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ABSTRACT

In functional Magnetic Resonance Imaging (fMRI), the Hemody-
namic Response Function (HRF) represents the impulse response
of the neurovascular system. Its identification is essential for a
deeper understanding of the dynamics of cerebral activity. In [1,
2], we developed a voxelwise approach i.e., based on a single
time-course. In this paper, we propose an extension to cope with
region-based HRF estimation. We introduce a spatial homoge-
neous model that assumes the same HRF shape for a majority of
voxels within a given region-of-interest (ROI). A Least Trimmed
Squares estimator is employed to select those voxels. A Bayesian
HRF estimation is then performed with the corresponding time
courses. Our approach is tested on real fMRI data to illustrate
the gain in robustness achieved with the region-based estimate.

1. INTRODUCTION

Functional MRI (fMRI) is a non-invasive technique allowing for
the evolution of brain processes to be dynamically followed in var-
ious cognitive or sensori-motor tasks. In the most common fMRI
technique, based on the so-called Blood Oxygenated Level Depen-
dent (BOLD) contrast [3], the measure is only indirectly related to
neuronal activity through a process that has not been completely
understood so far [4]. For this reason, a convenient way to analyze
BOLD fMRI data consists of modeling the whole brain as a sta-
tionary, linear “black box” system characterized by its impulse re-
sponse, also called the Hemodynamic Response Function (HRF).
Estimation of the HRF has received considerable attention for
the last decade [5] since it can give a deep insight into the un-
derlying dynamics of brain activation. Recently, non-parametric,
Bayesian approaches have been developed to define an accurate es-
timation of a task-dependent response for event related designs [1,
2]. Such methods were based on a single time course regardless
of the origin of the signal (a voxel or a region-of-interest (ROI)).
To define a region-based HRF estimate, the usual technique con-
sists of summarizing the brain activity over a given ROI by com-
puting its mean fMRI signal. However, some voxels may have
a different hemodynamic response within a given ROIL In par-
ticular, closeness to large veinules or partial volume effect may
have strong influence on this response. Therefore, averaging data
from different voxels may lead to a suboptimal estimate. In this
paper, we propose an extension to address HRF estimation in a
given ROI accounting for the spatial dimension of the data. We
introduce a region-based modeling for the HRF: within a given
ROI, we assume that a majority of voxels respond with the same

HRF shape. To identify this subset, we resort to Least Trimmed
Squares (LTS) estimation [6]. We therefore reject the time courses
of voxels which represent outliers in the ROI. We then compute an
unsupervised Bayesian HRF estimate, based upon the remaining
time courses. Following [1], we resort to the Expectation Maxi-
mization (EM) algorithm for hyperparameter estimation. Finally,
we demonstrate the robustness of our approach on real fMRI data
acquired in a speech perception experiment.

2. SPATIAL MODELING IN fMRI

2.1. Standard voxel-based formulation

Let an fMRI experiment be composed of K sessions, each session
involving M different stimulus types. Define y]’“ = (yf,tn )tlgng N,
as the BOLD fMRI time course of voxel (i.e., volume element) V;
at (non-necessarily uniformly sampled) times ¢,, for session k and
xy = (2}, )i>t, the corresponding binary time series, composed
of the mth stimulus onsets (i.e., arrival times). Following [1, 2], a
convolution model is assumed between the stimuli and the data:
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Vector hj" = ( o At)p=0,.., p represents the rnth unknown HRF

to be estimated in voxel Vj, sampled every A¢. All HRFs have
been assumed to be space-varying but constant across sessions so

t .
far. Denote @}, = ($thanAt)0<p<P such that matrix X" =

[ mthk ] " is the Ng x (P+1) design matrix, consisting

of the lagged stimulus covariates. In matrix D= [d]f7 R dlZ)k]’
of size Nj;x(Qy, are the values at times ¢,, of an orthonormal ba-
sis (i.e., DDy, = Iy,) of Q; functions d’qC = (dg’tn ) that
take a potential session-dependent drift and any other nuisance ef-
fect into account. Vector lf = (l’;’j)igqng contains the cor-

responding unknown coefficients. Vector bf = (bf,tn )* accounts
for uncertainty in voxel V; for session k and is supposed to be
N0, (r]2 Iy, )-distributed and independent of the HRFs. Variance

# is unknown and assumed to be constant across sessions [1].
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Denote N, = {1,...,%}, in matrix form, this relation reads

M
yh = 21 X{"h7" 4+ DplY + b, V(k,j) € NgxNy

= Xyh; + Dyl +b§ ()
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with X = [X}|...|XM]and by = [(BD), ..., (B})]]". As
hypothetized by (1), voxel-based approaches [1, 2] have addressed
HREF identification using several time courses acquired in the same
voxel Vj; during successive runs. However, when a functionnally
homogeneous ROI is analyzed, it has been observed that the HRF
shape is similar for voxels close from each other [7]. We therefore
introduce a generalization of (1) that takes the spatial dimension
of fMRI data into account.

2.2. Region-based models

Let R = {V1,...,Vs} be a J-dimensional homogeneous ROI,
which may correspond to a functional activation cluster detected
using SPM99'. A straightforward extension of model (1) that
accounts for voxel-dependent noise level but assumes a constant
HREF shape over the region is given by:

v; = Xh+DI; +b; 2)
X = [X{]...|X%]", D =diag D, ..., Dx]
Yi = ((yf)ZeNK)t:ﬂj = ((l;?)zewk)t;bj = ((b}“)iew,{)t-

Model (2) implicitely assumes that the HRF time course h is sta-
ble enough across sessions and that vector b; is composed of in-
dependent and identically distributed (i.i.d.) realizations bf of the
same noise process. If the goal was to investigate the variability of
the HRF across sessions (due for instance to learning effects), we
could consider a session-dependent regional model.

In functional neuroimaging, ROIs are often defined from an
anatomical reference in order to identify its functional role. Some
voxels of such an ROI may have a space-varying functional ac-
tivity. To select the subset of voxels within a given ROI that are
the most functionnally homogeneous, we identify the time courses
that match model (2) at best using an LTS algorithm [6].

3. OUTLIER DETECTION IN A GIVEN ROI

Details about the LTS algorithm are provided for model (2).

3.1. Principle

Let r be the number of outliers, which is assumed to be known
a priori (0 <r < J/2) (see section 5 for a discussion about this
point). Denote Z C R a subset of voxels of size I = J — r. Our

goal is to identify the subset that best fits (2), say f, by solving:

(R1,2) = argmin| ¥ |ly; ~Xh—DL|’]
rlz Liez

with 1 = ((1%)jen,)". Since this criterion is quadratic with re-
spect to (w.r.t.) (h,1), it can be shown that Z is given by

2
] 3

where §j = ]Pyj, P= diag [Pl, ey PK], Pk = INk_DkD]tc =
Pz, = Qy, and Q = (X'PX) 'X'P/vT. Computing 7
is an acknowledged NN P-hard problem. It requires time-consu-
ming algorithms, especially for large datasets as in fMRI. Here,
we resort to a fast but suboptimal numerical scheme to get a local
minimizer.
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3.2. Single Most Likely Replacement (SMLR) type algorithm

SMLR algorithms originate from sparse spike trains deconvolution
in geophysics [8]. An inlier subset Z that locally minimizes (3) is
identified as follows:

e Setup Z and compute sz = Zjel z;

e Define Z,,, = I\ {m} U {p} for the m x p possible
permutations between m € Z and p € R\Z

e Compute the local minimizer 7 = Zsp such that

L' (Zp) = (min) [6Ly,, = L"(Zmp) — L"(Z)] with
m,p

~ 112 ~ 2 2

8Ly = I51° =15 m I* ~2(zp—2m) sz~ ||2p — 20|

e Update ST=S7 and Z; iterate until JL%L; <0.

4. REGION-BASED HRF ESTIMATION

Once 7 is known, a region-based HRF estimate may be derived.
The likelihood of model (2) reads:

1
ply|h,1; 0)x 1_[1 U'j_NeXP (_HYJ‘_Xh_]Dlj “2/20';) :
j=

. 6 .
with y = ((yg)jelNI) , N = Ek Np. In the following, we
show how prior physiological information can be modelled in the
Bayesian framework to get a more accurate HRF estimate.

4.1. Prior information

The HRF. Following [1, 2], we assume that: (i) each HRF h™
starts and ends at 0, so that only P—1 parameters are unknown. (ii)
A smoothness prior p(h™ ; 7n) = N(0,7»R), is chosen to
enforce the low time-varying behavior of the hemodynamic re-
sponse to the mth stimulus type. Covariance matrix R is a mea-
sure of second-order smoothness: R = (Dng)fl, with D>
the truncated second-order finite difference matrix to account for
hy* = hpa, = 0. (iii) No prior dependence is assumed be-
tween HRFs, so that p(h, 7) =1 1,, p(A™ ; 7). Prior variances
T = (7 )" are unknwon and estimated from fMRI data.

The nuisance variables. We assume that 1 is an i.i.d. random
process, independent of h, with common probabilit density func-
tion (pdf) a Gaussian law p(l; u) = Hj,k p(lf;uk) such that
p(I¥; ) ~ N(0, i I, ), with unknown parameters 1 = ()"

4.2. MAP HREF estimator

Let @ = {o,7,pn}, we obtain the joint posterior pdf of (k,1)
using Bayes rule:

p(h, 1]y ; 0) <p(y|h;La)ph; T)p(l; p).

Since p(h,l|y ; ) ~ ./\/’(TL,T; ¥), we retain the maximum of
this Gaussian pdf as the regionwise HRF estimate:

IEMY (Rhnj |y)j (4)
Ry, 1y)i (B, 1y)is

ajr =1 +07/pe)"", Qf = Iy, — ;D D},
RnyZJ_XI;X,ﬁQka/af + R )

2 2 Cov (h,1|y) = (
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Ry = ajro;Iq, + af,Di Xt RyyX; Dy, )
Rz;u’?’\y = ajrjp Dy Xy Ry X Dy, (1K) # (. k) (8)
h = Ruy 2 XiSy] /o, ©)
¥ = a; D (y¥ — X4h) (10)

where Ry, = diag [T R, ..., 7arR] and (j, §', k, k') € N3x N%.

4.3. Hyperparameter estimation

ML estimator. Since h depends on 6, we rely on Maximum
Likelihood (ML) to estimate @, i.e., we compute 8" by maxi-
mization of the likelihood p(y ; 0):

6" = argmin[—Inp(y ; 8) =In|E| +y'E 'y], b
e
E = (I - YIY'RE') 'R,
Y=[L X/ ®D], Rb=daglol,...,07] @ Iy.

where ® stands for the Kronecker product. In practice, we only
locally maximize the likelihood using an EM algorithm [9].

EM algorithm. The EM algorithm is a general locally conver-
gent method that ensures the increasing of the likelihood function
p(y ; @) of a parameter vector @ given the data y at each itera-
tion. Starting from @°, we generate a series of estimates % by
alternating the following two steps:

Q(6,6") = Enl[lnp(y, h,1; 0)ly ; ']
0" = arg max (0, 6")
)

Evaluate (E-step):
Maximize (M-step):

From p(y, h,1; )

= ply|h,1; o)p(h; T)p(l; p), we de-
duce Q(0,60') = Qy(o,0")

+ Qh(‘r 0') + Ql(w, 0") with:

Qy(0,0') = —% Zlna] - = E[lly; — Xh —DI;||*|y; 6']
.]

Qn(r,0) = 12PZlnTm——l |R|——E[htRh hly; 0]

Ql(u,o’) = zk:( IQk In py, — /luc ; E[(l;?)tl;-c |y ; 9’]).

The M-step decouples and thus amounts to searching for 0 that
cancels the partial derivative Q(60, @')/00. The optimal param-
eters are given by

77 =(ly; = Xh - DL|+t(C'%;C))/N, j €N (12)
Rh|y Ry |y]
Rty Bujisiy
7 =tr((Amhly + Ramy) Ry ') /(P — 1), m € Nar  (13)

=[X|D] and 2]:[

I
fie = §)l(||i§||2 +tr(Rygyy)) /1Qx, k € Nic. (14)

The EM algorithm consists in iteratively computing 32, h and1us-
ing (4)-(10), and then updating sucessively &2, 7 and fi with (12)-
(14). The unsupervised HRF estimate is finally obtained when
local convergence is achieved.

5. RESULTS ON REAL fMRI DATA

5.1. Description of the paradigm

The method was assessed on real data acquired in a speech dis-
crimination experiment. The experiment consisted of K = 6
sessions comprising N, = 100 trials lasting 3.3 seconds each.
In each trial, the participant heard two pseudo-words over head-
phones. His task was to indicate whether he had perceived or not
a difference between the two stimuli. There were M = 3 types of
trials: ‘Phonological’ (h'), ‘Acoustic’ (h?), ‘Control’ (h®). In tri-
als belonging to the ‘Control’ condition, the two auditory stimuli
in the pair were exactly the same. In the ‘Phonological’ condition,
the stimuli differed along a contrast used to distinguish words in
the language of the participant (it was linguistically relevant: path
vs bath in English). In the ‘Acoustic’ condition, the stimuli also
differed but the contrast between the stimuli was not linguistically
relevant (beat vs beet in English).

The stimuli pairs were presented during the silent gaps lasting
2 seconds between two succesive acquisitions (the TR was 3.3 s
and the time of acquisition of one volume was 1.3 s). The onsets
of events were aligned with the start of the second stimulus in a
pair (i.e., at 1.65 s), which felt in between two successive acqui-
sitions. At = TR/2 is therefore an appropriate choice for the
sampling period of the HRF.

5.2. Discussion

ROI definition. The ROI R was defined from a ¢-map® com-
puted from the (Phono.-Cont.) contrast exclusively masked by the
(Phono.-Acous.) t-map. This region consisted of J = Card [R] =
15 voxels that performed a differential treatment when the stimuli
differed, regardless of the type of difference. Fig. 1 shows that R
is located in the planum temporale of the left hemisphere.

Fig. 1. R definition. The cross indicates the most significant voxel
Vi = (=52, —48,20) mm in Talairach coordinate system.

Outlier detection. Region R was functionnally homogeneous
since all voxels except V4 elicited very similar responses for h

hf and hj‘, respectively (j € R). Four out of the J = voxel-
based HRF estimates are presented in Fig. 2. They were obtained
from all sessions as in [1]. Not surprisingly, for j € R, fALJl and
;\lf are very close to each other, whereas ﬁ;’ slightly differs by its
lower magnitude and its shorter peak duration. The error bars also
depicted on Fig. 2 correspond to the square root of the diagonal of
matrices Rh;_n, m € IN3. As suggested by Fig. 2, the closeness of
the HRF shapes justifies the interest of a region-based modeling.
The multisession region-based HRF estimates are plotted in
Fig. 3. The results depicted in Fig. 3(a) were obtained without
discarding voxels. The outlier detection was then performed by

2thresholded at p = .05 corrected for multiple comparisons.
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Fig. 2. Voxel-based HRF estimates in four voxels of R (j € IN4).
hjl-, hf- and h;’-’ are plotted in (- -), (-.) and (-) lines, respectively.

setting » = 1 since Vj responded differently. In a couple of it-
erations, the minimum of L"(Z) was achieved by Z = R\V4
from which we got the region-based HRF estimate appearing in
Fig. 3(b). Compared to Fig. 3(a), no significant improvement is
obtained using 7 instead of R. This outlier detection procedure
should therefore be tested on less homogeneous ROI (e.g., anatom-
ical ROI) to assess whether this step becomes necessary when the
outlier number grows. Since r was supposed to be known, we
tested different values. We observed smoother HRF shapes in case
of over-estimation (e.g., = 7 in the presence of one outlier), as
when the signal-to-noise ratio was decreased.

g [ @] [H® e
= 05 I’ % <h;:Control 0.5] I 15 ~h;Control
g / ?‘r\ : } i ;'/ ?"g ; }i %
o P T
24
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Fig. 3. Region-based HRF estimates h. (a): no outlier detection.
(b) r = 10% i.e., one voxel (V3) is identified as an outlier.

Analysis of the between-session variability. As outlined in Sub-
section 2.2, our region-based HRF estimation method makes the
study of the between-session variability feasible. Fig. 4 (top row)
shows session-dependent HRF estimates computed from a single-
time course (the mean signal over R). For comparison, the pro-
posed region-based HRF estimates are reported in Fig. 4 (bottom
row). These results highlight the dramatic improvement achieved
using spatial information, especially for session 1.

6. CONCLUSION

We have proposed a region-based modeling and an unsupervised
estimation method of the HRF that accounts for spatial informa-
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Fig. 4. Session-dependent HRF estimates. Top row: identification
from the mean signal; bottom row: region-based estimates.

tion. For a potential misspecification of this region, we have in-
troduced a preliminary outlier detection step. Future works should
investigate whether this step is a keypoint or not. The automatic
tuning of the outlier number should also be addressed. Finally, for
a given ROI the identification of session-dependent HRFs make
the investigatation of putative learning effects possible.
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