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ABSTRACT

This paper presents a fast MCMC algorithm specially designed for
high dimensional models with block structure. Such models are
often met in Bayesian inference, such as spectral estimation, har-
monic analysis, blind deconvolution or signal classification. Our
algorithm generates samples distributed according to a posterior
distribution. We show that sampling the amplitudes together with
the remaining model parameters leads to quicker computations
than sampling from the marginal posterior, where amplitudes have
been integrated out. Simulation results demonstrate the soundness
of this approach for high dimensional models.

1. INTRODUCTION

A number of Bayesian inference problems in Signal Processing
can be cast in the form of the following Gaussian model:

� � ����� � �� (1)

where � � ������ � � � � ������ is the vector of observed data,
���� is a � � � matrix of basis functions (stored in columns)
with possible �-dimensional parameters �. The basis functions
amplitudes are � � ���� � � � � ���

� and the additive noise � �
������ � � � � ������ is zero-mean Gaussian, white with variance ��.
The overall objective is the estimation of the parameters � as well
as the amplitudes � and the noise variance ��. Example problems
are spectral estimation [1], harmonic analysis of music [2], blind
deconvolution [3, 4] and signal classification [5]. Bayes parameter
estimation generally requires the computation of high dimensional
intractable integrals, and a good solution consists of implementing
Monte Carlo Markov Chain (MCMC) methods [6]. An important
remark is that, in the above examples, the parameter � and ampli-
tudes � can be decomposed into 	 blocks with similar structure,

� � ���� � � � � �� �
� � ���� � � � ��� �

with � �

��
���

������� � �

where the size of �� (resp. of ��) is �� with �� � � � � � �� � �
(resp. ��with �� � � � � � �� � �). Example blocks are single
sinusoids in spectral analysis [1] or individual notes in harmonic
analysis [2]. In this paper, we exploit this specific structure to
design a fast MCMC algorithm.

When selecting a Gaussian amplitude prior and an inverse
Gamma noise variance prior, one can marginalize � and �� in the
posterior probability distribution function (pdf) 
��� ��� ����, and
the inference can be based on 
����� only. The conditional pdfs

�������� and 
������ ���� are also available and can be used for

inference as well. In practice, this results in decoupling the estima-
tion of �� and � from that of �. This can be directly used to design
an efficient MCMC algorithm [1–3]: a Markov Chain composed of
samples ���������������� with invariant distribution 
����� is built,
then samples ������� ���������� and ���������������� are generated us-
ing the conditional densities. In the following, this approach is
referred to as hierarchical sampling (HS).

The above HS approach is motivated by minimizing the vari-
ance of integral estimates: the smaller the parameter space, the
more accurate the estimation. More precisely, the quadratic error
made by estimators based on MCMC samples typically decreases
at rate ��
. A smaller value is expected for �HS since amplitudes
have been integrated out in the HS approach. Yet, we argue that
for high dimensional problems (large �) where ���� and � can
be decomposed into 	 blocks of same structure, it is more effi-
cient to adopt a Joint Sampling (JS) approach, that generates sam-
ples ������� ��������������� block-wise, in a sense that will be made
clearer in the following. Actually, JS iterations have a much lower
cost than HS iterations, and thus more samples can be generated
within the same computation time. Thus, even if �JS is larger than
�HS, the joint approach is more accurate (as confirmed by simula-
tions in Section 5).

This paper is organized as follows. In Section 2, we briefly
present the example of harmonic model and the estimation ob-
jectives. In Section 3, our fast MCMC algorithm is described.
Section 4 is devoted to discussions and simulation results are pre-
sented in Section 5. Conclusions are proposed in Section 6.

2. BAYESIAN MODEL AND ESTIMATION

This section specifies the Bayesian model and introduces the ex-
ample of harmonic analysis.

2.1. An example: Harmonic Models

In harmonic analysis, the matrix ���� is composed of so-called
Gabor basis functions of the form (for � � �� � � � � � ):

�����	��� � ���� ��
� �	
����� � ����
�����	��� � ���� ��
� 
������� � ����

(2)

where �
 � �� � ���� for � � 
� � � � � � , � � �� � � � ���

and � � �� � � � � 	. In eq. (2), the windowing function � has, e.g.,
Gauss or Hamming shape, see [2]. The overall model is actually
hierarchical on two levels. At the highest level, the overall level, �
is composed of 	 notes played by one or several instruments. At
the middle level, the notes level, each note � � �� � � � � 	 is com-
posed of �� partials, that is, sine waves with frequencies ����,
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� � �� � � � ��� roughly related by ���� � �����. At the lowest
level, the partials level, each sine wave has a time-varying am-
plitude which is written as a linear combination of time shifted
windows ���� ����. The initial phase is determined by the am-
plitudes of both ������ and 	�����. Clearly, this model can be
written block-wise as follows

� �
��
���

�� � � with �� �

���
���

����

where ��, 
 � �� � � � � � are individual notes and ���� � ��������,
� � �, �����
��� are individual partials, with

������� �
��

���

���������������� � ������	���������

for � � �� � � � � 
 . The amplitudes ������ and ������ (� � �� � � � � �)
are the elements of � corresponding to ����. The parameters
of this model are � and � � ���� � � � � �� � where �� � �����,
� � � � �����

� (with size �� � ��) for 
 � �, � � � � �. Block size is
�� � 	�� � ���� , where the parameter � is generally assumed
known, as its influence is not critical. Note that � and ���� can
have very high dimension (about 1000 to 5000) in standard har-
monic estimation problems.

2.2. Posterior pdf

The likelihood function related to eq. (1) is

������ ��� �� � �	����
�	
� 
���

�
	��

��� ���������

Consider the prior structure ���� ��� �� � ������� �����������
where ������� �� is zero-mean Gaussian� ��,������where��
is block-diagonal, the size of each block is ��. The prior ����� is
the inverse Gamma distribution ������	� ���	� (see [1–3]). The
marginalized posterior is

������ � ���� �������
�
�
�
	

�
�
�
����� � ��

�������
�

(3)

where ���� � �	 �������������� is a 
 �
 -dimensional
matrix, �	 denotes the 
 -dimensional identity matrix, ��� denotes
matrix determinant and ���� � ���������� � ���� ��� is a
� � �-dimensional matrix . The conditional posterior densities
are given by

��������� � ��
�
�
 � ����	� ��

�
������ ����	

�
(4)

������� ���� � �
�
��

�
��
����

�
(5)

where � � ����������.
In order to manipulate blocks of amplitudes/parameters, we

introduce the notation with subscript �
 to denote all the compo-
nents but component number 
. Using these notations, each block
can be written�� � ������� where����� is a
��� matrix.
Denote �� � � ����������. Then, ��������� ��� ������ �
�������� is given in eq. (3), with

����� � �	 ����������������
�

instead of ���� and �� instead of �. Note that the dimension of
����� is�� 	 �. Similarly, ��������� ��� ���� � �������� ��,
��� has the same structure as in eq. (5), with�� �����������

���
instead of � and ����� instead of ����.

2.3. Estimation objectives

In the harmonic example above, the estimation objective consists
of computing MMAP estimates of the number of notes �� and the
numbers of partials ��. The frequencies are estimated via the fol-
lowing MMSE integral

�� �

�
����� ������Æ

���������� ���� ��

which cannot be computed analytically (Æ���� denotes the Dirac
delta function, i.e. Æ���� � � whenever � 
� �). In such situa-
tions, Monte Carlo integration is a convenient approach [1–3, 6],
and �� �

��

�� 	��
��� where �	��
��
�� is part of the joint sam-

ple �	��
�, 	��
�� , 	��
�, 	��
�, 
��
��
�������� distributed according
to ���� ����� ������, where 
 is the set of indices � that have
the MMAP values for � and �, i.e., such that � 	��
��
��
�� �

� ������ (the MMAP estimate of, e.g., � is the most represented
value among 	����� � � � � 	����.

3. MCMC ALGORITHM BASED ON JOINT SAMPLING

In this section, we present a fast Metropolis-within-Gibbs algo-
rithm aimed at generating samples �	��
��
��������. For the sake of
clarity, the number of blocks � is assumed known here, however,
this algorithm can be extended to unknown � so as to include
reversible jumps. In order to alleviate notations, we omit the nota-
tions	��
� and �� whenever it is clear from the context that we deal
with Markov chain samples and with candidates.

Algorithm 1: Joint sampling MCMC algorithm

� Initialization

� Sample ����� according to its prior distribution

� Sample ������� from the pdf in eq. (4)

� Sample the amplitudes ����� from the pdf in eq. (5)

� Set �� �

� Iterations While � � �, do
Step 1.1: For � � �� � � � ��, update block #� as follows

� sample ��� according to the proposal distribution

����
�
��
���
�
���
�� � ���
���� � ���
�
���

�� ��� and perform a MH test w.r.t

	�������
�
����� � �
�
���� � ���
�
���
�� ��� �

�������
�
�

�
�

�

�
���������� � ��

������
�

	���

which has the structure of the pdf in eq. (3), see Subsec-
tion 2.2. This yields ���
�� .

� sample the amplitudes ���
�� from

	�������
�
����� � �
�
���� � ���
�� � ���
�
���
�� ��� � � �����������
�
���� ��

see eq. (5) and Subsection 2.2.

� Step 1.2: Sample �
�
�� from 	�
�����
�� ���
����, given by

��
�
�
 � ������ �������

� � �����
�
�

which has the same structure as the pdf in eq. (4), where �� �

� ������
�����
�.
� Set �� �� �,
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In the above algorithm, MH stands for “Metropolis -Hastings”
and we used the notation ���������

�� � ������� , � � �, ��������, ���������� ,

� � � � �������� �, and a similar notation for ���������
�� . Overall, Step 1.1

has the structure of a “one-block-at-a-time” Metropolis-Hastings
sampler operating on blocks ���� ���. Each block ���� ��� is
generated conditionally on the remaining blocks ��

��� ���� us-
ing marginal/conditional sampling: first, �� is sampled from the
marginal posterior ��������� ���� � � ��, second �� is generated
from the conditional posterior ������������ ���� � � ��. The over-
all structure is that of a Gibbs sampler, which iterates on �, �� and
�. Convergence issues of such MCMC algorithms have been ex-
tensively discussed in a number of works (see [1, 3]), and it is not
addressed again here.

4. DISCUSSION

In this section, we compare the computation complexity of Algo-
rithm 1.1 and that of the algorithms proposed in [1–3].

4.1. Standard Hierarchical Sampling (HS) algorithm

For the sake of clarity, Algorithm 2 below recalls the structure of
HS algorithms proposed in [1–3, 5].

Algorithm 2: Standard HS MCMC for sparse processes

� Initialization: see Algorithm 1

� Iterations While � � �, do

Step 2.1: For � � �� � � � ��, update block #� as follows

� sample ��� according to the proposal distribution

����
�
��
������������ and form �� � �� � � � ��

���
�����

�
��
��
�����
��� � � � ��.

Perform a MH test w.r.t ������, see eq. (3). This yields �����
�

.

Step 2.2: Sample �	
���
� from ��	���������� given in eq. (4)

Step 2.3: Sample ����� from �����	
���
� � ��������, see eq. (5)

Set �� �� �.

Remark: In the case of strong correlations among the sam-
pled parameters, Algorithm 2 is expected to perform better than
Algorithm 1: It is generally more efficient to sample jointly pa-
rameters with strong correlations. In the examples presented in
this paper, parameters are not strongly correlated.

4.2. Algorithmic complexity

In Algorithms 1 and 2, the most computationally intensive part
consists of the computation of �������, which requires the inver-
sion of ��� � �������

� , with dimension �� in Algorithm 1,
and with dimension � in Algorithm 2, where �� � �.

Efficient implementations only require one computation of the
target distribution for each MH step, as the value of the posterior,
for the last accepted sample, can be stored and reused. Then, each
iteration of Algorithm 2 requires ��� computation of ���� with
size � whereas each iteration of Algorithm 1 requires �� compu-
tations of ����� with size ��. In addition, Step 1.1 requires �
sampling from the multivariate normal pdf� ������������������ �
with dimension ��, which usually requires one Choleski decom-
position. This decomposition can be avoided, however. Before
explaining this point, we introduce an efficient implementation for
the computation of ������� required in Algorithms 1 and 2 (see
Algorithm 3).

Algorithm 3: Computation of �������
with maximum cost of each step

� Compute �������
�

� O�
���

� Compute Choleski factors ��� � �������
�

� O�
��

� Compute � � ������ � O�
��
� Solve the triangular system �� � � for � � O�
��
� Compute ������� � ��� � ��� � O���

The computation of �������� is straightforward since ������ �
����� where� is triangular. As can be seen, the overall maximal
complexity of Algorithm 3 is O��������. In many applications,
however, matrix � is either sparse (harmonic analysis) or with
specific structure that can be used to form directly��� (spectral
analysis) and the actual complexity is much smaller than O�����.
Finally, the overall complexity of Algorithm 3 is O����. Algo-
rithm 3 is used in both Algorithm 1 (with �� instead of � and ��

instead of�) and Algorithm 2. In Algorithm 1, the Choleski factor
� can be reused in the multivariate Gaussian sampling, which is
performed as follows.

Algorithm 4: Multivariate Gaussian Sampling
with maximum cost of each step

� Sample a i.i.d. vector � according to � ��� ��
� Solve the linear triangle system ��� � � � O�
��
� Solve the linear system ��� � ������ � O�
��
� Solve the linear system ��� � �� � O�
��
� Compute � � �� � �

Consider the Harmonic model presented in Subsection 2.1, the
size of each block (i.e., each note) 	 is�� � �
������. In stan-
dard harmonic estimation problems [2], one typically has 
� �
��, � � �	 and �� � 
��. With three notes, � � ���� and
the complexity of Algorithm 1 is one order of magnitude smaller
than that of Algorithm 2. But one can do even better: each note
is made of 
� sub-blocks with size ��� � �� � 
�, and updating
each of them one-at-a-time using Algorithm 1 yields even further
improvements. The overall complexity of the latter approach is
O
�
�
��

���
�����������
�

instead of O
�
��
��

���
����������
�

in the hierarchical approach, that is, about 

�� smaller for the
above example!

4.3. Proposal distributions

Aside computational complexity, our approach has another major
advantage. The proposal �� in Algorithm 1 depends on the cur-
rent amplitudes and parameters, and samples likely candidates. In
particular, in spectral analysis [1], a stepwise approximation of the
spectrum of ��, denoted �TF������ (not available in Algorithm 2)
can be used as ��, rather than the Fourier transform of � used as ��
in Algorithm 2, [1]. This yields an efficient proposal which does
not sample already existing frequencies. Moreover, it becomes
unnecessary to assume a 
-prior structure �� � Æ��������

(as proposed in [1]), since it is mainly aimed at avoiding 1) high
dimensional determinant computation in eq. (3), and 2) superim-
posed frequencies. It is thus interesting to select �� � ����
and uniform frequencies prior, because in this case, the log poste-
rior ����������������� �������� � ���������

�� ��� can be straightforwardly
computed from �TF������, see [7, eq. (4)]. The example of spec-
tral analysis shows that sampling the amplitudes block-wise en-
ables dramatical reduction of the algorithm complexity.
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(a) Computation time (b) � � � (std vs iterations) (c) � � � (std vs comp. time) (d) � � �� (std vs comp. time)

3 5 8 12 15 18 25 32 40
0

1000

2000

0 2000 0 12 0 1800

Fig. 1. Performance comparison of Algorithms 1 and 2. (a) Average computation time of Algorithm 1 (squares) and 2 (circles) as a
function of the model order �, with � � ����. In dashed lines, polynomial interpolation with order one (squares) and order 3 (circles).
(b) Evolution of the standard deviation of the MMSE estimation error as a function of the iteration � for Algorithm 1 (solid lines) and 2
(dashed lines). (c) Same as (b), but plotted as a function of the average computation time. (d) Same as (c) with model order � � ��.

Algorithm 1 Algorithm 2 True value
�� 0.0110 0.0110 0.0111
�� 0.0996 0.0992 0.0998
�� 0.1517 0.1516 0.1515
�� 0.1878 0.1878 0.1879
�� 0.2137 0.2142 0.2145
�� 0.2696 0.2689 0.2692
�� 0.4475 0.4473 0.4493
�� 0.4551 0.4551 0.4551

Table 1. Frequency estimation results using Algorithm 1 and Al-
gorithm 2 in the case � � �. For each algorithm, the values pre-
sented are MMSE estimates obtained by averaging samples from
� � ���� to � � � � ���� over the 100 simulated Markov Chains.

5. SIMULATION RESULTS

In this section, we study the performance of Algorithms 1-2 in the
case of spectral estimation (see [1] for a full presentation). The
case of harmonic analysis is much more complicated, and simula-
tion results can be found in [8].

In spectral estimation, �� � �� and ����	 � 
��� ��� with
�� � 
� � � � �
�����	� � � ��

� and �� � 
� � � � �������	� � � ��
�. Block

size is �� � � and �� � �. Here, we assume the number of
blocks (i.e., the number of frequencies) � known, though the al-
gorithms could be straightforwardly extended to unknown � via
reversible jumps. For the simulations, we create observations ac-
cording to eq. (1) with	 � ��� points and noise variance 
� � �.
The amplitudes, initial phases (denoted ��) and frequencies in
the simulated � are selected randomly i.i.d. as � � � ��� ���	,
�� � ��
�� ���	 and �� � ��
�� ��	, where � 

� �� is the uni-
form distribution on 

� ��.

In simulations, the amplitudes prior is �� � 
��� with 
� �
�. For both Algorithm 1 and Algorithm 2, we simulated 100 Markov
chains for the model orders � � �� �� �� ��� ��� ��� ��� ��� ��
with � � ���� samples. Results are given in Tab. 1 and plot-
ted in Fig. 1. As can be seen, the computational cost of our al-
gorithm increases linearly with � (as blocks size is �� � �,
whatever �), whereas it increases in ����	 for the standard al-
gorithm. The estimation error (as a function of the iterations �)
does not decrease significantly slower with our algorithm, what-
ever the model order. On the other hand, the estimation accuracy
is much better with our method in terms of computation time. In
our implementation, ��� is formed directly, �� is as in [1] and ��

is as in Subsection 4.3. The matlab files used in the simulations can
be downloaded at http://www.irccyn.ec-nantes.fr/
˜davy/fastMCMC icassp.tar.gz.

6. CONCLUSIONS

In this paper, we have introduced a fast MCMC algorithm for
Bayesian inference. Typical applications are spectral estimation [1]
or harmonic analysis of music [2], where dramatical reduction of
algorithmic complexity has been demonstrated. This algorithm en-
ables the extensive use of MCMC in applications that require high
dimensional models, see e.g., [8].
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