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ABSTRACT

A Bayesian estimator of the magnetic
resonance (MR) velocity image is proposed. It
is based on a Markov model accounting for the
spatial structure of the flow velocity. On the
other hand, low MR signal intensity yields
high uncertainty on the velocity. Such an
important property is taken into account
through the observation model. The resulting
posterior likelihood is optimized using an
Iterative Coordinate Descent (ICD) algorithm.
Compared to the usual least squares solution,
simulation results on flows with parabolic and
flat profiles demonstrate a significant gain of in
the mean square error.

1. INTRODUCTION

MR velocity imaging is based on the depen-
dence of the MR signal phase on the flow
intensity. More precisely, the phase of the
signal is related to the velocity component in
the direction of a bipolar velocity phase-
encoding gradient. Therefore, a velocity image
can be built, voxel by voxel, from the phase
differences or from the mean frequency of the
MR signal recorded in each voxel using
linearly increasing velocity encoding gradients
[1]. Different methods have been proposed to
improve intra-voxel precision and noise robus-
tness of MR velocimetry. Such methods are
usually based on weighted least squares [2] and
on zero padded Fourier transformation [3]. To
conciliate both short acquisition time and
robust velocity estimation, we propose a new
regularized approach to velocity imaging.

2. REGULARIZED VELOCITY ESTIMATION

2.1. Basics for regularization

The proposed method relies on the hypothesis
of a coherent organisation of flows.

(Hy) Viscosity forces in blood impose a
spatial correlation of the velocities
between adjacent voxels.

As a consequence, independent processing of
data for each voxel is clearly suboptimal. Other
specificities of MR flow signals should also be
taken into account.

(Hp) The time of flight effect increases MR
signal magnitude in the flowing blood
regions due to the incoming of new
unsaturated spins in the analysed section.
In other words, strong MR signals
provide a higher reliability in terms of
velocity measurement.

(H3) MR signals in tissues surrounding the
vessels can either be weak such as in the
lung, or high as in the liver. In the first
case, the raw data provide poor velocity
information, whereas it is well contrasted
in the second case.

Estimating the regularized velocity consists of
processing the raw MR data set, w, composed
of N, complex valued images of N, XN,
pixels We yx -

First, an observation model is constructed for
the MR data. Second a likelihood function is
built from this model. Third regularization is
introduced to obtain the posterior likelihood.
Fourth, the solution is reached using a suited
optimization method.
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2.2. Modelization

The classical assumption of a uniform velocity
inside each voxel and the general strategy
given in the introduction for gradient encoding
[3] indicate that, in a given voxel, the velocity

information is coded as the frequency Vyy ofa
complex exponential:

=2invyy 4TV, 2N MV,
Zyx =[1, e e o } (1)

with a magnitude a,,. An additive Gaussian
noise accounts for”electronic noise in the
reception antenna and. also models errors. The
resulting observation model reads:

Wyx = Gyx Zyx + byx (2)

For sake of simplicity, spatial decorrelation is
assumed and each b,, is considered as a zero-
mean stationary white Gaussmn vector with
variance 7j,.

2.3. Definition of the likelihood

Let a and v denote the vectors of magnitudes
a,yand frequencies v, respectively. Eq. (2)
and the structure of noise yield the following
likelihood:

flw ! a,v)= Hf(wyx l ayxzyx)
N ©

1 : 1 '
o< €Xp — rz(wyx = QyxZyy ) Wy = AyxZyx)

yx
2.4.Priorson a and v

For sake of simplicity, no statistical depen-
dence is introduced in the prior model
between a and v, so that:

flay)=f(a) f(v)

— Prior model for a

“4)

Since our study is focused on the velocity field,
no prior knowledge of a spatial structure for a
is introduced. It is.simply assumed to be a
white zero-mean Gaussian vector with variance
Iy

f@y=T1/(ay) < exp—
Xy

2 ayxayx’

&)

" — Prior model for v
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In order to account for spatial coherence of the
flow (H1), prior model for v is chosen as a first
order Markov field:

log f(») #-AQ1(v )= LU, (v ), (6)
o) = 2 (P(Vy,xﬂ - Vy,x) + (P(Vy+1,x - Vy,x)
xy

(7
and .
02 =2 0(Vyx) » ®)

Xy

where:
o) =20V + 4% - 202 )

An edge-preserving L1-L, norm ¢(u) has been
chosen, so that ¢;(u) introduces locally
smooth spatial structures, while it still allows
abrupt spatial changes of velocity, for instance
at the boundaries of flat profiled flows. On the
other hand, the second term @,(u)
incorporates the same norm to draw low
velocities towards zero in agreement with
assumption (H3z) in surrounding tissues.

2.5. Posterior density

Fusion of the likelihood and prior is achieved
by the Bayes' rule. The posterior density reads:

flav|wye<fw|a,v) f(a) fv) (10)

Maximum a posteriori (MAP) estimation
corresponds to the minimization of the
following criterion:

00 = 3| Loy + Lo
Xy
+AQ1 () + 10 ()

2.6. Optimization with respect to a

(11)

Since the criterion is quadratic with respect to

a, explicit minimization is possible. Moreover

the MAP estimate of @ does not depend on v:
= 0

e = (1+-2) FTyy (Vy) (12)

a



where FT,, (v,,) stands for the Fourier
transform of w,,. The resulting partially
optimized criterion becomes a function of v
only:

N2( .V
o) = —r—g(l + ﬂ 2P, (Vi)
a a Xy

(13)

+AQ1(v) + UPy (v)

where B, (v,,) is the periodogram of w,,.
Note that €xpression (4) naturally accounts ¥or
assumption (Hpy), since each vector of data
wyenters the criterion in proportion to its
empirical energy.

2.7. Optimization with respect to v

Minimization of criterion (4) is not an easy
task because the periodograms B, (Vyx) are
not necessarily well-behaved. We propose an
Iterative Coordinate Descent (ICD) to perform
suboptimal minimization. The criterion is
successively and iteratively minimized with
respect to each v,,, so that the criterion is
guaranteed to decrease at each iteration.
According to our experience, this technique is
much more suited here than a gradient
approach, which would be easily trapped in the
local minima induced by the shape of the
periodograms.

Initialization is performed by taking the
maximum of each periodogram in the base
frequency band. Note that this initial solution
would correspond to the true solution without
regularization.

3. RESULTS

Synthetic images were created for flows with
parabolic and flat profiles together with

simulated surrounding tissues with both low .

and high MR signal magnitude. Figures 1.A
and 1.C present the reference flow images used
for generating the MR data. A series of four
- data is assumed available for each pixel
, (Ng =4), and the SNR is 10 dB. A gray

colormap was used, with the zero velocity
coded in mid-gray. The low velocity region
around the flow simulates (upper right)
surrounding tissues in which the MR signal is
very low (1%), or with a high (100%) MR
signal (lower left). Finally the highest values of
the MR signal are encountered inside the flow
(100% to 150%).

The velocity images 1.B and 1.E have been
calculated using the plain maxima of the
periodogram. The well known characteristics
of MR velocimetry appear in the velocity
images. Some spurious pixels are present.
Those found in the flat profiled flow are due to
the ambiguity around the Nyquist limit, which
cannot be raised from noisy data only. On the
other hand, those in the upper right corner
correspond to low MR signals.

Figures 1.C and 1.F show the regularized
velocity images. Enhancement is clearly
visible compared to images 1.B and 1.E. The
effect on noise reduction is predominant in
surrounding tissues, but the estimated
velocities are also more precise inside flow
regions. Moreover, the ambiguity around the
Nyquist limit is raised thanks to the prior
spatial structure. :

We have compared the mean square error
(MSE) between the estimated images and the
reference images. The improvement brought
by the regularized approach is close to a factor

900 for parabolic flow and close to 200 for the
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flat profiled flow.

CONCLUSION

Regularization of velocity patterns obtained in
MR velocimetry is possible based on the
assumption of a regular flow organization
together with using the relationship between
reliability of flow information and the intensity
of the MR signal. Application of this concept
to in-vivo blood flow still needs to address the
validity of these hypothesis in strongly
pathological turbulent flows.



10 20 30 40 10 20 30 40

10. 20 30 40 10 20 30 40 10 20 30 40

Fig. 2. MR velocity images : Parabolic flow profile. A) Reference image; B) Velocity image; C)
Regularized velocity image (1 = 100, A = 1000). Flat flow profile. D) Reference image; E)
Velocity image; F) Regularized velocity image(p =400, A =600, a, = o, =0.02).
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