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Abstract

This work deals with three dimensional reconstruction
Jrom X-ray and ultrasonic images. Such an issue pertains
to the field of data fusion since the data provide
complementary information. The two sets of data are
independently related to two sets of parameters: X-ray
attenuation and ultrasonic  reflectivity. The fusion
problem is adressed in a Bayesian framework; the
kingpin of the task is to define a joint prior model for both
attenuation and reflectivity. Dealing with the joint prior
model, we propose to correlate the derivative of the
attenuation and the reflectivity. Processing examples
demonstrate the validity of the fusion approach and the
robustness of the proposed method mismatching of the
two sets of data.

1. Introduction

This paper deals with a data fusion method applied to
the 3D reconstruction of an object from X-ray and
ultrasonic data. The application of this work is the
inspection of a steel block. In order to account for real
conditions of inspection, only the upper face is accessible.
The experimentation conditions for radiography are such
that the X-ray scanning angle is reduced to 20°; thus the
X-ray images provide mostly information along the
lateral direction and they bring little information along
the vertical direction. In order to reduce this lack of
information, ultrasonic data are collected on the top of the
block with a 0° incidence; since they are sensitive to
horizontal breaks in the medium, they provide
information along the vertical direction. In such a case,
X-ray and ultrasound produce complementary
information (see figure 1).

This fusion problem is similar to ones encountered in
the field of biomedical imaging. It is for example the case
when Positon Emssion Tomography (PET) and Magnetic
Resonance Imaging (MRI) data are to be fused. With a
fusion point of view, PET and MRI can respectively be
compared to X-ray and ultrasonic imaging. For such
applications, a sequential fusion process is mostly chosen
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[4]. MRI data are first processed, so as to obtain
information about the breaks in the desired structure.
Then, an activity map (that is similar to attenuation) is
reconstructed from the PET data.

We believe it is essential to process jointly the two sets
of data, so as to take the best advantage from the
complementarity of the data. Firstly, we explain how
specific the fusion problem is. Then, we expose the
proposed method. The two sets of data are related with
two independent sets of parameters: the attenuation for X-
ray and the reflectivity for ultrasonic imaging. We
propose to estimate jointly attenuation and reflectivity.
Finally, processing results for real data sets are presented.
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Fig. 1. Inspection conditions for X-ray and ultrasonic
imaging.

2. Specificity of fusion

The problem is addressed in a Bayesian framework.
Formally, the fusion can be considered as the estimation
of an object o, indirectly observed through two
measurement systems that deliver the data d; and d,.
Calculating the data from a known object is called the
direct problem. For the two data sets, we define the
observation models M; and M, that respectively
describe the related direct problems.

The estimation of the unknown object leads us to solve
an inverse problem: the object is to be obtained from the
measurements. Here, the existence, the uniqueness and
the stability of the solution are not guaranteed: the inverse
problem is il posed. Then, in order to obtain an
“acceptable” solution, some prior information about the
searched object must be accounted for: the problem must
be regularised [3]. In the Bayesian framework, this



information is introduced through the object prior
probability law p(e). So, the whole available information
about the object is contained in the joint law
plo,d,,d,;M;,M,), obtained thanks to the Bayes’ rule:

p(o,dy,dy; M|, M,) = p(d,, d|0; M, M;) p(0) .

This law depends both on the data, through the likelihood
p(d,,d,|o;M;,M,), and on the prior information given
through the prior density p(e). Since the two sets of data
are obtained separately, the data likelihood can be split
and the joint law is given by:

plo.d;,dy; M, M,) = p(dy|o;M,) p(d,|0; M) p(0) .

Concretely, we aim above all at obtaining a solution to
the inverse problem: a pointwise estimator is defined
from the posterior distribution p(o|d,,d,;M;,M,). In
the following, we decide on the maximum a posteriori
estimator (MAP estimator) which maximises the posterior
distribution.

Thus, the Bayesian approach enables, at least formally,
to fuse different information sources corresponding to
several data sets. Just like for any imaging inverse
problem, the direct and the prior models are still to be
defined with a wish to obtain the solution though a
realistic algorithm.

From the foregoing, one could think the use of the
Bayes’ rule suppresses any specificity to the fusion
problem; just like for any classical inversion problem, the
use the Bayes’ rule would erase any additional difficulty
introduced through the fusion. In fact, a specific difficulty
still remains for the fusion.

Indeed, here, the above so called “object” in fact
indicates two ‘“sub-object” o, and o,, which are the
attenuation map and the ultrasonic reflectivity. This
definition is required to account for the direct models M,
and M, . The two parameter subsets characterise the same
object but represent two different physical quantities.
With such a viewpoint, our study is different from other
fusion problems where indeed, different information
sources are taken in account, but where the estimated
parameters are physically homogeneous. In our case, each
direct model relates one parameter set o; with a data set
d; . The joint law is the following:

p(o,d,dy; M, M,) = p(d)|o;; M) p(d,|0,;M,) po,0,).

Thus, the prior model definition requires the search for a
link between the attenuation and the reflectivity. Indeed,
this model cannot be reduced to two independent prior
models for the sub-object: in such a case, o, and o,
would be estimated separately and the fusion problem
would disappear. The kingpin of the fusion is to define a
joint prior model p(o,,0,) linking the two sub-objects.
Since no physical models relates o, and o,, the
definition of a link between the attenuation and the
reflectivity is one of the main difficulty of our work.
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3. Joint fusion method

The definition of joint prior model for the attenuation
and the reflectivity enables the joint estimation of these
quantities. The joint solution is obtained through the
minimisation of a compound criterium which depends
both on the likelihood of the two data sets and on an
additional part accounting for the attenuation and the
reflectivity joint prior model. Firstly, the chosen direct
models for the two imaging systems are defined. Then,
we discuss the definition of the joint prior model. Finally,
we give some details about the proposed minimisation
algorithm.

The attenuation x and the reflectivity r are respectively
related to the X-ray data y and the ultrasonic data z. Each
set of data is related to the object through the direct
models y = Ax+b et z= Hr+ n; the operators A and H
are respectivaly a projection and a convolution matrix;
the noise processes b and n stand for the observation and
direct model errors; they are supposed to be white,
Gaussian and independent from x et r; moreover, since
the data are obtained separately, we suppose b and n are
independent.

In such conditions, the joint MAP solution reads:

(X,7) = arg (rg:;l){"y - Ax||2 +Blz— Hr"2 + Uy (%, r)} ,

where 3 is a parameter whose value depends on the
relative confidence in each data set; Ugy(x,r) stands for
the prior model and thus enables a prior link between
xandr.

The search for the prior model is based on simple
qualitative information. It can be considered that the
object attenuation consists of homogeneous zones (steel
and possible defects) and mostly of steel. Moreover, since
the reflectivity accounts for discontinuities along the
vertical direction and the object is made of homogeneous
zones, it can be presumed that most reflectivities are zero-
valued. Dealing with the link between the attenuation and
the reflectivity, we can suppose a big reflectivity is
connected with a break in the attenuation along the
vertical direction; moreover, the reflectivities within the
same zone of the attenuation should be very small. Such
information about the links between x and r suggests
introducing a correlation between the reflectivity and the
vertical derivation of the attenuation.

Thus, the general scheme for the joint prior potential is
given by:

Upp(%,1) € hga D Poa(xs=%) +hpap D Prap (¥, — 1)
(s,0)eH ses

+Apy Z Pru(Xi w1 = Xi j koY j i)
i,j.k

where S denotes the set of sites s and H is the set of



horizontal neighbour sites. The functions pg, and P,
account respectively for the attenuation homogeneity
along the lateral directions and for the domination of steel
in the object: they can be chosen among classical
regularisation functions [2] [7]. The bivariate function
ppy(#,7) enables to model both the spikiness of the
reflectivity and the link between the attenuation and the
reflectivity: it is the core of the joint potential definition.

Since the main contribution of this paper deals with the
linking between the attenuation and the reflectivity, we
insist especially on the choice of the pgy(u,#) function.

So as to link the derivative of the attenuation, it can
first be  thought of  defining  pgy as
pru(u,7) = p(|ju| - or]) , where p is a scalar regularisation
function. Still, such functions create scale problems
between x et r and the choice for oo may happen to be
difficult. We therefore focus on functions that introduce a
more flexible link between the attenuation and the
reflectivity.

We can for example extend the truncated quadratic
function [1] to the bivariate case, choosing:

pru1 () = min(? +a?r2,T).

This function is quadratic as long as the sum #® + a*7? is
smaller that 7" and is constant out of this zone (see fig. 2).
The parameter o makes it possible to adapt the model to
different scales between x and r; T stands for the
threshold above which a jump in the attenuation and the
reflectivity is allowed. This model owns some of the
seeked properties. Indeed, when the variables are to
small, the smoothing effect of the quadratic function is
efficient and, in the same time, high values for the
variables are not penalised too much. Still, the
correlations introduced in this model are probably too
strong to obtain a method which should be robust towards
geometrical matching troubles between the two sets of
data.

Indeed, it is shown in [6] that the prior model’s
complexity should be adapted to the richness of the data;
thus, accounting both for the poor information in our data
and our will to obtain a method that is robust with respect
to choice of the hyperparameters A, we want to obtain a
convex potential function and so we choose convex
functions p. We are especially searching for a function
that introduces looser links than the function pgy; .

Taking advantage of the scalar hyperbolic function, we
define the bivariate hyperbolic function as:

pru2(r) =\T% +u* +(ar)’ .

This function is quadratic-like when both u and r are
small enough and conical-like for big values of any of the
two variables (see fig. 2). Thus, rare events such as a
break in the attenuation or the occurrence of a high
reflectivity are softly penalised. The parameter T makes it
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possible to enlarge or reduce the quadratic area; thus
tuning 7 enables the choice for the strength of the link
between x and r. Tuning o adapts the model to different
scales for u and r. Lastly, this bivariate function is jointly
convex with respect to (u, r).

Finally, the Uy potential is defined by:

Upy(x,1) =Aga ZV TG2A +(xg —x,)2 + A‘RAPZixs - 1|pm

(s)eH s&§
2 72 2 22
+ARU FU T\ ket —Xijx) TOF ks
i.j.k

where B, Aga > Ta> Mrap> Prap> Mrus Tpy and o are
hyperparameters. The hyperparameter values are chosen
empirically. The cost function to be minimised is globally
convex with respect to x and r; thus the solution is
computed through a combined conjugate gradient
algorithm.
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Fig. 2. Examples for the bivariate quadratic (left) and the
bivariate hyperbolic (right) functions.

4. Processing results

The application deals with the inspection of an
austeno-ferritic block. An electro-eroded known defect
has been created in the block. The X-ray data have been
obtained according to the conditions given in the
introduction; the three sources’ positions are so that the
object is observed sideways (see fig.3).

So as to concentrate on the sole results of the fusion
method, we need to get rid of the likely position
mismatching between the two sets of data; moreover we
also have to get rid of the difficult wavelet estimation step
[6]. The processed ultrasonic traces are therefore
simulated data obtained through the convolution model.
Since the ultrasonic waves do not propagate in the air, the
original reflectiviy has only one spike which accounts for
the upper bound of the defect (see fig. 5a). The
convolution kernel used for simulation is low pass
(Ricker’s wavelet) and the signal to noise ration is 0 dB.
A typical ultrasonic trace is given in figure 5b.

The presented results for the attenuation are vertical
slices of the reconstructed volumes. Since the block is
observed sideways, the reconstructed defect is naturally
slightly inclined. Moreover, since the X-rays belong to a
narrow beam, the defect reconstructed from the sole
radiographs is streched along the vertical direction (see
fig. 4b).



Firstly, we study the global fusion method for the
perfect positioning case. The results clearly prove how
successful the fusion approach is (see fig. 4b and 4c). The
estimated reflectivity is indeed correlated with the
attenuation and it even contains some information about
the bottom of the defect (see fig. 5¢), whereas it was not
introduced into the simulated traces; this second spike
matches the low jump in the reconstructed attenuation.
Those results also prove the method is robust towards
mispositioning of the two sets of data ; indeed, even when
the positioning is totally wrong, the artefact due to the
positioning error is not important (see figure 4d), so that
the reconstruction quality is nearly as good as when the
sole radiographs are used (see figures 4b and 4d).
Moreover, the proposed method is more robust towards
positioning trouble than a sequential fusion method (see
fig. 4b and 4°); in the later case, the two sets of data are
processed separately [5] and the potential improvement
provided by the fusion approach is drastically damaged.

At last, the empirical choice of hyperparameters is not
a critical problem: the results are stable with respect to
hyperparameter values. The hyperparameters chosen for
the presented results are the following: Ag, =10,
Tsa =0005,  Agap =25, prap=11, Ag =10,
Tpy =0.005, a=1, B=60.

5. Conclusion

The fusion method we have proposed processes jointly
the two data sets. The processing results prove how
successful our approach is. For a perfect position
matching, the fusion’s contribution is undeniable.
Moreover, the proposed method is robust towards
positioning trouble, especially if compared with a
sequential fusion method. Since we want to obtain a 3D
representation of the object, we are only interested in the
attenuation reconstruction, so the recovered reflectivity
turns out to be a by-product of the method.

This method could be extended to other application
fields such as biomedical imaging [8]. It should also be
noticed the introduction of interactions between
heterogeneous physical parameters, that are not related
through a physical models, forms a generic set of
problems.
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Fig. 3. The inspected block and the source’s positions.
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Fig. 4. Vertical cuts of the reconstructed attenuation.
a: ideal cut; b:reconstruction from the sole radiographs;
¢: global fusion for a “perfect” positioning; d: global fusion for
an “imperfect” position matching (the ultrasonic data are down-
shifted); e: sequential fusion, for an “imperfect” positioning.
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Fig 5. a: Initial reflectivity; b: typical ultrasonic trace;
c: recovered reflectivity.



