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ABSTRACT

We develop a method for the formation of Doppler radar images

with enhanced features. This problem, when studied as an adap-

tive spectral estimation problem, is particularly ill-posed because
of the small number of data. Our approach is based on a regu-

larized estimation of depth-frequency images which combines a
high-resolution Fourier model of the observations with prior infor-

mation about the nature of the features of interest. We first derive
an appropriate model and a regularized criterion for meteorologi-

cal clutter restoration before addressing the extension to the iden-

tification of spot-like targets superimposed to this clutter. We also

adapt quasi-Newton algorithms based on Half-Quadratic regular-
ization [1, 2] for the computation of the solution. The practical

interest of our approach is validated on simulated and real data.

1. INTRODUCTION

The problem of adaptive spectral estimation has received consid-

erable attention in the signal processing community [3, 4, 5] since
it came up in various fields of engineering, especially in radar

Doppler imaging. In this context, it consists in searching for a

series of spatially depth-wise juxtaposed spectra given the discrete

time data, extracted for any depth of interest. The present paper
focuses on short-time estimation since only eight time points of

complex-valued pulsed Doppler signals are available to estimate

each spectrum. Two complementary problems are then studied.
Section 2 focuses on estimating a series of spectra of atmo-

spheric clutter (rain, sea, mixed clutter) with a large variability in
terms of spectral content and number of modes. Given a small

number of data points, periodogram-based estimates are unreli-

able. Long AR models have been investigated using quadratic reg-

ularization to account for spectral smoothness and depth continu-
ity [6, 3, 5]. Unfortunately, quadratic penalization oversmoothes
discontinuities between different clutters. To overcome these limi-

tations, we propose a depth-frequency analysis in a nonparametric

framework. In [7], we have developed a regularized approach that
integrates spectral smoothness for the estimation of a single spec-

trum. Here, we propose a 2D extension to account for depth con-

tinuity as well. The depth-frequency image solution is defined as

the global minimizer of a convex criterion, regularized in both di-

rections (depth and frequency) using a nonquadratic penalty term.

Section 3 addresses the problem of restoration of targets su-
perimposed on atmospheric clutter. The proposed approach gen-

eralizes the mixed spectrum estimation method proposed in [7].

It amounts to estimating two depth-frequency distributions: one

for the targets and one for the clutters. Since target spectra are

mostly spiky, a separable penalty term is used to enhance this fea-
ture. Finally, the pairs of mixed spectra that result from global op-

timization of a unique criterion are summed up to provide a map

that displays both the targets and the clutter. Efficient numerical

solution is achieved through 2D extensions of block-coordinate
descent based on HQ regularization [1, 2]. These methods are

matched to the complex nature of the estimated quantities. In Sec-

tion 5, results on synthetic and real Doppler signals are presented.

2. ATMOSPHERIC CLUTTER IMAGING

2.1. Problem statement

In radar Doppler imaging, the data consist of a set of complex-
valued signals

� � � � � 	 � � � 	 � � �
, spatially depth-wise juxta-

posed in � bins, each reflecting a certain depth range. Following

[4, 7], each short-time vector of data
� �
is assumed to be a trun-

cated subset of a complex time series � � � � � � � � . Moreover, it is
supposed to be independent from its neighbors

� � � �
. Fig. 1 gives

a Gaussian simulated example over � � ! #
range bins for which$ � '

data are observed per bin.

Depth-frequency estimation is addressed as the depth-wise ex-
tension of spectral analysis. For short-time data sets, this issue

can be tackled as a Fourier synthesis problem [4, 7]. Similarly,

our goal is to search for the energy distribution of � � � � � � � � in
the frequency domain. The harmonic frequency model is usually
considered for this task. Assuming that the distribution of spec-

tral amplitudes ) � � + �
is continuous with respect to frequencies

+ , the inverse discrete-time Fourier transform links the unknown
function ) � - / 1 2 � 3 	 4 �

to the finite energy series � � � � � � � � ac-
cording to

� � � � 8
�

9 ) � � + � : 1 ; < = � > + �
(1)

Spectral estimation is thus a discrete-time continuous-frequency

problem, consisting in recovering ) � � + �
given � � �

for ? - A C �D 3 	 � � � 	 $ G 4 J
. Following [4, 7], we resort to a discrete fre-

quency approximation using a large number of sinusoids, say K M$
, at equally sampled frequencies N P K 	 N - A R

. The approxima-

tion of (1) then reads

� � � �
R T �U

V W 9 ) V � X V �9 	 ? - A C 	
(2)

where
X 9 � Z \ ] � _ ` a P K �

and ) V � - d
are the unknown spec-

tral amplitudes. In vector-matrix form, (2) rereads:

� � � f h i j � 	
(3)
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(b) (c)

Fig. 1. Simulated data over 96 range bins with 8 Doppler pulsed
signals per bin. (a) real and imaginary parts of the data. (b) the
series of true spectra. The narrow zero-mean spectra characterizes

ground clutter (bin 15 to 47). Rain clutter presents broader single-

mode spectra (bin 31 to 63). Sea echos exhibit two maxima (bin

47 to 79). (c) the associated periodograms.

where
� � � � � 	 
 �� 
 � � � �
 � � � and � � � � � � � � � � � � � � �  ! � � 
 $

.

For the whole dataset, concatenation of equation (3) in %
depth range bins yields

& � ) +
with

) � - / 1 3 � � � � 

and+ � � � ! � � � � � � 7 


, which states the 2D relationship between

the observations and the unknown Fourier coefficients (or com-

plex spectra). Since
8 : ; , this system is underdetermined,

and there exists an infinite number of solutions in the least squares
sense. The problem is now to incorporate structural information to

overcome the underdeterminacy in an appropriate way.

2.2. Estimate

Following [4, 7], we use a penalized approach. That means the

estimate <+
is the complex-valued Doppler image given by <+ �1 > 3 A / D F G + H
, where

F G + H � J & L ) + J N P R T G + H �
From the Bayesian viewpoint, <+

corresponds to the MAP (Max-

imum A Posteriori) estimate [4], and its componentwise squared
modulus U <+ U N

defines the estimate of the series of power spec-

tra. The hyperparameter
R W X

controls the trade-off between the

closeness to the data and the confidence in a structural prior model

embodied in
T
. Here, spectral smoothness and depth continuity

define our prior information on the atmospheric clutter
+
. Spec-

tral regularity involves each vector
� �
separately, whereas depth

continuity involves neighbor range bins, but both are related to the

power spectra, i.e., to positive distributions. As a consequence,
T

is chosen circular, that is

T G + H � T G � ! � Y Y Y � � � H � T G \ ! � Y Y Y � \ � H
with \ � � U � � U � � ^ ! � � � � � � ^ � � 
 $

. For computational sim-

plicity, we focus on convex and continuously differentiable ( b !
)

energies
T
and

F
.

2.3. Markovian depth-frequency regularization

In [7], we have proposed the following circular and convex penalty

term to enforce spectral smoothness:

c
S G � � H �

�  !e
� f � G h S i ! G ^ � j ! � � L ^ � � H P i N G ^ � � H H �

(4)

where h S l X
tunes the amount of smoothness, i N m o j q ro , and ^ � � � � ^ � � �

because of the 1-periodicity of the discrete
Fourier transform. As stated in [7, Corollary 1], function

c
S is

circular, i.e.,
c
S G � � H � c

S G \ � H
and convex, provided that:

t i !
is even and convex, (5a)t i N is convex and nondecreasing, (5b)t h S u h w x y � i z N G X j H { } i z ! G � H �

(5c)

Inequality (5c) gives an upper bound on the smoothness level that
can be chosen while maintaining convexity of

c
S. Since h w x y W X

requires i z N G X j H W X
, i N G U Y U H

and
c
S are not b !

at zero. Fori N G � H � � , a b !
approximation is [7]

c
S

� � G � � H �
�  !e

� f � G h S i ! G � � j ! � � L � � � � H P � � � � H �
(6)

where � � � � i � G ^ � � H
, i � G � H � � � N P U � U N

, and
� W X

. Func-

tion
c
S

� � is also circular and its convexity is proven in [7, Corol-
lary 2] under conditions (5a)–(5c).

Spectral regularity and depth continuity are simultaneously
taken into account in a natural extension of (6) given by

T G + H �
7e

� f ! c
S

� � G � � H P h T
7  !e

� f !
�  !e

� f � i � G � � � � j ! L � � � H �
(7)

where i � is also convex, and h T l X
tunes the amount of depth

continuity. Proceeding as in the previous 1D case, a straightfor-

ward extension of (5c) that guarantees convexity of
T
is:

h S u �} i z N G � H and h T u G � L
�

H
} i z � G � H �

for �
� � X � � 
 �

(8)

In practice, i !
and i � are chosen quadratic around zero to avoid

ringing artifacts, and linear at infinity, to restore spectral and/or

depth discontinuities [8, 9]. Among this set of functions, we retain

the hyperbolic potentials: i ! � � G ^ H � � � N! � � P ^ N
. Given these

choices,
T
is convex if h S and h T u � { � , for a fair compromise be-

tween spectral regularity and depth continuity ( �
� � { } ). Finally,

the whole set of hyperparameters is � � G R � h S � � ! � h T � � � � � H
.
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3. TARGET IDENTIFICATION IN ATMOSPHERIC
CLUTTER

3.1. Depth-frequency mixed model

A mixed spectrum consists of both frequency peaks and smooth
spectral components. Mixed spectrum estimation has been ad-

dressed in [7]. Here, we propose a depth-wise extension for the

restoration of a series of such spectra. Following [7], each vec-

tor
� �
is split into two sets of unknown variables: the frequency

peaks
� L� and the smoother components � S� . Then, the observa-

tion model reads
� � � � � 	 
 � L� � � S� �

in range bin 
 . Given
the whole set of range bins, adequation of the model to the data is

measured by

� 
 � � � � � � � 
 � L � � S � � � � � � � � � � � � � ! " � � �
where

� L � � � L$ � & & & � � L( !
,

� S � � � S$ � & & & � � S( !
and

� �� � L , � S !
is a - / 1 2 complex matrix. In this form, the problem

is still ill-posed. The construction of the regularization term is now

detailed.

3.2. Estimate

Minimizing a penalized criterion defined from (7) does not allow

to retrieve spectral peaks embedded in a broadband background
[7]. According to [7], mixed spectra restoration is achieved by

means of a compound penalized criterion
3
M 
 � � � �

M 
 � � � 5
L

6
L 
 � L � � 5

S
6
S 
 � S � � 
 5

L
� 5
S

� 7 8
(9)

where
6
L is designed to enhance spectral peaks and

6
S takes the

form of (7). Akin to [4, 7], we introduce a separable circular con-
vex energy

6
L to reconstruct a line spectrum

� L� in all range bins
 . In the context of Doppler radar imaging, such a penalization
becomes

6
L 
 � L � �

(9
� : $

; = $9
> : @ A @ 
 B L> � � �

where
B L> � � D D E L> � DD , and A @ is hyperbolic as well as A $ F G . SinceA @ is convex and increasing on H I , 6

L is convex [7, Proposition
1]. Given that

6
S is also convex and J

$
, the global criterion

3
M

inherits the same properties. Its global minimizer is defined by

K� � N K�
L , K�

S O � Q R T V X Z[ 3
M 
 � � &

In the Bayesian framework adopted in [4], \ K�
L

� K�
S ] corresponds

to the joint MAP estimate. Finally, the Doppler image solution is

the componentwise squared modulus of the superposition K�
L

� K�
S.

Note that eight parameters ^ M � 
 5
L,S

� ` @ F $ F G � b S,T � c �
have to be

tuned for the estimation of a series mixed spectra.

4. COMPUTATIONAL ISSUE

We now discuss the minimization stage of
3
and

3
M. In [1],

we have introduced powerful minimization block-coordinate de-

scent methods for line and smooth spectra restoration. They rely

upon two forms of half-quadratic (HQ) regularization: Geman &
Reynolds’ construction and Geman & Yang’s one, respectively.

the second one allows to derive convex and J
$
HQ criteria for

Markovian penalty terms such as (6). For this reason, the sec-

ond algorithm has been generalized for mixed spectra restoration

in [2]. Convergence proofs have been stated for convex and J
$

criteria such as
3
and

3
M. As shown in [10], the 2D depth-

frequency extensions for estimation of clutter and target-clutter
radar images are straightfoward for the following reasons. First,

there is no correlation between adjacent range bins in the obser-

vation model. Second, the penalization terms involving the fre-

quency and depth directions in (7) do not interact. Note that these
techniques are quite similar to the quasi-Newton algorithm devel-

oped in [11] where no convergence proof is given.

5. EXPERIMENTAL RESULTS

5.1. Simulated example

The solution spectra have been computed on - � d e frequency
points. In practice, taking - 7 d e does not markedly improve the
resolution, while it increases the computational burden.

Fig. 2 shows a comparison between our solution and the spec-
tra series yielded by the long AR regularized technique [5]. In

our approach, the hyperparameter values have been empirically

selected after several trials, as those that minimize the
f $
distance

between true and estimated spectra. Consequently, the hyperpa-
rameters ^ � 
 8 & h � 8 & e � e 8 8 � d � � 8 G �

have been retained. Note that

spectral smoothness is less enforced than depth continuity sinceb S l b T: this allows to account for the presence of the narrow
band ground clutter. Moreover, convexity of the corresponding
penalization

6
is not ensured since conditions (8) are not fullfiled.

In practice, the restoration of mixed clutters as those in Fig. 2 re-

quires nonconvex energies since 
 b S � & e � b T � d � 7 � n e .
In the AR technique, there are only two hyperparamters, o S �5 b S and o D � 5 b D that have been set using the same empirical

rule1, leading to 
 o S � o D � � 
 8 & � 1 � 1 h 8 �
. A qualitative comparison

with Fig. 1 leads to four conclusions.

p The effect of regularization is obvious. Spectra estimated
with the AR method or our technique are closer to the true

ones compared to the periodograms.p The ground clutter is estimated with a high resolution by
both regularized methods.p The sudden transitions at the beginning and the end of the
ground clutter are over-smoothed by the ARmethod whereas

they are preserved by our approach. In addition, the rain
clutter and sea echos are enhanced by our approach.p The computation of our depth-frequency image requires three
times more parameters than using the AR method.

Finally, remark that heterogeneous clutters are better separated

with a nonquadratic energy.

A quantitative comparison has been achieved by evaluating
f $

distances between true and estimated spectra. The results show an

improvement of about 25 % from periodograms to the AR method,
and 20 % from the AR solution to the proposed one.

5.2. Real data of Doppler radar imaging

The proposed technique for estimation of a series of mixed spec-
tra is tested on real data2. The recording ( 2 � e q

,
r � q

)

1an unsupervised extension is proposed in [5] where u w S x w D y are au-
tomatically selected using a maximum likelihood strategy.
2The authors wish to thank Daniel Muller (Thales Air-Defense, Bag-

neux, France) for providing the Doppler radar data presented in the paper.
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Fig. 3. (a) series of periodograms, (b) result from clutter estimation technique, (c): sequence restored by mixed estimation.
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Fig. 2. Mixed clutter estimates: (a) regularized long AR solution
of [5]. (b) our clutter imaging technique.

was composed of a meteorological clutter and an isolated target.

Fig. 3(a) shows that the periodogram was not able to detect the tar-

get. The result of the clutter characterization technique is depicted

in Fig. 3(b). The depth-frequency shape of the clutter is accurately
restored but the target is lost as well. The clutter estimate has been

computed using � � � � and an empirically chosen vector � . The
joint MAP solution (i.e., � ��

L
	 ��

S � 

) is presented in Fig. 3(c). The

isolated target clearly appears in range bin � � � 

, through spots

at � � � � � � 

and � 
 � � � �

. This depth-frequency image has been

computed with the same set � � � � � � � � S,T � � �
. Two additional hyper-

parameters � �
L

� �
S

�
appear in (9). It is a priori useful that choose

values of
�
L and

�
S to have the same order of magnitude, otherwise

the over-penalized term would yield a vanishing Doppler image.

6. CONCLUSION

This communication addresses depth-frequency spectral estima-

tion in the context of Doppler radar imaging within the regulariza-

tion framework. Two different problems were tackled. The first

was the reconstruction of atmospheric clutters that present rather
smooth shapes. The second one was an extension to the identifi-

cation of spiky objects embedded in such clutters. We proposed

solutions to both by the definition of an appropriate regularized

criteria and demonstrated the validity of the approach on real data.
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