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Abstract—This paper deals with convex half-quadratic criteria  or K. In practice, Blake and Zisserman defined the HQ function
and associated minimization algorithms for the purpose of image K as the objective function, deducddrom K, and proposed

restoration. It brings a number of original elements within a uni- ; T ;

. ; . . : a graduated nonconvexi roach to minimize the resultin

fied mathematical presentation based on convex duality. Firstly, 9 . . &pp 9
nonquadratic functiory.

Geman and Yang’s [1] and Geman and Reynolds’s [2] construc- ) o .
tions are revisited, with a view to establish convexity properties ~ Later, Gemarmt al’s contributions [1], [2] generalized Blake
of the resulting half-quadratic augmented criteria, when the orig- and Zisserman'’s construction to a larger class of decoupled

inal nonquadratic criterion is already convex. Secondly, a family  guxiliary processes. In fact, they also reversed the construction

of convex Gibbsian energies that incorporate interacting auxiliary process: they showed that there exist augmented HQ coun-

variables is revealed as a potentially fruitful extension of Geman t " K f id f dratic ed .

and Reynolds’s construction. erpartsK’ for a wide range of nonquadratic edge-preserving
Gibbsian criteriaJ. Each of the two references proposes its

own way to construct an augmented HQ functiénsay K ¢r

and K¢y, from some nonquadratic criterig so that

Index Terms—Convex duality, coordinate descent algorithms,
edge-preserving restoration, Gibbs—Markov models, line pro-
cesses.

min K(-,b) =J 1)

I. INTRODUCTION ben

H ANDLING half-quadratic (HQ) criteria has recently . )
stood out as a powerful numerical device in the field dPF @n appropriate seff, say Bar and Bay, respectively (the

edge-preserving image restoration, either formulated in thSulting auxiliary processmay notbe binary).
stochastic framework of Gibbs—Markov random field esti- Moreover, [1] and [2] supported the idea that minimizikig
mation [1]-[5], or in the deterministic, energetic counterpaf@ther than/ has some structural advantages. More precisely,

[6]-[8]. In this paper, the terminology rather refers to th@N€ can benefit from half-quadraticity by alternating updates
former formulation. of z givend, and ofb given z, provided that the latter be a

A function K is said to be HQ if it depends on two sets ofiMPle enough operation. In [1] and [2], simulated annealing
variables, sayz andb, so thatK is a quadratic function af. based on alternate Gibbs sampling was explored. Other con-

We shall assume thatandz are column vectors. of respectivetributors rather developed deterministic counterparts, whether

sizeM andN . For instance, consider a probability density func®" £ar [3]-[5], [8] or on Ky [3], [6], [7]. The resulting de-

tion fx g whose conditional densityy g is Gaussian. Then terministic algorithms fall into the well-known class of coordi-
the negative logdensity log fx Bl b)= —log fx plalb)— nate descent algorithms (i.eelaxationalgorithms) [13]—-[15].
log f(b) is clearly HQ. ’ ’ For instance, Charbonniet al. [3] introduce block coordinate

HQ criteria can be traced back to piecewise Gaussiggscent algorithms called ARTUR and LEGEND to minimize

Gibbs—Markov models that incorporate binary line processdécr aNdKay, respectively. If the original criteriod presents
either interacting [9][11] or decoupled [12]. In the latter casé‘?cal minima, it is not difficult to check that determl_nl_stl_c HQ
Blake & Zisserman showed that a HQ criteriéf expressing algorithms can be stuck on corresponding local minimizers (a

the idea of a weak continuity constraint, could be considerdrough convergence analysis is conducted in [16]).
as anaugmentedzersion of another criteriod (involving the ~ 1hiS paper rather focuses on the case where the energy func-
truncated quadratic), in the sense that tion J is convex, and studies whether the convexity @ struc-
turally transferred td{ g and toK ¢y . Be the answer positive,
inf  K(-,b) = J. then the convergence analysis of deterministic HQ algorithms
befo,13 M ’ such as ARTUR and LEGEND becomes a straightforward ap-
o plication of existing and well-documented results about the re-
As a consequencd,andK share the same minima, that can bgyxation of convex criteria (for instance, see [13] and [14] for
sought using any suitable numerical device working on eitherpioneering contributions, and [15] for a recent overview).
In [5], it is already shown that ARTUR provides a sequence
Manuscript received March 31, 1999; revised March 28, 2001. The associ_QtfémageS conve_rglng tOWandunder So_me teChn!Cal conditions,
editor coordinating the review of this manuscript and approving it for publicancluding the strict convexity of . Yet, it can easily be checked
tion was Prof. Timothy J. Schulz. . . thatKqg is not necessarily a convex function, even whieis
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Publisher Item Identifier S 1057-7149(01)05437-9. paper is actually to provide a change of auxiliary variables that
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makesK¢r convex (see Section IV). The caseff;y is sim-  whereb = (b.).cc, Bar = R}, Bgy = R, and both func-
pler, since convexity holds under appropriate technical condiens 1» and¢{ can be defined frong» through convex duality
tions (see Section Ill). As a consequence, guarantees of glotmhtions, according to Sections IV and Ill, respectively.
convergence (toward) are provided for many versions of de-

terministic algorithms that operate on either of the critéfigz B Image Restoration

or Kgy. The energy function (2) encompasses the posterior negative
This paper is organized as follows. In Section Il, the mathgyglikelihood of many existing Gibbs—Markov models in image
matical structure of criterid falllng into the scope of our Study restoration and Computed |mag|ng More Speciﬁca”y, afrequent
is introduced. The corresponding form of HQ augmented Ciase is obtained whenis an unknown two-dimensional (2-D)
teria Kqr and Ky is given, and a connection is made begr three-dimensional (3-D) imagé, (z) is a quadratic fidelity
tween HQ minimization andeweighted least squareB Sec- term with respect to (W.r.t.) some data setw, = 0, and the
tions Ill and 1V, Geman and Yang’s and Geman and Reynoldsjgctorsy,. define finite difference operators. This is precisely
constructions are, respectively, revisited. Although more recefe starting point of existing works devoted to HQ regularization
Geman and Yang's form of augmented criterion is studied firgbr image restoration.
because its convexity properties turn out to be simpler to ana-One basic, widespread model involves pairwise interactions

lyze. Most of the new results brought by Sections Ill and IV pend has the following posterior energy of a 2-D image of size
tain to numerical analysis. On the contrary, Section V focusess j (up to an additional constant):

on the design of a new class of image models: on the ground of

Section IV, a family of convex Gibbsian energies that incorpo- ) I
rate interacting auxiliary variables is introduced. J(z) =z — Hz|" + Z Z P@ij = @ij-1)
=1 j=2
I J
II. FRAMEWORK + Z Z $wij — TieL ;) @
A. General Setting i=2 j=1

Let us consider the case of energy functions that read where matrixH stands for a linear observation operator. For
instance, the weak membrane corresponds to (7) whsrihe
J(x) = Jo(z) + Z ¢ (e —w.), z€ RY (2) truncated quadratic function. In the probabilistic interpretation
veC of (7), the first term corresponds to the neg-loglikelihood of the
dataz when it is assumed that the descrepancy betveeand
whereC is a set of cliques on a finite grid (|S| = N and Hz« is due to additive zero-mean white Gaussian noise.
|C| = M), the quantitieas. are real-valued, and each of the
vectorsv, € R has a support restricted to cliqueWe also C. Signal Processing
assume thatl, is a strictly convex quadratic function, which  The reweighted least squaresethod for one-dimensional
reads (1-D) linear prediction [17] is a pioneering example of a HQ
approach, developped in the context of geophydicalecon-
Jo(x) = x" Moz — 2mux + pio (3)  volution. Basically, the problem is to find the optimal predictor

. _ . ~a=lay,...,an]" inthel, norm sense, i.e., to minimize
with My > 0, without loss of generality, and that the function

¢: R — Ris not quadratic. For the sake of notational simplicity, M N b

the same functiorp is assigned to every clique, but the whole J(a) = Z Zm — Z AnZm—n (8)
derivation admits an immediate inhomogeneous extension. We m=1 n=1

assume that the problem to solve is where[z, . . ., 2] is adata vector, possibly windowed. Clearly,

(8) identifies with (2) for
minimize J(z) subjecttar € X (4)
z=a, ¢=|", C={l,....M}, wn=2mn,
whereX = X; x X, x --- x Xy is a Cartesian product of Y =[Zm_1, - Zm_n]"
closed convex sets &f. Typical cases ar = [Tuin, Tmax]" _ _ _
(pixels have a known finite range}, = Rﬁ’ (pixels have posi-  Actually, theiteratively reweighted least squar@®fLS) al-
tive values) and{ = R (unconstrained case). gorithm proposed in [17] is formally equivalent to a numerical
Under slightly different technical conditions, [1] and [2] reScheme that performs block coordinate descent on the HQ cri-

spectively propose the following HQ functions that satisfy (1)terion Kgr built from (8). It is even more surprising to find
that theresidual steepest descdiRSD) method proposed after

IRLS in the same paper [17] implicitly performs block coor-

dinate descent oK y. However, no reference is made to the

1 concept of augmented criterion in [17].

Kay(z,b) =Jo(x) + Z <§ (vie — w. — bc)2 + C(bc)> A more recent application of IRLS can be found in [18].
Apparently, the recent contributions to HQ image regulariza-

(6) tion were made independently of the reweighted least squares

Kar(a,b) =Jo(@) + Y (be (viz —w.)* + (b)) (5)

ceC

ceC
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approach developed earlier for signal estimation. Here, our are difficult or even impossible to establish for most well-
primary concern stays in the field of 2-D and 3-D image restora-  known edge-preserving functionsas depicted in Table I.
tion, but the connection between HQ and reweighted least

squares approaches makes clear that the unified methodolBgyEffect of a Change of Scale

applies to a very wide range of signal and image processing et us study the effect of altering the scalefoif the defini-

issues. tion of ¢, by substitutingp,, = ¢ for ¢ in the previous subsec-

tion. Since expression (2) of criteriaghcan be rewritten
Ill. GEMAN AND YANG'S FORM OF

AUGMENTED CRITERION [2] J(x) = 1 .
_ _ () = Jo(z) + ” E Pa (ViT — we)
A. Introduction and General Properties ceC

Following Geman and Yang [2], consider functiopsuch for any« # 0, the introduction ofx corresponds to a true de-
thatg(z) = 2%/2 — ¢(x) defines a closed proper convex funcgree of freedom in the definition of the augmented criterion.

tion. Letg* be the conjugate of [19, Sect. 12], i.e., Indeed, it is shown below that the resulting effect is not trivial
. and that accounting for it is not a secondary matter. Provided
g"(b) = Sgg(bx - g(x)) that g, () = 22/2 — ¢ () still define a convex function, the

change of scale gives rise to a family of augmented criteria

and((b) = ¢g*(b) — b*/2. Then, we have
Koy (z,b; ) =Jp(x)

() = sup (o) - 50 - 0?). © +23 (3 ot - =)+ G100

zER
cCC
Reciprocally, we have also (see [2]) which  satisfy the original  requirement infg_q.,
_ . Kavy(z,b;o) = J(x) for everya > 0, if ¢, is defined by
5(w) = suplbe = () CalB) = Uy cqlad(z) — (2 — 1)2/2)
The fulfillment of the convexity condition op,, clearly de-
pends onx. It is not difficult to prove the following lemma.
) 1 9 Lemma 1: For a given functionp that takes finite values on
P(e) = bueln% <§($ -0+ C(b)> (10) R, the set of nonnegative values @fthat render, convex is
a non empty interval of the forfd), ayax] (max = o0 if ¢ is
and (1) holds fo#{’ = K¢y. According to (10)¢ is theinfimal  concave). For allv < cunax, go IS €Ven strictly convex.
convolutionof ¢ with the quadratic functiori-)*/2, in the ter-  Sych a result meets a qualitative comment of Cohen [6, Re-
minology of convex analysis [19]. mark 6]. It ensures that Geman and Yang’s construction is avail-
In [3], an algorithm called LEGEND is proposed for comaple for a wide range of functions, provided that the scale
puted imaging. It performs block coordinate descentfafly  factor o be suitably tuned.
in the unconstrained cag&’ = R"), based on the convexity  Although no simple operation allows one to dedggerom

of Kay(«,b) in z whenb is fixed and inb whenz is fixed. ¢ the simplicity of the updating (11) and (12) is maintained,
An essentially similar scheme is proposed in [6], in the field Gfccording to

computer vision. Such algorithms proceed in two steps.
* As a function ofz, Kqv(z,b) is quadratic, and the asso- <2M0 + lVVt) z = 2mg -+ lV(w +b)
ciated normal matrix does not dependtomiven (3) and @ @
(6), the gradient oK v wW.r.t. £ vanishes for

so that

and

(2Mo+VV')x =2mo+ V(w+b) (11) b= — ad/(x)

A A t i
whereV = [vy| - luy] andw = [wy, ..., wp]*. This respectively. It would be interesting to study the speed of conver-

]Pro.perty IS mtirestmg frlom thg numgngal V|ewdp0|r}tsmc%§nce of a given descent algorithm ARy (x, b; «) as a func-
or instance, the normal matrix can be inverted or factor n of . Intuitively, it seems preferable to chooseclose to

once for all. . : . .
. : . . Omax. HOWever, ifg,, . is not strictly convex, thed,,, . is
Since the variables. do not interact withinK vy, the not aC function.

second step can be solved in a parallel form. From baS'CFinaIIy, let us remark that a similar change of scale on Geman

results ,Of dua!ity .the(.)ry [19]’ thg updating quafcion fogmd Reynolds’s alternative would only yield the trivial modifi-
eachb, is explicit if ¢ is differentiable, and the infimum . _
cationty, = ayp(-/c).

of (10) is uniquely reached at
T, = J(@) =2 — ¢(2). (12) C. Additional Properties Whe# is Convex
If ¢ is convex, the following theorem provides the appropriate
Hence, no explicit expression gfis needed to compute technical basis to show the convergence of coordinate descent
b... This is fortunate since closed-form expressiong of algorithms towardk.
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TABLE | Most regularizing functions known in the litterature edge-
FOUR EXAMPLES OF CONVEX EDGE-PRESERVING FUNCTIONS ¢, AND ; : _ ; ; ;
CORRESPONDINGEXPRESSIONS OF,, (b) = sup (a¢(z) — (z — b)%/2) preservmgs,atlsfy (?'3) (15), mcludlng, functions(0 < p < 2)
e and Huber's function.
The extended-valuetlinction f defined by
Geman & Yang’s construction
Ve <0, flzr)=4 (16)
é(z) Ca(b), @ € [0, aunax] QOmax \V/:L' Z 0’ f({]j) = —(7)(\/5)
$(@) — §(F ~ b)* . . .
(@) Vst +a? Zy: sero of (3 + 5% (o - b — a’a? s is convex orR andC* onR?, . Let f* denote its conjugate. Be-
] 148, (1 + Ix_l) N (@) — L (@ — [B])? 5 . causef is a closed proper convex function, it is also the conju-
s VT By > 0: zero of 2 ~ (b + /s = s)o — s|f] gate of f* [19, Cor. 12.2.1]. As a consequence, we have
© { 22 , iflal<s { ab?/(1 - 2a) , i< (1-2a)s 1
2s|z| —s* otherwise 2as || — (1 — 2a)as®  otherwise 2 </)(37) — Z}I}Ig (b.’L’2 + ”(/)(b)) (17)
(d) lzff ,1<p<2 not applicable 0 N
where
. . b) = f*(=b) = — bz?) . 18
Theorem 1: Let the functiony be continuous, convex (resp. w(b) = S1(=) i‘;{; (d)(x) * ) (18)

strictly convex) and satis
y ) bt From (17), itis easy to deduce (1) f& = Kr as defined by

(5).
The auxiliary process within criterion K¢ is clearly rem-
iniscent of a line process. Basically, each compon&it) in-

and suppose thatis convex. Then the functiondefined by (9) troduces a price to pay for cancelling the quadratic potentiel at-

is convex (resp. strictly convex). tached to clique. _ _
Proof: See Appendix A. Lemma 2 sums up the main properties of the functiode-

Corollary 1: Let us assume meets the conditions of The-fined by (18), when it is additionally assumed thaigrows

orem 1. Then the criteriod ¢y defined by (6) is convex in Slower tham.? at infinity.
(zx,b). In addition, if Jy is strictly convex, or ifJ and ¢ are Lemma 2: Let ¢ fulfill (13)-(15) and

plx) 1
1 _
|a:|u—r>loo 2 < 2

strictly convex, theri( ¢y is strictly convex. On the other hand, )
if ¢ is strictly convex, therKqy is C*. Jm —5s =0 (19)
Proof: See Appendix B. O ) . ) o
Corollary 1 provides a sufficient condition to ensure tha@nd letbee = —f1(0) = lim, o ¢/(x)/2z (bos May be infi-

Key is a strictly convexC! criterion. As a consequence,Nite). Then
methods of coordinate descent Ak are globally convergent 1)
toward the unique global minimizer if x Bgy, according to
classical studies (for instance, [15, Prop. 2.7.1]).

Among the examples of Table I, the three first scaled func-
tions ¢, = «a¢ satisfy the conditions of Theorem 1 far <
comax. Moreover, save the limit case = auax = 1/2 for 2) 9 is convex. Furthermore iti§* onR?, if (14) is replaced

Huber’s function (c) (in which casg /> = s|-[), ga = (-)?/2— by thestrict counterpart
¢« is strictly convex, so the resulting HQ criteridtigy is C*.

Vb <0,9(h) = +o0
1 is strictly decreasing and strictly convex (@ b..)
1) is constant offb.,,, +00).

#(,/-) is strictly concave ok . (20)

IV. GEMAN AND REYNOLDS'S FORM
OF AUGMENTED CRITERION [1]

A. Introduction and General Properties P(z) = be%gf 1 (b® + (b)) - (21)

3) Equation (17) can be replaced by

Here, we introduce the HQ criteridiigg initially proposed . ] ]
by Geman and Reynolds [1], and we study some of its proper- Proof: The proof is stralghtforyvard and most of |t§ ele-
ties. In order to stress the common features in the constructiorf @ Nts can be found elsewhere. Besides, several properties stated
Kar andKqy, our construction oK is based on convex du- by Lemma 2 are counterparts of [1, Th. 1] or of [5, Th._ 1], while
ality. Besides, this allows us to benefit directly from the knowfi®™Me are obtained for weakened conditions. In particular, (15)
properties of convex conjugate functions. is slightly wegker than continuous Q|ﬁerent|ab|l|ty (assurr_1ed in
Let us consider the functionsthat satisfy the following hy- [°] @nd also in [16]). Note also thdim, ... ¢(x)/x* = 0is
potheses: equivalent tdim,. .. ¢'(x)/z = 0, i.e., [5, Theorem 1, Cond.
12(f)]. Finally, let us stress that point 2) is a direct consequence
of properties attached to convex dualifyf:is convex as the con-
. jugate off, and itisC if f is strictly convex [19, Th. 26.3[1
¢(,/-) is concave ofit (14) The augmented criterioK g is a quadratic function of
¢ is continuous near zero add onR* = R\{0}. (15) whenbis fixed, and it is a convex function dfwhenz is fixed,

¢ is even (13)
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as an immediate consequence of Lemma 2. In [3] and [5], an TABLE I

algorithm called ARTUR is proposed for computed imaging, SA’V'EO';US(CJ)'OﬂSfu’;S IN I@?j'_v’?)FL{E‘)COOREE?)PC;NDI,'NG%ERSES'ONS
which performs block coordinate descent AR;g in the un- l;ﬁﬁ*l(d)ﬁ(g)"g‘;l <oo
constrained casg{ = RY).
* InafirststepKgr is minimized as a quadratic function of Geman & Reynolds’s construction
x, while b is held constant. The resulting normal equatio .
reads (=) H(b), b € (0, b boo | ¥ (d), d € [$(0), 00)
JIETE 2, L 1 d-vd -5
(Mo + VBV') & = mo + VBuw 22 © T T B 27
|z| B2 2—5 1
b) 14+ = —log(1+— s+ —s°b+log2sh | no closed-form
whereb £ diag{by,...,bx}, andV andw have been - 2 ( o) sb - 2 -
defined in Section III. O e S 2 ! L
* In a second stepi{¢g is minimized as a function db. 2oy 0 2 2t
Since the variablels, do not interact withink g, this step (9 lef 1 <p<2 (-5 (F) i 5(2_—1)) !

can be achieved in a parallel form. Moreover, the updating
equation for eaclb. is explicit: the infimum of (21) is

. . _1 2 B .
uniquely reached at Remark 1: Whereas the functiot—1(d)z? + d is convex in

(z, d), the original functiorbz? + 1(b) is not convex in(z, b).

. boo, ifx =0 For the sake of simplicity, let us assume theis C? (i.e., con-
be = { '45'(90)7 otherwise (23) tinuously twice differentiable). Then the Hessiarbof + 1(b)
2 reads2by” (b) — 422, which takes negative values whr in-
and the expression af is not required to compute,. creases witth fixed. Of course, this does not contradict the fact

It is not obvious to adapt such a block version to constraindaitbz? +1(b) is both convex in: whenb is fixed and inb when
case§ X C RY), whereas thaingle-site updateersion pro- = is fixed.
posed in [4] naturally accounts for each constraipte X,, as Remark 2: Had we supposeditrict convexity of¢ in The-
the corresponding variable, is updated. orem 2, neithery—(d)z? + d nor 1»~*(d)xz* would have be-
Although K or (x, b) is a convex function of whenbis fixed, come strictly convex, since their restrictions to the line= 0
and also a convex function éfwhenz is fixed, it is not nec- are linear anyway. However, their restrictions to any other line
essarily a convex function dfr, b), so that global convergenceare strictly convex.
toward the global minimizer is not guaranteed for such deter-Remark 3: It is possible to show that Theorem 2 admits the
ministic descent algorithms. In [5], a convergence study is cofg!lowing converse property: let fulfill the statements 1) and
ducted whenp is convex (additional technical conditions are?) of Lemma 2, and defing according to (21). Ifyy~*(d)z?
required). Without the convexity af, weaker results can still defines a convex function ifw:, d) onR x I, then¢ is also a
be obtained according to [16]. In fact, neither of the two studi@®nvex function (orit). Moreover, it can be checked that (13),
is actually based on acknowledged properties of coordinate §&4), and (19) are true, and (20) is also trug ils C* onR?,..
scent. In contrast, the next subsection establishes properties d¢orollary 2: Letusassume thatmeetsthe conditions of The-
the augmented criterioi g (z, b) when ¢ is convex, so that orem 2. Thenthe criteriok(z, d) = Kqr (z, ®'(d)) (where
global convergence properties of algorithms such as ARTURE ®(b) = (1(b.)).cc) is convexin(z,d) € RN x .
can be obtained in the usual framework of coordinate descent. Proof: We have

B. Additional Properties Wheg is Convex K(z.d) = Jo(z) + Y (47(de) (vho — we)* +d.) (24)
This subsection contains the main result of Section 1V, that ece
is Theorem 2. More specifically, the latter provides sufficierwhich is convex, as a sum of convex functions. O
conditions to establish th#&f g is convex (see Corollary 2), up
to the change of variable C. Convergence of Coordinate Descent AlgorithmdGik
Here, we study the convergence properties of coordinate de-
(0,bec] — Iy = [¢(0), +00),  br— d =3(b). scent methods oK gy (or actually on) wheng is convex, in
Since the latter is one-to-one according to Lemma 2(1), (21) al'i?r;éanllght of the technical results yielded by the previous subsec-
reads Theorem 3: (Convergence of Coordinate Descenf@rk)
$(x) = inf (z/}—l(d)an +d). Suppqse that (13), (19), (20) abg < +oo hold, as well as the
dely following property:
Table Il contains several examples of convex edge-preserving v, ¢ {1,... N}, 3ce Csuchthalv.), #0. (25)

functions¢ that yield closed-form expressions fprand—!.
Theorem 2:If ¢ is a convex function o that fulfills (13) Then, every limit point of a series of iterates obtained by coor-
and (14), then the functioghi—*(d)z? is convex in(z,d) on dinate descent oA gr(x,b) in X x (0, b,.]™ minimizesKgr
R x I,. over X x (0,b.]™, and it solves (4).
Proof. See Appendix C. O Proof. See Appendix D. O
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Theorem 3 shows that a block coordinate descent methisch convex function ofz, d), while d is a vector of interacting
such as ARTUR converges to a global minimizerafr when auxiliary variables.
the prescribed conditions are fulfilled (the latter are slightly Forinstance, letus consider the HQ criterion that corresponds
weaker than their counterpart in [5] since [5, Conditiong (7)
12(h-i)] are actually unnecessary).

On the other hand, a slight adaptation of Theorem 3 is re-

v gh) 2
quired to prove that the algorithm proposed in [4] is also con-  fGR (‘”’b b ) =llz — Ha|l

vergent, because the latter performs an over-relaxed form of co- I J
ordinate descent. On the ground of Appendix D (and with the +> Z(b;ﬁj(xi’j — i)
same notations), it can be shown that the conclusion of Theorem i=1 j=2

3 still holds if each iteration (33) is relaxed according to v
+ (b ;)
g =(1—w)yy

I J
+wrargmin (9 g0 oyl vE) +3° % <b£‘,j(a:i,,» — i)
i=2 j=1

where0 < w; < 21if I < N (i.e., the descent can be either !
under- or over-relaxed on pixels) add< w; < 1 otherwise + (@‘)) (27)
(i.e., the descent can be under-relaxed on auxiliary variables).
In the latter case, let us stress that under-relaxation must be per-
formed on the transformed variablés not onb., because the 1he continuous-valued variablg' ;) U (b}';) constitute &oft
transformationy is not linear. version of a line process without interactions [1]. Let us design

Among the examples of Table II, only the first two satisfia" interactive extensipn for such a process. Existing interacting
the conditions of Theorem 3. Huber function (c) violates tHé€ processes are b'na_'(y)xg'ab?,j € {0,1}), and one of the
strict concavity condition (20) for(,/-). However, some re- simplestis Geigerand G|r03|'§_extend§d weak membrane model
fined convergence results are still available for the relaxatiéhll: compared to (27), additional cliqud§b;_; ;. ;}) U
of the resulting nondifferentiable criterion [14, p. 73]. On thé{b:'; 1,bi';}) are introduced to prevent discontinuous bound-
other hand/, norms (d) are excluded becausg < +oc. aries. !f{bl,bﬁ stands for a generic clique, the corresponding
Then, Sincé)oo — r(/}—l((/)(o))’ r(/}_l(d).TQ is not continuous near pOtentIal readél +b2 __Eble_, withb = 1—bande > 0,so that
(z,d) = (0, $(0)), and coordinate descent methodskocan be tWo neighboring line¢b; = b, = 1) cost less than double the
trapped by any couplér,d) such thatl, = 0 andviz = w, COSt of one isolated line. For a continuous-valued line process,
for at least one clique. The situatiorb., = +oo was similarly @ similar effect can be sought. One simple way is to define
excluded from convergence results in preexisting contributioa§cording to
involving augmented criteria in image restoration [5], [16], and

the same conclusion was earlier drawn in [17] concerijng T J
minimization using IRLS. A converging alternative algorithm Y, d") =Y max{d ,;d};}
can be found in [20]. i=2 j=2
I J
V. INTERACTING AUXILIARY PROCESSES + 30> max {df;_y,dy )
WITHIN CONVEX ENERGIES i=2 j=2

For the purpose of image reconstruction, an interesting conse- , i
quence of Theorem 2 is the possibility to design convex GibBINCe max{di,d>} is a convex function Of(cvll’ 6}512), the
sian criteria incorporating interacting, continuous-valued pr&€Sulting criterionKy is a convex function ofz, d", d").
cesses. As pointed out in [1], criterion (5) can be interpreted ashe performance of the resulting interacting extension has

a compound Gibbsian energy function been compared to the original, noninteracting model, on a syn-
thetic deconvolution problem. Both visually and quantitatively,

Kgr(z, b) = Jo(z) + Z be (viz — wc)2 + Zz/)(bc) the results are quite disappointing. Although the introduction
eeC ceC of line interactions does produced a favorable effect, it is al-

where the separable terJi, . 1(b.) corresponds to a contin- most negligible. More precisely, it has been observgd on sev-
uous-valued, decoupled, auxiliary procés®ow let us intro- eral daota sets th‘?‘t the relative dec_reasa @‘rr(_)r norm1is less .
duce a non separable convex functivn Ié” — R, and define than 5%, which is visually nearly !mperceptlble, _and is obvi-
the HQ function pusly n(_)t Worth_ t_he extrg computational cost required to update
interacting auxiliary variables.
Ky (z,b) = Jo(z) + Z b. (viw — wc)Q +Y(T(b)). (26) It would probably be hazardous to draw definitive conclu-
cec sions regarding continuous-valued, interacting processes, based
on such a first attempt. In particular, a still interesting perspec-
ttive for further research would be to design more sophisticated
Ky (2,97 (d)) = Jo(x) +Z¢—1(dc) (vix — wc)Q +7(d) convex potentials, based on other existing interacting binary
e models, such as those proposed in [9] and [21].

Then, it is a straightforward generalization of Corollary 2 tha
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VI. CONCLUSION APPENDIX |

This paper is devoted to convédmalf-quadraticcriteria and PROOF OFTHEOREM 1
associated minimization methods. Firstly, we have pointed out . .
that half-quadratic algorithms such as ARTUR, LEGEND [3][ A;:cor@ng to the2 assumpthns of Theorem 1, for #mgrlR
iterative reweighted least squares and fast residual steepest?a((f‘)—um'o_n(_“j N b)*/2 - d)(_x) Is continuous, convex i, “in-
scent [17], and others [4], [6], all resort to relaxation on au%mte _aF |nf|n|ty~as a function ofz. Thus, there exists at least
mented forms of the original criterion. ne finite valuez, of = such that

Under mild conditions, we have shown that the augmented 1 ) _
version is convex when the original criterion is convex. This ¢(b) = _5(% —b)" + ¢(&)- (28)
structural property is the keypoint of this study. Its most straight-
forward consequence is a proof that the various forms of HQ al-In order to prove thaf is convex, we have to check thég €
gorithms converge to the global minimizer under sufficient cord; 1), b1, b2
ditions linked to convexity. _

Several aspects can be put forward to explain that HQ algo- 6C(br) +6¢(b2) — ((b) 2 0
rithms have rapidly spread as minimization tools in the field of _ _ )
edge-preserving image restoration, and more specifically in ti8€ref = 1 — 6 andb = 6b, + 6b,. According to (9) and (28),
case of convex penalization. An obvious reason is that HQ alg\?ﬂ”l’ x2 € R
rithms do provide competitive structures in term of convergence _ _ ~
speedtoward the unique minimizer, comparedtowellestablisi%bl) +6¢(b2) — ((b) = O¢(1) + Op(x2) — d(@)
schemes such as conjugate gradient methods. Until now, this has _ Q(bl ) Q(bQ ) l(b — )2
been ascertained by practice rather than by theoretical studies. 2 2 )
faclz? tﬁ:{g}gg’ ) arilaiat'gnyi(;?gg@; ci)ir;t:r?tnﬁztrrrf]gmmgt]r(iax I~n particular, let us express the latter inequality for the pai=
Mgy = 2M, + VV'. For instance, consider the spectral® b —bar = 40— b
estimation problem dealt with in [18] and [22]. TheM,¢v is
circulant and the normal equation can be inverted using fast
Fourier transforms [22], whereas, in comparison, IRLS can
only rely on Toeplitz inversion to solv@Kgr/9z = 0 [18].

Yet, relaxation onK¢y is not always faster than IRLS: it is S_'nhcehwe haver, = 6(z, + b1 —b) + (@ t‘bQ —b), the .
extremely slow to minimize almost non differentiable criterid'9 t-hand side is nonnegative according to the convexity,o

whereas IRLS always compares very well with a conjugaw.-hiCh proves that is convex. If¢ is strictly convex( is obvi-

gradient method [22]. ously strictly convex.
On the other hand, HQ algorithms (more specifically, relax-

ation methods otk ¢ r, hence the namdgratively reweighted

least squarescorrespond to adaptive, iterated applications of

quadratic regularization. As a consequence, if one is used to

compute quadratic regularizers, HQ algorithms provide a nat-Given Theorem 1, the first assertion is obvious, SifGg, is

ural, easy to implement transition toward the computation afsum of convex terms. The proof of the second part of the corol-

convex, nonquadratic regularizers. lary is not as straightforward. Let us derive the result by con-
Algorithmic aspects are not the only motivation fotraposition: assume that there exist two distinct péiss by ),

studying HQ structures. Specifically, the purpose of Geman &, b,) andf € (0, 1) such that

Reynolds’s construction is also image modeling: auxiliary vari-

ables constitute a continuous-valued extension of a line process  Kqy(,b) = 0Kqy (21,b1) + 0Kcy (22, b)

without interactions [1] (no equivalent interpretation has been

found yet for the auxiliary variables within Geman and Yang'e/here

0C(b1) + 6C(b2)—C(b) > 6p(Ey + by — b)
+0p(Zy + bz — b) — (@)

APPENDIX Il

PROOF OFCOROLLARY 1

construction). On this basis, a method has been proposed fof =1-6,
the construction of convex Gibbsian energies that incorporatez = 0z + 0z, and
interacting auxiliary variables. At least conceptually, such b = 6b; + 0b,.

Gibbs—Markov models gather several features that were previif .J, is strictly convex, them; = x,, which in turn implies
ously not conciliable. On the one hand, because the resultbg= b, since}_ ... (viz—w.—b.)? isastrictly convex function
criteria are convex, the minimization step remains robust anfld. We are led taz;,b,) = (x2,b2), which contradicts the
fairly simple. On the other hand, interacting auxiliary variablesitial assumption.

provide a flexible mechanism in the field of image modeling. Now assume instead thdtand¢ are strictly convex. Since
One simple example of construction has been proposed, buttihe sufficient conditions of Theorem 1 are met, including the
brought improvement appears rather marginal compared to #idct convexity ofp, ¢ is strictly convex. Given (6), this implies
noninteracting counterpart. A more thorough analysis is left féf = &, and alsdvc € C, vtz — (b1). = viz2 — (b2)., and
future research. henceyc € C,v'z; = v'z-. Inturn, the latter equality imposes
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that APPENDIX IV

0.(x1) + 0.J(x2) — J(x) = 0Jo(x1) + 0.Jo(22) — Jo(z)
= 0Ky (z1,b1) + 0Kay (32, b2)

PROOF OFTHEOREM 3
As a technical preliminary, coordinatewise propertiesCof

— Kay(x,b) are examined.
=0 Lemma 4: Let us assume that the conditions of Theorem 2
. . . ) apply, and that (25) holds. Then, for eagh K is a strictl
which contradicts the strict convexity of cgr?v)(/ex function C()fr ) h Dy

Finally, g* and¢ areC* if ¢ is strictly convex [19, Th. 26.3].

. Proof: The proofis obvious, sindatxz —w.)? is a strictl
Then,KGY is alsoC!. p d =~ w) y

convex function ofr,, if (v.), # 0, andy~! > 0in .
Lemma 5: Suppose that the conditions of Theorem 2 apply.

APPENDIX [II Then, for allz € RY, ¢y € C, (do)esze, € Ii”_l, K is hemi-
variate ind., on I, i.e., it is not constant along any segment
PROOF OFTHEOREM2 [, B] C I, [13, Def. 14.1.1].

Let us begin with a preliminary technical result. Proof: If v} x — w., # 0, K is strictly convex ind,, on
Lemma 3: If ¢ is a convex function oR that fulfills (13) and I, because)~—* is strictly convex on/, according to Lemma
(14), then it also fulfills (15). 2; hence, it is hemivariate. Otherwise, it is an affine function of
Proof: First, let us show tha® necessarily takes finite d., of slope one. O

values onR. On one hand, the valuecc is excluded because Now, the main part of the proof relies on the following con-

¢ is convex. On the other hand, the valec is also excluded vergence result.

because)(y/-) is concave o, and¢ is even. Proposition 1: Suppose thak’is C*, convex over the Carte-
As a convex functiong admits half-derivatives oft, and sian product

¢ (x) < ¢ (x)[19, Th. 24.1]. Simultaneously, the concavity

of ¢(y/-) implies¢’_(z)/x > ¢, (x)/z onR?. Hence,¢’ = Y=Y1 xYox---xYp (32)
', which shows thag’ exists as a continuous function B
(and onR* because is even). 0 Wwhere eacll; is a closed convex set &™:. Furthermore, sup-
Now, let us prove Theorem 2 itself. After the change of varRose that for each F'is an hemivariate function gf,. Consider
able, (18) reads the sequences generated by the block coordinate descent method
—1 2 . . . . . .
d=sup (b(x) =¥~ (d)a”) y " =argmin P (1 y Gt h) . (89)

so, for anyz € R and anyd € I Every limit point of such sequences minimizEverY'.

Y d)a? > la) — d. (29) Proposition 1 is almost a paraphrase of Bertsekas’ Proposi-
- tion 2.7.1in [15], except that Bertsekas assumesZhatblock
According to Lemma 3, (15) is fulfilled, which implies that atcoordinatewise strictly convex, instead of block coordinatewise

least one finite nonnegative valig of = exists such that hemivariate only (remark that a strictly convex function is hemi-
1, o " variate). Incidentally, his demonstration of [15, Prop. 2.7.1] ac-
7 (d)Ty = ¢(Ta) — d. (30) tually proves the slightly stronger Proposition 1, so the reader

We have to show thaté € (0,1), z1, z2 € R, dy, dy € I can refer to it as a valid proof of Eroposition 1.
Such a result does not apply directly &a;r (becauseé{gr

Oy (dy)a? + 6y (do)zd > o (d)a? (31) is not necessarily convex), but it appliesfo= K under the
conditions of Theorem 3, foy = (z,d), L = M + N.Y =
where X x I}, sinceK is then
b _ 1-6; _  C' because —!isC* onl, (the latter holds it < +oo
T = 0z1 + 0x2; only);
d = 0d; + 0d». '

» convex according to Corollary 2;

In the caser = 0, (31) obviously holds. When # 0, let us « coordinate-wise hemivariate according to Lemmas 4 and

introducek = z,/z, 2| = kx; andzy, = kxs. Then we have

5.

O3~ (d1)z? + 0 (do) a3 Now the proof is completed with the following remark: if
S (9 (p(x}) — dy) + 6 (Pp(zh) — dQ)) (z*,b") is a series of gerates obtained b.y coordinate glescent
= L2 on K¢g, then (:ck,'(/)(b )) would be obtained by coordinate
5 (¢(@a) — d) descent ork.
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