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ABSTRACT

This article presents an new iterative algorithm for
deconvolution of Bernoulli-Gaussian processes.
This detection-estimation problem is formulated as
that of a change of initial conditions in linear least-
squares estimation. An algorithm with a very simple
structure is obtained. It allows the evaluation of
either marginal or joint likelihood criteria without
any approximation; the resulting method is easy to
implement, computationally inexpensive and remains
nearly optimal.

I. INTRODUCTION

The subject of this communication is the restoration of
sparse spike trains distorted by a linear system and corrupted
by an additive observation noise. This problems arises in many
areas of applied physics, e.g., seismic exploration, non-
destructive evaluation, medical ultrasonic imaging, or more
generally when one wishes to characterize a non-homogeneous
propagation medium from measurements performed at its
boundaries. Under reasonable assumptions, the observations
can be considered as the convolution product of two signals:
the wavelet, i.e., the incident waveshape, and the reflectivity or
first derivative of the acoustic impedance which characterizes
the unknown medium. The problem consists of restoring the
reflectivity from the observed data and from any available
information on the wavelet and on the observation noise. In
general, this is a myopic deconvolution problem since neither
the wavelet nor the statistical properties of the noise are known
precisely. Here, the scope of the study is limited to simple
deconvolution in which the only unknown quantity is the
reflectivity.

Here, we are interested in the characterization of stratified
media with homogeneous layers. In this case, the reflectivity
vanishes everywhere except at the boundaries between layers,
and thus appears as a pulse process. Simple deconvolution of
such signals presents the usual difficulties of the resolution of
ill-posed problems and some additional ones caused by the
particular shape of the reflectivity and by specific
implementation constraints which depend on the application

domain. Methods based upon L, norms [1], minimum entropy
criteria [2] or multi-pulse coding techniques [3] have been
proposed. In these methods, neither the specific characteristics
of the reflectivity nor the ill-posed nature of the deconvolution
problem are explicitly accounted for. A Bayesian approach was
introduced by Mendel ez al. [4]-[6] and followed by others [7}-
[9]. It is based upon a Bernoulli-Gaussian (B-G) description of
the reflectivity and maximization of likelihood-type criteria.
Deconvolution of B-G signals is a detection-estimation problem
which cannot be solved exactly due to the usual size of the
signals to be processed. Therefore all methods of this type are
sub-optimal to some extent. Some of them exhibit a globally
recursive structure suited to on-line data processing. Their
drawback is a lack of robustness, notably when the frequency
content of the wavelet is poor. Iterative methods do not present
the same disadvantage. On the other hand, they are generally
rather computationally demanding, which makes them
complicated to implement and to use.

The method presented here is aimed at partly correcting
this drawback. It is an iterative procedure based upon a finite
impulse response (FIR) representation of the wavelet. The
derivations presented below are closely related to those of
Mendel et al. This is not surprising since the models used for
the reflectivity and for the noise, as well as the criteria which
are maximized, are almost identical. However, a very simple
algorithmic structure, which to our knowledge has not been
pointed out and exploited before, is brought to evidence here. It
yields considerable simplification of the implementation of the
method and greatly decreases its computational requirements.

II. PROBLEM FORMULATION
Under the assumptions that all phenomena are linear and

that the observation noise is additive, the input-output equation
of the system can be written as

2k) = 2hG) x(k=i) + n(k) 1<k<P N
i=0

where z, x and n denote the observations, the unknown
reflectivity and the observation noise, respectively. For the
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sake of simplicity, wavelet A is assumed to be time-invariant
with a support region of n+1 samples. Concatenation of the
samples of z, n and x into vectors z, n and x of respective
dimensions P, P and N allows (1) to be rewritten in the matrix
form

@

where H contains the shifted samples of wavelet A.
Observation noise n is assumed to be Gaussian white centered
with variance r”* and independent from signal x. The Bernoulli-
Gaussian model of the input can be expressed as

z=Hx+n

Ptk)=1) =4
P{t(k)=0} = 1-A
x(k): Centered Gaussian RV with variance r* #(k))

x, t: White processes

t(k): Bernoulli random variable (RV) {

When A4 is small with respect to 1, (3) does define a sparse
spike train. It should be noticed that conditionally to the
knowledge of Bernoulli sequence f,x is a non-stationary
Gaussian process. Unlike Mendel et al. [4], [5], no product
model is used in the definition of the B-G process (3). This
simplifies the estimation problem, with the beneficial effect of
an improved robustness of the maximum-likelihood estimators
[10].

As mentioned earlier, restoration of a B-G process
requires two operations: Detection of the Bernoulli sequence ¢
and estimation of the amplitudes of x. In a maximum-likelihood
approach, two strategies can be used: In the first one, detection
and estimation are carried out simultaneously with the
maximization of the joint likelihood function

J(t, x) ép{t, xl z} o< plzl t, x} p{xl t} P{t} (C)

with respect to £ and x. However, it has been shown [5], [6]
that such a simultaneous detection-estimation operation can be
performed sequentially in a two step procedure: First, detection
of the Bernoulli sequence through maximization of an
appropriate criterion Jp, which yields an estimate ¢ of ¢, and
secl(\)nd, estimation of the amplitudes through maximization of
Ji(t, x) with respect to x.

The second strategy has a built-in sequential structure:
The detection criterion used to obtain the estimate ¢ of
Bernoulli sequence is the marginal likelihood function

Ju@®8piti 2} e plai ) P(1) )

Then, the amplitude of the reflectivity is estimated through
maximization of J; exactly in the same way as in the
simultaneous approach. When ¢ is known, J; simply represents
the a posteriori likelihood of x. Since all phenomena are linear,
the normality of the conditional distribution of x allows us to
estimate the amplitudes with the classical maximum a posteriori
formulas in a linear and Gaussian setting (primed quantities are
transposed)

*=IHB'z (6a)
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B=HIOH +r1 (6b)

In (6), IT denotes the a priori covariance matrix of xl¢. It
follows directly from the definition of a B-G process that

Q)

Since the estimation step is the same in both strategies,
the difference only comes from the detection operation. In other
words, the different expressions of the detection criteria reflect
the intrinsic differences of the two strategies. When a joint
likelihood is used, the detection criterion can be shown to take
the following logarithmic form [5], [6], [11]

I=rT wih T2 Diag{t®}iaey

Lit) = -z' B z-N, In(2nr") - 2N, ln[%) ®

where N, denotes the number of non-zero samples of the
Bernoulli sequence. Derivation of (8) makes use of the identity

(z-Hx) (z—H?c)+§' T ¥
r r
where fc is given by (6). When a marginal likelihood is used,

the expression of the detection criterion follows directly from
(5) and takes the following logarithmic form

=z'Blz ©

Ly(®) = —2' B~ 2~ In(Bl)~ 2N, m(%)

(10
Since the detection criteria have very close expression, we
define a unique notation

L(t) A _2Blz+ o) 11

where the respective expressions of @(f) in the joint and
marginal cases can be easily deduced from (8) and (10). The
similarity of the expressions of the detection criteria, the linear
structure of the amplitude es;\imator (6), and the fact that the
Bernoulli sequence affects x only as an initial condition
through the a priori covariance matrix I1, are the key points for
the derivation of the restoration algorithm.

III. DERIVATION OF THE ALGORITHM

Exact maximization of L(#) would require its evaluation
for the 2V possible realizations of the Bernoulli sequence. As
mentioned earlier, it is unreasonable to perform the
corresponding computations for realistic values of N. It is more
reasonable to explore only a subset of the possible realizations
of ¢, and to avoid a complete evaluation of L(f) by a direct
application of (8) or (10). For this purpose, the notion of
neighboring Bernoulli sequences is defined as follows: Two
sequences are neighbors if all their coordinates are identical,
except one at most. Then, the set of possible realizations of ¢ is
explored by “jumping” from neighbor to neighbor. Such a
procedure is interesting only if simple relationships exist
between the criterion values of two neighboring Bernoulli



sequences. This point is critical to the efficiency of the
restoration method in practical situations.

Finally, the way in which the possible realizations of #
are scanned needs to be determined. One of the simplest ways
consists of of selecting the Bernoulli sequence which
maximizes L over the whole neighborhood of an initial
sequence fy and of repeating the procedure until a local
maximum is reached. This is exactly the technique proposed by
Kormylo & Mendel [4] with the SMLR detector. Its major
drawback is that convergence to the global maximum is not
guaranteed. In order to avoid this difficulty, other deterministic
or stochastic maximization methods could be used, but this
point will not be pursued here. We now derive equations which
link the criterion values of two neighboring sequences.

III-1. Basic algorithm.

In this section, 0 and & respectively index quantities
related to the initial Bernoulli sequence £, and to the
neighboring sequence f, which differs from £ by its kth
coordinate. Let v, denote the N-dimensional vector whose
coordinates are all zero except the kth one which is equal to 1.
We also define the auxiliary quantities

Al HBiH 12)
wl H B, (13)
pe & g Y v Ag vy (14)

where the &, takes the value 1 (resp. —1) when a 1 is added to
(resp. removed from) sequence #,. We now seek a relationship
between L(t,) and L(#y). It appears clearly in (11) that matrix B
plays a central role. Starting from (7), we have

Hk = H0+£kka‘vk' (15)

Then, using (6b) and applying the matrix inversion lemma to
full rank matrix By, yields

B} = By -By Hv,.p v/ H'BY (16)
From (16), we immediately deduce that

-1
wo—Ag Vi P Vi' Wo

Wy = an
Ay = Ag-Agvi Py v Ag (18)
2B}z = 2 Bg z—wy' v PR v wo (19)
And we obtain the following algorithm
we = wo— ke P vi' Wo (20a)
ky = Ay (20b)
Pe = &)+ Ky (200)
Ap = Ag—Agv P v Ag (20d)
L(ty) = L(ty) + wo' vie P Vi wo + @) — @lto)  (20e)

For the algorithm to be completely defined, it is necessary to
derive the exact expression of ¢(t) — ¢(ty) for both joint and
marginal likelihood functions. Before proceeding to that point,
it should be noted that the first four equations of (20) exhibit
the familiar structure of a recursive least-squares algorithm.
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Moreover, most of the computations occur when w and A are
updated with (20a) and (20d), and such events happen only
once per iteration, when a sequence ¢ is selected as a new
starting point. Since v, has a very sparse structure, the other
equations are not computationally demanding. Therefore, (20)
appears as a very simple and easy to implement basic cell of a
SMLR detector, provided that @(#;) — () can be evaluated
easily. We now examine this point.

When a joint likelihood function is used, it follows
directly from (8) that

(PJ(tk) - (PJ(tO) =—§& (ln(an") + 2 ln(%J) (21)

and since 7* and A are known quantities, @;(t,) — @;(f,) can be
evaluated to within its sign during the initialization phase.
For the marginal likelihood, we have

1Bl 1-A
(pM(tk) - (pM(to) =-& [I{I—Bﬁ) +21n (T]] 22)

It can be shown from (16) that [11]

IBil = &7 pi |Bol (23)

which yields

oty — outy) = — & (ln(sk rFpe)+ 2 1“(%)) (24)

Therefore, for both criteria, evaluation of ¢(t,) — ¢(fy) does not
present any difficulty. It should finally be checked that the
amplitude estimates can be computed easily for a given
Bernoulli sequence. From (6a) and the definition of w, we
immediately obtain

=I0w ©5)

Algorithm (20), and formulas (22), (24) and (25) show that
simple relationships exist between the criterion values of two
neighboring sequences in both joint and marginal cases, and
that the estimate of the amplitudes can be recovered easily for
any Bernoulli sequence.

II1-2. Iterative procedure.

As indicated earlier, the restoration procedure consists of
selecting the Bernoulli sequence which maximizes the detection
criterion over the whole neighborhood of an initial sequence,
and of repeating the procedure until convergence is observed.
This guaranties an increase of the criterion value at each
iteration. Since the number of possible realizations of the
Bernoulli sequence is finite, the procedure necessarily
converges in a finite — but perhaps very large — number of
iterations. The structure of the restoration procedure, as well as
an evaluation of the numerical cost, are indicated below. The
figures relative to the initialization phase correspond to a
uniformly zero Bernoulli sequence, and the computation of
constant quantities used in (21) and (24) is not taken into



account. For the sake of simplicity, the number of significant
samples of x and z is assumed to be identical and equal to N.

(1) INITIALIZATION
Specification of &y, z, H, 7", r*, A 0 mult.
Computation of B! * 0 mult.
Computation of Ay n? + 1 mult,
Computation of wy N (n+1) mult.
Computation of L(#;) N + 1 mult.
Computation of Ly (¢) N + 3 muit.
(2) ITERATION — For k € [1, N]
Update of #(k ) 0 mult.
Computation of k; 0 mult.
Computation of py 0 mult.
Computation of wy v, 0 mult.
Computation of L(ty) 2 mult.
Computation of Ly(t;) 4 mult.
(3) CONVERGENCE TEST
Selection of L(t;) = Max{L()}, L <k <N 0 mult.
IF L(t)) < L(ty) THEN
Computation of x N, mult.
CONVERGENCE
ELSE
Update of £, 0 mult.
Update of L(t)) 0 mult.
Update of w, N+1 mult.
Update of A, N(N+3) / 2 mult.
RETURN TO (2)

It appears that the numerical cost of the procedure is
rather low, and is almost identical for the joint and marginal
likelihood functions. The largest part of the computations is
performed during the iterative search of a local maximum of the
detection criterion. The complete test of a whole neighborhood
requires o multiplications, and such a figure allows real-
size signals to be processed on small workstation-type
computers. The numerical efficiency of the algorithm is mainly
the consequence of two points: An appropriate choice of
auxiliary variables (w and B), and a direct use of matrix H
which is made easier by the FIR representation of the wavelet.
It should be stressed that the procedure can be easily extended
to the case of a time-varying wavelet: H just needs to be
initialized according to the known variations of /. Furthermore,
since H is used explicitly only in the initialization step of the
procedure, the modification leaves the basic algorithm (20) and
the iterative optimization procedure unchanged. The major
drawback of the method is that matrix A of dimensions (V, N)
needs to be stored and manipulated. However, storage of all
variables in central memory does not present any difficulty on
workstation-type computers.

Our practical experience of the method confirms its ease
of implementation and its numerical efficiency. Results

obtained on synthetic data are in agreement with what has been
previously reported about the behavior of maximum-likelihood
deconvolution of B-G processes[4]-[6], [11]: It is preferable to
use the marginal likelihood estimator rather than the joint
likelihood estimator, and the iterative optimization procedure
generally converges to a meaningful local maximum.

IV. CONCLUSION

In this communication, a new algorithm for iterative
deconvolution of B-G processes has been presented. It exhibits
the structure of a recursive least-squares algorithm, which
makes it easy to implement. A low numerical count is achieved,
thanks to an appropriate choice of auxiliary variables.
Important points for obtaining such characteristics are the FIR
representation of the wavelet, and of course the Gaussian
distribution of x conditionally to the knowledge of the
Bernoulli sequence. Hence, the method appears to be an
interesting alternative to existing restoration techniques.
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