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On the Superresolution Capacity of Imagers Using
Unknown Speckle Illuminations
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Abstract—Speckle-based imaging consists of forming a super-
resolved reconstruction of an unknown sample from low-resolution
images obtained under random inhomogeneous illuminations
(speckles). In a blind context, where the illuminations are unknown,
we study the intrinsic capacity of speckle-based imagers to recover
spatial frequencies outside the frequency support of the data, with
minimal assumptions about the sample. We demonstrate that, un-
der physically realistic conditions, the covariance of the data has
a super-resolution power corresponding to the squared magnitude
of the imager point spread function. This theoretical result is im-
portant for many practical imaging systems such as acoustic and
electromagnetic tomographs, fluorescence and photoacoustic mi-
croscopes, or synthetic aperture radar imaging. A numerical vali-
dation is presented in the case of fluorescence microscopy.

Index Terms—Multi-illumination imaging, high resolution, cut-
off frequency, second-order statistics, optical microscopy, photoa-
coustic imaging, synthetic aperture radar.

I. INTRODUCTION

IN MOST active wave imaging systems, the recorded data z
can be modeled as the convolution of a point spread function

(PSF) h with the product of the sample ρ with an illumination
E, plus some additive noise ε:

z = h ⊗ (ρE) + ε (1)

where ⊗ stands for the convolution operator, either in two or
three spatial dimensions. This simple model applies to imag-
ing configurations as diverse as microwave scanners or ane-
choic chambers [1], radar remote sensing [2] or fluorescence
microscopy [3].

The shape of the point spread function h depends on the
imager geometry, e.g., the numerical aperture (NA) of the
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microscope objective, or the size of the antenna array in radar
imaging. It accounts for the wave propagation from the sample
to the detector. In most configurations, free-space propagation
prevents the wavefield high frequencies from reaching the de-
tector. As a result, h has necessarily a bounded Fourier support
DPSF . For instance, in a microwave scanner, DPSF is a hollow
sphere of radius 1/λ (where λ is the illumination wavelength)
when the field scattered by the sample is recorded under all
possible directions, or a cap of sphere when the observation is
performed only over a small solid angle [4]. Similarly, in two
(or three) dimensional fluorescence microscopy, DPSF is a disk
(or a solid torus) of radius 2NA/λ [3].

When the illumination is homogeneous throughout the tar-
get, solely the sample frequency components in DPSF can be
restored from the data by linear methods, which limits funda-
mentally the image resolution. To improve the latter, synthetic
imaging using multiple illuminations has been developed. Its
main principle is to use several known inhomogeneous illu-
minations Em ,m = 1, . . . , M , to probe the sample. The fre-
quency mixing of Em with ρ causes a down-modulation of
the sample high spatial frequencies into the frequency-support
DPSF . Using appropriate data processing, sample frequencies
beyond DPSF can be recovered, yielding a much better resolu-
tion. This idea is at the core of many imaging configurations
such as Synthetic Aperture Radar (SAR) [2], diffraction tomog-
raphy [5], and Structured Illumination fluorescence Microscopy
(SIM) [6], [7], among others.

In all these imaging modalities, the standard numerical or
analog process that forms the super-resolved image from the
stack of low resolution data assumes the precise knowledge,
and thus the tight control, of the different illuminations Em .
The super-resolution capacity of the process is then both theo-
retically and practically demonstrated. However, the full control
of the illumination patterns is a major constraint for the exper-
imental implementation and in some cases proves impossible.
The case of thick samples imaged with three-dimensional SIM
is a classical example since samples are likely to introduce dis-
torsions on the excitation pattern [8], [9]. Hence, some groups
have developed reconstruction algorithms able to handle some
uncertainty about the illuminations [8]–[11]. Following a less
conventional option, others have advocated using of totally un-
controlled illuminations of speckle type [12]. This recent blind
approach could dramatically simplify the experimentation by
further relaxing the constraints on controlling the illumination
patterns. Examples of implementations can be found in optical
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microscopy [13]–[17] and photoacoustic imaging [18], [19].
The proposed inversion schemes take advantage of the nonneg-
ativity of the sample ρ, and on statistical information on ρ and/or
the illuminations Em . In particular, some of them introduce spar-
sity information on ρ [14], or on the products ρEm [17]. Gener-
ally speaking, the stack of low resolution speckle data yielded
reconstructed images with significantly better resolution than
that provided by a standard imager using homogeneous illumi-
nation. However, many questions remain unanswered about the
theoretical resolution that one can expect from such a system,
in particular with respect to the speckle statistics.

To the best of our knowledge, this paper provides the first
comprehensive mathematical understanding of the super-
resolution (SR) capacity of synthetic imaging using speckle
illuminations in a blind way. Our analysis is very general and
basically holds when the data can be modeled by Eq. (1) with
ρ ≥ 0. Pivotal SR results are for instance provided for two
popular microscopy modalities, namely optical fluorescence
microscopy and optical coherent imaging.

Fluorescence microscopy is an incoherent imaging modal-
ity, for which the quantities involved in (1) have the following
physical interpretation: ρ is the fluorescence density distribu-
tion, i.e., a real-valued, nonnegative, quantity; the incoherent
PSF h is real-valued, nonnegative, and the support of its Fourier
transform is a disk or a torus in two and three dimensions, re-
spectively [3]; the illumination E is a speckle intensity pattern
produced by a coherent light beam, i.e., a random real-valued,
nonnegative, quantity (see for instance [13]); and z is an inten-
sity measurement plagued by real-valued instrumental noise ε.
In addition, in the low counting-rate regime, one may consider
photon counting fluctuations in the observation model: in this
case, the quantity h ⊗ (ρE) in (1) is connected to the mean
of the counting statistics. The case of intensity measurement
plagued by both photon counting fluctuations and electronic
noise is specifically addressed in Appendix A.

In coherent imaging, such as tomographic diffraction mi-
croscopy [4], we have the following correspondence for the
model (1): ρ is the relative permittivity contrast distribution, a
complex-valued function in general, although our mathematical
analysis is restricted to real nonnegative ρ, i.e., it is restricted
to lossless dielectric objects; the coherent PSF h is complex-
valued, and the support of its Fourier transform is a sphere cap
[4]; the illumination E is a complex-valued random field, e.g.,
a circular Gaussian random field if it arises from a (scalar) elec-
tric field stemming from a fully developed speckle produced by
coherent light [20]; the recorded data z is the scattered electric
field plagued1 by circular complex-valued instrumental noise ε,
such that z is also a circular complex-valued random field.

In the sequel, the term super-resolution is understood as the
ability to recover spatial frequencies of the sample that cannot be
obtained with either a constant illumination in incoherent imag-
ing, or a single plane-wave with normal incidence in coherent

1This measurement z is usually obtained by the Fourier transform of measured
real valued intensities in an off-axis interferometric mounting, see for instance
[21], [22]. Moreover, if the counting rate is high enough, an additive fluctuation
model over the real and the imaginary part is relevant.

imaging. Following standard results [23, ch. 6], we recall that
the incoherent (intensity) PSF is obtained by squaring the mag-
nitude of the coherent (complex electric field) PSF of the optical
system. As a result, transmitted spatial frequencies with an in-
coherent illumination span twice the domain transmitted with
a coherent illumination. However, incoherent illuminations do
not provide the permittivity contrast, but its squared magnitude,
which prevents any direct comparison in terms of spatial resolu-
tion between coherent and incoherent optical systems, see e.g.,
[23, Sec. 6.5] for details. In contrast, the present work shows
that a double spatial resolution can be obtained in both cases
thanks to random illuminations.

We finally note that the model (1) also encompasses some
other situations, namely microwave imaging [24] (the mea-
sured data are complex fields, ρ is the complex permittivity; the
noise being mainly an electronic fluctuation, it can be assumed
Gaussian for both the real and imaginary parts) and photo-
acoustic imaging [18], [19] (the measured data are real-valued
B-mode images corrupted by real-valued Gaussian noise, and
ρ represents the optical absorption). Hereafter, we consider the
complex-valued setting, since the real setting can be deduced
straightforwardly as a particular case where the imaginary parts
of the relevant quantities vanish.

The article is organized as follows. The next section pro-
vides the mathematic assumptions required in our SR analysis.
Section III establishes the expression of the first two moments
of the data. In Section IV, the dependency between the latter
expressions and the spatial frequency components of the sample
ρ is further examined. Clear conclusions about the SR capacity
of the system are obtained if the speckle illuminations are “suffi-
ciently” correlated, in the sense that their spectral power density
lies within the frequency support of the PSF. Such conclusions
constitute the main contribution of this paper. The opposite case
of uncorrelated speckles is also considered. Section V deals with
the practical question of a computational scheme to reconstruct
the unknown scene. A two-dimensional simulation of an optical
fluorescence microscope using correlated speckle illuminations
is provided, and it supports that the expected SR ratio can be ob-
tained from the data empirical second-order statistics. Finally,
Section VI discusses the practical consequences of the obtained
results, and evokes possible extensions and remaining points to
address.

II. MODEL AND ASSUMPTIONS FOR THE SR ANALYSIS

We consider M images (z1 , . . . , zM ) of the same sample
that have been acquired using M different speckle illuminations.
Each image zm = (zm (r1), . . . , zm (rN )) is a set of N pixels,
each of which being indexed by a spatial coordinate vector rn . In
practice, vector rn spans a finite d-dimensional rectangular grid
G, common to all images, d being equal to two or three. Without
loss of generality, we consider the spatial sampling rate to be
normalized to unity in each direction. By convention, we also
consider that zm are column vectors obtained by scanning the
image grid G in an arbitrary order. Hence, for all m ∈ {1 · · ·M}
and r ∈ G, the observation model reads

zm (r) = ym (r) + εm (r), (2)
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with

ym (r) =
∫

h(r − r′)ρ(r′)Em (r′) dr′, (3)

and where Em and εm are random quantities: Em is the mth
random illumination and εm stands for electronic noise. Fur-
thermore, the following assumptions will be made concerning
the observation model (2):

i) The PSF h is both integrable and square-integrable (i.e.,∫ |h(x)|p dx < ∞ for p = 1, 2). Moreover, its Fourier
transform2 h̃ takes finite values and vanishes outside
a bounded set DPSF = {u | h̃(u) �= 0}. These assump-
tions are met when the measurement zm is obtained in
the far-field domain, which is the case of most imaging
systems [4].

ii) The sample ρ is integrable and takes finite, nonnegative
values over Rd . Moreover, it approaches zero at large
distance from the origin.

iii) The data grid G is sufficiently large to make the influence
of finite data extent negligible. As a consequence, we will
identify G with Zd in the sequel. This is indeed a legiti-
mate simplification given Assumptions (i) and (ii) since
we can show that h ⊗ (ρE) tends towards zero at large
distance from the origin, provided that the illumination
pattern E is bounded.

iv) G is fine enough to sample the PSF h with no discretiza-
tion error. According to Parzen’s multidimensional exten-
sion of Shannon theorem [25], such a condition is met as
soon asDPSF belongs to the basebandB = [−1/2, 1/2]d .

v) The noise and illuminations are second-order stationary,
mutually decorrelated random processes. This is a stan-
dard hypothesis which is verified for most imagers [12,
Sec. 4.4]. Moreover, a direct extension would be possible
to cases where the statistical mean of the illuminations is
spatially varying. Without loss of generality, we will also
assume that the noise is zero-mean.

vi) The first two moments of the illuminations and of the
noise are known. This assumption is at the core of our
approach. It is expected to be less difficult to satisfy than
the knowledge of the illuminations patterns.

In this work, we restrict the analysis of the data by considering
only second-order statistics, i.e., the statistical mean and covari-
ance of the data. More precisely, our aim is to determine the
spatial frequency domain over which the sample spectrum can
be identified from these statistics. Such a restriction is legitimate
for several reasons.

On the one hand, the empirical mean and covariance are
easily accessible statistical quantities, that can provide reliable
second-order information from a practically acceptable number
of illuminations.

On the other hand, the statistical mean and covariance are
exhaustive statistics if the data are Gaussian, whether it is real-
valued or complex circular. For instance, the latter assumption
is suited to coherent imaging techniques such as tomographic

2Hereafter, the tilde sign ˜ denotes the d-dimensional continuous-space
Fourier transform.

diffraction microscopy. In other situations, such as optical flu-
orescence microscopy, the speckle illumination, and hence the
data, are non-Gaussian. The statistical mean and covariance do
not summarize all the information about the sample available in
the measurements in such situations, but our results still provide
a lower bound on the information retrievable from the complete
data statistics.

With the goal of characterizing the SR potential of second-
order methods, we wish to assign each component of the spatial
Fourier transform ρ̃(u) of the imaged sample to one of the three
classes:

1) Non-identifiable spectral components are those for which
the second-order data statistics bring no information.

2) Partially identifiable components are those for which the
second-order data statistics bring some information, but
for which some ambiguity remains.

3) Identifiable components are those which are uniquely de-
termined given the second-order data statistics.

Obviously, the support of each class in the Fourier domain
may depend on the frequency support DPSF and on the covari-
ance structure of the speckle illumination.

III. FIRST AND SECOND-ORDER STATISTICS OF THE DATA

The statistical mean and covariance of the data are now de-
rived. In what follows, E {·} and ∗ denote the statistical expec-
tation operator and complex conjugation, respectively. Accord-
ing to assumptions (v) and (vi), let E {E} = E0 and γE (r) =
E {E(x)E∗(x − r)} − |E0 |2 denote the mean and covariance
function of the speckle, and let γε(r) = E {ε(x)ε∗(x − r)} de-
note the covariance function of the noise.

A. First-Order Information Content

From the observation model (2)-(3) and from the assumption
of centered noise, we deduce the statistical mean:

μz (r) = E {zm (r)} = E0

∫
h(r − r′)ρ(r′) dr′, r ∈ Zd .

(4)
The continuous-space Fourier transform of μz reads

μ̃z (u) = E0 h̃(u)ρ̃(u) (5)

for all u ∈ Rd . Function μ̃z has a support limited to DPSF ,
so, according to assumption (iv), the sampling of μz on Zd

is lossless. A straightforward deduction from expression (5) is
that any spectral component of ρ belonging to the support DPSF
is identifiable, provided that E0 �= 0. In particular, if Em (r)
is a complex circular Gaussian process, then E0 = 0 [12] and
μz (r) brings no information about the unknown sample. This
conclusion leads to the following property.

Property 1: The frequency component ρ̃(u) is identifiable
from μz if and only if u ∈ D1 with

D1 =

{
DPSF if E0 �= 0,

∅ otherwise.
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In any case, the first-order moment does not convey any infor-
mation on the spectral components outside DPSF , i.e., it brings
no SR capacity.

B. Second-Order Information Content

Now let us focus on the data covariance function that reads

γz (r, r′) = E {zm (r)z∗m (r′)} − μz (r)μ∗
z (r

′)

with r, r′ ∈ Zd . If (2) and (3) hold, then we immediately get

γz (r, r′) = γy (r, r′) + γε(r − r′) (6)

with

γy (r, r′) =∫∫
ρ(x)ρ(x′)h(r − x)h∗(r′ − x′) γE (x − x′) dx dx′.

(7)

The noise covariance function γε is known according to as-
sumption (vi), but it conveys no information about the sample.
The knowledge of γz is thus equivalent to that of γy , the latter
term being the only potential source of information about the
spectral components outside DPSF . Let us examine the Fourier
content of γy , first neglecting its discrete character. Using the
continuous-space Fourier transform of (7), we obtain

γ̃y (u,u′) = h̃(u) h̃∗(−u′)

×
∫∫

e−2iπ (u·x+u′ ·x′)ρ(x)ρ(x′)γE (x − x′) dx dx′ (8)

for all u, u ∈′ Rd , where u · r denotes the usual scalar product
in Rd . Given that

γE (x − x′) =
∫

e2iπ (x−x′)·u′′
γ̃E (u′′) du′′,

it is easy to express γ̃y (u,u′) as follows:

γ̃y (u,u′) = h̃(u) h̃∗(−u′) g̃(u,u′), (9)

with

g̃(u,u′) =
∫

ρ̃(u − u′′) ρ̃(u′ + u′′) γ̃E (u′′) du′′. (10)

According to (9) and to assumption (iv), γ̃y has a support limited
to B × B. Hence, γ̃y (u,u′) identifies with the discrete-space
Fourier transform of γy for all u, u′ ∈ B. We conclude that the
available information on the sample ρ from the discrete data
covariance is contained in (and limited to) g̃(u,−u′), for all u,
u′ ∈ DPSF .

IV. SUPER-RESOLUTION CAPACITY OF SECOND-ORDER

METHODS

According to expressions (7) or (9)-(10), the spectral density
γ̃E clearly plays a central role in identifying the spectral com-
ponents of the sample. However, a difficulty in analyzing the SR
capacity of second-order methods comes from the fact that the
data covariance is not a linear but a quadratic functional of the
unknown sample ρ. As a consequence, no general theory can be

applied to solve equations (7) or (9)-(10) for ρ. However, two
cases lend themselves to a deeper analysis. The first one corre-
sponds to “sufficiently” correlated speckles, in the sense that the
frequency support of the covariance function γ̃E is contained
in the frequency support of the PSF. At the opposite, the case
of uncorrelated speckles can also be treated. These two cases
are examined in the next two subsections, whereas handling the
intermediate case remains an open issue. In the sequel, we make
use of the Minkowski difference between two sets

A 	 B = {x − y,x ∈ A,y ∈ B}
to define the frequency domains over which the identification
(or partial identification) of the frequency components of the
sample is possible.

A. Case of “Sufficiently” Correlated Speckle

Let us assume that the unknown speckle illuminations are spa-
tially correlated, and that the frequency support of its covariance
function is Dspec = {u | γ̃E (u) �= 0}. According to expression
(9), γ̃y (u,u′) vanishes when either u or −u′ is outside DPSF .
On the other hand, according to (10), g̃(u,u′) conveys no in-
formation on the frequency components ρ̃(v) such that either
v ± u or v ± u′ falls outside Dspec . Then, the following prop-
erty holds.

Property 2: Any spectral component ρ̃(u) such that u �∈
D1 ∪ D′

2 with D′
2 = DPSF 	Dspec is non-identifiable from the

mean μz (r) and the covariance function γy (r, r′).
Remark 1: If each speckle pattern was known, the set of

identifiable frequency components would be D1 ∪ D′
2 for a suf-

ficiently large number of speckles. Moreover, the components
outside D1 ∪ D′

2 would remain non-identifiable. In the same
way, if the complete data statistics were available (the speckle
patterns being unknown), the components outside D1 ∪ D′

2
would also be non-identifiable, since the latter situation is not
more favorable than the former. We thus conclude that frequency
components outside D1 ∪ D′

2 cannot be retrieved from stan-
dard (i.e., non Bayesian) statistical information, even including
higher moments.

Property 2 is of negative nature. Fortunately, a positive partial
converse can be established in the important situation where the
frequency support of the illuminations Dspec is not larger than
that of the PSF. The following non trivial property holds. Its
proof is reported in Appendix B.

Property 3: Provided that γE is such that Dspec ⊆ DPSF ,
any spectral component ρ̃(u) is identifiable from the mean
μz (r) and the covariance function γy (r, r′) if u ∈ D1 ∪ D′′

2
with D′′

2 = Dspec 	Dspec .
Remark 2: An alternative definition of D′′

2 is obtained via

D′′
2 = {u | (γ̃E � γ̃E )(u) > 0} (11)

where � is the (deterministic) cross-correlation3 operator.

3The cross-correlation between two square-integrable functions f1 and f2 is
defined by

(f1 � f2 )(x) =

∫
f ∗

1 (x′)f2 (x′ + x) dx′.
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Fig. 1. Illustration of Props. 2 and 3 when DPSF and Dsp ec are centered
disks of respective radii νPSF and νsp ec (and E0 �= 0). The cutoff frequency
νPSF is fixed, while the speckle maximal frequency νsp ec varies along the
X-axis. The range of identifiable and of non-identifiable frequency components
are represented along the Y-axis.

Let us consider a two-dimensional (2D) incoherent (e.g., flu-
orescence) microscopy problem as an illustrative example for
Properties 1, 2 and 3. In this case, DPSF and Dspec are centered
disks of respective radii νPSF and νspec andD′′

2 is a centered disk
of radius 2νspec . As a consequence, if νPSF/2 < νspec < νPSF ,
we get D1 ⊂ D′′

2 and a SR factor of 2νspec/νPSF .
Fig. 1 gives a graphical illustration of the situation. Let us

remark that the status of the frequency components outside the
colored areas remains an open question. Our conjecture is that
they are only partially identifiable from the second-order data
statistics.

In the same conditions, according to Remark 1, the SR factor
would be equal to 1 + νspec/νPSF if each speckle pattern was
known. On Fig. 1, such a limit corresponds to the boundary
line of the set of non-identifiable components. In a similar way,
classical (harmonic) SIM would yield an SR factor equal to
1 + νharm/νPSF if many known harmonic illuminations were
used, at frequencies spread around a centered circle of radius
νharm .

The important case Dspec = DPSF is encountered in practice
when illuminations and observations are performed via the same
components (same antenna array for emission and detection, or
same microscope objective for illumination and collection). The
latter two properties then allow us to reach a tight conclusion in
this context: second-order data statistics are sufficient to identify
all the frequency components of the sample within D′′

2 ≡ D′
2 ≡

D2 = DPSF 	DPSF , and bring no information outside (such
a situation corresponds to the black dot in Fig. 1). In other
words, they should permit to recover the sample with a resolution
equivalent to that of |h|2 , akin to classical SIM in fluorescence
microscopy.

Let us also add a few comments about our main result for
three-dimensional (3D) problems:

1) For coherent imaging systems, h̃ is typically a hollow
spherical cap, as depicted in Fig. 2(a), and thus a single

Fig. 2. Coherent imaging system: (a) DPSF is a surface in the 3D Fourier
domain with an isotrope lateral cutoff frequency uxy and an axial frequency
extension ua ; (b) Assuming random excitations such that Dsp ec = DPSF , the
frequency components of the permittivity contrast ρ should be further identified
over a domain D′′

2 that is a torus with a lateral (resp. axial) frequency extension
of 2uxy (resp. 2ua ). Incoherent imaging system: (b) DPSF is a solid torus
exhibiting a “missing cone” along uz ; (c) Assuming random illuminations such
that Dsp ec = DPSF , ρ should be further identified over an extended frequency
domain D′′

2 providing a lateral (resp. axial) resolution of 4uxy (resp. 4ua )
without any “missing-cone” along uz .

incoming excitation (plane wave) E cannot provide any
3D information about the permittivity contrast ρ [4]. In
contrast, the same setup using coherent, but random ex-
citations such that Dspec = DPSF , is able to retrieve ρ̃
within a domain D′′

2 that is a centered solid torus, hence
providing 3D information4 about the permittivity contrast.

2) In incoherent imaging, h̃ is typically a solid torus, as
depicted in Fig. 2(b), which provides very poor section-
ing capability along the axial direction z; this is the so-
called “missing-cone” problem in wide-field incoherent
microscopy [26]. In this case, speckle intensity illumina-
tions such that Dspec = DPSF give access to a frequency
domain D′′

2 that provides an extended lateral and axial
resolution without any missing-cone, see Fig. 2(c). This

4The same identification domain can be obtained from a set of plane waves
with various incoming angles, i.e., with the additional difficulty and slowness
of controlling the angles of illuminations, see [4], [22] for details.
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domain is actually equivalent to that of a perfect confocal
microscope with an infinitively small pinhole [27], but it
is obtained with no transverse scanning and no loss of
photons.

As a final note, we stress that Property 3 deals with the iden-
tifiability of the frequency components of the sample, and it
does not predict the reachable estimation precision in the re-
alistic situation of a limited set of noisy data and of a limited
field of view. Nevertheless, the numerical reconstruction exam-
ple proposed in Section V suggests that most of the frequency
components within DPSF 	DPSF can be reliably retrieved in
practice.

B. Case of Uncorrelated Speckle

Let us now assume that γE (r) = γE (0)δ(r), where δ is a
Dirac distribution. This assumption can be considered valid
when the speckle correlation typical size is much smaller than
that of the point spread function. Then (7) becomes

γy (r, r′) = γE (0)
∫

ρ2(x)h(r − x)h∗(r′ − x) dx. (12)

In the Fourier domain, γ̃E (u) = γE (0), so (9) read

γ̃y (u,u′) = γE (0)h̃(u) h̃∗(−u′) ρ̃2(u + u′). (13)

The latter relation is important since it yields that ρ2 is accessible
over all frequencies u + u′ such that both u and −u′ belong
to DPSF , i.e., over the set DPSF 	DPSF . As a conclusion, the
following property holds.

Property 4: The frequency component ρ̃2(u) is identifiable
from the covariance function γy (r, r′) if and only if u ∈ D2 =
DPSF 	DPSF .

A remarkable fact is that Property 4 still holds if only the
variance v(r) = γy (r, r) is considered instead of the full co-
variance function γy (r, r′), provided that the data grid fulfills
a more stringent condition than assumption (iv). The starting
point is the following relation obtained from (12):

v(r) = γE (0) (ρ2 ⊗ |h|2)(r), (14)

The continuous-space Fourier transform of v reads

ṽ(u) = γE (0) ρ̃2(u) × (h̃ � h̃)(u).

Since the support of h̃ � h̃ spans the domain D2 , the discrete-
space Fourier transform of v identifies with ṽ provided that
D2 ⊂ B. This assumption is stronger than (ii). Typically, it
means that the data must be acquired at least at twice the Nyquist
rate. Alternatively, the acquisition rate could be unchanged, but
then the data should be interpolated on a twice finer grid to
yield the variance (14). Obviously, interpolation will not bring
any new information. It will simply allow us to preserve the
SR information contained in the sampled variance function v,
and more precisely to avoid aliasing on v. On the other hand,
interpolation will also apply to the noise component, so that the
corresponding statistics should be modified accordingly.

Property 5: Provided that D2 ⊂ B, the frequency compo-
nent ρ̃2(u) is identifiable from the variance function γy (r, r) if
and only if u ∈ D2 .

A statement somewhat similar to Property 5 was already made
in [15], assuming a circular aperture and a single incoherent
point source (for ρ). Whereas the authors of [15] assert that
uncorrelated speckle illumination has the ability to improve the
resolution of the imaging setup beyond the diffraction limit, it
should be stressed that if ρ̃2 = ρ̃ ⊗ ρ̃ can be retrieved on D2 ,
this does not mean that ρ̃ can be retrieved on the same domain,
nor in any other domain. In practice, additional constraints (e.g.,
the positivity of the sample assumed in this paper) can be further
considered [19], [23, Sec. 6.6.4], but with no formal guarantee
about the super-resolution property obtained on ρ, to our best
knowledge.

V. NUMERICAL IMPLEMENTATION FOR 2D SPECKLE SIM

The goal of the present section is to give a practical illus-
tration of Property 3, which is the main theoretical result of
Section IV. For this purpose, we consider a 2D speckle illumina-
tion fluorescence microscopy problem. In the standard assump-
tion of a perfect circular lens, h is the so-called Airy pattern [23,
Sec. 4.4.2], and the optical transfer function (OTF) h̃ defines a
support DPSF = {u, ‖u‖2 < 2NA/λ} with NA the numerical
aperture of the microscope and λ the emission/excitation wave-
length. We further assume that the illumination of the sample
and the collection of the emitted light is performed through
the same optical device. Ignoring the Stokes-shift,5 we consider
hereafter that γE = E2

0 h. According to Property 3, a SR effect
approaching a factor two is expected from the empirical second-
order statistics of a set of M collected images, for asymptotically
large values of M . The goal here is to show empirically that this
SR effect does happen in realistic conditions, and in particular
for moderately large values of M .

A. Discretized Model for 2D Speckle SIM

For the sake of computer implementation, (3) must be re-
placed by its discretized counterpart

zm = HREm + εm , (15)

where H is a symmetric convolution matrix, and R = Diag(ρ),
so that REm corresponds to the product between the vectorized
sample ρ, and the vectorized mth illumination pattern Em . The
mean vector and the covariance matrix of the acquisition zm

now read

μz = E0Hρ, Γz = HRΓE RH + Γε , (16)

where ΓE and Γε are the covariance matrix of the speckle pat-
terns and of the additive noise, respectively. For any finite num-
ber of illuminations M , the empirical mean μ̂z and covariance
Γ̂z are defined as

μ̂z =
1
M

M∑
m=1

zm , Γ̂z =
1
M

M∑
m=1

zm z†
m − μ̂z μ̂

†
z , (17)

5The Stokes-shift [28] implies that the support h̃ is slightly smaller than the
support of γ̃E . This difference between supports is small (about 10%) and we
expect that it will have a negligible impact on the SR effect that should reach
twice the cutoff frequency of the OTF.
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where the symbol † stands for the transpose conjugate operator.
As M grows, μ̂z and Γ̂z respectively converge toward μz and
Γz , so that spatial frequency components of the sample within
D′′

2 become identifiable, according to Prop. 3. With a view to
propose a computationally effective strategy to retrieve the latter
components, we first directly formulate the main elements of
Prop. 3 and of its proof in a finite dimensional (i.e., discretized)
framework.

B. Matrix Transposition of Property 3

In the discrete framework of model (15), the matrix for-
mulation of Property 3 mostly relies on the one-to-one map-
ping between the asymptotically available covariance Γy =
HRΓE RH and the matrix S = Γ1/2

E RΓ1/2
E , provided that

Ker H ⊆ KerΓE . The latter condition is the discrete-space
counterpart of the conditionDspec ⊆ DPSF that allows the iden-
tification result stated in Prop. 3. (Ker M denotes the set of vec-
tors v such that Mv is the null vector). Then, we can show that
S is the unique Hermitian positive semi-definite6 square-root of

F = Γ1/2
E H+ΓyH+Γ1/2

E ,

where + denotes the generalized inverse [29, ch. 5]. Indeed,
matrices F and S respectively correspond to kernels F and f
introduced in the proof of Property 3 (see Appendix B). Whereas
Γy quadratically depends on ρ, S exhibits a linear dependency
with respect to ρ, paving the way to an identifiability analysis
via a standard eigenvalue decomposition.

C. Numerical Estimation Strategy

The reconstruction principle from the second-order data
statistics amounts to finding ρ that makes the mean vector μz

and the covariance matrix Γz in (16) best match with the empir-
ical quantities μ̂z and Γ̂z defined by (17). Given the previous
subsection, a simple idea to recover the identifiable components
of ρ̃ would be to compute an approximation F̂ of matrix F from
the empirical data statistics:

F̂ = Γ1/2
E H+ Γ̂yH+Γ1/2

E ,

where Γ̂y = Γ̂z − Γε , with a view to extract a positive semi-
definite square-root matrix Ŝ. However, neither Γ̂y nor F̂ are
guaranteed to be positive semi-definite, so the existence of Ŝ is
not granted.

A preferable procedure consists in introducing an appropriate
dissimilarity measure between the empirical and the theoretical
second-order statistics of the data, and to minimize the dissim-
ilarity to obtain an estimated sample ρ̂. One possible choice of
dissimilarity measure is the Kullback-Leibler divergence (KLD)
D(ρ) = DKL(N (μ̂z , Γ̂z )‖N (μz ,Γz )), where N (μ,Γ) is the
normal distribution of mean μ and covariance Γ. According

6A Hermitian matrix is positive semi-definite if and only if all of its eigen-
values are nonnegative.

to [30, Sec. 9.1], an explicit expression of D(ρ) is:

D(ρ) =
1
2
Tr

(
Γ−1

z Γ̂z

)
+

1
2
(μz − μ̂z )

tΓ−1
z (μz − μ̂z )

+
1
2

log
|Γz |
|Γ̂z |

− N

2
(18)

where |·| and Tr(·) are the determinant and the trace of a square
matrix, respectively. Let us mention that D is proportional to the
log-likelihood of the data under the assumption that the latter
follow the normal distribution N (μz ,Γz ) [31]. However, the
minimizer of D is an unregularized solution, which is unstable
with respect to the random fluctuations in the dataset. Therefore,
a penalization term must be added to D. In the sequel, we choose
a quadratic penalization term to stabilize the solution, so that the
SR effect remains purely driven by the data term. The criterion
to minimize is then

J(ρ) = D(ρ) +
β

2
‖ρ‖2

2 , (19)

with β ≥ 0 and ‖·‖2 is the usual Euclidian norm. From a compu-
tational perspective, a closed-form minimizer cannot be found,
so the minimization problem must be solved iteratively. Indeed,
it is a so-called structured covariance type problem, for which
the Expectation-Maximization (EM) algorithm can be imple-
mented [31]–[33]. However, our tests indicate that the EM al-
gorithm converges very slowly in the speckle SIM context. For
this reason, we rather rely on a nonlinear conjugate gradient
method, which turns out to produce more efficient iterations. It
relies on the expression of the gradient of the penalized KLD
(19) with respect to ρ (see Appendix C for a derivation):

∇J(ρ) =

− ([
Ωt(ΔΓ + δμδt

μ

)
Ω

] ◦ ΓE

)
ρ − E0Ωtδμ + βρ, (20)

displayed as a column vector, with Ω = Γ−1
z H , δμ = μ̂z − μz ,

ΔΓ = Γ̂z − Γz , and ◦ stands for the Hadamard (component-
wise) product. Let us stress that each computation of the gradient
needs the construction and the inversion of an N × N matrix
(for an N -pixel size problem), which represents a prohibitive
computing cost for realistic imaging problems. The design of
less costly iterations for large-size problems is out of the scope
of the present paper, but we are currently working on this crucial
issue.

D. Numerical Illustration for 2D Speckle SIM

Numerical simulations are now considered to support that a
significant SR effect can be obtained in speckle fluorescence
SIM, even with a moderately large number of illumination pat-
terns Em . The ground truth ρ� consists in the 2D ‘star-like’
fluorescence pattern depicted in Fig. 3(a). The convolution ma-
trix H modeling the microscope is built from the discretized
OTF associated with a circular aperture [23, Eq. (6)–(32)]; the
numerical aperture NA is set to 1.49 and the emission/excitation
wavelength λ is arbitrary set to 1. For this configuration, the res-
olution limit of standard wide-field imaging is clearly visible in
Fig. 3(c). According to (15), a set of M ∈ {100, 1000} speckle
patterns are simulated to produce M low-resolution microscope
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Fig. 3. (a) Lower quarter of the (80 × 80 pixels) ground-truth fluorescence pattern considered in [13]. (b) Filtered ground-truth retaining only the spatial
frequency lower than twice the OTF limit. (c) The deconvolution of the wide-field (constant illumination) microscope acquisition. (d,e) Estimator of ρ obtained
from the minimization of the penalized KLD (19) with M = 100 (d) and M = 1000 (e) speckle patterns; the regularization parameter is set to β = β0 /M with

β0 = 100. (f) Estimator of ρ obtained from the minimization the KLD (18) with the asymptotic statistics μ̂ = μ� and Γ̂ = Γ� . The distance units along the
horizontal and vertical axes are given in wavelength λ. The image sampling step for all simulations is set to λ/20. The dashed (resp. solid) lines corresponds to the
spatial frequencies transmitted by the OTF support (resp. twice the OTF limit).

images {zm}M
m=1 . The covariance matrix ΓE is set to E2

0 H
(we assume γE = E2

0 h) and each acquisition zm is corrupted
with an independent and identically distributed Gaussian noise
such that the signal-to-noise ratio in each frame is set to 40 dB.
From the dataset {zm}M

m=1 , the statistics μ̂z and Γ̂z (17) are
built. The case of an infinite illumination number (M = ∞) is
also adressed by considering the expected (i.e., asymptotical)
statistics μ̂z = μ�

z and Γ̂z = Γ�
z , where μ�

z and Γ�
z are obtained

from (16) by setting ρ = ρ� . In all cases, we proceed to the
iterative minimization of the penalized KLD (19) to estimate
the sample, using the deconvolved wide-field image of Fig. 3(c)
as an initial point. For the (noise-free) asymptotic statistics,
the regularization parameter is set to β = 0 and, as expected,
the reconstruction exhibits the doubled resolution predicted by
Prop. 3, see Fig. 3(f) compared to Fig. 3(b), (c). With 100 and
1000 illuminations, the SR factor is lower, but the reconstruc-
tions shown on Figs. 3(d), (e) are still much more resolved than
the wide-field image of Fig. 3(c). Moreover, the SR factor pro-
gressively grows with the illumination number M , the result at
M = 1000 being close to the asymptotic regime.

VI. CONCLUSION AND PERSPECTIVES

We have mathematically demonstrated that the mean and the
covariance function of low resolution images obtained with

unknown, random illuminations permit to recover a super-
resolved image of the sample, provided the first two statisti-
cal moments of the illuminations are fully characterized. Since
this condition is expected to be less stringent to meet than the
knowledge of each illumination, we believe that this result can
be interesting in many practical situations.

In fluorescence microscopy, if the speckle is generated
through the same objective as the one used to collect the light, its
covariance function is almost identical to the microscope PSF
and Proposition 3 is also expected to apply. We believe that this
is a particularly important result. Indeed, it shows that speckle
microscopy has the potential to generate a super-resolved im-
age corresponding to the PSF hext = |h|2 . In other words, the
SR would be equivalent to that of a perfect confocal microscope
with infinitively small pinhole [27], but it would be obtained
with no transverse scanning and with no loss of photons.

For coherent imaging system, the consequence could be even
more spectacular. In holographic systems, the Fourier support
of the PSF h is generally a cap of sphere. As a result, the
three-dimensional information on the sample is lost if only one
illumination is used. This is clearly observed in tomographic
diffraction microscopy where the reconstruction of a target
from its unique 2D hologram obtained under a monochromatic
plane wave illumination is significantly deteriorated along one
axis [34]. On the other hand, by processing 2D images obtained
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under different speckle illuminations, one should be able to
reconstruct the target in three dimensions with a PSF compara-
ble to that obtained in tomographic diffraction imaging [4], but
without the difficulty and slowness of controlling the angles of
illuminations.

In photoacoustic imaging using speckle illuminations, the au-
tocorrelation length of the random optical intensity can drop to
a few hundreds of nanometers while the acoustic PSF h has a
typical width of tens of microns. Hence, from the acoustic point
of view, the illumination can be seen as an uncorrelated ran-
dom process [18], which is the case studied in SubSection IV-B.
Using optical speckle in a photoacoustic experiment would al-
low to retrieve the square of the optical absorption density with
a resolution corresponding to the PSF |h|2 .

Finally, it is important to stress the limits of the present analy-
sis. First, the case of complex-valued samples (i.e., with both di-
electric and absorptive components) remains to be investigated,
since it could have important implications in electromagnetic
tomography. The present study can be easily adapted to the case
of pure absorptive (imaginary) samples, but an extension to the
more general case is not so direct. Second, our theoretical results
are of asymptotic nature, in that they only predict the SR capacity
of the imagers with an arbitrarily large number of illuminations.
In particular, Proposition 3 does not provide the sensitivity of
the retrievable sample frequency components. The simulation
results shown in Section V-D nonetheless suggest that these fre-
quency components can be retrieved with only a few hundreds
of illuminations. Third, our results do not take into account
the potential impact of advanced regularization in the inversion
schemes (for instance, exploiting a sparsity prior [14] could yield
an additional increase of resolution). Fourth, there exist many
imaging configurations where the second-order statistics do not
entirely characterize the probability distribution of the data (e.g.,
when the speckle illuminations are positive intensities). In such
cases, our identifiability results only provide a lower bound on
the super-resolution factor that could be reached from the com-
plete data statistics, since accounting more precisely for the
speckle statistics could still ameliorate the resolution. Accord-
ing to Remark 1, no amelioration can be expected when the
support of the speckle covariance identifies with that of the PSF,
but the question remains open in other cases. For instance, for
uncorrelated speckles, one can write the following extension of
Eq. (14),

Cumn
y (r, . . . , r) = Cumn

E (0, . . . , 0) (ρn ⊗ |h|n )(r), (21)

where Cumn denotes the nth circular cumulant of a given ran-
dom process [35]. Equation (21) indicates that data higher-order
statistics yield additional information on higher spatial frequen-
cies of the sample. Such a property is reminiscent of the princi-
ple of SOFI [36]. The computational issue also remains broadly
open, both in terms of memory requirements (to store the empir-
ical data covariance matrix) and of computing time. The iterative
scheme proposed in SubSection V-D is clearly limited to small-
sized images. A challenge will be to accelerate the reconstruc-
tion process while preserving the SR capacity of speckle-based
imaging, as characterized in this paper.

As a final remark, let us stress that controlled and random
illuminations lead in our opinion to distinct “resolution vs. cost
vs. versatility” trade-offs for the setup. In particular, when an
accurate control of the illumination can be obtained within the
sample volume, random illuminations may not be the best option
to maximize the resolution for a given photon budget. On the
contrary, random illuminations should achieve a better trade-off
when the illumination cannot be controlled, or if one aims at
designing versatile and cheap setups. The cautious evaluation
of these trade-offs is a clear perspective of this work.

APPENDIX A
CASE OF POISSON DATA

For an incoherent imaging setup (e.g., optical fluorescence
microscopy), the intensity measurement relies on counting dis-
crete particles and the model (2) can be replaced by

zm (r) = pm (r) + εm (r), r ∈ Zd (22)

where pm (r) is a Poisson random variable with mean

E {pm (r) |Em} =
∫

ym (ζ)Π(ζ − r) dζ, r ∈ Zd ,

where Π is the indicator function of a centered detector pixel.
Assuming further that the pixel size is “small” with respect to
the spatial variation in ym , the expected counting rate for all
r ∈ Zd is approximated by

E {pm (r) |Em} = a ym (r)

where a is the area of a single detector pixel. We also assume that
the Poisson outcomes are jointly statistically independent. The
expression for μz (r) = E {zm (r)} = E {pm (r)} then reads,
according to the law of iterated expectations:

E {pm (r)} = E {E {pm (r) |Em}} = a E {ym (r)}
whereE {ym (r)} = E0(h ⊗ ρ)(r). Concerning the data covari-
ance function, we have for r, r′ ∈ Zd :

γz (r, r′) = γp(r, r′) + γε(r − r′)

with:

γp(r, r′) = E {pm (r)pm (r′)} − E {pm (r)} E {pm (r′)} .
(23)

According to the law of iterated expectations,

E {pm (r)pm (r′)} = E {E {pm (r)pm (r′) |Em}} .

For r′ �= r, since pm (r) and pm (r′) are decorrelated Poisson
variables given Em , we get

E {pm (r)pm (r′)} = a2 E {ym (r)ym (r′)}
while for r′ = r,

E {
pm (r)2} = a2E {

ym (r)2} + aE {ym (r)} ,

since a Poisson variable is of equal mean and variance. There-
fore, (6) must be replaced by

γz (r, r′) = a2 γy (r, r′) + μz (r)δK(r − r′) + γε(r − r′)
(24)
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where γy is given in (7) and δK(r) = 1 if r = 0 and zero oth-
erwise. The data covariance hence only differs from (7) when
r = r′. In this case, we note that the additional term μz (r)
is proportional to E0 , whereas the variance γy (r, r) varies as
γE (r), which is usually proportional to E2

0 for intensity speckle
patterns [12]. Therefore, accounting for the Poisson statistics of
the data in may be useful in the low counting-rate regime only.

APPENDIX B
PROOF OF PROPERTY 3

Let q denote the impulse response of the filter defined in the
Fourier domain by

q̃(u) = γ̃
1/2
E (u) if u ∈ Dspec , 0 otherwise.

Akin to γE , q is positive semi-definite, and hence it is a Hermi-
tian symmetric function. We have then γ̃E = q̃2 , and hence

γE = q ⊗ q. (25)

Let us also define the following kernels:

f(r, r′) =
∫

q(r − x)q∗(r′ − x)ρ(x) dx, (26)

F (r, r′) =
∫

f(r, r′′)f ∗(r′, r′′) dr′′. (27)

and the induced integral operators Kf and KF :

Kf φ(r) =
∫

f(r, r′)φ(r′) dr′,

KF φ(r) =
∫

F (r, r′)φ(r′) dr′.

According to the Cauchy-Schwarz inequality,

|f(r, r′)|2 ≤
∫

|q(r − x)|2 ρ(x) dx

∫
|q(r′ − x)|2 ρ(x) dx.

As a consequence,
∫∫

|f(r, r′)|2 dr dr′ ≤
(∫

|q(r)|2 dr

∫
ρ(x) dx

)2

,

where ρ is integrable, according to assumption (ii), and∫
|q(r)|2 dr =

∫
γ̃E (u) du = γE (0) < ∞.

Therefore, we have∫∫
|f(r, r′)|2 dr dr′ < ∞,

i.e., f ∈ L2(Rd × Rd ;C), and consequently, Kf is a Hilbert-
Schmidt integral operator [37, Proposition 3.4.16]. On the other
hand, the integral operator KF is the square of Kf , in the sense
that KF φ = Kf Kf φ for any φ. Thus, KF is also a Hilbert-
Schmidt operator.

Now let us go to the heart of the proof, which is threefold.
The first step allows us to show that kernel F is uniquely defined
from γy . In a second step, we establish that f is uniquely defined
from F given (27). At this point, we conclude that the knowledge
of γy implies that of f , which is a linear functional of ρ (whereas

the dependency of γy in ρ is quadratic). The last step consists
in a Fourier analysis of f , in order to determine which spectral
components of ρ are identifiable from the knowledge of f .

Step 1) Given (26) and (25), we have the following alternate
expression for (27):

F (r, r′) =∫∫
ρ(x)ρ(x′) q(r − x)q∗(r′ − x′) γE (x − x′) dx dx′.

(28)

Comparing the latter expression to (7), it is clear that F = γy in
the case q = h, i.e., when the speckle covariance is h ⊗ h. More
generally, using a double Fourier transform on (28), in the same
way as we obtained (9) from (7), we get

F̃ (u,u′) = q̃(u)q̃(−u′)g̃(u,u′)

=
q̃(u)q̃(−u′)

h̃(u)h̃∗(−u′)
γ̃y (u,u′) if u,u′ ∈ Dspec , (29)

= 0 otherwise. (30)

Let us remark that h̃(u) �= 0 if u ∈ Dspec because we have
assumed Dspec ⊆ DPSF .

Step 2) Kernel f is obviously symmetric. Moreover, it is
positive semi-definite, since for any square integrable function
φ,
∫∫

f(r, r′)φ(r)φ∗(r′) dr dr′ =
∫

|q ⊗ φ|2(x)ρ(x) dx ≥ 0.

It is easy to check that kernel F is also positive semi-definite.
Moreover KF is bounded, since it is a Hilbert-Schmidt oper-
ator. Being bounded and positive semi-definite, KF admits a
unique square root [37, Proposition 3.2.11]. In other words, Kf

is uniquely defined given KF , and equivalently, given the kernel
F , there exists a unique kernel f that fulfills (27).

Finally, the knowledge of γy uniquely determines F through
(29)–(30), which in turn determines f .

Step 3) In the Fourier domain, Eq. (26) reads

f̃(u,u′) = q̃(u) q̃(−u′) ρ̃(u + u′). (31)

The latter identity shows that ρ̃(u′ + u′′) is identifiable for all
(u′,u′′) such that u′ and−u′′ belong toDPSF . We thus conclude
that the frequency components ρ̃(u) are identifiable from kernel
f , and thus from the data covariance γy , for all u ∈ Dspec 	
Dspec .

APPENDIX C
GRADIENT OF THE KULLBACK-LEIBLER DIVERGENCE

We first note that (18) also reads

D(ρ) =
1
2

log |Γz | + 1
2M

Tr
(
Γ−1

z V V t
)

+ C (32)

where C is an irrelevant constant term, and

V = (v1 | · · · |vM ) with vm = zm − μz . (33)
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The following identities [38, Sec. 2] will be useful for the deriva-
tion of the gradient of (32):

∇θ log |A| = Tr
(
A−1(∇θA)

)
∇θ (A−1) = −A−1(∇θA)A−1

∇θ (AB) = (∇θA)B + A(∇θB)

∇θTr(A) = Tr (∇θA)

∇θ (At) = (∇θA)t (34)

where A and B are two matrices that depend on a real scalar
parameter θ. From these relations, we get

∂nD(ρ) =
1
2
Tr

(
Γ−1

z (∂nΓz )
)

+
1

2M
Tr

(
(∂nΓ−1

z )V V t + Γ−1
z ∂n (V V t)

)
(35)

where ∂n = ∇ρn
. The gradient of (32) is then defined by

∇D(ρ) = vect {∂nD(ρ)} (36)

where vect {vn} = (v1 | · · · |vN )t . According to (35) and (34),
the expressions of ∂nΓz and ∂n (V V t) are required. Let en

be the nth canonical vector, hn the nth column of H and 1 =
(1 · · · 1)t . We get from (16)

∂nΓz = HRΓE enht
n + (HRΓE enht

n )t (37)

and from (33):

∂n (V V t) = −E0
(
V 1ht

n + (V 1ht
n )t) . (38)

The derivative of the three terms in (35) can now be obtained.
On the one hand, elementary manipulations involving the trace
operator allow to deduce

Tr
(
Γ−1

z (∂nΓz )
)

= 2et
nWhn (39)

from (37), with W = ΓE RH tΓ−1
z . On the other hand, we have

from (34) and (37):

Tr
(
(∂nΓ−1

z )V V t) = − 2et
n (WV V tΓ−1

z )hn (40)

and from (38):

Tr
(
Γ−1

z ∂n (V V t)
)

= −2E0 ht
nΓ−1

z V 1. (41)

According to (35) and (36), we need to vectorize the relations
(39), (40) and (41) to obtain the full gradient of (32). In partic-
ular, according to the identity

((A Diag(ρ)Bt) ◦ I)1 = (A ◦ B)ρ, (42)

we deduce from (39) that

vect
{
Tr

(
Γ−1

z (∂nΓz )
)}

= 2 ((WH) ◦ I)1

= 2
(
(H tΓ−1

z H) ◦ ΓE

)
ρ. (43)

Similarly, we obtain after a few manipulations

1
M

vect
{
Tr

(
(∂nΓ−1

z )V V t)} = − 2
M

(
(ΩtV V tΩ) ◦ ΓE

)
ρ

(44)

and

1
M

vect
{
Tr

(
Γ−1

z ∂n (V V t)
)}

= − 2
M

E0ΩtV 1 (45)

where Ω = Γ−1
z H . As a result, the gradient of (35) reads

∇D(ρ) =

−
((

Ωt
(

1
M

V V t − Γz

)
Ω

)
◦ ΓE

)
ρ − 1

M
E0ΩtV 1.

(46)

Finally, the following relations hold:

V = (z1 − μ̂| · · · |zM − μ̂) + δμ1t ,

1
M

V V t = Γ̂ + δμδt
μ ,

which allow us to obtain the gradient expression (20), given that
∇J(ρ) = ∇D(ρ) + βρ.
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