
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 12, DECEMBER 2002 2905

Unsupervised Frequency Tracking Beyond the
Nyquist Frequency Using Markov Chains

Jean-François Giovannelli, Jérôme Idier, Rédha Boubertakh, and Alain Herment

Abstract—This paper deals with the estimation of a sequence
of frequencies from a corresponding sequence of signals. This
problem arises in fields such as Doppler imaging, where its speci-
ficity is twofold. First, only short noisy data records are available
(typically four sample long), and experimental constraints may
cause spectral aliasing so that measurements provide unreliable,
ambiguous information. Second, the frequency sequence is
smooth. Here, this information is accounted for by a Markov
model, and application of the Bayes rule yields thea posteriori
density. The maximuma posterioriis computed by a combination
of Viterbi and descent procedures. One of the major features
of the method is that it is entirely unsupervised. Adjusting the
hyperparameters that balance data-based andprior-based infor-
mation is done automatically by maximum likelihood (ML) using
an expectation-maximization (EM)-based gradient algorithm. We
compared the proposed estimate to a reference one and found that
it performed better: Variance was greatly reduced, and tracking
was correct, even beyond the Nyquist frequency.

Index Terms—Aliasing inversion, Bayesian statistic, EM al-
gorithm, forward-backward procedure, frequency tracking,
hyperparameter estimation, maximum a posteriori, maximum
likelihood, meteorological Doppler radar, regularization, ultra-
sonic Doppler velocimetry, Viterbi algorithm.

I. INTRODUCTION

FREQUENCY tracking (or mean frequency tracking) is cur-
rently of interest [1]–[6], especially in fields such as the

ultrasonic characterization of biological tissues, synthetic aper-
ture radar, and speech processing. Our main interest is its use
in Doppler imaging (radars [7], ultrasound blood flow mapping
[8]–[10]). There are two main features in this area.

1) One is that only short noisy data records are available
(typically four sample long), and they are in a vecto-
rial form. Moreover, the constraints on the sampling fre-
quency may cause spectral aliasing so that measurements
provide small amounts of ambiguous information.

2) The second is that there is information on the smoothness
of the sought frequency sequence. Thisa priori informa-
tion is the foundation of the proposed construction. It al-
lows robust tracking, even beyond the Nyquist limit.
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The most popular methods used for spectral characterization
rely on periodogram and empirical correlations. The mean fre-
quency is usually estimated by computing the mean frequency
of the periodogram [8] over the standardized frequency range

. Another popular estimate is proportional to
the phase of the first empirical correlation lag [11], [12]. It is also
provided by a first-order autoregression in a least squares frame-
work [13], but better accuracy is obtained by using all the avail-
able estimated correlation lags in a Taylor series expansion of
the correlation function [12], [14]. The resulting estimate is also
the mean frequency of the periodogram. However, the estimated
parameters vary greatly, particularly when short data records
are used. Moreover, the estimated frequency approaches zero
when the true frequency becomes near the Nyquist frequency

(due to the periodogram 1-periodicity) [8]. To reduce
this bias, [15] uses the maximum of the periodogram instead of
its mean (and yields a maximum likelihood (ML) estimate; see
Section III-A and [16, p. 410]), and [8] iteratively shifts the fre-
quency of the data. This results in greater variance so that no
frequency tracking remains possible beyond .

Thus, all the current methods have two drawbacks. First,
the tracking problem is tackled by a (necessary suboptimal)
two-step procedure:

1) Estimate frequencies in the aliased band .
2) Detect and inverse aliasing.

Second, they are clearly based on empirical second-order
statistics that perform poorly with short data records indepen-
dently processed. Unfortunately, the inverse aliasing in step 2
often fails due to the great variations in the estimated aliased
frequencies of step 1. This is usually compensated for by
post-smoothing the aliased frequency sequence. This provides
spatial continuity but affects the aliased frequency disconti-
nuities, therefore limiting the capacity to detect aliasing. The
proposed method copes with the great variation and aliasing in
a single step; it models the whole data set (by noisy cisoids)
and the smoothness of the frequency sequence (by a Markov
random walk) in the regularization/Bayesian framework. It then
becomes possible to smooth frequency sequence and invert
aliasing at the same time, avoiding the pitfalls of chaining these
operations.

We have found several papers [3], [17], [18] that adopt such
a framework, and this study provides four additional features.

1) First, it deals with vectorial data records as they occur in
Doppler imaging (see Section II).

2) Second, it enables tracking beyond the Nyquist frequency,
whereas others have not investigated this problem.
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3) Third, exact frequency likelihood functions are com-
puted, whereas [17] uses a detection step, and [3] uses
an approximation.

4) Last, the tracking method is entirely unsupervised with
a maximum likelihood hyperparameter estimation. This
is not a straightforward task in the context of frequency
tracking since the nonlinear character of the data as
functions of frequencies prevents the explicit handling of
the likelihood function of the hyperparameter. We have
developed an EM-like gradient procedure, inspired by
[19]–[21]. It can be derived only after discretizing the
frequencies on a finite grid.

The paper is organized as follows. The notation, signal
model, and assumptions are defined in Section II. Section III
contains the proposed regularized method, and Section IV
gives a discrete approximation. Section V is devoted to the
estimation of hyperparameters. The performance of the pro-
posed method is demonstrated by the computer simulations
in Section VI, whereas Section VII gives our conclusion and
describes possible extensions.

II. STATEMENT, NOTATIONS AND ASSUMPTIONS

In Doppler imaging, the signals to be analyzed occur as a set
of complex signals juxtaposed spatially in
range bins [22], [23]. The data record
(“ ” denotes the matrix transpose) is extracted from a cisoid in
additive complex noise. The amplitude and the frequency of the
cisoid are and :

(1)

The vectors and collect
the frequencies and corresponding amplitudes. Finally, the true
parameters are denoted with a star. This paper builds a robust
estimate for on the basis of data set (see Fig. 1 for a
simulated example).

Remark 1: Model (1) is frequently used for spectral prob-
lems; it has three main features. First, while it is linear w.r.t.

, it is not so w.r.t. ; the problem to be solved is nonlinear.
Second, is a 1-periodic function w.r.t. , and this causes
the difficulties of aliasing, frequency ambiguity, likelihood pe-
riodicity, etc. Last, this periodicity is also the keystone of the
paper; aliasing is inverted, using a coherent statistical approach
that takes periodicity into consideration.

The following definition of periodicity is used throughout the
paper.

Definition 1: Let and . Let us note
. is said to be

• separately-1-periodic (S1P) if , (such
that ): ;

• globally-1-periodic (G1P) if , (such
that ): .

The proposed estimation method deals with periodicity and
aliasing inversion thanks to the following assumptions. They are
stated for the sake of simplicity and calculation tractability as
well as coherence with the applications under the scope of this
paper.

Fig. 1. Simulated observations overT = 128 range bins withN = 4 samples
per bin. From top to bottom: real parts, imaginary parts of the datayyy , and the
true frequency sequence� .

• Parameter dependence.
– : , and the are independent.
• Law for measurement and modeling noise.

– : Each is .
– : The sequence of is itself white.
• Law for parameters and .

– : is , i.e., white.
– : is, on the contrary, correlated:

where stands for a complex zero-mean Gaussian vector
with covariance , and denotes the identity
matrix.

The first assumption is quite natural since no information
is available about the relative fluctuations of noise and objects.
The assumptions , and are also natural since no correla-
tion structure is expected in noise. Similarly, we have no infor-
mation about the variation of the amplitude sequence; therefore,
an independent law is used. A Gaussian law is preferred ()
to make the calculations tractable. Contrarily, the smoothness of
the frequency sequence is modeled as a positive correlation. A
Markovian structure (specified below) is a simple, useful way
to account for it. Several choices are available, but the Gaussian
one is also stated for the sake of simplicity ().

III. PROPOSEDMETHOD

A. Likelihood

Assumption yields a parametric structure for each likeli-
hood function :

involving the opposite of the logarithm of the likelihood func-
tion (up to constant terms) i.e., the Co-Log-Likelihood (CLL):

CLL

From a deterministic standpoint, CLL is clearly the least
squares (LS) estimation criterion.
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Considering the whole frequency vectorand the whole data
set , assumption yields

(2)

where the global CLL is a global LS criterion

Remark 2: According to Definition 1, the likelihood function
CLL is S1P for all . Therefore, two configurations

and ( ) for the frequency sequence are equi-
likelihood. As a consequence, an ML approach suffers from
independent frequency ambiguities.

B. Amplitude Law and Marginalization

The parameters of interest are the frequencies, whereas the
amplitudes are nuisance parameters. These are integrated out of
the problem in the usual Bayesian approach.

Given separability assumption , one has
, and the marginal law can easily be deduced:

The joint law for the amplitudes is separable according to as-
sumption . Since likelihood (2) is also separable, marginal-
ization can be performed independently.

(3)
The Gaussian amplitude assumption results in analytic

derivations and yield the marginal likelihood for the data,
given , which is zero mean Gaussian vector. Its covariance
is given in Appendix A-B as well as its determinant (23) and its
inverse (24). then reads

(4)

with , ,

, and is the periodogram of vector

The joint law for the whole data set given the frequency se-
quence is obtained by the product (3)

CLML (5)

where is the sum of the for , and
where CLML is the co-log-marginal-likelihood

(6)

which is the opposite of the sum of the periodograms of data
at frequency in gate .

Remark 3: This remark is the marginal counterpart of Re-
mark 2. As well as CLL , CLML is S1P. There are still
many ambiguities as in the nonmarginal case. This was expected
since no information about the frequency sequence has been ac-
counted for in CLML w.r.t. CLL . In contrast, period-
icity will be eliminated in the next subsection by accounting for
the frequency sequence smoothness.

C. Prior Law for Frequency Sequence

Unlike amplitudes, the frequency sequence is smooth. A Mar-
kovian structure accurately accounts for this information, and
there are many algorithms suited to computing this structure.
The choice of the family law is not crucial for using these algo-
rithms, but we have used the Gaussian family

The complete law for the chain also involves the initial state. It
is assumed to be uniformly distributed over a symmetric set
defined by : . Therefore,

, where is 1 in and 0 outside.
The recursive conditioning rule immediately yields

CLP (7)

where CLP is the co-log-prior

CLP (8)

and is 1 in and outside. In the
deterministic framework, CLP is a quadratic norm for the
first-order differences, namely, a regularization term [24]–[26].

D. Posterior Law

Fusion ofprior -based and data-based information is achieved
by the Bayes rule, which provides thea posterioridensity for

The marginal law for the whole data set is not analyt-
ically tractable, essentially due to the nonlinearity of the peri-
odogram w.r.t. and the correlated structure of. Fortunately,
this p.d.f. does not depend on; therefore, thea posterioriden-
sity remains explicit up to a positive constant.Prior structure of
(7) and (8) and likelihood structure of (5) and (6) immediately
yield theposteriorlaw

(9)

where the co-log-posterior-likelihood function (CLPL) reads

CLPL (10)

where , up to irrelevant constants. In the determin-
istic framework, CLPL is a regularized least squares (RLS) cri-
terion. It has three terms: one measures fidelity to the data, the



2908 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 12, DECEMBER 2002

second measures fidelity to theprior smoothness, and the third
enforces the first frequency . The regularization param-
eter (depending on hyperparameters ) balances
the compromise betweenprior -based and data-based informa-
tion.

E. Point Estimate

As a point estimate, a popular choice is the maximuma pos-
teriori (MAP) i.e., the maximizer of theposteriorlaw of (9) or
the minimizer of the RLS criterion (10):

CLPL (11)

Remark 4: This remark is the posterior counterpart of Re-
marks 2 and 3. Whereas CLL and CLML are S1P, CLPL is not;
regularization breaks periodicities, favors solutions according to
prior probabilities, and enables some ambiguities to be removed.
Nevertheless, a global indetermination remains: CLPL is a G1P
function. This is essentially due to the facts that i) the marginal
likelihood CLML is a S1P function, and ii) the regularization
term CLP is a G1P function (since it only involves frequency dif-
ferences). As a consequence, two frequency profiles, which are
different from a constant integer level, remain equi-likelihood.
Finally, the latter indeterminacy can be removed by choosing an
appropriate : enforces the first frequency to remain
in , and the corresponding CLPL is no longer G1P.

Proposition 1: With the previous notations and definitions,
the MAP estimate is such that

for (12)

Proof: See Appendix B.

F. Optimization Stage

The proposed approach allows ambiguous periodicity to be
removed at the expense of accepting local minima in the built
energy (10). A gradient procedure [27] can achievelocal mini-
mization of (10) and CLPL gradient involves the periodograms
derivatives

when rewriting as a function of empirical correlation lags
of the signal . It is also possible to calculate the second-

order derivative

and to implement second-order descent algorithms.
There are several ways of coping withglobal optimization,

e.g., graduated nonconvexity [28], [29] and stochastic algo-
rithms such as simulated annealing [30], [31]. We have used a
dynamic programming procedure for computational simplicity.
It is based on a discrete approximation of theprior law for the
frequencies. This approximation allows global optimization
(on an arbitrary fine discrete frequency grid) and provides a
convenient framework for estimating hyperparameters.

IV. DISCRETESTATE MARKOV CHAIN

This section is devoted to a discrete approximation for

1) maximizingposteriorlaw for the frequency sequence;
2) building an ML procedure for estimating hyperparame-

ters.
We have therefore introduced an equally spaced discretization
of the frequency range [ ] in states (

and in our simulations).

A. Probabilities

Discretization and normalization of thea priori law (7) yields
the state transition probabilities:

(13)

Note that does not depend on, i.e., the proposed chain is
homogeneous . The full state model also includes the
initial probabilities chosen constant over (see
Remark 4).

The marginal (w.r.t. amplitudes) likelihood function for the
observation sequence given by (4) yields the observation prob-
ability distribution .

B. Available Algorithms

The Markov chain is now convenient for using algorithms
given in [32] and [33]: the Viterbi and the Forward-Backward
algorithms. They enable us to compute

• the MAP;
• the hyperparameters likelihood as well as its gradient.

1) Viterbi Algorithm: The Viterbi algorithm, which is shown
in Appendix C-A, has been implemented to cope with global op-
timization (on a discrete grid) and performs a step-by-step opti-
mization of theposteriorlaw. The required observation proba-
bilities are also readily precomputable by the FFT.

2) Forward–Backward Algorithm:We have used a normal-
ized version of the procedure, as recommended in [34] and [35],
to avoid computational problems. It is founded on forward and
backward probabilities

and

where denotes the partial observation matrix
from time to .

The (count-up) Forward algorithm, which is given in Ap-
pendix C-B, computes non-normalized probabilities , nor-
malization coefficients , and the themselves. As a re-
sult, the observation likelihood can be deduced

(14)
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It is useful for estimating ML hyperparameters in Section V.
The (count-down) Backward step, which is described in Ap-
pendix C-C, yields marginala posterioriprobabilities (see [32,
p. 10])

(15)

and double marginala posterioriprobabilities (see [32, p. 11])

(16)

which are both needed to calculate the likelihood gradient.

V. ESTIMATING HYPERPARAMETERS

The MAP estimate of (11) depends on a unique regularization
parameter function of three hyperparameters .
This section is devoted to their estimation using the available
data set .

Estimating hyperparameters within the regularization frame-
work is generally a delicate problem. It has been extensively
studied, several techniques have been proposed and compared
[36]–[41] and the preferred strategy is founded on ML.

The ML estimation consists of i) expressing the hyperparam-
eter likelihood (HL) as and ii) maximizing the
resulting function. Although we have chosen a simple Gaussian
law, cannot be marginalized in closed form becauseenters

in a complex manner. Fortunately, the discrete state ap-
proximation of Section IV provides a satisfactory solution to
this problem. It also allows us to devise several kinds of al-
gorithms for local maximization of the likelihood. One such
scheme is the acknowledged expectation-maximization (EM)
algorithm, although its application reveals uneasy in the present
context of a parametric model of hidden Markov chain ([19] pro-
vides a meaningful discussion of such situations; see also [20]
and [21]). Section V-B is devoted to the EM framework, within
which a gradient procedure is proposed. Section V-A deals with
the computation of the likelihood and proposes a simple coor-
dinatewise descent procedure.

A. Hyperparameter Likelihood

The hyperparameter likelihood HLcan be deduced from the
joint law for ( ) by frequency marginalization:

HL

but the indices run over states; therefore, the above sum-
mation is not directly tractable. However, the Forward proce-
dure efficiently achieves a recursive marginalization; it yields
HL according to (14) and requires about calculations.

Let us introduce the co-log-HL (CLHL) to be minimized w.r.t.
hyperparameters vector:

CLHL

One possible optimization scheme is a coordinatewise descent
algorithm with a golden section line search [27], but a more
efficient scheme may be a gradient algorithm [27].

B. Likelihood Gradient

The EM algorithm relies on an auxiliary function, which is
usually denoted [42], [43] built on two hyperparameter vec-
tors and by completing the observed data setwith param-
eters to be marginalized:

With the proposed notations, usual hidden Markov chains cal-
culations yield

(17)

where we have the following.

• ( , , ) and ( , , ) are parameters of the model
under hyperparametersand , respectively.

• and denote thea posteriorimarginal laws
defined by (15) and (16), under hyperparameters.

The th iteration of the EM scheme maximizes
as a function of to yield as the maximizer. Unfortunately,
it seems impossible to derive an explicit expression for such a
maximizer. However, an alternate route can be followed, given
the key property

CLHL

As suggested by [19], this property enables us to calculate the
gradient of CLHL as the derivative of (17):

(18)

(19)

(20)

The encountered derivatives ,
and , respectively, read

by derivation of (4) and (13). Finally, the likelihood gradient is
readily calculated, and a gradient procedure can be applied.



2910 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 12, DECEMBER 2002

Fig. 2. Typical form of criteria. From top to bottom: CLML(���) (periodic),
CLP(���) (quadratic), and CLPL(���) as a function of� (t = 50). Regularization
breaks periodicity.

VI. SIMULATION RESULTS AND COMPARISONS

The previous sections introduced a regularized method for
frequency tracking and estimating hyperparameters. This sec-
tion demonstrates the practical effectiveness of the proposed ap-
proach by processing1 simulated signals shown in Fig. 1.

A. Hyperparameter Estimation

The hyperparameter likelihood function CLHL was first com-
puted on a fine discrete grid of 2525 25 values, resulting in
the level sets shown in Figs. 2 and 3. The function is fairly reg-
ular and has a single minimum.

The hyperparameters are tuned using two classes of descent
algorithms:

• a coordinate-wise descent algorithm;
• a gradient descent algorithm.

The latter employs several descent directions: usual gradient, bi-
sector correction, Vignes correction, and Polak-Ribière pseudo-
conjugate direction. Two line search methods have also been
implemented: usual dichotomy and quadratic interpolation. The
starting point remains the empirical hyperparameter vector de-
scribed in Appendix D.

All the strategies provide the correct minimizer, and they are
compared in Table I and Fig. 3. The usual gradient generated
zig-zagging trajectories and was slower than the other strategies.
The three corrected direction strategies were 25 to 40% faster
than the uncorrected ones with the Polak–Ribière pseudo-con-
jugate direction having a slight advantage. In contrast, interpo-
lation did not result in any improvement within the corrected
direction class.

The coordinate-wise descent algorithm performed well since
it does not require any gradient calculation. Gradient calculus
needs a lot more computation than the likelihood itself, due
to summations in (18)–(20). Likelihood calculus took 0.05 s,
whereas gradient calculus required 0.2 s., i.e., about four times
more.

1Algorithms have been implemented using the computing environment
Matlab on a Pentium III PC with a 450-MHz CPU and 128 MB of RAM.

We have therefore adopted the two fastest methods: coordi-
nate-wise and Polak-Ribière pseudo-conjugate gradient, which
took less than 3.5 s. Fig. 3 also illustrates the convergence.

B. Frequency Tracking

The optimization procedure used to compute the MAP (given
ML hyperparameters) consisted of applying the Viterbi algo-
rithm (described in Section IV-B1). The solution was used as
the starting point for the gradient or the Hessian procedure (de-
scribed in Section III-F). The Viterbi algorithm explored the
whole set of possible frequencies (on a discrete grid) and found
the correct interval for each frequency, whereas the gradient or
Hessian procedure locally refined the optimum. Table II shows
the computation times. We adopted the Hessian procedure since
it performed almost ten times faster.

Fig. 4 illustrates typical results. The ML strategy

– lacked robustness for two reasons: Estimation was per-
formed independently at each depth, andwas small;

– could not be corrected by an unwrap-like post-pro-
cessing since the ML solution was too rough (as al-
ready mentioned).

For the regularized solution (also given in Fig. 4), a simple
qualitative comparison with the reference led to three conclu-
sions.

– The estimated frequency sequence conformed much
better to the true one. The frequency sequence was
more regular since smoothness was introduced as a
prior feature.

– The estimated frequency sequence remained close to
the true one even beyond the usual Nyquist frequency.
This was essentially due to the coherent accounting for
the whole set of data and smoothness of the frequency
sequence.

– The proposed strategy for estimating hyperparameters
is adequate. A variation of 0.1 of the hyperparame-
ters resulted in an almost imperceptible variation in the
estimated frequency sequence. This is especially im-
portant for qualifying the robustness of the proposed
method; the choice of offers relatively broad leeway
and can be reliably made.

VII. CONCLUSION AND PERSPECTIVES

This paper examines the problem of frequency tracking
beyond the Nyquist frequency as it occurs in Doppler imaging
when only short noisy data records are available. A solution
is proposed in the Bayesian framework based on hidden
Gauss–Markov models accounting forprior smoothness of the
frequency sequence. We have developed a computationally
efficient combination of dynamic programming and a Hessian
procedure to calculate the maximuma posteriori. The method
is entirely unsupervised and uses an ML procedure based on an
original EM-based gradient procedure. The estimation of the
ML hyperparameter is both formally achievable and practically
useful.

This new Bayesian method allows tracking beyond the usual
Nyquist frequency due to a coherent statistical framework that
includes the whole set of data plus smoothnessprior. To our
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Fig. 3. Hyperparameter likelihood: typical behavior. Level sets of CLHL are plotted as dashed lines (––). The minima are located by a star (�), starting points
(empirical estimates) by a dot, (.) and final estimate by a circle (o). The first row gives coordinate-wise algorithm, and the second row gives a gradient algorithm.
First column: CLHL(r ; r ; r ); second column: CLHL(r ; r ; r ); third column: CLHL(r ; r ; r ). Each figure islog scaled.

TABLE I
DESCENTALGORITHM COMPARISON. THE FIRST COLUMN GIVES THE METHOD AT WORK: (1) USUAL GRADIENT, (2) VIGNES CORRECTION, (3) BISECTOR

CORRECTION, AND (4) POLAK-RIBIÉRE PSEUDO-CONJUGATEDIRECTION. (A) NO INTERPOLATION AND (B) QUADRATIC INTERPOLATION. (5) COORDINATE-WISE

DESCENTMETHOD. FOLLOWING COLUMNS SHOW THE REACHED MINIMUM AND THE MINIMIZER. SIXTH COLUMN GIVES THE NUMBER OF GRADIENTS AND

FUNCTION CALCULUS, WHEREAS THELAST GIVES COMPUTATION TIMES IN SECONDS(s)

TABLE II
COMPUTATION TIMES COMPARISON FORFREQUENCYESTIMATE

knowledge, this capability is an original contribution to the field
of frequency tracking.

Future work may include the extension to Gaussian DSP [9],
to multiple frequencies tracking [3], [17], and to the two-dimen-
sional (2-D) problem. The latter and its connection to 2-D phase
unwrapping [44]–[46] is presently being investigated.

APPENDIX A
AMPLITUDE MARGINALIZATION

A. Preliminary Results

This Section includes two useful results: For

(21)

(22)

where stands for the identity matrix.

B. Law for

Linearity of model (1) w.r.t. amplitudes and assumptions
for and allow easy marginalization of :
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Fig. 4. Comparison of frequency profile estimates. From top to bottom: ML
estimate (i.e., periodogram maximizer), unwrapped ML estimate, Viterbi-MAP
estimate, and Hessian-MAP estimate.

is clearly a zero-mean and Gaussian vector with covariance
. From (21) and (22), its determi-

nant and inverse reads

(23)

(24)

APPENDIX B
PROOF OFPROPOSITION1

A. Preliminary Result

The proposed proof is based on the decimal part function
defined by

if
is -periodic

(25)

and the following straightforward properties:

(26)

(27)

(28)

such that (29)

B. Proof of Proposition

Let us define a frequency sequence(with CLPL ),
which does not verify (12) of Proposition 1, i.e.,

with (30)

Let us recursively build a new frequency sequence:

(31)

for (32)

and prove that (12) of Proposition 1 holds forand that the
criterion CLPL reduces from to :

for (33)

CLPL CLPL (34)

• Relation (33) is straightforward; by (32), one can see

for

and hence, by Property (28)

for

• Proof of (34) takes three steps, corresponding to each term
of CLPL (10). By (31) and (32) and Property (29), one can
see

such that for (35)

(with ); therefore

for (36)

By (32) and (35) and invoking Property (26), we have

hence, accounting for Property (27)

(37)

Moreover, for , we clearly have

(38)

thanks to hypothesis (30). Finally, we have

(39)

Collecting (36)–(39) proves (34).

APPENDIX C
HMC ALGORITHMS

A. Viterbi Algorithm

Precomputations

Initialization ( )

Iterations ( )
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Termination ( )

Back tracking ( )

B. Forward Algorithm

Initialization ( )

Iterations ( )

C. The Backward Algorithm

Initialization ( )

Iterations ( )

APPENDIX D
EMPIRICAL ESTIMATION OF HYPERPARAMETERS

This section is devoted to theempiricalestimation of hyper-
parameters used as a starting point in the maximization proce-
dures of Section VI-A. These estimates are based on the corre-
lation of and easily shown to verify ,
and , for all . Empirical estimates and

are computed from the whole data setand remain robust
since is large (even if is small). Finally, one can compute

, and .
For , the estimation is based on the ML estimate of the

frequency sequence in each range bin . The proposed
empirical estimate of is naturally the empirical variance of
the differences between the ML frequencies. This procedure

yields an overestimated value for . This result is expected
since the sequence of ML frequencies varies greatly and has dis-
continuities, as mentioned above. Nevertheless, this estimate is
a suitable starting point for the maximization procedures of Sec-
tion VI-A.
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