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ABSTRACT 

This communication presents a non-supervised seg- 
mentation method based upon a discrete-level unilat- 
eral Markov field model of the image. Such models 
have been shown to yield numerically efficient algo- 
rithms, for segmentation and for hyperparameter esti- 
mation as well. Our contribution lies in  the derivation 
of a parsimonious telegraphic parameterization of the 
unilateral Markov field. On a theoretical level, this pa- 
rameterization ensures that some important properties 
of the field (e.g., stationarity) do hold. On a practi- 
cal level, it  reduces the computational complexity of 
the algorithm used in the segmentation and parameter 
estimation stages of the precedure. In addition, it de- 
creases the number of hyperparameters that must be 
estimated, thereby improving convergence speed and 
accuracy of the corresponding estimation method. 

1. INTRODUCTION 

This communication deals with segmentation of images 
modeled as Markov random fields (hlRFs). MRFs have 
proved useful in image segmentation because they can 
explicitly model important features of actual images, 
such as the presence of homogeneous regions separat,ed 
by sharp discontinuit,ies. However, the corresponding 
methods are often computationally intensive and solv- 
ing the Unsupervised problem, i.e., estimation of the 
MRF parameters, generally presents great difficulties. 

In order to overcome such difficulties, Devijver and 
Dekesel [l] proposed an unsupervised segmentation ap- 
proach in which the image model belongs to a spe- 
cial class of vn i la fe ra l  MRFs: Pickard random fields 
(PRFs). Such models result in a significant reduction 
of the computational burden, particularly in the seg- 
ment,ation stage. However, several difficulties remain: 
on a theoretical level, tractable expressions of para- 
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metric constraints have yet to be established for n-ary 
PRFs; in the estimation stage, theoretical properties of 
PRFs such as stationarity are not enforced; on a more 
practical level, convergence of the estimation procedure 
is somewhat questionable and often slow. 

In this communication, we propose an extension of 
Devijver and Dekesel’s technique based upon a par- 
simonious telegraph parameterization of PRFs which 
guarantees that desirable theoretical properties of 
PRFs are fulfilled. Formulas for model parameter esti- 
mation as well as for image segmentation are derived. 
The parsimonious character of the parameterization re- 
sults in a significant reduction of the amount of compu- 
tations and in a bett.er robustness of the estimation pro- 
cedure. Consequently, the proposed method presents 
better characteristics from both theoretical and practi- 
cal standpoints. 

2. APPROACH 

Our approach is akin to that presented in [l]. The im- 
age to be segmented is modeled as a n-ary PRF X. 
Such models are stat,ionary and their joint probabil- 
ity is determined by a measure r 011 a four-pixel ele- 
mentary cell (6 E) that must fulfill several symmetry 
and independence conditions [2]. As a consequence, 
the marginal probability of each row and column of 
X presents the structure of a stationary and reversible 
Markov chain whose initial and transition probabilities 
can easily be deduced from r. 

It is assumed that the observed image Y is a noise- 
corrupted version of a n-ary P R F  X, and that the con- 
ditional probability distribution of pisel xi is given by 

Y(YIX) = n p ( Y i f l X j ) ,  (1) 

p(l;Jlx! = k) = f k ,  (2) 

i ,j 
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where i , j  and It respectively denote the row, column 
and state indices of tlie current pixel. Segmentation 
is performed using a marginal maximum a posterior2 
approach which consists of maximizing marginal like- 
lihood p ( X i I Y )  for each pixel X f .  The key to the 
derivation of a numerically efficient algorithm lies in  
the following approximation: 

where Yi and Yj respectively denote the i-th row and 
j-th column of Y. Applying the Baye's rule and using 
the orthogonality properties of measure T immediately 
yield 

P ( X j l Y i ,  Yj) 0: p(Y~lX~)y(Yjl.~~)p(~~~). (4) 

Taking advantage of tlie Markov chain structure of Xi  
and X3, tlie first two terms of the right hand side of (4) 
can be evaluated in an efficient manner by ineans of 
forward-backward algorithms [l]. I t  should be stressed 
that the type of parameterization of Markov chains Xi  
and Xj has a significant impact on the computational 
cost of the forward-backward procedures. 

The estimation stage, i.e., tlie deterniination of pa- 
rameter vector 0 which controls the probability dis- 
tributions fk and tlie Markov chain measures, is car- 
ried out using a maximum likelihood (ML) approach. 
The maximum of likelihood function p(Y 10) cannot 
be expressed in closed form. However, because of the 
Markov chain structure of the rows and columns of 
X, an expectation-maximization (EM) approach is well 
suited to  iterative maximization of the likelihood func- 
tion (31. Starting from an initial value eo, tlie EM al- 
gorithm generates a series of estimates ek by iterating 
the following two steps: 

E : Evaluate Q(O, @: Y )  , (5) 
III : 6"' = arg maxQ(0 ,  Q k ;  Y )  , (6) 

0 

with 

Q(0, 0'; Y )  2 E [ J ( X ,  Y ;  O)IY;O ' ] ,  ( 7 )  
J ( X ,  Y; 0)  i? 1ny(Y /x; 0)  + lnp(X;  0 ) .  (8) 

The procedure can be shown to increase the likelihood 
until a critical point of the likelihood function is 
reached. It should be underlined that, in [I], the distri- 
butions of X i  and Xj are parameterized in a standard 
manner by the initial and transition probabilities. Con- 
sequently, statioiiarity and reversibility of each row and 
column is not guaranteed, and measure T generally does 
not fulfill the Pickard conditions. In addition, O ( n S )  

parameters must be estimated, which significantly in- 
creases the computational burden and induces conver- 
gence difficulties when the number of states increases 
(see Section 4). 

In order to alleviate these theoretical and practical 
difficulties, we propose a fe legraph model  (TM) for the 
rows and columns of X, and we derive the correspond- 
ing reestimation formulas. 

3. TELEGRAPH MODEL AND 
REESTIMATION FORMULAS 

The TA1 adopted here is a straightforward generaliza- 
tion of a class of of Markov chains proposed in [4] for 
segmentation of seismic signals. The initial probability 
vector p and transition probabilit,y matrix P of each 
row and column is parameterized with t.wo vectors X 
and p such that 

- 1  
P = A + ( l - X ) p * ,  p =  ( I - A + p X T )  p ,  

(9) 

a A with X = vect(Xk), A = diag(Xk), 1 = (1, .  . . ,1)= 
and I = identity matrix. It can be verified that ma- 
trix diag(p)P is symmetric, and that the conditions for 
p and P to be a valid probability vector and a valid 
probability transition matrix are given by 

n 

Therefore, as long as the initial state probability vector 
is equal to p and that constraints (10) are fulfilled, (9) 
defines a stationary and reversible Markov chain that 
we choose to parameterize with 6 = {A, p } .  

The segmentation stage is carried out in the same 
way as in [l]. The interest of the T M  lies in a sini- 
plification of the forward-backward algorithm used to  
evaluate the approximate marginal likelihood values 
p ( X /  lYi, Yj). Each recursion of the algorithm requires 
the coinputat.ion of conditional probabilities of tlie form 
y ( A i  -3 1, y3- or p(X{IX{-'), which directly depend on 
P .  Expressing P as a function of vectors X and p al- 
lows us to bring the computational complexity down 
from O(n2)  to O(2n).  

Maximization of the exact likelihood p ( Y  10) does 
not yield any tractable expression of the estimates of 
the model parameters. Following Devijver and Deke- 
se1 [l], we approximate the exact likelihood by the 
pseudo-likelihood $(Y 10) defined by: 

~ ( Y / o )  n p ( Y i l 0 )  n y ( ~ j 1 0 ) .  
i 3 

2778 

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on May 20, 2009 at 06:29 from IEEE Xplore.  Restrictions apply.



Then, an EM algorithm for iterative maximization of 
13 can be derived. The major difficulty lies in the hd 
step which, according to (5)-(8), consist of masimizing 
quantity Q defined by 

Q(O, 0‘1 e l np (X( . ) ,  Y(.); 0)  P(x( . )  I Y(.); 0’) , 
X(,) 

where X(.) and Y(,) respectively denote any row or col- 
umn of X and Y. Under our assumptions, maximiza- 
tion of Q yields two independent optimization prob- 
lems. The first one applies to  the parameters of {fk} 

and as long as weak orthodoxy conditions hold, one ac- 
tually obtains the classical Baum-Welch reestimation 
formulas [5]. The second one applies to TM parameters 
B whose new value 8 is obtained through mwimizat.ion 
of Q ( B ,  Of) = Ex,,, lnp(X(.);  B)p(X(.)  I Y(.); (3’). Us- 
ing the definition of a TM, Q can be expressed as 

&(e, (3’) 0: 2 ((Yk ln pk + p k  h( 1 - X k )  
k = l  

where the general form of quantities ak, ,!& and Sk is 
given by: 

A 
0.k = c p ( x ; . )  = k l Y ( . ) ;  Of) ,  

j = 1  

.I- I 

j = 2  

These quantities can be evaluated with the same for- 
ward-backward algorithm as the one used in the seg- 
mentation stage. Maximization of Q with respect to 
X and p under constraints (10) does not yield any 
tractable expression. However, the last term of the 
right-hand-side of (11) becomes small with respect to 
the first term as the size of the rows or columns in- 
creases. Neglecting t,liIS last term and maintaining the 
expression of Q invariant by indes-reversion allows us 
to make the approximation 

n 

&(e,  0’) x Q(B,O’) = Qk , 
k = l  

with 

X k  
Qk = qk lnpk( l -Xk)+skIn  1 +  ( pk[l-Xk))(15) 

A where Vk = (Qk + p k ) / 2 .  h~~aximization of 
under equalitmy constraint p k  = 1 involves several 
stages. We first notice that, for a given value of p,  the 
optimal value of X is obtained through independent 
maximization of each Q k .  This yields 

and x necessarily fulfills the third constraint of (10). 
Substituting (16) into (15) allows us to express Qk as 
a function of p k  to within an additive constant factor: 

The Lagrange multiplier technique is used for maxi- 
mization of Q with respect to p under constraints (10). 
Equating the gradient of the corresponding crit,erion to 
zero yields: 

where v denotes the Lagrange multiplier. When v > 
4Yk, t,he above equation has two distinct roots located 
on either side of 1/2 and respectively denoted by p t ( v )  
and p i ( v ) .  Thus, 2” combinations should be com- 
pared. However, in order for (10) to be fulfilled, p(v)  
may only contain one pk+(v). This brings the number 
of possible combinations down to n + 1. Furthermore, 
detailed invest.igation of the properties of combinations 
that include one p $ ( v )  reveals that Q is maximized by 
the combination that contains pg(v) where state 7E’ is 
defined by 

(19) 
- A  k = arginaxyk . 

k 

Only two possible combinations remain: the one made 
up of all pL;(v) and the one containing p : ( v ) .  Fur- 
ther analysis of their properties shows that one and 
only one combination fulfills constraints (10) and that 
it can be selected according to a very simple inequality 
criterion [6]. Finally, the value of the Lagrange mul- 
tiplier must be det,ermined. It cannot be expressed in 
closed form, but tight lower and upper bounds can be 
easily derived. Classical numerical interpolation tech- 
niques can then be employed so as to fulfill constraint 
Ci=lPk = 1 with arbitrary precision. 
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Figure 1: Example of result obtained with a X-ray to- 
mography image. The goal was to segment the inner 
part of the left and right ventricles. In spite of the 
low contrast of the observed image (a). the proposed 
method provides satisfactory results (b) whereas the 
technique described in [l] (c) diverges. 

In the resulting unsupervised segmentation proce- 
dure, the first consists of estimating t,he model param- 
eters using the above EM algorithm. By construction, 
the model is consistent with the Pickard propert,ies 
of measure T. Then, in a second stage, t.lie image is 
segmented using the parameter values estimated pre- 
viously. Both stages make use of the saiiie forward- 
backward algorithm, whose computational complexity 
is reduced because of the parsimony of the Thl param- 
eterization. 

4. RESULTS 

tribution (probabilities f k )  is Gaussian. With simu- 
lated data, we observed a satisfactory behavior of the 
method, with fast convergence and accurate results of 
t>he estimation procedure. With real data,  occasional 
divergence of the estimation procedure was observed. 
This may be interpreted as a consequence of a degener- 
ate likelihood function which may occur when the mean 
and variance of a probability distribution are jointly 
estimated [T;]. Here, the problem was overcome by pre- 
estimating the mean values t n k  using local averages on 
Y. In this manner, results were satisfactory ant he 
method was able to segment small structures, as illus- 
trated in Figure 1 

Comparison with the procedure described in [l] con- 
firms that the method proposed here presents a smaller 
computational complexity and a faster and more robust 
convergence. It therefore appears as an interesting al- 
ternative to existing unsupervised segmentation meth- 
ods. 
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