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Efficient Gaussian Sampling for Solving Large-Scale
Inverse Problems Using MCMC
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Abstract—The resolution of many large-scale inverse problems
using MCMC methods requires a step of drawing samples from
a high dimensional Gaussian distribution. While direct Gaussian
sampling techniques, such as those based on Cholesky factor-
ization, induce an excessive numerical complexity and memory
requirement, sequential coordinate sampling methods present a
low rate of convergence. Based on the reversible jump Markov
chain framework, this paper proposes an efficient Gaussian
sampling algorithm having a reduced computation cost and
memory usage, while maintaining the theoretical convergence
of the sampler. The main feature of the algorithm is to perform
an approximate resolution of a linear system with a truncation
level adjusted using a self-tuning adaptive scheme allowing to
achieve the minimal computation cost per effective sample. The
connection between this algorithm and some existing strategies
is given and its performance is illustrated on a linear inverse
problem of image resolution enhancement.

Index Terms—Adaptive MCMC, conjugate gradient, Gibbs al-
gorithm, multivariate Gaussian sampling, reversible jump Monte
Carlo.

I. INTRODUCTION

A common inverse problem arising in many signal and
image processing applications is to estimate a hidden

object (e.g., an image or a signal) from a set of
measurements given an observation model [1], [2].
The most frequent case is that of a linear model between and
according to

(1)

with the known observation matrix and an ad-
ditive noise term representing measurement errors and model
uncertainties. Such a linear model covers many real problems
such as, for instance, denoising [3], deblurring [4], and recon-
struction from projections [5], [6].
The statistical estimation of in a Bayesian simulation frame-

work [7], [8] firstly requires the formulation of the posterior
distribution , with a set of unknown hyper-param-
eters. Pseudo-random samples of are then drawn from this
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posterior distribution. Finally, a Bayesian estimator (posterior
mean, maximum a posteriori) is computed from the set of gen-
erated samples. Other quantities of interest, such as posterior
variances, can be estimated likewise.Within the standardMonte
Carlo framework, independent realizations of the posterior law
must be generated, which is rarely possible in realistic cases of
inverse problems. One rather resorts to Markov Chain Monte
Carlo (MCMC) schemes, where Markovian dependencies be-
tween successive samples are allowed. A very usual sampling
scheme is then to iteratively draw realizations from the condi-
tional posterior densities and , according
to a Gibbs sampler [11].
In such a context, when independent Gaussian models

and are assigned to the noise statistics
and to the unknown object distribution, respectively, the set of
hyper-parameters determines the mean and the covariance
of the latter two distributions. This framework also covers
the case of priors based on hierarchical or latent Gaussian
models such as Gaussian scale mixtures [9], [10] and Gaussian
Markov fields [11], [12]. The additional parameters of such
models are then included in . According to such modeling, the
conditional posterior distribution is also Gaussian,

, with a precision matrix (i.e., the inverse of the
covariance matrix) given by:

(2)

and a mean vector such that:

(3)

Let us remark that the precision matrix generally depends
on the hyper-parameter set through and , so that is
a varying matrix along the Gibbs sampler iterations. Moreover,
the mean vector is expressed as the solution of a linear system
where is the normal matrix.
In order to draw samples from the conditional posterior distri-

bution , a usual way is to firstly perform the Cholesky
factorization of the covariancematrix [13], [14]. Since (2) yields
the precision matrix rather than the covariance matrix, Rue
[15] proposed to compute the Cholesky decomposition of ,
i.e., , and to solve the triangular system ,
where is a vector of independent Gaussian variables of zero
mean and unit variance. Moreover, the Cholesky factorization
is exploited to calculate the mean from (3) by solving two tri-
angular systems sequentially.
The Cholesky factorization of generally requires

operations. Spending such a numerical cost at each iteration
of the sampling scheme rapidly becomes prohibitive for large
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values of . In specific cases where belongs to certain fam-
ilies of structured matrices, the factorization can be obtained
with a reduced numerical complexity, e.g., when is
Toeplitz [16] or even when is circulant [17].
Sparse matrices can be also factorized at a reduced cost [15],
[18]. Alternative approaches to the Cholesky factorization are
based on using an iterative method for the calculation of the in-
verse square root matrix of using Krylov subspace methods
[19]–[21]. In practice, even in such favorable cases, the factor-
ization often remains a burdensome operation to be performed
at each iteration of the Gibbs sampler.
The numerical bottleneck represented by the factorization

techniques can be removed by using alternate schemes that
bypass the step of exactly sampling . For instance,
a simple alternative solution is to sequentially sample each
entry of given the other variables according to a scalar Gibbs
scheme. However, such a scalar approach reveals extremely
inefficient when is strongly correlated, since each
conditional sampling step will produce a move of very small
variance. As a consequence, a huge number of iterations will be
required to reach convergence [22]. A better trade-off between
the numerical cost of each iteration and the overall convergence
speed of the sampler must be found.
In this paper, we focus on a two-step approach named In-

dependent Factor Perturbation in [12] and Perturbation-Opti-
mization in [23] (see also [18], [24]). It consists in
• drawing a sample from ,
• solving the linear system .

It can be easily checked that, when the linear system is
solved exactly, the new sample is distributed according to

. Hereafter, we refer to this method as Exact Per-
turbation Optimization (E-PO). However, the numerical cost
of E-PO is typically as high as the Cholesky factorization of .
Therefore, an essential element of the Perturbation Optimiza-
tion approach is to truncate the linear system solving [12], [23],
[24], by running a limited number of iterations of the conjugate
gradient method (CG). For the sake of clarity, let us call the
resulting version Truncated Perturbation Optimization (T-PO).
Skipping from E-PO to T-PO allows to strongly reduce the

numerical cost of each iteration. However, let us stress that no
convergence analysis of T-PO exists, to our best knowledge. It
is only argued that a well-chosen truncation level will induce a
significant reduction of the numerical cost and a small estima-
tion error. The way the latter error alters the convergence to-
wards the target distribution remains a fully open issue, that has
not been discussed in existing contributions. Moreover, how the
resolution accuracy should be chosen in practice is also an open
question.
A first contribution of the present paper is to bring practical

evidence that the T-PO does not necessarily converge towards
the target distribution (see Section IV). In practice, the implicit
trade-off within T-PO is between the computational cost and
the error induced on the target distribution, depending on the
adopted truncation level. Our second contribution is to propose
a new scheme similar to T-PO, but with a guarantee of conver-
gence to the target distribution, whatever the truncation level.
We call the resulting scheme Reversible Jump Perturbation Op-
timization (RJPO), since it incorporates an accept-reject step de-

rived within the Reversible Jump MCMC (RJ-MCMC) frame-
work [25], [26]. The numerical cost of the proposed test is mar-
ginal, so that RJPO has nearly the same cost per iteration as
T-PO. Finally, we propose an unsupervised tuning of the trun-
cation level allowing to automatically achieve a pre-specified
overall acceptance rate or even to minimize the computation
cost per effective sample. Consequently, the resulting algorithm
can be viewed as an adaptive MCMC sampler [27]–[29].
The rest of the paper is organized as follows: Section II intro-

duces the global framework of RJ-MCMC and presents a gen-
eral scheme to sample Gaussian vectors. Section III considers a
specific application of the previous results, which finally boils
down to the proposed RJPO sampler. Section IV analyses the
performance of RJPO compared to T-PO on simple toy prob-
lems and presents the adaptive RJPO which incorporates an au-
tomatic tuning of the truncation level. Finally, in Section V, an
example of linear inverse problem, the unsupervised image res-
olution enhancement is presented to illustrate the applicability
of the method. These results confirm the superiority of the RJPO
algorithm over the usual sampling approach, based on Cholesky
factorization, in terms of computational cost andmemory usage.

II. THE REVERSIBLE JUMP MCMC FRAMEWORK

The sampling procedure consists on iteratively constructing
a Markov chain whose distribution asymptotically converges to
the target distribution . Let be the current sample
of the Markov chain and the new sample obtained according
to a transition kernel derived in the reversible jump framework
[25], [26].

A. General Framework

In the constant dimension case, the Reversible Jump MCMC
strategy introduces an auxiliary variable , obtained from
a distribution and a deterministic move according to a
differentiable transformation

This transformation must be reversible, that is .
The new sample is thereby obtained by submitting (resulting
from the deterministic move) to an accept-reject step with an
acceptance probability given by

with the Jacobian determinant of the transformation
at . In fact, the choice of the conditional distribution
and the transformation must be adapted to the target distri-
bution and affects the resulting Markov chain properties
in terms of correlation and convergence rate.

B. Gaussian Case

To draw samples from a Gaussian distribution ,
we generalize the scheme adopted in [30]. We consider ,
and take an auxiliary variable sampled from

(4)
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where , and denote a real matrix, a real
positive definite matrix and a real vector, respectively.
The choice of the latter three quantities will be discussed later.
The proposed deterministic move is performed using the

transformation such that

(5)

with functions , and
.

Proposition 1: Let an auxiliary variable be obtained ac-
cording to (4) and a proposed sample resulting from (5). Then
the acceptance probability is

(6)

with

(7)

In particular, the acceptance probability equals one when
is defined as the exact solution of the linear system

(8)

Proof: See Appendix A.
Let us remark that is a dummy parameter, since the residual
(and thus ) depends on through only.

However, choosing a specific expression of jointly with and
will lead to a simplified expression of in the next section.
Proposition 1 plays a central role in our proposal. When the

exact resolution of (8) is numerically costly, it allows to derive
a procedure where the resolution is performed only approxi-
mately, at the expense of a lowered acceptance probability. The
conjugate gradient algorithm stopped before convergence, is a
typical example of an efficient algorithm to approximately solve
(8).
Proposition 2: Let an auxiliary variable be obtained ac-

cording to (4), a proposed sample resulting from (5) and
be the exact solution of (8). The correlation between two succes-
sive samples is zero if and only if matrices and are chosen
such that

(9)

Proof: See Appendix B.
Many couples fulfill condition (9):
• Consider the Cholesky factorization and take

, . It leads to with
. According to (8), the next sample

, will be obtained as

Such an update scheme is exactly the same as the one pro-
posed by Rue in [15].

• The particular configuration

(10)

is retained in the sequel, since:
i) is a condition of Proposition 2,
ii) simplifies (8) to a linear system .

In particular, it allows to make a clear connection between
our RJ-MCMC approach and the E-PO algorithm in the
case of an exact resolution of the linear system. It also al-
lows to simplify the accept-reject step that must be consid-
ered when an approximate resolution is retained.

III. RJ-MCMC ALGORITHMS FOR SAMPLING
GAUSSIAN DISTRIBUTIONS

A. Sampling the Auxiliary Variable

According to the configuration (10), the auxiliary variable
is distributed according to . It can then be

expressed as , being distributed according to
. Consequently, the auxiliary variable sampling step

is reduced to the simulation of , which is the perturbation step
in the PO algorithm. In [12], [23], a subtle way of sampling is
proposed. It consists in exploiting (3) and perturbing each factor
separately:
1) Sample ,
2) Sample ,
3) Set , a sample of .
It is important to notice that such a tricky method is interesting
since matrices and have often a simple structure if not
diagonal.
We emphasize that this perturbation step can be applied

more generally for the sampling of any Gaussian distribution,
for which a factored expression of the precision matrix is
available under the form , with matrix .
In such a case, , where .

B. Exact Resolution Case: The E-PO Algorithm

As stated by proposition 1, the exact resolution of system (8)
implies an acceptance probability equal to one. The resulting
sampling procedure is thus based on the following steps:
1) Sample ,
2) Set ,
3) Take .
Let us remark that , so the

handling of variable can be skipped and Steps 2 and 3 can be
merged to an equivalent but more direct step:

2) Set .
In the exact resolution case, the obtained algorithm is thus iden-
tical to the E-PO algorithm [23].
According to Proposition 2, E-PO enjoys the property that

each sample is totally independent from the previous ones.
However, a drawback is that the exact resolution of the linear
system often leads to an excessive numerical com-
plexity and memory usage in high dimensions [12]. In practice,
early stopping of an iterative solver such as the linear conjugate
gradient algorithm is used, yielding the Truncated Perturbation
Optimization (T-PO) version. The main point is that, up to our
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knowledge, there is no theoretical analysis of the efficiency
of T-PO and of its convergence to the target distribution.
Actually, the simulation tests provided in Section IV indicate
that convergence to the target distribution is not guaranteed.
However, as shown in the next subsection, two slight but
decisive modifications of T-PO lead us to the RJPO version,
which is a provably convergent algorithm.

C. Approximate Resolution Case: The RJPO Algorithm

In the case of configuration (10), (7) reduces to

(11)

Therefore, a first version of the RJPO algorithm is as follows:
1) Sample .
2) Set . Solve the linear system , in
an approximate way. Let denote the obtained solution,

and propose .
3) With probability , set , other-
wise let .

An important point concerns the initialization of the linear
solver in Step 2: in the case of an early stopping, the computed
approximate solution may depend on the initial point . On
the other hand, must not depend on , otherwise the re-
versibility of the deterministic move (5) would not be ensured.
Hence, the initial point must not depend on either. In the
rest of the paper, is the default choice.
A more compact and direct version of the sampler can be ob-

tained by substituting in (11). The latter reduces
to the solving of the system . Step 2 of the RJPO algo-
rithm is then simplified to:

2) Solve the linear system in an approximate way.
Let denote the obtained solution and .

For the reason just discussed above, the initial point of the
linear solver must be such that does not depend
on . Hence, as counterintuitive as it may be, choices such as

or are not allowed, while is the default
choice corresponding to .
It is remarkable that both T-PO and the proposed RJPO al-

gorithm rely on the approximate resolution of the same linear
system . However, RJPO algorithm incorporates two
additional ingredients that make the difference in terms of math-
ematical validity:
• RJPO relies on an accept-reject strategy to ensure the sam-
pler convergence in the case of an approximate system
solving.

• There is a constraint on the initial point of the linear
solver: must not depend on .

D. Implementation Issues

Let us stress that there is no constraint on the choice of the
linear solver, nor on its initialization and the early stopping rule,
except that they must not depend on the value of . Indeed,
any linear system solver, or any quadratic programming method
could be employed. In the sequel, we have adopted the linear
conjugate gradient algorithm for two reasons:
• Early stopping (i.e., truncating) the conjugate gradient it-
erations is a very usual procedure to approximately solve a

Fig. 1. Acceptance rate of the RJPO algorithm for different values of the
relative residual norm in the case of a small size problem .

linear system, with well-known convergence properties to-
wards the exact solution [31]. Moreover, a preconditioned
conjugate gradient could well be used to accelerate the con-
vergence speed.

• It lends itself to a matrix-free implementation with reduced
memory requirements, as far as matrix-vector products in-
volving matrix can be performed without explictly ma-
nipulating such a matrix.

On the other hand, we have selected a usual stopping rule
based on a threshold on the relative residual norm:

(12)

IV. PRACTICAL PERFORMANCE ANALYSIS AND OPTIMIZATION

The aim of this section is to analyze the performance of the
RJPO algorithm and to discuss the influence of the relative
residual norm (and hence, the truncation level of the conjugate
gradient algorithm) on the practical efficiency of both RJPO
and T-PO schemes.

A. Performance Analysis

A Gaussian distribution with randomly generated positive
definite precision matrix and mean vector is considered.
First, we focus on a small size problem to discuss the
influence of the truncation level on the numerical performance
in terms of acceptance rate and estimation error. For the retained
Gaussian sampling schemes, both RJPO and T-PO are run for
a number of CG iterations allowing to reach a predefined value
of relative residual norm (12). We also discuss the influence of
the problem dimension on the best value of the truncation level
allowing to minimize the total number of CG iterations before
convergence.
1) Acceptance Rate: Fig. 1 shows the average acceptance

probability (acceptance rate) obtained over itera-
tions of the sampler for different relative residual norm values.
It can be noted that the acceptance rate is almost zero when

the relative residual norm is larger than and monotonically
increases for higher resolution accuracies. Moreover, a relative
residual norm lower than leads to an acceptance proba-
bility almost equal to one. Such a curve indicates that the stop-
ping criterion of the CGmust be chosen carefully in order to run
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the RJPO algorithm efficiently and to get non-zero acceptance
probabilities. Finally, we emphasize that this curve mainly de-
pends on the condition number of the precision matrix . Even
if the shape of the acceptance curve stays the same for different
problems, it happens to be difficult to determine the value of the
relative residual norm that corresponds to a given acceptance
rate.
2) Estimation Error: The estimation error is assessed as

the relative mean square error (RMSE) on the estimated mean
vector and covariance matrix

(13)

where and represent the Frobenius and the norms,
respectively. , , , and are respectively the mean and the
covariance matrix of the Gaussian vector, and their empirical
estimates using the generated Markov chain samples:

and

with iterations of burn-in and total iterations.
As expected, Fig. 2 indicates that the estimation error is very

high if the acceptance rate is zero (when the relative residual
norm is lower than ), even for RJPO after it-
erations. This is due to the very low acceptance rate which slows
down the chain convergence. However, as soon as new samples
are accepted, RJPO leads to the same performance as when the
system is solved exactly (E-PO algorithm). On the other hand,
T-PO keeps a significant error for small and moderate resolu-
tion accuracies. Naturally, both methods present similar perfor-
mance when the relative residual norm is sufficiently low since
these methods tend to provide almost the same samples with
an acceptance probability equal to one. This experimental re-
sult clearly highlights the deficiency of T-PO: the system must
be solved with a relatively high accuracy to avoid an important
estimation error. On the other hand, in the RJPO algorithm the
acceptance rate is a good indicator whether the value of the rela-
tive residual norm threshold is appropriate to ensure a sufficient
mixing of the chain.
3) Computation Cost: Since the CG iterations correspond to

the only burdensome task, the numerical complexity of the sam-
pler can expressed in terms of the total number of CG iter-
ations to be performed before convergence and the number of
required samples to get efficient empirical approximation of the
estimators. The Markov chain convergence is firstly assessed
using the Gelman-Rubin criterion, which requires the running
of several chains [32]. It consists in computing a scale reduc-
tion factor based on the between and within-chain variances. In
this experiment, 100 parallel chains are considered. The results
are summarized in Fig. 3. It can be noted that a lower acceptance

Fig. 2. Estimation error for different values of the truncation level after
iterations of E-PO, T-PO and RJPO algorithms: (a) mean vector,

(b) covariance matrix. (a) Mean vector; (b) covariance matrix.

Fig. 3. Number of CG iterations before convergence and acceptance proba-
bility of the RJPO algorithm for different values of relative residual norm for a
small size problem .

rate induces a higher number of iterations since the Markov
chain converges more slowly towards its stationary distribution.
One can also see that a minimal cost can be reached and, ac-

cording to Fig. 1, it corresponds to an acceptance rate of almost
one. As the acceptance rate decreases, even a little, the computa-
tional cost rises very quickly. Conversely, if the relative residual
is too small, the computation effort per sample will decrease
but additional sampling iterations will be needed before conver-
gence, which naturally increases the overall computation cost.
The latter result points out the need to appropriately choose the
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truncation level to jointly avoid a low acceptance probability
and a high resolution accuracy of the linear system since both
induce unnecessary additional computations.
4) Statistical Efficiency: The performance of the RJPO sam-

pler can also be analyzed using the effective sample size (ESS)
[33, p. 125]. This indicator gives the number of independent
samples, , that would yield the same statistical efficiency in
approximating the Bayesian estimator as successive sam-
ples of the simulated chain [34]. It is related to the chain auto-
correlation function according to

(14)

where the autocorrelation coefficient at lag . In the Gaussian
sampling context, such a relation allows to define how many
iterations are needed for each resolution accuracy in order
to get estimators with comparable statistical performance (e.g.,
using chains having the same effective sample size). Under the
hypothesis of a first-order autoregressive chain, , (14)
leads to the ESS ratio

(15)

It can be noted that the ESSR is equal to one when the samples
are independent and decreases as the correlation be-
tween successive samples grows. In the RJPO case, we propose
to define the computing cost per effective sample (CCES) as

(16)

where is the average number of CG iterations
per sample. Fig. 4 shows the ESSR and the CCES in the case
of a Gaussian vector of dimension . It can be seen that
an early stopped CG algorithm induces a very small ESSR, due
to a large sample correlation value, and thus a high effective
cost to produce accurate estimates. On the contrary, a very pre-
cise resolution of the linear system induces a larger number of
CG iterations per sample but a shorter Markov chain since the
ESSR is almost equal to 1. The best trade-off is produced by in-
termediate values of the relative residual norm threshold around

.
To conclude, the Gelman-Rubin convergence diagnostic and

the ESS approach both confirm that the computation cost of the
RJPO can be reduced by appropriately truncating the CG iter-
ations. Although the Gelman-Rubin convergence test is prob-
ably more accurate, since it is based on several independent
sequences, the CCES based test is far simpler and provides
nearly the same trade-off in the tested example. Such encour-
aging results have motivated us to develop a self-tuning strategy
to automatically adjust the threshold parameter by tracking the
minimizer of the CCES. Our proposed strategy is presented in
Section IV-B.
5) Influence of the Dimension: Fig. 5 summarizes the op-

timal values of the truncation level that allows to minimize the
CCES for different values of . The best trade-off is reached

Fig. 4. Computing cost per effective sample of the RJPO algorithm for different
relative residual norm values on a small size problem estimated from

samples.

Fig. 5. Influence of the problem dimension on the optimal values of the relative
residual norm and the acceptance rate.

for decreasing values of as grows. More generally, the same
observation can be made as the problem conditioning deterio-
rates. In practice, predicting the appropriate truncation level for
a given problem is difficult. Fortunately, Fig. 5 also indicates
that the optimal setting is obtained for an acceptance probability
that remains almost constant. The best trade-off is clearly ob-
tained for an acceptance rate lower than one ( corre-
sponds to , i.e., to the exact solving of ). In the
tested example, the optimal truncation level rather corresponds
to an acceptance rate around 0.99. However, finding an explicit
mathematical correspondence between and is not a simple
task. In the next subsection, we propose an unsupervised tuning
strategy of the relative residual norm allowing either to achieve
a predefined target acceptance rate, or even to directly optimize
the computing cost per effective sample.

B. Adaptive Tuning of the Resolution Accuracy

The suited value of the relative residual norm to achieve
a desired acceptance rate can be adjusted recursively using
a Robbins-Monro type algorithm [35], [36]. Such an adaptive
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scheme is formulated in the stochastic approximation frame-
work [37] in order to solve a non-linear equation of the form

using an update

(17)

where is a random variable traducing the uncertainty on each
evaluation of function and is a sequence of step-sizes
ensuring stability and convergence [38]. Such a procedure has
been widely used for the optimal scaling of adaptive MCMC al-
gorithms [27], [28] since it does not alter the chain convergence
towards the target distribution. For instance, it is used in [39],
[40] to set adaptively the scale parameters of a Random walk
Metropolis-Hastings (RWMH) algorithm in order to reach the
optimal acceptance rate suggested by theoretical or empirical
analysis [41], [42]. The same procedure was also used by [43]
for the adaptive tuning of a Metropolis-adjusted Langevin algo-
rithm (MALA) to reach the optimal acceptance rate proposed
by [44].
1) Tuning to Achieve a Target Acceptance Rate: In order to

ensure the positivity of the relative residual norm , the update
is performed on its logarithm. At each iteration of the sampler,
the relative residual norm is adjusted according to

(18)

where is a given target acceptance probability and is
a sequence of step-sizes decaying to 0 as grows in order to
ensure the convergence of the Markov chain to the target distri-
bution. As suggested in [28], the step-sizes are chosen according
to , with . We emphasize that more so-
phisticated methods, such as those proposed in [36] could be
used to approximate the acceptance rate curve and to derive a
more efficient adaptive strategy for choosing this parameter.
The adaptive RJPO is applied to the sampling of the previ-

ously described Gaussian distribution using the adopted step-
size with parameters and . Fig. 6 presents the
evolution of the average acceptance probability and the obtained
relative residual norm for three different values of the target ac-
ceptance rate . One can note that the average acceptance rate
converges to the desired value. Moreover, the relative residual
norm also converges to the expected value according to Fig. 1
(for example, the necessary relative residual norm to get an ac-
ceptance probability is equal to ).
In practice, it remains difficult to a priori determine which

acceptance rate should be targeted to achieve the faster conver-
gence. The next subsection proposes to modify the target of the
adaptive strategy to directly minimize the CCES.
2) Tuning to Optimize the Numerical Efficiency: A given

threshold on the relative residual norm induces an average
truncation level and an ESSR value, fromwhich the CCES can
be deduced according to (16). Our goal is to adaptively adjust
the threshold value in order to minimize the CCES. Let be
the average number of CG iterations per sample corresponding
to the optimal threshold value. In the plane , it is easy
to see that is the abscissa of the point at which the tangent
of the ESSR curve intercepts the origin (see Fig. 7).
The ESSR is expressed by (15) as a function of the chain cor-

relation , the latter being an implicit function of the acceptance

Fig. 6. Behavior of the adaptive RJPO for 1000 iterations and three values of
the target acceptance probability: (a) Evolution of the average acceptance prob-
ability and (b) Evolution of the computed relative residual norm. (a) Acceptance
probability; (b) relative residual norm.

Fig. 7. Influence of the CG truncation level on the overall computation cost
and the statistical efficiency of the RJPO for sampling a Gaussian of dimension

.

rate . For , according to Proposition 2. For ,
since no new sample can be accepted. For intermediate

values of , the correlation lies between 0 and 1, and it is typi-
cally decreasing. It can be decomposed on two terms:
• With a probability , the accept-reject procedure pro-
duces identical (i.e., maximally correlated) samples in case
of rejection.
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Fig. 8. Evolution of the relative residual norm and the acceptance rate for a
Gaussian sampling problem of size . The adaptive algorithm leads to
a relative residual norm leading to .

• In case of acceptance, the new sample is slightly correlated
with the previous one, because of the early stopping of the
CG algorithm.

While it is easy to express the correlation induced by rejection,
it is difficult to find an explicit expression for the correlation
between accepted samples. However, we have checked that the
latter source of correlation is negligible compared to the cor-
relation induced by rejection. If we approximately assume that
accepted samples are independent, we get . Conse-
quently, the best tuning of the relative residual norm leading to
the lowest computation cost per effective sample is the mini-
mizer of . By necessary condition, we get

Finally, a similar procedure as in the previous section is applied
to adaptively adjust the optimal value of the relative residual
norm according to

(19)

where is evaluated numerically. Fig. 8 illustrates that the
proposed adaptive scheme efficiently adjusts to minimize the
CCES where is around 26, which is in agreement with
Fig. 7.

V. APPLICATION TO UNSUPERVISED SUPER-RESOLUTION

In the linear inverse problem of unsupervised image super-
resolution, several images are observed with a low spatial res-
olution. In addition, the measurement process presents a point
spread function (PSF) that introduces a blur on the images. The
purpose is then to reconstruct the original image with a higher
resolution using an unsupervised method. Such an approach al-
lows to also estimate the model hyper-parameters and the PSF
[23], [45], [46]. In order to discuss the relevance of the pre-
viously presented Gaussian sampling algorithms we apply a
Bayesian approach andMCMCmethods for solving this inverse
problem.

A. Problem Statement

The observation model is given by , where
, with the vector containing the pixels of the

observed images in a lexicographic order, the sought
high resolution image, the circulant convolution ma-
trix associated with the blur, the decimation matrix
and the additive noise. This linear model also includes clas-
sical image deconvolution problems [1], [2]. The noise is as-
sumed to follow a zero-mean Gaussian distribution with an un-
known precision matrix . We also assume a zero-mean
Gaussian distribution for the prior of the sought variable , with
a precisionmatrix , where is the circulant convo-
lution matrix associated to a Laplacian filter. Non-informative
Jeffrey’s priors [47] are also assigned to the two hyper-parame-
ters and .
According to Bayes’ theorem, the posterior distribution is

given by

To explore this posterior distribution, a Gibbs sampler itera-
tively draws
1) from given as

2) from given as

3) from which is

with

The third step of the sampler requires an efficient sampling of
a multivariate Gaussian distribution whose parameters change
along the sampling iterations. In the sequel, direct sampling with
Cholesky factorization [15] is firstly employed as a reference
method. It yields the same results as the E-PO algorithm. For
the inexact resolution case, the T-PO algorithm using a CG con-
trolled by the relative residual norm, and the adaptive RJPO di-
rectly tuned with the acceptance probability are performed. For
these two methods, the product matrix-vector used in the CG al-
gorithm is done by exploiting the structure of the precision ma-
trix and thus only implies circulant convolutions, performed
by FFT, and decimations.

B. MCMC Results

We consider the observation of five images of dimension 128
128 pixels and we reconstruct the original

one of dimension 256 256 . The convolution
part has a Laplace shape with of full width at half maximum
(FWHM) of 4 pixels. A white Gaussian noise is added to get a
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Fig. 9. Unsupervised super-resolution—image reconstruction using the adap-
tive RJPO algorithm with .

TABLE I
COMPARISON BETWEEN DIFFERENT GAUSSIAN SAMPLING STRATEGIES: THE
CHOLESKY FACTORIZATION BASED APPROACH, THE T-PO CONTROLLED
BY THE RELATIVE RESIDUAL NORM AND THE ADAPTIVE RJPO TUNED BY
THE ACCEPTANCE RATE. THE PERFORMANCES ARE EXPRESSED IN TERMS
OF EMPIRICAL MEAN AND STANDARD DEVIATION OF HYPER-PARAMETERS

AND ONE RANDOMLY CHOSEN PIXEL

signal-to-noise ratio (SNR) equal to 20 dB. The original image
and one of the observations are shown in Fig. 9.
The Gibbs sampler is run for 1000 iterations and a burn-in pe-

riod of 100 iterations is considered after a visual inspection of
the chains. The performances are evaluated in terms of the mean
and standard deviation of both hyper-parameters , and one
randomly chosen pixel of the reconstructed image. Table I
presents the mean and standard deviation of the variable of in-
terest. Aswe can see, the T-PO algorithm is totally inappropriate
even with a precision of . Conversely, the estimation from
the samples given by the adaptive RJPO and Cholesky method
are very similar, which demonstrates the correct behavior of the
proposed algorithm.
Fig. 10 shows the evolution of the acceptance rate with re-

spect to the number of CG iterations. We can notice that at least
400 iterations are required to have a nonzero acceptance prob-
ability. Moreover, more than 800 iterations seems unnecessary.
For this specific problem, the E-PO algorithm needs theoreti-
cally iterations to have a new sample while the
adaptive RJPO only requires around 700. Concerning the com-
putation time, on a Intel Core i7-3770 with 8 GB of RAM and a
64 bit system, it took about 20.3 s on average and about 6 GB of
RAM for the Cholesky sampler to generate one sample and only
15.1 s and less than 200 MB for the RJPO. This last result is due
to the use of a conjugate gradient on which each matrix-vector
product is performed without explicitly writing the matrix .
Finally, note that if we consider images of higher resolution, for
instance , the Cholesky factorization would
require around 1 TB of RAM and the adaptive RJPO only about
3 GB (when using double precision floating-point format).

VI. CONCLUSION

The sampling of high dimensional Gaussian distributions ap-
pears in the resolution of many linear inverse problems using

Fig. 10. Evolution of the acceptance rate with respect to average conjugate
gradient iterations for sampling a Gaussian of dimension .

MCMC methods. Alternative solutions to the Cholesky fac-
torization are needed to reduce the computation time and to
limit the memory usage. Based on the theory of reversible jump
MCMC,we derived a samplingmethod allowing to introduce an
approximate solution of a linear system during the sample gen-
eration step. The approximate resolution of a linear system was
already adopted in methods like IFP and PO to reduce the nu-
merical complexity, but without any guarantee of convergence
to the target distribution. The proposed algorithm RJPO is based
on an accept-reject step that is absent from the existing PO al-
gorithms. Indeed, the difference between RJPO and existing PO
algorithms is much comparable to the difference between the
Metropolis-adjusted Langevin algorithm (MALA) [48] and a
plainly discretized Langevin diffusion [49].
Our results pointed out that the required resolution accuracy

in these methods must be carefully tuned to prevent a significant
error. It was also shown that the proposed RJ-MCMC frame-
work allows to ensure the convergence through the accept-reject
step whatever the truncation level. In addition, thanks to the sim-
plicity of the acceptance probability, the resolution accuracy can
be adjusted automatically using an adaptive scheme allowing to
achieve a pre-defined acceptation rate. We have also proposed a
significant improvement of the same adaptive tuning approach,
where the target is directly formulated in terms of minimal com-
puting cost per effective sample.
Finally, the linear system resolution using the conjugate gra-

dient algorithm offers the possibility to implement the matrix-
vector products with a limited memory usage by exploiting the
structure of the forward model operators. The adaptive RJPO
has thus proven to be less consuming in both computational
cost and memory usage than any approach based on Cholesky
factorization.
This work opens some perspectives in several directions.

Firstly, preconditioned conjugate gradient or alternative
methods can be envisaged for the linear system resolution with
the aim to reduce the computation time per iteration. Such an
approach will highly depend on the linear operator and the
ability to compute a preconditioning matrix. A second direction
concerns the connection between the RJ-MCMC framework
and other sampling methods such as those based on Krylov
subspace [19], [20], particularly with appropriate choices of
the parameters , , and defined in Section II. Another
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perspective of this work is to analyze more complex situations
involving non-gaussian distributions with the aim to be able to
formulate the perturbation step and to perform an approximate
optimization allowing to reduce the computation cost. Finally,
the proposed adaptive tuning scheme allowing to optimize the
computation cost per effective sample could be generalized to
other Metropolis adjusted sampling strategies.

APPENDIX

A. Expression of the Acceptance Probability

According to the RJ-MCMC theory, the acceptance proba-
bility is given by

with and . The Jacobian determinant of
the deterministic move is . Since

and

the acceptance probability can be written as

with and

Since , we get

Finally

Finally, when the system is solved exactly, and thus
.

B. Correlation Between Two Successive Samples

Since

and is sampled from , we have

with totally independent of . One can firstly check that
. Consequently, the correlation between two

successive samples is given by

which is zero if and only if .
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