-space of (t;_1,q;) is explored by scanning all
neighboring sequences of the current configuration, selecting
the one which maximizes the criterion and iterating the process
until a, possibly local, maximum is reached. Neighborhoods
are defined in Section IV-B4 so as to achieve an acceptable
balance between the numerical efficiency of the procedure and
the size of the explored subset.

3) Core Algorithm: The main computational burden for the
evaluation of the detection criterion and of the amplitude
estimates lies in the inversion of (I, ])-dimensional matrix
B;. The general idea for deriving the algorithm is to express
the relations between criteria values and amplitude estimates
of two neighboring sequences using auxiliary quantities with
much smaller dimensions. Let j € [2,J] denote the index
of the current column, and consider two different realizations
(tj-1,9;) and (-1, ;) of (Tj-1,Q;). All quantities referred
to (£j_1,g;) are denoted by a superscript sign “7 e,
m;, M;, B;, etc. The difference between the prior mean
values and covariance matrices of (;-1, g;) and (fj_ljj)
are expressed as

(62a)
(62b)

m; —m; — uj

M; - M; =U;S;U,

where the difference of the two symmetric definite nonnegative
matrices M ; and M ; is factored using generalized square-root
factorization: U; and S; are a (I, K)-dimensional matrix and
a (K, K)-dimensional signature matrix, respectively, and K is
the rank of M; — M;. In the sequel, it is assumed that K
is small with respect to 7, and that u; is sparse with O(K)
nonzero entries. This assumption seems reasonable, as K may
be interpreted as a measure of the distance between the two
neighboring—hence fairly similar—sequences (¢;-1,q;) and
(#;-1,g;)- This also shows that the choice of neighboring
sequences sets a tradeoff between the completeness of the
search and the complexity of the algorithm. From a practical
standpoint, determination of §; is trivial in the case of the
M-B-G [ model (as both M; and M; are diagonal), but
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may require spectral factorization of real symmetric matrix
M; — M; in the case of the M-B-G II model. This can be
performed using standard mathematical libraries.

A first step toward simplification consists of relating the in-
verses of M; and M ;. Equations (55b) and (62b) immediately
yield

B, = B; + HU,;S;U,H' (63)

and by application of the matrix inversion lemma, we obtain

B! _ p-1 -1 B -1
B =B;'-B;'HU,;V;'UH'B; (64)

with

V,£8,+UH'B;'HU,. (65)
Compared to direct inversion of (55b), inversion of the (K, K)
matrix V'; has been substituted for that of B;. Computation
of In(|B;|) can also be carried out iteratively as
In(/B;|) = In(|B;]) + Inabs(|V;]). (66)
Equation (66) is a straigthforward consequence of the follow-
ing theorem stated and proven in [22]:
Theorem: Let A and B denote two matrices with
respective dimensions (n,m) and (m.n). Then we have

VA € R,|AL, — BA| = A" ~"|Al, — AB.

The set of equations (64)—(66) provides a consistent iterative
scheme, since L; and ; can be computed from matrix and
inner products involving B;l only, from In(|B;|) and from
quantitics that can be easily deduced from (¢;-1,¢;), such as
b;. I;, I, -- In particular, matrix B; need not be stored or
updated. However, these formulas are still quite burdensome
because each updating of L; requires several (I, ) matrix
products.

Fortunately, the computational load can be highly reduced
if the iterations are performed on auxiliary quantities e;, w;
and Aj, jointly defined as

A]“wj' a H/ -1
|:w_7'/l("j e By e =Bl @D

From (64), it is possible to obtain updating equations for ¢;, w;
and Aj;:

2 — ! o ./ - N ./ - . .
€j =cj — 2w;'u; ~w; Wiw; +2w;'W;Aju;

+ 'u;-Aj'u] — u;AjoA]“u]’ (68)
w; = w; — A]"u]' - Ajowj + AjoAj'U.] (69)
Aj=Aj - AW A, (70)

with
W, LU,V U, (71)
Vj:Sj+U/jAjUj. (72)

In conjunction with (66), (68)—(72) constitute a new iterative
scheme of very high practical interest. First, B;l does not
appear any more in the updating procedure; this does not

represent any saving in storage requirement (since A; is used
instead Bj_l) but the computational load is greatly reduced,
as all products with matrix H have disappeared. Second,
evaluation of L;(t; 1,g;) according to (61b) do not require
the computation of w; or Aj;, but only of &; and In(B;jl).
This only requires inversion of (K, K)-dimensional matrix V ;,
computation of its determinant, and products of matrices with
dimensions (I, K) at most.

Starting from a current combination (£;_1,q;), it is pos-
sible to compare the likelihood values of several sequences
(fj_ljj) by repeated applications of (71)—72), (66), (68) and
(61b). Once a new combination (;-1,q;) has been selected
as the one which maximizes L; among the trials, then w;
and A; are to be updated using (69) and (70) before a new
iteration is performed. Finally, estimation of the reflectivity
values is directly obtained at very low cost as a by-product of
the detection step since (56) can be rewritten as

i‘j =m; + Mj'lllj. (73)

In the above derivations, the special case of column
(@1, R1) has been set aside for sake of clarity. In fact, the
algorithm remains valid for j = 1, except that g, must be
substituted for (t]-_l.qj).

4) Suboptimal Iterative Maximization Procedure: As pre-
viously mentioned, the detection step is necessarily suboptimal
because exhaustive exploration of the possible binary
sequences is intractable. The aim of the present subsection is
to propose a suboptimal iterative exploration scheme which
fully takes advantage of the available updating equations. In
essence, it consists in starting from an initial solution and
jumping from the current solution (¢;_1.q;) to a better one
among a restricted set of neighboring combinations (¢;_1.¢;).
The process is iterated until no neighbor is more likely than
the current solution, which is then chosen as the final one.

Since the criterion value is guaranteed to increase at each
iteration, and since the number of possible binary combi-
nations is finite, the procedure necessarily converges in a
finite—unknown—number of iterations. Of course, no guar-
antee of convergence towards the global optimum is available.
From a practical point of view, the degree of suboptimality and
the average number of iterations greatly depend on the choice
of the initial point and of the neighborhood system between
binary sequences. As empirically confirmed in Section V, the
following neighborhood system gives very acceptable results:

Definition Two admissible realizations (t;_,q,) and
(ij,l,ﬁj) (7 > 1) are neighbors if one of the two following
conditions holds:

1) t;_y and t,_, differ from no more than one triplet of

transition variables (t{J_l, t—1 tl\jf A

2) t,_, isequaltot;  and §; differ from q; at one location

only.

Naturally, ¢; and g; are neighbors if they differ at one
location only. An admissible realization (t;-1, q;) is such that

P(t;_1,q;) is strictly positive, and that no crossing (2&1\]-_1 =1
and tz/+1j—1 = 1) is present, because they are physically

meaningless.
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The above definition is quite intuitive: given a current com-
bination (¢;-1,q;), its neighbors are obtained by considering
successively i) every possible arrangements of each identified
boundary of column j — 1, including cancellation; ii) every
possible creation of a new boundary in column j. It is easy
to see that each realization ¢; holds exactly I neighbors,
while each realization (¢;-1, ¢;) holds a number of neighbors
between I and 8].

In the M-B-G I case, jumping from neighbor to neighbor
gives values of K which are most often equal to one and some-
times to two or three, and substitution of M-B-G II for M-B-G
I adds one unit to K, which then varies between two and four.
Such low values gives full efficiency to the M-B-G algorithm
and entire compatibility with practical implementation.

Finally, the initial combination is chosen as the a priori
most probable one. In practical situations, p~ is greater than
&/ and p\, € is small compared to the other parameters, and the
resulting value of ) is lower than % Hence the most probable
first column ¢, is a uniformly zero Bernoulli sequence and
the most probable combination (¢;-1, ;) holds only horizontal
transitions from the previous column g;_;:

gij-1=1=¢;=1=¢;=1

Initialization of the algorithm with a uniformly zero
Bernoulli sequence can be performed easily since we have
in this case

m; IO,MJ‘ —_—O=>bj ZO,B]'=GTZLI[

. [Anwj} _ [E’](}—Z[Hw- (74)

wj'le; Zj

To start from another combination (¢;_1,4,), the algorithm
is first initialized with a zero Bernoulli sequence. Then, the
boundaries are introduced one after the other through several
iterations of (66) and (68)—(72).

When (29) is applied to the M-B-G I model, the above
definition of neighboring sequences and the choice of initial
solution are such that the exploration scheme exactly reduces
to the classical B-G iterative procedure [4], [17]. Finally, not
only the prior M-B-G model, but also the choice of MAP
criterion and the way it is maximized provide a true 2-D
extension of the 1-D B-G approach.

In order to sum up the whole procedure designed in Sec-
tion IV, Table I depicts the sequential detection-estimation
algorithm for multichannel M-B-G deconvolution.

V. RESULTS

In this section, the performances of the proposed methods
are illustrated by results obtained on simulated and real data.
As we have restricted the scope of the study to simple decon-
volution, the question of the choice of the hyperparameters
(i.e., the various tuning parameters of the methods) is left
unanswered, and some empirical rules must be devised so as
to specify their values.

In Section V-A, these rules are outlined and used on simu-
lated data. It should be emphasized that the hyperparameters
were not optimized for each specific example. Therefore,
the results are quite typical of the average capabilities of
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TABLE 1
SEQUENTIAL DETECTION-ESTIMATION ALGORITHM FOR M-G-B
DECONVOLUTION. THE TABLE IS GIVEN FOR COLUMNS
z;,2 < j < J.IF z; 1s NoT KNOWN, IT CAN BE ESTIMATED
USING A B-G DECONVOLUTION (SEE SECTION IV-B AND [17])

I- NULL SEQUENCE

Compute ¢;, ;, A, (74)

i A
setin(iB;|) =/ In(c) and [=1f =1/ =I7 =1} = 0.

II- INITIAL SEQUENCE (t;;, q;)
(62, 71-72, 66, 68-70)
(V)

Tterate on In(IB;1), ¢;, w;and A,
evaluate (I, If, I/, I;7, 1) for (t;_,. q;) and compute L.
III- NEIGHBORHOOD EXPLORATION
For every neighboring (f,-_l, ) of current sequence (t;_j, 4;),
(62, 70-71, 66, 68)
61)

compute In{|B;|) and e;,
evaluate (7}, Tf, 7/, 7_,-', 7_,\) andzj.

Go to stage V if all L; are lower than L;.

IV- UPDATING STAGE
Substitute the optimal (f;_;, §)) for the current sequence,
update w; and Ay (69-70)

Go to stage III.

V- FINAL STAGE

Deduce f; from w;. (73)

TABLE II
CPU TIMES ON A 22 MIPS WorksTATION. THE CPU TIME oF M-B-G
II DECONVOLUTION 1S ABOUT TWICE THAT OF M-B-G I AND THREE
TIMES THAT OF GAUSSIAN OR B-G DECONVOLUTION. ICM 1s EASY TO
IMPLEMENT BUT CONVERGENCE IS SLOW COMPARED TO EQUIVALENT
GRADIENT DESCENT TECHNIQUES. NOTE THAT THE ELAPSED TIMES
FOR FiGs. 10(d) AND (e) ARE GIVEN FOR ONE FORWARD ScAN
ONLY. SINCE FIVE FORWARD AND BACKWARD ScaNs HAVE BEEN
PERFORMED, ACTUAL ELAPSED TIMES ARE TEN TIMES LARGER

figure# | 8 | 8 | 8 8d 10c | 10d [ 10e
method G ICM BG |M-BGI|M-BGUI] BG |M-BGI|M-BGI
cpu time (s)| 100 | 2028 102 | 115 | 29.4 | 855 | 132.8| 258.8

the deconvolution methods. Finally, Section V-B provides an
example of real seismic data processing.

CPU times spent on computing some of the results are
collected in Table II. Times have been measured on a standard
22 MIPS workstation. Table II shows that the computational
complexity remains acceptable: the volume of computations
of M-B-G II deconvolution is about twice that of M-B-G
I deconvolution and three times that of Gaussian or B-G
deconvolution.
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Fig. 7. Simulated data: (a) Synthetic reflectivity used for the simulations.

(b) Seismic wavelet (i.e., vertical blur function). (c) Observation sequences
obtained by convolution between the reflectivity columns (a) and the wavelet
(b), and addition of white noise (SNR = 10 dB).

A. Synthetic Data

1) First Example: Fig. 7(a) shows a synthetic reflectivity
section, sampled on 65 columns of 51 points, with a sam-
pling period of 2 ms. Conventionally, reflectivity pulses are

represented as triangles of variable height, and positive areas
of signals are shaded in black so as to enhance the figure.
The seismic wavelet depicted in Fig. 7(b) is nonminimum
phase and has a very poor spectral content, which makes
deconvolution a very difficult problem. Fig. 7(c) shows the
noise-corrupted convolution product between the reflectivity
section and the wavelet, which corresponds to the observed
data. The signal-to-noise ratio (SNR), defined as the ratio of
the mean power of the noiseless observations to the additional
white Gaussian noise variance, was set to 10 dB.

Deconvolution results are presented in Fig. 8. In order to
compare our approach to standard methods, two techniques
based upon Gaussian prior models of the reflectivity were
implemented. The first one used a simple white Gaussian
(G) model, which allowed us to estimate the reflectivity trace
by trace using the following 1-D equations:

;= arg;nax”z] — Hr;|* + Blir; |
J

= (H'H + 8I,)"'H'z;. (75)

The above estimator was implemented using the fast Kalman
filter proposed in [23] (see also [2], [4]). The value of
regularization parameter 3 was chosen so as to minimize the
least-squares error |7 — r|| between actual and estimated so-
lutions. The result is shown in Fig. 8(a). In spite of the optimal
choice of 3, the solution is strongly oversmoothed even though
no horizontal nor vertical correlation are present in the model.
In fact, this approach seems unable to provide any accept-
able tradeoff between noise cancellation and high resolution
because of the very poor spectral content of the wavelet.

The second Gaussian model was truly two-dimensional and
introduced lateral correlations. More specifically, Gaussian
interactions were introduced in the log-impedance section,
which allowed us to determine the corresponding estimate of
the reflectivity through minimization of

J
Z llzj—Hr;||*+5/ Z(yi]‘*yi—lj+l)2+/jiz(yij_yij+l)2

i=1 i i

+4\ Z(yiJ ~ Yir141)?

4.J

(76)

where r; fulfills (31). Minimization was carried out using an
ICM algorithm [24], and here again, we relied on the least
squares estimation error ||+ — r||2 to select the best values of
parameters 3. The result is depicted in Fig. 8(b). Compared to
1-D Gaussian deconvolution, the least squares estimation error
[|# — || is about 10 % lower. Visually, the improvement is
hardly noticeable, and the tradeoff between noise cancellation
and high resolution remains far from acceptable. We now
restrict our attention to B-G and M-B-G deconvolution.

Fig. 8(c) shows the result obtained with B-G deconvolution
in the case of a marginal likelihood estimator [17]. The
parameter values were chosen empirically as follows:

SNR =10 dB
{,\ =0.12 n
The parameter values (77) correspond to the known “true”
ones. According to empirical results reported in [25], such
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Deconvolution results: (a) 1-D linear deconvolution using a white Gaussian prior and a fast Kalman filtering technique [23] provides a

strongly oversmoothed result. (b) 2-D linear deconvolution using a Gauss—Markov random field and ICM restoration [24] still lacks resolution. (c) B-G
deconvolution misses the horizontally stratified organization of the medium. (d) M-B-G I deconvolution provides a nearly perfect result (M-B-G II

performs very similarly to M-B-G I).

a choice is nearly optimal with respect to B-G capabilities.
Visual comparison between Fig. 8(c) and Fig. 7(a) shows
that the original reflectivity section is very roughly restored.
Many details are lost: thin layers or weak reflectors are hardly
detected; some columns are strongly distorted by artifacts such
as false alarms or doubled detection. More generally horizontal
continuity is not preserved, which makes the stratified structure
of the medium quite difficult to perceive from Fig. 8(c).

Fig. 8(d) depicts the M-B-G I estimate, obtained for the
following values of parameters:

SNR = 7 dB
p~ =0.084, 4/ =p) =0.020,e =0=>1=0.12 (78)
a = 0.999

Contrarily to B-G deconvolution, M-B-G 1 deconvolution
requires an under-evaluation of the SNR (say, 2 to 5 dB less
than the “true” value), in order to avoid a large number of
errors during the detection step. Underevaluation of the SNR

corresponds to overregularization of the solution, which means
that the prior model is given more confidence. Because the
sequential structure of the multichannel algorithm does not
correspond to optimal processing of the data (see Section III-
D), overregularization partly makes up for this limitation. To
a lesser extent, the same is true of M-B-G II deconvolution.
Here we have not represented M-B-G 1I results, since they
can hardly be distinguished from M-B-G I (Fig. 8(d)), for the
same parameter values (78).

Compared to Fig. 8(c), the accuracy of the estimates is
greatly improved by M-B-G deconvolution. Differences be-
tween Fig. 8(d) and the original reflectivity section (Fig.
7(a)) are actually negligible. Even small details, such as the
double junctions in columns 24 and 55, are restored properly.
This excellent result illustrates the improvement that can be
obtained from accounting stratification in the field of seismic
deconvolution.

In these tests, it was assumed that the first reflectivity
column is known, so that M-B-G deconvolution can be cor-
rectly initialized. In practice, this favorable situation occurs
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when well log information can be used for initialization. If no
borehole data are available, restoration of the first column can
be obtained from B-G deconvolution, as described in Section
IV. Since in this case the result is not reliable, it is advisable to
process the data several times to and fro, and to initialize each
new scan with the last estimated column given by the previous
scan. Such a procedure is used for real data processing in
Section V-B.

2) Second Example: The previous example was well suited
to accounting for horizontal boundary continuity, since no fault
nor other types of discontinuity were present in the synthetic
seismic section; this allowed us to set the discontinuity param-
eter ¢ to zero. Fig. 9(a) is similar to Fig. 7(a) except for an
inclusion in the upper left corner of the reflectivity section.

Figs. 9(b) and (c) show the results obtained with M-B-G
deconvolution, respectively, M-B-G I and II. In both cases,
the parameter values were chosen as follows:

SNR =7 dB
p==0.084,p/ =p\ =e=0.020=X1=0138 (79)
a = 0.999

The only difference between (78) and (79) is the nonzero value
of ¢ which authorizes the presence of discontinuities.

Both versions provide a satisfactory estimate; in particular,
the inclusion is well detected. However, the quality of the re-
sults is significantly lower than in the first example. This is not
surprising since rigorous horizontal continuity can no longer
be assumed; this tends to increase the ill-posed character of
the problem because a lot of discontinuous possibilities now
compete for the estimated solution.

Further analysis of Figs. 9(b) and (c) shows that M-B-G |
and II do not behave the same way with respect to detection.
Because it is based on a more pertinent prior model, M-B-
G II is more robust toward detection errors (boundaries are
more accurately tracked in Fig. 9(c) than in Fig. 9(b), to
the detriment of weak reflectors (for instance the boundary
located at 1200 ms). M-B-G I is more sensitive, but additional
tests have shown that it often lacks robustness: a single error
can jeopardize the whole estimation by being replicated and
amplified from one column to the next. Such a cumulative
effect of detection errors is the main drawback of sequential
decision-directed procedures. In this respect, substitution of
M-B-G II for M-B-G I provides a substantial improvement.
Further improvement could be expected from introducing a
detection delay from column to column, as Goussard and
Demoment did for recursive B-G deconvolution [20].

B. Actual Seismic Data

The last example comes from an actual seismic experiment.
Fig. 10(a) shows a stacked seismic section of 41 traces. The
time sampling interval is equal to 2 ms.

Application of multichannel deconvolution requires that
the seismic wavelet is known. In order to estimate the un-
known wavelet, a preliminary step of blind single-channel
deconvolution was carried out. It is based on a generalized
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Fig. 9. Second synthetic example: (a) Synthetic reflectivity, identical to Fig.

7(a) except for an inclusion in the upper left corner of the section. (b) and
(c), respectively, show M-B-G I and II estimates.

maximum-likelihood approach with B-G prior modeling and
MA description of the wavelet, as described in [25] (an
equivalent approach available for ARMA parameterization can
be found in [5]). The identified nonminimum phase wavelet
is shown in Fig. 10(b).
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Fig. 10.  Actual seismic example: (a) shows a stacked seismic section. (b) Identified nonminimum phase wavelet (i.e., vertical blur function) using a
generalized maximum-likelihood approach [25]. (¢), (d), and (¢), respectively, show B-G, M-B-G 1, and II estimates.

Fig. 10(c) shows the result obtained with B-G deconvolution  Except for the strongest reflectors, the difference between suc-
for the following parameter values: cessive reflectivity sequences does not allow any stratigraphic
interpretation. Nevertheless, a lot of reflectors reappear from
{SNR =4dB (80) trace to trace, which indicates that the investigated medium is

A=02 horizontally stratified.
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For M-B-G deconvolution, parameter values were empiri-
cally chosen as follows:

SNR = 4 dB
p~ =0.105, 1/ = p\ = 0.050,e = 0.008 = X\ = 0.2
a =099

@®1)
In order to avoid initialization instabilities, the data were
scanned five times. Figs. 10(d) and (e), respectively, show
the deconvolution results obtained then with M-B-G I and II.
As expected, both results preserve horizontal continuity and
parsimoniously locate boundaries. In this respect, M-B-G II
performs better than M-B-G I: for instance, the latter splits the
strong positive reflector at about 860 ms, whereas the former
locates a single spike. Another unrealistic aspect of Fig. 10(d)
is the presence of meaningless discontinuities, whereas M-B-G
II better preserves horizontal continuity.

V1. CONCLUSION

In this paper, we addressed multichannel deconvolution of
echosounding signals in order to estimate two-dimensional
stratified structures. The proposed approach constitutes a
true 2-D extension of Bernoulli-Gaussian deconvolution
[7]. Since the latter was designed in a 1-D context only,
prior information was reduced to the spikiness of reflectivity
signals in the vertical direction [3]—{5]. In two dimensions the
medium is assumed to be stratified into roughly horizontal
layers, so that reflectors generally form smooth lines with
a preferential orientation in the horizontal direction. Single-
channel deconvolution can hardly account for such essential
information and, to our knowledge, existing multichannel
methods strongly rely on empirical treatments [6], [7]. Instead,
we proposed a Bayesian multichannel deconvolution method
based on MBRF prior modeling [1]. Two versions were
presented, called M-B-G I and II. The first one provides an
exact 2-D extension of B-G deconvolution, while the second
accounts for impedance representation, which leads to a more
consistent prior model and to better deconvolution results.

Special attention was paid to computational complexity: the
algorithmic structure of M-B-G multichannel deconvolution is
very similar to sequential application of B-G single-channel
deconvolution, but significantly better performances were ob-
tained on both simulated and real seismic data. This is a
consequence of the 2-D nature of the prior model.

Perspectives of improvement mainly concern the introduc-
tion of a detection delay, in order to make up for the inherent
lack of robustness of sequential decision. Another issue is to
cope with blind and adaptive multichannel deconvolution.
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