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Convex Half-Quadratic Criteria and Interacting
Auxiliary Variables for Image Restoration

Jérôme Idier

Abstract—This paper deals with convex half-quadratic criteria
and associated minimization algorithms for the purpose of image
restoration. It brings a number of original elements within a uni-
fied mathematical presentation based on convex duality. Firstly,
Geman and Yang’s [1] and Geman and Reynolds’s [2] construc-
tions are revisited, with a view to establish convexity properties
of the resulting half-quadratic augmented criteria, when the orig-
inal nonquadratic criterion is already convex. Secondly, a family
of convex Gibbsian energies that incorporate interacting auxiliary
variables is revealed as a potentially fruitful extension of Geman
and Reynolds’s construction.

Index Terms—Convex duality, coordinate descent algorithms,
edge-preserving restoration, Gibbs–Markov models, line pro-
cesses.

I. INTRODUCTION

H ANDLING half-quadratic (HQ) criteria has recently
stood out as a powerful numerical device in the field of

edge-preserving image restoration, either formulated in the
stochastic framework of Gibbs–Markov random field esti-
mation [1]–[5], or in the deterministic, energetic counterpart
[6]–[8]. In this paper, the terminology rather refers to the
former formulation.

A function is said to be HQ if it depends on two sets of
variables, say, and , so that is a quadratic function of .
We shall assume thatand are column vectors, of respective
size and . For instance, consider a probability density func-
tion whose conditional density is Gaussian. Then,
the negative logdensity

is clearly HQ.
HQ criteria can be traced back to piecewise Gaussian

Gibbs–Markov models that incorporate binary line processes,
either interacting [9]–[11] or decoupled [12]. In the latter case,
Blake & Zisserman showed that a HQ criterion, expressing
the idea of a weak continuity constraint, could be considered
as anaugmentedversion of another criterion (involving the
truncated quadratic), in the sense that

As a consequence,and share the same minima, that can be
sought using any suitable numerical device working on either
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or . In practice, Blake and Zisserman defined the HQ function
as the objective function, deducedfrom , and proposed

a graduated nonconvexityapproach to minimize the resulting
nonquadratic function .

Later, Gemanet al.’s contributions [1], [2] generalized Blake
and Zisserman’s construction to a larger class of decoupled
auxiliary processes. In fact, they also reversed the construction
process: they showed that there exist augmented HQ coun-
terparts for a wide range of nonquadratic edge-preserving
Gibbsian criteria . Each of the two references proposes its
own way to construct an augmented HQ function, say
and , from some nonquadratic criteria, so that

(1)

for an appropriate set , say and , respectively (the
resulting auxiliary processmay not be binary).

Moreover, [1] and [2] supported the idea that minimizing
rather than has some structural advantages. More precisely,
one can benefit from half-quadraticity by alternating updates
of given , and of given , provided that the latter be a
simple enough operation. In [1] and [2], simulated annealing
based on alternate Gibbs sampling was explored. Other con-
tributors rather developed deterministic counterparts, whether
on [3]–[5], [8] or on [3], [6], [7]. The resulting de-
terministic algorithms fall into the well-known class of coordi-
nate descent algorithms (i.e.,relaxationalgorithms) [13]–[15].
For instance, Charbonnieret al. [3] introduce block coordinate
descent algorithms called ARTUR and LEGEND to minimize

and , respectively. If the original criterion presents
local minima, it is not difficult to check that deterministic HQ
algorithms can be stuck on corresponding local minimizers (a
thorough convergence analysis is conducted in [16]).

This paper rather focuses on the case where the energy func-
tion is convex, and studies whether the convexity ofis struc-
turally transferred to and to . Be the answer positive,
then the convergence analysis of deterministic HQ algorithms
such as ARTUR and LEGEND becomes a straightforward ap-
plication of existing and well-documented results about the re-
laxation of convex criteria (for instance, see [13] and [14] for
pioneering contributions, and [15] for a recent overview).

In [5], it is already shown that ARTUR provides a sequence
of images converging towardunder some technical conditions,
including the strict convexity of . Yet, it can easily be checked
that is not necessarily a convex function, even whenis
convex (see Remark 1). One of the main contributions of this
paper is actually to provide a change of auxiliary variables that
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makes convex (see Section IV). The case of is sim-
pler, since convexity holds under appropriate technical condi-
tions (see Section III). As a consequence, guarantees of global
convergence (toward) are provided for many versions of de-
terministic algorithms that operate on either of the criteria
or .

This paper is organized as follows. In Section II, the mathe-
matical structure of criteria falling into the scope of our study
is introduced. The corresponding form of HQ augmented cri-
teria and is given, and a connection is made be-
tween HQ minimization andreweighted least squares. In Sec-
tions III and IV, Geman and Yang’s and Geman and Reynolds’s
constructions are, respectively, revisited. Although more recent,
Geman and Yang’s form of augmented criterion is studied first,
because its convexity properties turn out to be simpler to ana-
lyze. Most of the new results brought by Sections III and IV per-
tain to numerical analysis. On the contrary, Section V focuses
on the design of a new class of image models: on the ground of
Section IV, a family of convex Gibbsian energies that incorpo-
rate interacting auxiliary variables is introduced.

II. FRAMEWORK

A. General Setting

Let us consider the case of energy functions that read

(2)

where is a set of cliques on a finite grid and
, the quantities are real-valued, and each of the

vectors has a support restricted to clique. We also
assume that is a strictly convex quadratic function, which
reads

(3)

with , without loss of generality, and that the function
is not quadratic. For the sake of notational simplicity,

the same function is assigned to every clique, but the whole
derivation admits an immediate inhomogeneous extension. We
assume that the problem to solve is

minimize subject to (4)

where is a Cartesian product of
closed convex sets of. Typical cases are
(pixels have a known finite range), (pixels have posi-
tive values) and (unconstrained case).

Under slightly different technical conditions, [1] and [2] re-
spectively propose the following HQ functions that satisfy (1)

(5)

(6)

where , , , and both func-
tions and can be defined from through convex duality
relations, according to Sections IV and III, respectively.

B. Image Restoration

The energy function (2) encompasses the posterior negative
loglikelihood of many existing Gibbs–Markov models in image
restoration and computed imaging. More specifically, a frequent
case is obtained whenis an unknown two-dimensional (2-D)
or three-dimensional (3-D) image, is a quadratic fidelity
term with respect to (w.r.t.) some data set, , and the
vectors define finite difference operators. This is precisely
the starting point of existing works devoted to HQ regularization
for image restoration.

One basic, widespread model involves pairwise interactions
and has the following posterior energy of a 2-D image of size

(up to an additional constant):

(7)

where matrix stands for a linear observation operator. For
instance, the weak membrane corresponds to (7) whenis the
truncated quadratic function. In the probabilistic interpretation
of (7), the first term corresponds to the neg-loglikelihood of the
data when it is assumed that the descrepancy betweenand

is due to additive zero-mean white Gaussian noise.

C. Signal Processing

The reweighted least squaresmethod for one-dimensional
(1-D) linear prediction [17] is a pioneering example of a HQ
approach, developped in the context of geophysicaldecon-
volution. Basically, the problem is to find the optimal predictor

in the norm sense, i.e., to minimize

(8)

where is a data vector, possibly windowed. Clearly,
(8) identifies with (2) for

Actually, theiteratively reweighted least squares(IRLS) al-
gorithm proposed in [17] is formally equivalent to a numerical
scheme that performs block coordinate descent on the HQ cri-
terion built from (8). It is even more surprising to find
that theresidual steepest descent(RSD) method proposed after
IRLS in the same paper [17] implicitly performs block coor-
dinate descent on . However, no reference is made to the
concept of augmented criterion in [17].

A more recent application of IRLS can be found in [18].
Apparently, the recent contributions to HQ image regulariza-
tion were made independently of the reweighted least squares
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approach developed earlier for signal estimation. Here, our
primary concern stays in the field of 2-D and 3-D image restora-
tion, but the connection between HQ and reweighted least
squares approaches makes clear that the unified methodology
applies to a very wide range of signal and image processing
issues.

III. GEMAN AND YANG’S FORM OF

AUGMENTED CRITERION [2]

A. Introduction and General Properties

Following Geman and Yang [2], consider functionssuch
that defines a closed proper convex func-
tion. Let be the conjugate of [19, Sect. 12], i.e.,

and . Then, we have

(9)

Reciprocally, we have also (see [2])

so that

(10)

and (1) holds for . According to (10), is theinfimal
convolutionof with the quadratic function , in the ter-
minology of convex analysis [19].

In [3], an algorithm called LEGEND is proposed for com-
puted imaging. It performs block coordinate descent on
in the unconstrained case , based on the convexity
of in when is fixed and in when is fixed.
An essentially similar scheme is proposed in [6], in the field of
computer vision. Such algorithms proceed in two steps.

• As a function of , is quadratic, and the asso-
ciated normal matrix does not depend on: given (3) and
(6), the gradient of w.r.t. vanishes for

(11)

where and . This
property is interesting from the numerical viewpoint since,
for instance, the normal matrix can be inverted or factored
once for all.

• Since the variables do not interact within , the
second step can be solved in a parallel form. From basic
results of duality theory [19], the updating equation for
each is explicit if is differentiable, and the infimum
of (10) is uniquely reached at

(12)

Hence, no explicit expression ofis needed to compute
. This is fortunate since closed-form expressions of

are difficult or even impossible to establish for most well-
known edge-preserving functions, as depicted in Table I.

B. Effect of a Change of Scale

Let us study the effect of altering the scale ofin the defini-
tion of , by substituting for in the previous subsec-
tion. Since expression (2) of criterioncan be rewritten

for any , the introduction of corresponds to a true de-
gree of freedom in the definition of the augmented criterion.
Indeed, it is shown below that the resulting effect is not trivial
and that accounting for it is not a secondary matter. Provided
that still define a convex function, the
change of scale gives rise to a family of augmented criteria

which satisfy the original requirement
for every , if is defined by

.
The fulfillment of the convexity condition on clearly de-

pends on . It is not difficult to prove the following lemma.
Lemma 1: For a given function that takes finite values on

, the set of nonnegative values ofthat render convex is
a non empty interval of the form ( if is
concave). For all , is even strictly convex.

Such a result meets a qualitative comment of Cohen [6, Re-
mark 6]. It ensures that Geman and Yang’s construction is avail-
able for a wide range of functions, provided that the scale
factor be suitably tuned.

Although no simple operation allows one to deducefrom
, the simplicity of the updating (11) and (12) is maintained,

according to

and

respectively. It would be interesting to study the speed of conver-
gence of a given descent algorithm on as a func-
tion of . Intuitively, it seems preferable to chooseclose to

. However, if is not strictly convex, then is
not a function.

Finally, let us remark that a similar change of scale on Geman
and Reynolds’s alternative would only yield the trivial modifi-
cation .

C. Additional Properties When is Convex

If is convex, the following theorem provides the appropriate
technical basis to show the convergence of coordinate descent
algorithms toward .
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TABLE I
FOUR EXAMPLES OF CONVEX EDGE-PRESERVINGFUNCTIONS�, AND

CORRESPONDINGEXPRESSIONS OF� (b) = sup (��(x)� (x� b) =2)

Theorem 1: Let the function be continuous, convex (resp.
strictly convex) and satisfy

and suppose thatis convex. Then the functiondefined by (9)
is convex (resp. strictly convex).

Proof: See Appendix A.
Corollary 1: Let us assume meets the conditions of The-

orem 1. Then the criterion defined by (6) is convex in
. In addition, if is strictly convex, or if and are

strictly convex, then is strictly convex. On the other hand,
if is strictly convex, then is .

Proof: See Appendix B.
Corollary 1 provides a sufficient condition to ensure that

is a strictly convex criterion. As a consequence,
methods of coordinate descent on are globally convergent
toward the unique global minimizer in , according to
classical studies (for instance, [15, Prop. 2.7.1]).

Among the examples of Table I, the three first scaled func-
tions satisfy the conditions of Theorem 1 for

. Moreover, save the limit case for
Huber’s function (c) (in which case ),

is strictly convex, so the resulting HQ criterion is .

IV. GEMAN AND REYNOLDS’S FORM

OF AUGMENTED CRITERION [1]

A. Introduction and General Properties

Here, we introduce the HQ criterion initially proposed
by Geman and Reynolds [1], and we study some of its proper-
ties. In order to stress the common features in the construction of

and , our construction of is based on convex du-
ality. Besides, this allows us to benefit directly from the known
properties of convex conjugate functions.

Let us consider the functionsthat satisfy the following hy-
potheses:

is even (13)

is concave on (14)

is continuous near zero and on (15)

Most regularizing functions known in the litterature asedge-
preservingsatisfy (13)–(15), including functions
and Huber’s function.

Theextended-valuedfunction defined by

(16)

is convex on and on . Let denote its conjugate. Be-
cause is a closed proper convex function, it is also the conju-
gate of [19, Cor. 12.2.1]. As a consequence, we have

(17)

where

(18)

From (17), it is easy to deduce (1) for as defined by
(5).

The auxiliary process within criterion is clearly rem-
iniscent of a line process. Basically, each component in-
troduces a price to pay for cancelling the quadratic potentiel at-
tached to clique.

Lemma 2 sums up the main properties of the functionde-
fined by (18), when it is additionally assumed thatgrows
slower than at infinity.

Lemma 2: Let fulfill (13)–(15) and

(19)

and let ( may be infi-
nite). Then

1)

is strictly decreasing and strictly convex on
is constant on

2) is convex. Furthermore it is on if (14) is replaced
by thestrict counterpart

is strictly concave on (20)

3) Equation (17) can be replaced by

(21)

Proof: The proof is straightforward and most of its ele-
ments can be found elsewhere. Besides, several properties stated
by Lemma 2 are counterparts of [1, Th. 1] or of [5, Th. 1], while
some are obtained for weakened conditions. In particular, (15)
is slightly weaker than continuous differentiability (assumed in
[5] and also in [16]). Note also that is
equivalent to , i.e., [5, Theorem 1, Cond.
12(f)]. Finally, let us stress that point 2) is a direct consequence
of properties attached to convex duality:is convex as the con-
jugate of , and it is if is strictly convex [19, Th. 26.3].

The augmented criterion is a quadratic function of
when is fixed, and it is a convex function ofwhen is fixed,
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as an immediate consequence of Lemma 2. In [3] and [5], an
algorithm called ARTUR is proposed for computed imaging,
which performs block coordinate descent on in the un-
constrained case .

• In a first step, is minimized as a quadratic function of
, while is held constant. The resulting normal equation

reads

(22)

where , and and have been
defined in Section III.

• In a second step, is minimized as a function of.
Since the variables do not interact within , this step
can be achieved in a parallel form. Moreover, the updating
equation for each is explicit: the infimum of (21) is
uniquely reached at

if
otherwise

(23)

and the expression of is not required to compute .
It is not obvious to adapt such a block version to constrained

cases , whereas thesingle-site updateversion pro-
posed in [4] naturally accounts for each constraint as
the corresponding variable is updated.

Although is a convex function of when is fixed,
and also a convex function ofwhen is fixed, it is not nec-
essarily a convex function of , so that global convergence
toward the global minimizer is not guaranteed for such deter-
ministic descent algorithms. In [5], a convergence study is con-
ducted when is convex (additional technical conditions are
required). Without the convexity of, weaker results can still
be obtained according to [16]. In fact, neither of the two studies
is actually based on acknowledged properties of coordinate de-
scent. In contrast, the next subsection establishes properties of
the augmented criterion when is convex, so that
global convergence properties of algorithms such as ARTUR
can be obtained in the usual framework of coordinate descent.

B. Additional Properties When is Convex

This subsection contains the main result of Section IV, that
is Theorem 2. More specifically, the latter provides sufficient
conditions to establish that is convex (see Corollary 2), up
to the change of variable

Since the latter is one-to-one according to Lemma 2(1), (21) also
reads

Table II contains several examples of convex edge-preserving
functions that yield closed-form expressions forand .

Theorem 2: If is a convex function on that fulfills (13)
and (14), then the function is convex in on

.
Proof: See Appendix C.

TABLE II
SAME FUNCTIONS� AS IN TABLE I, AND CORRESPONDINGEXPRESSIONS

OF  (b) = sup (�(x)� bx ), 0 < b � b AND OF

 (d); �(0) � d < 1

Remark 1: Whereas the function is convex in
, the original function is not convex in .

For the sake of simplicity, let us assume thatis (i.e., con-
tinuously twice differentiable). Then the Hessian of
reads , which takes negative values when in-
creases with fixed. Of course, this does not contradict the fact
that is both convex in when is fixed and in when

is fixed.
Remark 2: Had we supposedstrict convexity of in The-

orem 2, neither nor would have be-
come strictly convex, since their restrictions to the line
are linear anyway. However, their restrictions to any other line
are strictly convex.

Remark 3: It is possible to show that Theorem 2 admits the
following converse property: let fulfill the statements 1) and
2) of Lemma 2, and define according to (21). If
defines a convex function in on , then is also a
convex function (on ). Moreover, it can be checked that (13),
(14), and (19) are true, and (20) is also true ifis on .

Corollary 2: LetusassumethatmeetstheconditionsofThe-
orem 2. Then the criterion (where

) is convex in .
Proof: We have

(24)

which is convex, as a sum of convex functions.

C. Convergence of Coordinate Descent Algorithms on

Here, we study the convergence properties of coordinate de-
scent methods on (or actually on ) when is convex, in
the light of the technical results yielded by the previous subsec-
tion.

Theorem 3: (Convergence of Coordinate Descent on )
Suppose that (13), (19), (20) and hold, as well as the
following property:

such that (25)

Then, every limit point of a series of iterates obtained by coor-
dinate descent on in minimizes
over , and it solves (4).

Proof: See Appendix D.
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Theorem 3 shows that a block coordinate descent method
such as ARTUR converges to a global minimizer of when
the prescribed conditions are fulfilled (the latter are slightly
weaker than their counterpart in [5] since [5, Conditions
12(h–i)] are actually unnecessary).

On the other hand, a slight adaptation of Theorem 3 is re-
quired to prove that the algorithm proposed in [4] is also con-
vergent, because the latter performs an over-relaxed form of co-
ordinate descent. On the ground of Appendix D (and with the
same notations), it can be shown that the conclusion of Theorem
3 still holds if each iteration (33) is relaxed according to

where if (i.e., the descent can be either
under- or over-relaxed on pixels) and otherwise
(i.e., the descent can be under-relaxed on auxiliary variables).
In the latter case, let us stress that under-relaxation must be per-
formed on the transformed variables, not on , because the
transformation is not linear.

Among the examples of Table II, only the first two satisfy
the conditions of Theorem 3. Huber function (c) violates the
strict concavity condition (20) for . However, some re-
fined convergence results are still available for the relaxation
of the resulting nondifferentiable criterion [14, p. 73]. On the
other hand, norms (d) are excluded because .
Then, since , is not continuous near

, and coordinate descent methods oncan be
trapped by any couple such that and
for at least one clique. The situation was similarly
excluded from convergence results in preexisting contributions
involving augmented criteria in image restoration [5], [16], and
the same conclusion was earlier drawn in [17] concerning
minimization using IRLS. A converging alternative algorithm
can be found in [20].

V. INTERACTING AUXILIARY PROCESSES

WITHIN CONVEX ENERGIES

For the purpose of image reconstruction, an interesting conse-
quence of Theorem 2 is the possibility to design convex Gibb-
sian criteria incorporating interacting, continuous-valued pro-
cesses. As pointed out in [1], criterion (5) can be interpreted as
a compound Gibbsian energy function

where the separable term corresponds to a contin-
uous-valued, decoupled, auxiliary process. Now let us intro-
duce a non separable convex function , and define
the HQ function

(26)

Then, it is a straightforward generalization of Corollary 2 that

is a convex function of , while is a vector of interacting
auxiliary variables.

For instance, let us consider the HQ criterion that corresponds
to (7)

(27)

The continuous-valued variables constitute asoft
version of a line process without interactions [1]. Let us design
an interactive extension for such a process. Existing interacting
line processes are binary , and one of the
simplest is Geiger and Girosi’s extended weak membrane model
[11]: compared to (27), additional cliques

are introduced to prevent discontinuous bound-
aries. If stands for a generic clique, the corresponding
potential reads , with and , so that
two neighboring lines cost less than double the
cost of one isolated line. For a continuous-valued line process,
a similar effect can be sought. One simple way is to define
according to

Since is a convex function of , the
resulting criterion is a convex function of .

The performance of the resulting interacting extension has
been compared to the original, noninteracting model, on a syn-
thetic deconvolution problem. Both visually and quantitatively,
the results are quite disappointing. Although the introduction
of line interactions does produced a favorable effect, it is al-
most negligible. More precisely, it has been observed on sev-
eral data sets that the relative decrease oferror norm is less
than 5%, which is visually nearly imperceptible, and is obvi-
ously not worth the extra computational cost required to update
interacting auxiliary variables.

It would probably be hazardous to draw definitive conclu-
sions regarding continuous-valued, interacting processes, based
on such a first attempt. In particular, a still interesting perspec-
tive for further research would be to design more sophisticated
convex potentials, based on other existing interacting binary
models, such as those proposed in [9] and [21].
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VI. CONCLUSION

This paper is devoted to convexhalf-quadraticcriteria and
associated minimization methods. Firstly, we have pointed out
that half-quadratic algorithms such as ARTUR, LEGEND [3],
iterative reweighted least squares and fast residual steepest de-
scent [17], and others [4], [6], all resort to relaxation on aug-
mented forms of the original criterion.

Under mild conditions, we have shown that the augmented
version is convex when the original criterion is convex. This
structural property is the keypoint of this study. Its most straight-
forward consequence is a proof that the various forms of HQ al-
gorithms converge to the global minimizer under sufficient con-
ditions linked to convexity.

Several aspects can be put forward to explain that HQ algo-
rithms have rapidly spread as minimization tools in the field of
edge-preserving image restoration, and more specifically in the
case of convex penalization. An obvious reason is that HQ algo-
rithms do provide competitive structures in term of convergence
speed toward theuniqueminimizer,compared towellestablished
schemes such as conjugate gradient methods. Until now, this has
been ascertained by practice rather than by theoretical studies.

In particular, relaxation on can benefit from the
fact that yields a constant normal matrix

. For instance, consider the spectral
estimation problem dealt with in [18] and [22]. Then, is
circulant and the normal equation can be inverted using fast
Fourier transforms [22], whereas, in comparison, IRLS can
only rely on Toeplitz inversion to solve [18].
Yet, relaxation on is not always faster than IRLS: it is
extremely slow to minimize almost non differentiable criteria,
whereas IRLS always compares very well with a conjugate
gradient method [22].

On the other hand, HQ algorithms (more specifically, relax-
ation methods on , hence the name,iteratively reweighted
least squares) correspond to adaptive, iterated applications of
quadratic regularization. As a consequence, if one is used to
compute quadratic regularizers, HQ algorithms provide a nat-
ural, easy to implement transition toward the computation of
convex, nonquadratic regularizers.

Algorithmic aspects are not the only motivation for
studying HQ structures. Specifically, the purpose of Geman &
Reynolds’s construction is also image modeling: auxiliary vari-
ables constitute a continuous-valued extension of a line process
without interactions [1] (no equivalent interpretation has been
found yet for the auxiliary variables within Geman and Yang’s
construction). On this basis, a method has been proposed for
the construction of convex Gibbsian energies that incorporate
interacting auxiliary variables. At least conceptually, such
Gibbs–Markov models gather several features that were previ-
ously not conciliable. On the one hand, because the resulting
criteria are convex, the minimization step remains robust and
fairly simple. On the other hand, interacting auxiliary variables
provide a flexible mechanism in the field of image modeling.
One simple example of construction has been proposed, but the
brought improvement appears rather marginal compared to the
noninteracting counterpart. A more thorough analysis is left for
future research.

APPENDIX I

PROOF OFTHEOREM 1

According to the assumptions of Theorem 1, for any ,
the function is continuous, convex in, “in-
finite at infinity” as a function of . Thus, there exists at least
one finite value of such that

(28)

In order to prove that is convex, we have to check that
,

where and . According to (9) and (28),
,

In particular, let us express the latter inequality for the pair
,

Since we have , the
right-hand side is nonnegative according to the convexity of,
which proves that is convex. If is strictly convex, is obvi-
ously strictly convex.

APPENDIX II

PROOF OFCOROLLARY 1

Given Theorem 1, the first assertion is obvious, since is
a sum of convex terms. The proof of the second part of the corol-
lary is not as straightforward. Let us derive the result by con-
traposition: assume that there exist two distinct pairs ,

and such that

where
,

, and
.

If is strictly convex, then , which in turn implies
since is a strictly convex function

of . We are led to , which contradicts the
initial assumption.

Now assume instead thatand are strictly convex. Since
the sufficient conditions of Theorem 1 are met, including the
strict convexity of , is strictly convex. Given (6), this implies

and also , , and
hence, , . In turn, the latter equality imposes
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that

which contradicts the strict convexity of.
Finally, and are if is strictly convex [19, Th. 26.3].

Then, is also .

APPENDIX III

PROOF OFTHEOREM 2

Let us begin with a preliminary technical result.
Lemma 3: If is a convex function on that fulfills (13) and

(14), then it also fulfills (15).
Proof: First, let us show that necessarily takes finite

values on . On one hand, the value is excluded because
is convex. On the other hand, the value is also excluded

because is concave on and is even.
As a convex function, admits half-derivatives on , and

[19, Th. 24.1]. Simultaneously, the concavity
of implies on . Hence,

, which shows that exists as a continuous function on
(and on because is even).

Now, let us prove Theorem 2 itself. After the change of vari-
able, (18) reads

so, for any and any

(29)

According to Lemma 3, (15) is fulfilled, which implies that at
least one finite nonnegative value of exists such that

(30)

We have to show that , , , ,

(31)

where
;

;
.

In the case , (31) obviously holds. When , let us
introduce , and . Then we have

where the last three lines, respectively, derive from (29), from
the convexity of (remark that ), and from (30).

APPENDIX IV

PROOF OFTHEOREM 3

As a technical preliminary, coordinatewise properties of
are examined.

Lemma 4: Let us assume that the conditions of Theorem 2
apply, and that (25) holds. Then, for each, is a strictly
convex function of .

Proof: The proof is obvious, since is a strictly
convex function of if , and in .

Lemma 5: Suppose that the conditions of Theorem 2 apply.
Then, for all , , , is hemi-
variate in on , i.e., it is not constant along any segment

[13, Def. 14.1.1].
Proof: If , is strictly convex in on

because is strictly convex on according to Lemma
2; hence, it is hemivariate. Otherwise, it is an affine function of

of slope one.
Now, the main part of the proof relies on the following con-

vergence result.
Proposition 1: Suppose that is , convex over the Carte-

sian product

(32)

where each is a closed convex set of . Furthermore, sup-
pose that for each, is an hemivariate function of . Consider
the sequences generated by the block coordinate descent method

(33)

Every limit point of such sequences minimizesover .
Proposition 1 is almost a paraphrase of Bertsekas’ Proposi-

tion 2.7.1 in [15], except that Bertsekas assumes thatis block
coordinatewise strictly convex, instead of block coordinatewise
hemivariate only (remark that a strictly convex function is hemi-
variate). Incidentally, his demonstration of [15, Prop. 2.7.1] ac-
tually proves the slightly stronger Proposition 1, so the reader
can refer to it as a valid proof of Proposition 1.

Such a result does not apply directly to (because
is not necessarily convex), but it applies to under the
conditions of Theorem 3, for ,

, since is then

• because is on (the latter holds if
only);

• convex according to Corollary 2;
• coordinate-wise hemivariate according to Lemmas 4 and

5.
Now the proof is completed with the following remark: if

is a series of iterates obtained by coordinate descent

on , then would be obtained by coordinate
descent on .
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