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Abstract—This paper deals with the estimation of a sequence  The most popular methods used for spectral characterization
of frequencies from a corresponding sequence of signals. Thisrely on periodogram and empirical correlations. The mean fre-
problem arises in fields such as Doppler imaging, where its speci- quency is usually estimated by computing the mean frequency

ficity is twofold. First, only short noisy data records are available . -
(typically four sample long), and experimental constraints may of the periodogram [8] over the standardized frequency range

cause spectral aliasing so that measurements provide unreliable, ¥ € (—0.5,+0.5]. Another popular estimate is proportional to
ambiguous information. Second, the frequency sequence isthe phase of the firstempirical correlationlag[11],[12]. Itis also
smooth. Here, this information is accounted for by a Markov provided by a first-order autoregression in a least squares frame-
(rjneonds?tl)’/ 3_‘|f‘hde iﬁ)giﬁﬂ(r)nnacgotsﬁ:rgﬁ)ilsior#:r?u)tﬁdbsy t:i)ﬁq%?:‘zrt'i%'; work [13], but better accuracy is obtained by using all the avail-
of Vitefbi and descent procedures. One of the major features able eS“m?ted corrglation lags in a Taylor .series.expar?sion of
of the method is that it is entirely unsupervised. Adjusting the the correlation function [12], [14]. The resulting estimate is also
hyperparameters that balance data-based angbrior-based infor- the mean frequency of the periodogram. However, the estimated
mation is done automatically by maximum likelihood (ML) using  parameters vary greatly, particularly when short data records
an expectation-maximization (EM)-based gradient algorithm. We are used. Moreover, the estimated frequency approaches zero

compared the proposed estimate to a reference one and found that hen the t £ b the N ist f
it performed better: Variance was greatly reduced, and tracking when he true frequency becomes near the Nyquist frequency

was correct, even beyond the Nyquist frequency. v ~ £0.5 (due to the periodogram 1-periodicity) [8]. To reduce
o . . - this bias, [15] uses the maximum of the periodogram instead of
Index Terms—Aliasing inversion, Bayesian statistic, EM al- . - . o . ]
gorithm, forward-backward procedure, frequency tracking, its mean (and yields a maximum Ilkellhood_(ML) es_tlmate, see
hyperparameter estimation, maximum a posteriori, maximum Section lll-A and [16, p. 410]), and [8] iteratively shifts the fre-
likelihood, meteorological Doppler radar, regularization, ultra- quency of the data. This results in greater variance so that no

sonic Doppler velocimetry, Viterbi algorithm. frequency tracking remains possible beyong +0.5.
Thus, all the current methods have two drawbacks. First,
|. INTRODUCTION the tracking problem is tackled by a (necessary suboptimal)

. . two-step procedure:
F REQUENCY tracking (or mean frequency tracking) is cur-

rently of interest [1]-[6], especially in fields such as the 1) Estimate frequencies in the aliased b&nd.5, +0.5].
ultrasonic characterization of biological tissues, synthetic aper-2) Detect and inverse aliasing.

ture radar, and speech processing. Our main interest is its 88&ond, they are clearly based on empirical second-order
in Doppler imaging (radars [7], ultrasound blood flow mappingtatistics that perform poorly with short data records indepen-
[8]-[10]). There are two main features in this area. dently processed. Unfortunately, the inverse aliasing in step 2
1) One is that only short noisy data records are availabdten fails due to the great variations in the estimated aliased
(typically four sample long), and they are in a vectofrequencies of step 1. This is usually compensated for by

rial form. Moreover, the constraints on the sampling frepost-smoothing the aliased frequency sequence. This provides
guency may cause spectral aliasing so that measuremesutatial continuity but affects the aliased frequency disconti-
provide small amounts of ambiguous information. nuities, therefore limiting the capacity to detect aliasing. The

2) The second is that there is information on the smoothnge®posed method copes with the great variation and aliasing in
of the sought frequency sequence. Tajgriori informa- a single step; it models the whole data set (by noisy cisoids)

tion is the foundation of the proposed construction. It aknd the smoothness of the frequency sequence (by a Markov
lows robust tracking, even beyond the Nyquist limit.  random walk) in the regularization/Bayesian framework. It then

becomes possible to smooth frequency sequence and invert

aliasing at the same time, avoiding the pitfalls of chaining these
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3) Third, exact frequency likelihood functions are com-
puted, whereas [17] uses a detection step, and [3] use
an approximation.

4) Last, the tracking method is entirely unsupervised with &
a maximum likelihood hyperparameter estimation. This
is not a straightforward task in the context of frequency
tracking since the nonlinear character of the data as
functions of frequencies prevents the explicit handling of
the likelihood function of the hyperparameter. We have
developed an EM-like gradient procedure, inspired by
[19]-[21]. It can be derived only after discretizing the
frequencies on a finite grid.

The paper is organized as follows. The notation, signal
model, and assumptions are defined in Section II. Section Il
contains the proposed regularized method, and Section IV Depth ¢
gives a discrete approximation. Section V is devoted to the
estimation of hyperparameters. The performance of the pfgy.1. Simulated observations ovBr= 128 range bins withV' = 4 samples
posed method is demonstrated by the computer simulatigigsbin. From top to bottom: real parts, imaginary parts of the gliatand the
in Section VI, whereas Section VII gives our conclusion ani'® feduency sequence.
describes possible extensions.

ample #n

Frequency v

» Parameter dependence.
- H,: a, v and theb, are independent.
» Law for measurement and modeling nolgse
In Doppler imaging, the signals to be analyzed occur as a set- H$: Eachb; is N (rpIn).
of complex signal®) = [y, .. .,yr] juxtaposed spatially if’ —  H%: The sequence d, is itself white.
range bins [22], [23] The data recoygj = [yt(l), L ,yt(N)]t e Law for parameterga andv.
(“t" denotes the matrix transpose) is extracted from a cisoid in— HS:aisN(r.Ir), i.e., white.
additive complex noise. The amplitude and the frequency of the— Hf;: v is, on the contrary, correlated!/(R,)

cisoid area; € C andv; € RR: where N (R) stands for a complex zero-mean Gaussian vector
' with covarianceR, and/p, P € IN* denotes thé” x P identity
Yy, =arz(vy) + by =a.[l,..., 6]2WU1(N_1)]1" +b;. (1) matrix.
The first assumptioii/, is quite natural since no information
The vectorsy = [v1,...,vp]" ande = [a1,...,ar]" collect s available about the relative fluctuations of noise and objects.
the frequencies and corresponding amplitudes. Finally, the trpige assumption&l¢, and 2 are also natural since no correla-
parameters are denoted with a star. This paper builds a rols# structure is expected in noise. Similarly, we have no infor-
estimatev for »* on the basis of data st (see Fig. 1 for a mation about the variation of the amplitude sequence; therefore,
simulated example). an independent law is used. A Gaussian law is preferf&g) (
Remark 1: Model (1) is frequently used for spectral probto make the calculations tractable. Contrarily, the smoothness of
lems; it has three main features. First, while it is linear w.rthe frequency sequence is modeled as a positive correlation. A
at, it is not so w.r.t.v;; the problem to be solved is nonlinearMarkovian structure (specified below) is a simple, useful way
Secondgz(1,) is a 1-periodic function w.r.t,, and this causes to account for it. Several choices are available, but the Gaussian
the difficulties of aliasing, frequency ambiguity, likelihood peone is also stated for the sake of simplicity).
riodicity, etc. Last, this periodicity is also the keystone of the
paper; aliasing is inverted, using a coherent statistical approach IIl. PROPOSEDMETHOD
that takes periodicity into consideration. o
The following definition of periodicity is used throughout théA" Likelihood
paper. AssumptionHy yields a parametric structure for each likeli-
Definition 1: Let A ¢ R andy : A — TR. Let us note hood functionf(y, | v+, a:):
1=11,...,1' € R". pis said to be )
« separately-1-periodic (S1P)Vu € A, Vk € Z7 (such fy, |ve,ar) = (mrp) "N exp {——CLL(yt./at)}
thatu + k € A): p(u) = ¢(u+ k); "
+ globally-1-periodic (G1P) iffu € R”, Vko € Z (such inyolving the opposite of the logarithm of the likelihood func-

Il. STATEMENT, NOTATIONS AND ASSUMPTIONS

thatu + kol € A): p(u) = p(u + kol). tion (up to constant terms) i.e., the Co-Log-Likelihood (CLL):
The proposed estimation method deals with periodicity and
aliasing inversion thanks to the following assumptions. They are CLL (v, a4) = [y, — atz(yt)]T [y, — arz()] .-

stated for the sake of simplicity and calculation tractability as
well as coherence with the applications under the scope of thi®om a deterministic standpoint, Clly, a.) is clearly the least
paper. squares (LS) estimation criterion.
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Considering the whole frequency vectoand the whole data Remark 3: This remark is the marginal counterpart of Re-
set), assumptionf’? yields mark 2. As well as CLL-,a), CLML(-) is S1P. There are still
many ambiguities as in the nonmarginal case. This was expected
f(Y|v,a) = (Mb)fNT exp [—iOLL(u, a)} (2) since no information about the frequency sequence has been ac-
b counted for in CLML(») w.r.t. CLL(»,a). In contrast, period-
icity will be eliminated in the next subsection by accounting for

where the global CLL is a global LS criterion
the frequency sequence smoothness.

T
CLL(v,a) =Y CLL(vy,ay). C. Prior Law for Frequency Sequence

=t Unlike amplitudes, the frequency sequence is smooth. A Mar-
Remark 2: According to Definition 1, the likelihood function kovian structure accurately accounts for this information, and
CLL(-,a) is S1P for alla € C". Therefore, two configurations there are many algorithms suited to computing this structure.
vandv + k (k € 7") for the frequency sequence are equiThe choice of the family law is not crucial for using these algo-
likelihood. As a consequence, an ML approach suffers fiomrithms, but we have used the Gaussian family
independent frequency ambiguities.

Fwegr | ve) = (21r,) Y2 exp | —5— (131 — 11)?

B. Amplitude Law and Marginalization 2r,

The parameters of interest are the frequencies, whereas th@ complete law for the chain also involves the initial state. It
amplitudes are nuisance parameters. These are integrated o §6sumed to be uniformly distributed over a symmetridiset

the problem in the usual Bayesian approach. defined byK € IN*: K = [—K/2; +K/2]. Thereforef(1,) =
Given separability assumptiodf;, one hasf(v,a) = (1/K)1% (1), wherel) is 1inK and 0 outside.
f(v)f(a), and the marginal law can easily be deduced: The recursive conditioning rule immediately yields
fQ.v) = fw) /a f(Va,v)f(a)da = f)f (I |v). () = (27r,)~TD/2 ey [_21 CLP(V)] @
Ty

The joint law for the amplitudes is separable according to agnere CLPw) is the co-log-prior
sumptionH§. Since likelihood (2) is also separable, marginal-

ization can be performed independently. -1

CLP(v) = K1 (1) + Y (vig1 — ). (8)

t=1

T .
fQv) = H felve, ae) fay)day. = Hf(i’lt|l/t)~ ~
t=1"a t=1 K = 2r,logK and 1% is 1 in K and+oco outside. In the

) ) . i (3)_ deterministic framework, CL{®) is a quadratic norm for the
The Gaussian amplitude assumptitfif results in analytic first_order differences, namely, a regularization term [24][26].
derivations and yield the marginal likelihood for the dgia
givenv,, which is zero mean Gaussian vector. Its covariaice D. Posterior Law

is given in Appendix A-B as well as its determinant (23) and its Fusion ofprior -based and data-based information is achieved

inverse (24)f(y, | v+) then reads by the Bayes rule, which provides theposterioridensity forv
F(yelve) = B exp [=y] exp [aFi(vy)] (4) fw|y) = IO IE)

with o = N7o/(ro(Nra + 7)), B = 7= Nrl =N /(Nro +13), ' o)

v = ¥, 9./, andP; is the periodogram of vectay, The marginal lawf()) for the whole data s€Y is not analyt-

ically tractable, essentially due to the nonlinearity of the peri-
N Cirvem odogram w.r.tv; and the correlated structure mf Fortunately,
Z Ye(n)e==mn this p.d.f. does not depend entherefore, the posterioriden-
n=1 sity remains explicit up to a positive constatior structure of
The joint law for the whole data set given the frequency s€7) and (8) and likelihood structure of (5) and (6) immediately
guence is obtained by the product (3) yield theposteriorlaw

2
1
Pt(l/t) = N

f(Y|v) = BT exp [—7] exp [-aCLML (v)] (5) fWw|Y) xexp[—aCLPL(v)] 9)

where CLML is the co-log-marginal-likelihood

where~ is the sum of they; fort € IN}. = {1,..., T}, and where the co-log-posterior-likelihood function (CLPL) reads

T T-1
T CLPL(w) = = > Pi(v)+ A Y_ (ver1—1)* +1% (1) (10)
CLML(v) ==Y _ Pi(n) (6) =1 =1
t=1

where) = 1/2ar,,, up to irrelevant constants. In the determin-

which is the opposite of the sum of the periodograms of gataistic framework, CLPL is a regularized least squares (RLS) cri-
at frequency; in gatet. terion. It has three terms: one measures fidelity to the data, the
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second measures fidelity to tpeior smoothness, and the third IV. DISCRETESTATE MARKOV CHAIN
enforces the first frequenay € K. The regularization param-
eter) (depending on hyperparameters: [r,,r;, 7, ]) balances
the compromise betweerior -based and data-based informa-

This section is devoted to a discrete approximation for

1) maximizingposteriorlaw for the frequency sequenge
2) building an ML procedure for estimating hyperparame-

tion.
ters.
E. Point Estimate We have therefore introduced an equally spaced discretization
of the frequency range/],; va/] in P states/!, ... v¥ (v =

As a point estimate, a popular choice is the maxinapos-
teriori (MAP) i.e., the maximizer of thposteriorlaw of (9) or
the minimizer of the RLS criterion (10):

—Vym = 2.5 and P = 128 in our simulations).

A. Probabilities

pMAP — argmax f(v|)) = arg min CLPL(v). (11) Discretization and normalization of tlagoriori law (7) yields
veR veR the state transition probabilities:
Remark 4: This remark is the posterior counterpart of Re-

marks 2 and 3. Whereas CLL and CLML are S1P, CLPL is not; Pi(p,q) =Pr[vey1 = v |1y = v/1]
regularization breaks periodicities, favors solutions according to exp (—('/;—V")Q )

prior probabilities, and enables some ambiguities to be removed. = - . (13)
Nevertheless, a global indetermination remains: CLPL is a G1P S exp (—(u;—WV )

function. This is essentially due to the facts that i) the marginal p=1 v

likelihood CLML is a S1P function, and ii) the regularizatio

term CLP is a G1P function (since it only involves frequency dif- ote thatlP, does not depend ofy i.e., the propoged chain is
) 7 —homogeneou®; = IP. The full state model also includes the
ferences). As a consequence, two frequency profiles, which a

r H b+ |4 |4
different from a constant integer level, remain equi-likelihoo fitial probabilitiesp (p) chosen constant over-0.5, +0.5] (see

. . . . emark 4).
Finally, the latter indeterminacy can be removed by choosing an- o marginal (w.r.t. amplitudes) likelihood function for the
appropriateK: K = 1 enforces the first frequenay to remain : T . . i
in (~0.5,+0.5], and the corresponding CLPL is no longer Glebservatlon sequence given by (4) yields the observation prob

S _ s
Proposition 1. With the previous notations and definitions,ablllty distribution®, (p) = f(y; [v: = v?).

the MAP estimate is such that B. Available Algorithms

a}ﬁp — pMAP| < 1 fort € IN5._,. (12) The Markov chain is now convenient for using algorithms
2 given in [32] and [33]: the Viterbi and the Forward-Backward
Proof: See Appendix B. B algorithms. They enable us to compute
» the MAP;

F. Optimization Stage « the hyperparameters likelihood as well as its gradient.

The proposed approach allows ambiguous periodicity to be1) Viterbi Algorithm: The Viterbi algorithm, which is shown
removed at the expense of accepting local minima in the byt Appendix C-A, has been implemented to cope with global op-
energy (10). A gradient procedure [27] can achieal mini-  timization (on a discrete grid) and performs a step-by-step opti-
mization of (10) and CLPL gradient involves the periodograntization of theposteriorlaw. The required observation proba-

derivatives bilities are also readily precomputable by the FFT.
N-1 2) Forward—Backward Algorithm:We have used a normal-
P/(») = 247 Z ncy(n)e2™m ized version of the procedure, as recommended in [34] and [35],
n=1—-N to avoid computational problems. It is founded on forward and

- . . . backward probabilities
when rewritingP; (1) as a function of empirical correlation lags P

¢:(n) of the signaly,. It is also possible to calculate the second- F(p) Pr (Vi v = vP]
H H + p e T ——
order derivative Pr)i]
N1 Pr [ytT 1= 1/7’]
1" — A2 24 2jmvin and B p) = +
P, (Vt) 4m nz;Nn Ct(n)e t( ) Pr D}al |y{]
and to implement second-order descent algorithms. where)! = [y,....,y,/] denotes the partial observation matrix

There are several ways of coping wigtobal optimization, from timet to¢'.
e.g., graduated nonconvexity [28], [29] and stochastic algo-The (count-up) Forward algorithm, which is given in Ap-
rithms such as simulated annealing [30], [31]. We have usedP@ndix C-B, computes non-normalized probabilitiegp), nor-
dynamic programming procedure for computational simplicitynalization coefficientsV;, and theF; (p) themselves. As a re-
It is based on a discrete approximation of fier law for the Sult, the observation likelihood can be deduced
frequencies. This approximation allows global optimization P
(on an arbitrary fine discrete frequency grid) and provides a Py = HNt (14)
convenient framework for estimating hyperparameters. buie
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It is useful for estimating ML hyperparameters in Section \B. Likelihood Gradient
The (_count—dqwn) Backyvard step, W,h'Ch IS _d.e_scnbed N AP- The EM algorithm relies on an auxiliary function, which is
pendix C-C, yields marginal posterioriprobabilities (see [32, usually denoted) [42], [43] built on two hyperparameter vec-

p. 10]) torsr andr’ by completing the observed data 3&ivith param-
pe(p) = Pr vy = v7 | V] = Fi(p)Be(p) (15) eters to be marginalizest
and double margina posterioriprobabilities (see [32, p. 11]) Q(r,r') =Ey [log(Pr v, V;7']) y;r}
pe(p,q) =Prv—y =vh v = 17| )] => logPr[v,Y;7'|Pr[(v| Y;r)].
v

=N Fi1(p) Be(q) P(p.q) Ou(q)  (16)
which are both needed to calculate the likelihood gradient. With the proposed notations, usual hidden Markov chains cal-

culations yield

V. ESTIMATING HYPERPARAMETERS

T P
The MAP estimate of (11) depends on a unique regularizati%r’ ') = Z Z pe(p,q) log ' (p, q)
parameten function of three hyperparametears= [r,, 74, 7.]. ;:2 pa=l rop
This section is devoted to their estimation using the available , ,
data sef). +Y e log #' () +Y_ > pilp) logOi(p) (17)
Estimating hyperparameters within the regularization frame- p=1 =tr=l
work is generally a delicate problem. It has been extensivelhere we have the following.
studied, several techniques have been proposed and compareg (»', P’, ©') and @, IP, ©) are parameters of the model

[36]-[41] and_the preferreq strate_gy is fouqded on ML. under hyperparameters andr, respectively.
Th_e M_L estimation consists of i) expressing th(_a h.yperparam— « p:(p) andpy(p, q) denote thea posteriorimarginal laws
eter likelihood (HL) adi Ly (r) = f(¥) and ii) maximizing the defined by (15) and (16), under hyperparameters

resulting function. Although we have chosen a simple Gaussial
law, » cannot be marginalized in closed form becausmnters as a function of-’ to yield'r(’“) as the maximizer. Unfortunately,

f(Ylv) in a complex manner. Fortunately, the discrete state 4Pseems impossible to derive an explicit expression for such a

proximation of Section IV provides a satisfactory solution $haximizer. However, an alternate route can be followed given
this problem. It also allows us to devise several kinds of a\Jﬁe key property ' '

gorithms for local maximization of the likelihood. One such
scheme is the acknowledged expectation-maximization (EM) aQ(r,7")
algorithm, although its application reveals uneasy in the present T or
context of a parametric model of hidden Markov chain ([19] pro- .
vides a meaningful discussion of such situations: see also [2t5] Suggested by [19], this property enables us to calculate the
and [21]). Section V-B is devoted to the EM framework, withifgradient of CLHLy(r) as the derivative of (17):

which a gradient procedure is proposed. Section V-A deals with

Mhekth iteration of the EM scheme maximiz€gr(~1) /)

_ 9CLHLy(r)

=T or

0 L& dlog O/
the computation of the likelihood and proposes a simple coor- Q — Z Zpt(p) og 0;(p) (18)
dinatewise descent procedure. o oo or;,
A. Hyperparameter Likelihood 0Q ET: Ep:p ( )3105% 04(p) (19)
i 2 (p) —2—t\ )
The hyperparameter likelihood Hican be deduced from the ory t=1p=1 ary
joint law for (v, )) by frequency marginalization: 20 T P a1 /
_ ogP"(p, q)
P @ —22 Z_lpt(l%(]) ar!, . (20)
HLy(r) = Z Pr[Y, vy =vP', ... ur = VP7] t=2pa=
Piopr=1 The encountered derivativédog O'(p)/9r,,, dlog O'(p) /0T
but the indices run oveP? states; therefore, the above sum@nddlogIP’(p, q)/dr;,, respectively, read
mation is not directly tractable. However, the Forward proce- N N
dure efficiently achieves a recursive marginalization; it yields Nr + (Nv + T,)QPt(Vp)
HLy(r) according to (14) and requires abduP? calculations. a T b a T Tb
Letus introduce the co-log-HL (CLHL) to be minimizedw.r.t. 1 - N 1 y:fyt Nr,(Nr, + 2rg)P (v7)
— 5 — 7 1%
hyperparameters vecter r Nl 47 | 12 r2(NT, +1})? t
~ML . P
7 = argmin CLHL y (7). 1 9 , 9
: 5y (01 =007 = W = PP ()

r=1

One possible optimization scheme is a coordinatewise descent
algorithm with a golden section line search [27], but a moty derivation of (4) and (13). Finally, the likelihood gradient is
efficient scheme may be a gradient algorithm [27]. readily calculated, and a gradient procedure can be applied.
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-1880 . ‘ ! , - : : : We have therefore adopted the two fastest methods: coordi-
' T nate-wise and Polak-Ribiére pseudo-conjugate gradient, which
took less than 3.5 s. Fig. 3 also illustrates the convergence.

1900

CLML

-1920

-1940+

T 2 o o 2z s & s B. Frequency Tracking

The optimization procedure used to compute the MAP (given
ML hyperparameters) consisted of applying the Viterbi algo-
rithm (described in Section IV-B1). The solution was used as
the starting point for the gradient or the Hessian procedure (de-
scribed in Section IlI-F). The Viterbi algorithm explored the
whole set of possible frequencies (on a discrete grid) and found
the correct interval for each frequency, whereas the gradient or
Hessian procedure locally refined the optimum. Table Il shows
the computation times. We adopted the Hessian procedure since
it performed almost ten times faster.

Fig. 4 illustrates typical results. The ML strategy

CLP

CLPL

Frequency v

Fig. 2. Typical form of criteria. From top to bottom: CLML) (periodic), - lacked r_obustness for two reasons: Estimation was per-
CLP(v) (quadratic), and CLP(~) as a function of, (+ = 50). Regularization formed independently at each depth, @havas small;
breaks periodicity. - could not be corrected by an unwrap-like post-pro-
cessing since the ML solution was too rough (as al-
VI. SIMULATION RESULTS AND COMPARISONS ready mentioned).

The previous sections introduced a regularized method forFor the regularized solution (also given in Fig. 4), a simple
frequency tracking and estimating hyperparameters. This squalitative comparison with the reference led to three conclu-
tion demonstrates the practical effectiveness of the proposed sipns.
proach by processingimulated signals shown in Fig. 1. - The estimated frequency sequence conformed much

better to the true one. The frequency sequence was

A. Hyperparameter Estimation more regular since smoothness was introduced as a

The hyperparameter likelihood function CLHL was first com- prior feature.
puted on a fine discrete grid of 2625 x 25 values, resultingin  — The estimated frequency sequence remained close to
the level sets shown in Figs. 2 and 3. The function is fairly reg- the true one even beyond the usual Nyquist frequency.
ular and has a single minimum. This was essentially due to the coherent accounting for
The hyperparameters are tuned using two classes of descent the whole set of data and smoothness of the frequency
algorithms: sequence.
« a coordinate-wise descent algorithm; - The proposed strategy for estimating hyperparameters
« a gradient descent algorithm. is adequate. A variation of 0.1 of the hyperparame-
The latter employs several descent directions: usual gradient, bi- ~ tersresulted inan almostimperceptible variation in the
sector correction, Vignes correction, and Polak-Ribiére pseudo- estimated frequency sequence. This is especially im-
conjugate direction. Two line search methods have also been portant for qualifying the robustness of the proposed
implemented: usual dichotomy and quadratic interpolation. The method; the choice of offers relatively broad leeway
starting point remains the empirical hyperparameter vector de- and can be reliably made.
scribed in Appendix D.
All the strategies provide the correct minimizer, and they are VII. CONCLUSION AND PERSPECTIVES

zig-zagging trajectories and was slower than the other strategigsyond the Nyquist frequency as it occurs in Doppler imaging
The three corrected direction strategies were 25 to 40% fasf@{en only short noisy data records are available. A solution
than the uncorrected ones with the Polak—Ribiére pseUdO‘Cﬁﬂ'proposed in the Bayesian framework based on hidden
jugate direction having a slight advantage. In contrast, interp@zss—Markov models accounting fmior smoothness of the
direction class. _ _ efficient combination of dynamic programming and a Hessian
~ The coordinate-wise descent algorithm performed well singgocedure to calculate the maximuarposteriori The method
it does not require any grad!ent calculatlon. Qrad|ent calculysentirely unsupervised and uses an ML procedure based on an
needs a lot more computation than the likelihood itself, dugiginal EM-based gradient procedure. The estimation of the
to summations in (18)—(20). Likelihood calculus took 0.05 §41_ hyperparameter is both formally achievable and practically
whereas gradient calculus required 0.2 s., i.e., about four timggfy).
more. This new Bayesian method allows tracking beyond the usual
1Algorithms have been implemented using the computing environmeNyqUISt frequency due to a coherent statlstlcgl framework that
Matlab on a Pentium Ill PC with a 450-MHz CPU and 128 MB of RAM. includes the whole set of data plus smoothrmss. To our
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Fig. 3. Hyperparameter likelihood: typical behavior. Level sets of CLHL are plotted as dashed lines (—). The minima are located-by staténg points
(empirical estimates) by a dot, (.) and final estimate by a circle (0). The first row gives coordinate-wise algorithm, and the second row givesadggraitien.
First column: CLHI 7", r,, 7, ); second column: CLH{r,, 73", r, ); third column: CLHL(r,, r,, 73'"). Each figure idog, , scaled.

TABLE |
DESCENTALGORITHM COMPARISON THE FIRST COLUMN GIVES THE METHOD AT WORK: (1) USUAL GRADIENT, (2) VIGNES CORRECTION (3) BISECTOR
CORRECTION AND (4) POLAK-RIBIERE PSEUDO-CONJUGATE DIRECTION. (A) NO INTERPOLATION AND (B) QUADRATIC INTERPOLATION. (5) COORDINATE-WISE
DESCENTMETHOD. FOLLOWING COLUMNS SHOW THE REACHED MINIMUM AND THE MINIMIZER. SXTH COLUMN GIVES THE NUMBER OF GRADIENTS AND
FUNCTION CALCULUS, WHEREAS THELAST GIVES COMPUTATION TIMES IN SECONDS(s5)

Method | Reached minimum [ log,, 73" | log,o 7'~ [ logio 7'~ | Grad./Fun. | Time (s)
(la) 4.513 102 0.297 -0.685 -2.424 17/59 5.55
(1b) 4.495 102 0.297 -0.679 -2.519 13/87 5.92
(2a) 4.494 102 0.292 -0.678 -2.537 9 /49 3.77
(2b) 4.494 102 0.299 -0.681 -2.554 13/92 6.14
(3a) 4.498 102 0.297 -0.695 -2.589 9/53 4.07
(3b) 4.494 102 0.298 -0.679 -2.547 13/92 6.21
(4a) 4.497 102 0.283 -0.674 -2.507 7 /40 3.12
(4b) 4.500 102 0.297 -0.685 -2.618 9/75 4.84
(®)] 4.495 10° 0.300 -0.671 -2.559 0/81 3.41
TABLE I APPENDIX A
COMPUTATION TIMES COMPARISON FORFREQUENCY ESTIMATE AMPL|TUDE MARG|NAL|ZAT|ON
Method Time (s) A. Preliminary Results
MAP Viterbi 0.13 This Section includes two useful results: koe CY
MAP Gradient 4.82
MAP Hessian | 0.51 det[Iy +uul] =1+ ulu (21)
(IN + UT'U') 1 =Iy - L"T (22)
1+ 'u,T'u.

knowledge, this capability is an original contribution to the field

of frequency tracking. wherely stands for theV x N identity matrix.
Future work may include the extension to Gaussian DSP [9],

to multiple frequencies tracking [3], [17], and to the two-dimenB- Law for (y,[v+)

sional (2-D) problem. The latter and its connection to 2-D phaseLinearity of model (1) w.r.t. amplitudes and assumptions

unwrapping [44]-[46] is presently being investigated. for a; andb; allow easy marginalization ofy,, a:|v:): y,|v:
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and prove that (12) of Proposition 1 holds f@rand that the
criterion CLPL reduces from to v:

Frequency v

Depth ¢

Fig. 4. Comparison of frequency profile estimates. From top to bottom: ML
estimate (i.e., periodogram maximizer), unwrapped ML estimate, Viterbi-MAP

estimate, and Hessian-MAP estimate.

is clearly a zero-mean and Gaussian vector with covariance

R = Taz(yt)z(yt)T + rpI. From (21) and (22), its determi-
nant and inverse reads

_ 1 «
R :HIN - NZ(Vt)Z(Vt)T (23)
det Ry =r) ' (ry + N1y). (24)

APPENDIX B
PROOF OFPROPOSITION1

A. Preliminary Result

The proposed proof is based on the decimal part fundfion
R — [-0.5; 4+0.5] defined by

D(z) =z, ifze[-0.5;40.5)
{ Dis1 -periodic (25)

and the following straightforward properties:
D(z+k)=D(x),k e’ (26)
| D()| <l| (27)

1

D(@)] <5 (28)
y = D(x) =3k € Z suchthaty = z + k. (29)

B. Proof of Proposition

Let us define a frequency sequencéwith CLPL(v) < o0),
which does not verify (12) of Proposition 1, i.e.,

. 1
dty € IN*T—I with |l/t0+1 — l/t0| > 5 (30)
Let us recursively build a new frequency sequence
;;1 =1 (31)
,l\//t+1 :;t+D(Vt+1 _;t) fort = 1,...,T— 1 (32)

o Initialization (

e lterations (

(33)
(34)

|1 — v <% fort € ING._,
CLPL(w) <CLPL(»).
 Relation (33) is straightforward; by (32), one can see
Vgr1 — Uy = D(vppy — 1) fort € NG
and hence, by Property (28)
|71 — ] < %fort e IN;_,.

 Proof of (34) takes three steps, corresponding to each term
of CLPL (10). By (31) and (32) and Property (29), one can
see

Jk; € Z such thaty = vy + k, fort € INT, (35)
(with k; = 0); therefore
Pt(l/t) = Pt(;t) fort¢ € H\I;w (36)

By (32) and (35) and invoking Property (26), we have
Uiyl — U = Dy — ) = D(veyr — 1)
hence, accounting for Property (27)
|Dt41 — V| < Vi1 — 4. (37)
Moreover, fort = t,, we clearly have
Vto+1 = Ve | < [Vto+1 = Vo | (38)
thanks to hypothesis (30). Finally, we have

1% (1) = LR ().

Collecting (36)—(39) proves (34).

(39)

APPENDIX C
HMC ALGORITHMS

A. Viterbi Algorithm
e Precomputations

D(p,q) =AW — v7)?
L(p,t) == P(v")

(p,q € INp)
(p € Np,t € INT).

t=1)
Ci(p) = L(p, 1) 13 (v*)

t=2,...,T)

(p € IN).

Ci(p,q) =Ce—1(q) + D(p.q) + L(p, 1) (p.q € N})

Ci(p) = mqinCNt(p, q) (p € INp)

Pi(p) = arg min Cy(p, q) (p € INp).

q
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e Termination ( ¢t =1T) yields an overestimated value foy. This result is expected
N ) since the sequence of ML frequencies varies greatly and has dis-
pr = ar%pmm Cr (p)- continuities, as mentioned above. Nevertheless, this estimate is
a suitable starting point for the maximization procedures of Sec-
e Back tracking ( t=T7T-1,...,1) tion VI-A.
Pt = Pe(Pe41).
REFERENCES
[1] B. Boashash, “Estimating and interpreting the instantaneous frequency
B. Forward Algorithm of a signal — Part 1: Fundamental®foc. IEEE vol. 80, pp. 519-538,
- . Apr. 1992.
o |Initialization ( t=1) [2] —, “Estimating and interpreting the instantaneous frequency of a
o signal — Part 2: Algorithms and application®foc. IEEE vol. 80, pp.
Fi(p) =01(p) p(p) (p € Np) 539-568, Apr. 1992.
P [3] R. F. Barret and D. A. Holdsworth, “Frequency tracking using hidden
— Markov models with amplitude and phase informatiolEEE Trans.
Nl = Z fl(Q) Signal Processingvol. 41, pp. 2965-2975, Oct. 1993.
q=1 [4] P. Tichavsky and A. Nehorai, “Comparative study of four adaptive
—= frequency trackers,"EEE Trans. Signal Processipngvol. 45, pp.
F (p) :'7:1 (p) (p c IN* ) 1473-1484, June 1997.
/\[1 P [5] P.J.Kootsookos and J. M. Spanjaard, “An extended Kalman filter for de-
modulation of polynomial phase signal$£EE Signal Processing Left.
e lterations ( t=2,...,7T) vol. 5, pp. 6970, Mar. 1998.
[6] H. C. So, “Adaptive algorithm for discret estimation of sinusoidal fre-
o P guency,”Electron. Lett, vol. 36, no. 8, pp. 759-760, Apr. 2000.
F =0 Fi_ P(q. c IN* [7] J. M. B. Dias and J. M. N. Leit&o, “Nonparametric estimation of mean
t(p) t(p) z_; =t (p) (q/ p) (p P) Doppler and spectral widthJEEE Trans. Geosci. Remote Sensivgy.
= 38, pp. 271-282, Jan. 2000.
L [8] A. Herment, G. Demoment, P. Dumée, J.-P. Guglielmi, and A.
,/\/t = Z]-'t(q) Delouche, “A new adaptive mean frequency estimator: Application
a=1 to constant variance color flow mappinglEEE Trans. Ultrason.
- Ferroelectr. Freq. Contr.vol. 40, pp. 796-804, 1993.
]:t(p) % [9] J.-F. Giovannelli, J. Idier, B. Querleux, A. Herment, and G. Demoment,
Fi (P) N, (p € INP)- “Maximum likelihood and maximum a posteriori estimation of Gaussian
t spectra. Application to attenuation measurement and color Doppler ve-
locimetry,” in Proc. Int. Ultrason. Sympvol. 3, Cannes, France, Nov.
1994, pp. 1721-1724.
C. The Backward Algorithm [10] D.Hann and C. Greated, “The measurement of sound fileds using laser
T Doppler anemometryAcustica vol. 85, pp. 401-411, 1999.
o |Initialization ( t=T) [11] C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-
_ dimensional blood flow imaging using an autocorrelation technique,”
Br(p) =1 (p € INp) IEEE Trans. Sonics Ultrasorvol. SU-32, pp. 458-464, May 1985.
% [12] R. F. Woodman, “Spectral moment estimation in MST radaRatlio
Br(p) =1 (p € Np) Sci, vol. 20, no. 6, pp. 1185-1195, Nov. 1985.
[13] T. Loupas and W. N. McDicken, “Low-order complex AR models for
e |terations ( =T-1,...,1) mean and maximum frequency estimation in the context of Doppler
color flow mapping,”IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
- P vol. 37, pp. 590-601, Nov. 1990.
Bt(p) = Z ®t+1((1)3t+1(p)]P(p7 q) (p c IN}*,) [14] B. A. J. Angelsen and K. Kristoffersen, “Discrete time estimation of
- the mean Doppler frequency in ultrasonic blood velocity measurement,”
q__ IEEE Trans. Biomed. Engvol. BME-30, pp. 207-214, 1983.
Bi(p) . [15] F.-KLi, D.N.Held, H. C. Curlander, and C. Wu, “Doppler parameter es-
Bt(P) :N (P € ]NP)~ timation for spaceborne synthetic-aperture raddEEE Trans. Geosci.
t+1 Remote Sensingol. GE-23, pp. 47-56, Jan. 1985.
[16] S. M. Kay,Modern Spectral Estimation Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.
APPENDIX D [17] R. L. Streit and R. F. Barret, “Frequency line tracking using hidden
EMPIRICAL ESTIMATION OF HYPERPARAMETERS k/larkfgggodelsﬂEEE Trans. Signal Processingol. 38, pp. 586-598,
pr. .
This section is devoted to thempirical estimation of hyper- [18] E. S. Chornoboy, "Optimal mean velocity estimation for Doppler

parameters used as a starting point in the maximization proce-
dures of Section VI-A. These estimates are based on the corrg9]
lationr(n) of y,|v; and easily shown to verify(0) = r, + 74,
and|r(1)| = r,, for all ¢t € IN%.. Empirical estimateg(0) and
7(1) are computed from the whole data 3eand remain robust
sinceT is large (even ifN is small). Finally, one can compute
7o = [F(1)], andr, = 7(0) — |7(1)].

For r,, the estimation is based on the ML estimate of the[22]
frequency sequence in each range bia IN;.. The proposed
empirical estimate of,, is naturally the empirical variance of 23]
the differences between the ML frequencies. This procedure

(20]

[21]

2913

weather radars,IEEE Trans. Geosci. Remote Sensingl. 31, pp.
575-586, May 1993.

S.E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the
application of the theory of probabilistic function of a Markov process
to automatic speech processinggll Syst. Tech. Jvol. 62, no. 4, pp.
1035-1074, Apr. 1982.

K. Lange, “A gradient algorithm locally equivalent to the EM algo-
rithm,” J. R. Statist. Soc.,Bol. 57, no. 2, pp. 425-437, 1995.

G. J. McLachlan and T. Krishnarfhe EM Algorithm and Exten-
sions New York: Wiley, 1997.

H. E. Talhami and R. I. Kitney, “Maximum likelihood frequency
tracking of the audio pulsed Doppler ultrasound signal using a Kalman
filter,” Ultrasound Med. Biol.vol. 14, no. 7, pp. 599-609, 1988.

D. K. Barton and S. Leonov,Radar Technology Encyclo-
pedia Norwell, MA: Artech House, 1997.



2914

(24]

(25]
(26]
[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

[41]

(42]

(43]

[44]

[45]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 12, DECEMBER 2002

G. Demoment, “Image reconstruction and restoration: Overview of[46] G. Nico, G. Palubinskas, and M. Datcu, “Bayesian approaches to phase
common estimation structure and problemfEEE Trans. Acoust. unwrapping: Theoretical study[EEE Trans. Signal Processingol. 48,
Speech, Signal Processingl. 37, pp. 2024—2036, Dec. 1989. pp. 2545-2556, Sept. 2000.

A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Prob-

lems Washington, DC: Winston, 1977.

B. R. Hunt, “Bayesian methods in nonlinear digital image restoration,”

IEEE Trans. Communvol. C-26, pp. 219-229, Mar. 1977.

D. P. Bertsekasf\onlinear Programming Belmont, MA: Athena Sci-
entific, 1995.

A. Blake and A. Zissermanisual Reconstructian Cambridge, MA:
MIT Press, 1987.

M. Nikolova, J. Idier, and A. Mohammad-Djafari, “Inversion of large-
support ill-posed linear operators using a piecewise Gaussian MR

. in 1995.
IEEE Trans. Image Processingol. 7, pp. 571-585, Apr. 1998. . . . . . .
S. Geman and D. Geman, “Stochastic relaxation. Gibbs distributions He is presently Assistant Professor with the Département de Physique, Uni

. ) h versité de Paris-Sud. He is interested in regularization methods for inverse prob-
ﬁﬂn;d:hfmzﬁysz'lag ;:ﬂsﬁgra;:;m%gi_lr?njfe’iﬁ I\E/Elggins. Pattern Anal. lems in signal and image processing, mainly in spectral characterization. Appli-

C. RobertMéthodes de Monte-Carlo par Chaines de MatkoParis, cation fields essentially concern radar and medical imaging.

France: Economica, 1996.

L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov

models,” IEEE Acoust., Speech, Signal Processing Mag. 4-16,

1986.

G. D. Forney, “The Viterbi algorithm Proc. IEEE vol. 61, pp. 268-278,

Mar. 1973. Jéréme Idier was born in France in 1966. He received the diploma degree in
P. A. Devijver and M. Dekessel, “Champs aléatoires de Pickard et moelectrical engineering from the Ecole Supérieure d’Electricité, Paris, France, in
élization d'images digitales,Traitement du Signalvol. 5, no. 5, pp. 1988 and the Ph.D. degree in physics from the Université de Paris-Sud, Orsay,

Jean-Francois Giovannelliwas born in Béziers, France, in 1966. He graduated
from the Ecole Nationale Supérieure de I'Electronique et de ses Applications,
Paris, France, in 1990 and received the Doctorat degree in physics from the
f:aboratoire des Signaux et Systemes, Université de Paris-Sud, Orsay, France,

131-150, 1988. France, in 1991.
P. A. Devijver, “Baum’s forward-backward algorithm revisiteBdttern Since 1991, he has been with the Centre National de la Recherche Scien-
Recognit. Lett.vol. 3, pp. 369-373, Dec. 1985. tifique, assigned to the Laboratoire des Signaux et Systémes, Université de

G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validatidparis-Sud. His major scientific interests are in probabilistic approaches to
as a method for choosing a good ridge parametechnometyvol. 21, inverse problems for signal and image processing.

no. 2, pp. 215-223, May 1979.

D. M. Titterington, “Common structure of smoothing techniques in sta-

tistics,” Int. Statist. Reyvol. 53, no. 2, pp. 141-170, 1985.

P. Hall and D. M. Titterington, “Common structure of techniques for

choosing smoothing parameter in regression probledsR. Statist.

Soc. Bvol. 49, no. 2, pp. 184-198, 1987. . : : o .
o “ Rédha Boubertakh was born in Algiers, Algeria, in 1975. He received the
'gf' ;Z?&%ssogf’ ihgbgirnogwt?{ejé\r;vblgi);HgnSa?éXét:rn;rIir;r?;%r; r':‘s?é?ggﬁi loma degree in electrical engineering from the Ecole Nationale Polytech-
NI . ique d’Alger, Algiers, in 1996. He is currently pursuing the Ph.D. degree at
by regularization,"EEE Trans. Pattern Anal. Machine Intelvol. 13, the INSERM Unit 494, Hopital Pitié-Salpétriére, Paris, France.

pp. 326-339, Apr. 1991. S T h ; e ) )
N. Fortier, G. Demoment, and Y. Goussard, “Comparison of GCV and He is interested in signal and image processing, mainly in the fields of mag

ML methods of determining parameters in image restoration by regulé}?tlc resonance imaging.

ization,” J. Visual Commun. Image Represl. 4, pp. 157-170, 1993.

J.-F. Giovannelli, G. Demoment, and A. Herment, “A Bayesian method

for long AR spectral estimation: A comparative stud£EE Trans. Ul-

trason. Ferroelectr. Freq. Conirvol. 43, pp. 220-233, Mar. 1996.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization tech-

nique occuring in the statistical analysis of probabilistic functions oAlain Herment was born in Paris, France, in 1948. He graduated from ISEP
Markov chains,”Ann. Math. Stat.vol. 41, no. 1, pp. 164-171, 1970.  Engineering School, Paris, in 1971. He received the Doctorat d’Etat degree in
L. A. Liporace, “Maximum likelihood estimation for multivariate obser-physics from ISEP Engineering School in 1984.

vations of Markov sources|EEE Trans. Inform. Theoryol. IT-28, pp. Initially, he worked as an engineer at the Centre National de la Recherche Sci-
729-734, Sept. 1982. entifique. In 1977, was a researcher at the Institut National pour la Santé et la
D. C. Ghiglia and M. D. Pritt,Two-Dimensional Phase Unwrap- Recherche Médicale (INSERM), Paris. He is currently in charge of the depart-
ping. New York: Wiley Interscience, 1998. ment of cardiovascular imaging at the INSERM Unit 66, Hopital Pitié, Paris.

M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cueva, “Phase uhie is interested in signal and image processing for extracting morphological
wrapping with a regularized phase-tracking systetyppl. Opt, vol. 37,  and functional information from images sequences, mainly in the fields of ul-
no. 10, pp. 1917-1923, Apr. 1998. trasound investigations, X-ray CT, and digital angiography.



