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Efficient Maximum Entropy Reconstruction of
Nuclear Magnetic Resonance T1-T2 Spectra

Émilie Chouzenoux, Saïd Moussaoui, Jérôme Idier, Member, IEEE, and François Mariette

Abstract—This paper deals with the reconstruction of T1-T2 cor-
relation spectra in nuclear magnetic resonance relaxometry. The
ill-posed character and the large size of this inverse problem are
the main difficulties to tackle. While maximum entropy is retained
as an adequate regularization approach, the choice of an efficient
optimization algorithm remains a challenging task. Our proposal
is to apply a truncated Newton algorithm with two original fea-
tures. First, a theoretically sound line search strategy suitable for
the entropy function is applied to ensure the convergence of the al-
gorithm. Second, an appropriate preconditioning structure based
on a singular value decomposition of the forward model matrix is
used to speed up the algorithm convergence. Furthermore, we ex-
ploit the specific structures of the observation model and the Hes-
sian of the criterion to reduce the computation cost of the algo-
rithm. The performances of the proposed strategy are illustrated
by means of synthetic and real data processing.

Index Terms—Laplace inversion, line search, maximum en-
tropy, nuclear magnetic resonance, SVD preconditioning, T1-T2
spectrum, truncated Newton.

I. INTRODUCTION

N UCLEAR magnetic resonance (NMR) relaxometry is a
measurement technique used to analyze the properties of

matter in order to determine its molecular structure and dy-
namics. After the immersion of the matter in a strong magnetic
field, all the nuclear spins align to an equilibrium state along
the field orientation. The application of a short magnetic pulse
in resonance with the spin motion perturbates the spin orienta-
tion with a predefined angle , called flip angle or pulse angle.
The NMR experiment aims at analyzing the relaxation process
which corresponds to the re-establishment of the spin into its
equilibrium state.

This movement is decomposed into longitudinal and trans-
verse dynamics, characterized by relaxation times T and T ,
respectively. In practice, the longitudinal magnetization after

seconds of relaxation is measured by applying a 90 impul-
sion in the transverse plane. The transverse magnetization after

seconds of relaxation is obtained by a series of dephasing
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impulsions in the transverse plane [1, Ch.4], [2, Ch.4], [3]. Clas-
sical NMR experiments are conducted to analyze the samples
independently, either in terms of longitudinal or transverse re-
laxation, leading to one-dimensional (1-D) distributions [4], [5].
On the contrary, joint measurements with respect to the two re-
laxation parameters allow to build two-dimensional (2-D) T -T
spectra. Such spectra reveal couplings between T and T relax-
ations that are very useful for structure determination [6]–[8].

The physical model behind NMR relaxometry states that the
measured NMR data are related to the T -T spec-
trum T T , according to a 2-D Fredholm integral of the
first kind

T T T T T T (1)

where and are kernels modeling the longitudinal and trans-
verse relaxations

T

T (2)

with . In practice, an uncertainty in this observa-
tion model can occur if the pulse angle is not set exactly to its
desired value.

The associated inverse problem involving the recovery of the
continuous distribution T T is known to be an ill-posed
problem [9].

Experimental data are collected at discrete values in
the domain. Thus, the data function is replaced
by a data matrix . Similarly, the kernels and
are discretized as matrices and .
Equation (1) takes a discrete form , where the
spectrum is a real-valued matrix of size . In practice,
measurements are modeled by

(3)

with a noise term assumed white Gaussian. 2-D NMR recon-
struction amounts to estimating given subject to (in
the sense ). Attention must be paid to the size of
the 2-D NMR problem. Indeed, when converted to a standard
one-dimensional representation, (3) reads

(4)

with , , , denoting a
column vector obtained by stacking all the elements of a matrix
in lexicographic order and

(5)

is the Kronecker product between matrices and . Matrix
is thus of size . Typical values are ,
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, , so is a huge matrix whose
explicit handling is almost impossible. It is one of the two main
contributions of this paper to make use of the factored form (3)
to solve this issue without any approximation.

Adopting the well-known least-squares approach would lead
to define a spectrum estimate as the minimizer of

(6)

where denotes the Frobenius norm, under the positivity
constraint . However, and are rank-deficient and
very badly conditioned matrices [10]. Therefore, such a solu-
tion is numerically unstable and regularized solutions must be
sought instead. Given that the maximum entropy approach pro-
vides acknowledged methods for conventional (i.e., one-dimen-
sional) NMR [4], [11], this paper explores T -T spectrum es-
timation based on maximum entropy regularization and pro-
poses a specific descent algorithm. According to our experience,
the barrier shape of the entropy function makes the minimiza-
tion problem quite specific. In particular, general-purpose non-
linear programming algorithms can be extremely inefficient in
terms of convergence speed. More surprisingly, the more spe-
cific scheme adapted from [12] also turns out to be very slow
to converge. This motivated us to devise an alternative opti-
mization strategy that is provably convergent and shows a good
tradeoff between simplicity and efficiency. The proposed algo-
rithm belongs to the truncated Newton algorithm family but pos-
sesses original features regarding the line search and the precon-
ditioning strategy.

The rest of the paper is organized as follows. Section II gives
an overview of different regularization strategies that can be
applied to solve this problem. Section III proposes an efficient
reconstruction method for maximum entropy regularization,
based on a truncated Newton algorithm associated with an orig-
inal line search strategy well suited to the form of the criterion.
The computation cost of the algorithm is reduced by working
directly with the factored form (6) to calculate quantities such
as gradient and Hessian-vector products. In Section IV, the
efficiency of the proposed scheme is illustrated by means of
synthetic and real data examples.

II. PROBLEM STATEMENT AND EXISTING SOLUTIONS

The mathematical methods developed to solve (1) can be clas-
sified into two groups. The first approach is to fit the decay
curves with a minimal number of discrete exponentials terms.
The parametric minimization is usually handled with the Lev-
enberg-Marquardt algorithm [13]. In this paper, we rather focus
on the second approach which analyzes the data in terms of
a continuous distribution of relaxation components T T .
This model gives rise to the linear equation (3). In this section,
we give an overview of different inversion strategies for this
problem.

A. Direct Resolution: TSVD and Tikhonov Methods

NMR reconstruction is a linear ill-posed problem. To tackle it,
truncated singular value decomposition (TSVD) and Tikhonov
penalization (TIK) are commonly used methods [9]. Each of
them calls for its own regularization principle to compensate
the ill-conditioned character of the observation matrix.

1) TSVD: The TSVD approach consists in replacing the in-
verse (or the generalized inverse) of by a matrix of reduced
rank, in order to avoid the amplification of noise due to the in-
version of small nonzero singular values [14]. In practice, com-
puting the TSVD requires the explicit decomposition of in
terms of singular elements, which can be numerically burden-
some.

2) Tikhonov Penalization: While TSVD tackles the ill-posed
character by control of dimensionality, Tikhonov method fol-
lows a penalization approach by which a tradeoff is sought be-
tween fidelity-to-data and regularity. It leads to the minimiza-
tion of a mixed objective function

(7)

where the regularization parameter controls the respec-
tive weight of the two terms, is a least-square term

(8)

and the additional term is also a quadratic term. In the con-
text of NMR reconstruction, the regularization functional is
usually chosen as the squared -norm of the spectrum [5], [10],
[15], [16]

(9)

Tikhonov solution is then obtained by solving the linear system
.

B. Iterative Minimization

Both TSVD and TIK solutions provide results of limited reso-
lution. Moreover, they tend to exhibit oscillatory excursions, es-
pecially in the peripheral regions of the recovered peaks, which
usually violate the positivity of the spectrum components [17].
Enforcing the positivity of the spectrum is obviously desirable
from the viewpoint of physical interpretation, but it has also a
favorable effect on the resolution of the estimated spectrum.

1) Tikhonov Under Positivity Constraint : The pos-
itivity constraint is naturally incorporated into Tikhonov
approach by constraining the minimization of to the posi-
tive orthant. However, there is no closed-form expression for
the minimizer anymore, so the solution must be computed iter-
atively using a fixed-point algorithm.

Butler–Reeds–Dawson algorithm (BRD) [10] is a rather
simple and efficient technique based on the resolution of the
Karush–Kuhn–Tucker conditions [18]. Although commonly
used in materials science, it is scarcely referenced in the
quadratic programming literature. For the sake of clarification,
Appendix A proposes a very simple interpretation of the BRD
scheme as iteratively minimizing a dual function of the criterion
in the sense of Legendre–Fenchel duality [19].

However, the BRD scheme requires the inversion of a system
of size at each iteration, where is the number of mea-
surements. In the case of 2-D NMR problems, , and
usual values of and lead to a prohibitive computation
cost. To solve this issue, a data compression step is proposed
in [15], prior to the application of BRD. It relies on strongly
truncated singular value decompositions of and
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, , 2, with . The fidelity to
data term is then approximated by

(10)

where , and are of size
, and , respectively.

2) Maximum Entropy: A different regularization approach
will be considered here, based on Shannon entropy penalization

. Maximum entropy (ME) [12], [20] is an ac-
knowledged approach in the context of 1-D NMR relaxometry
[4], [11]. An interesting feature of entropy penalization is that it
implicitly handles the positivity constraint since the norm of the
gradient of the entropy term is unbounded at the boundary of
the positive orthant. Thus, the minimizer of the resulting penal-
ized least-square criterion cancels its gradient, and computing it
is essentially similar to solving an unconstrained optimization
problem.

Formally, the extension to the 2-D case is easily obtained by
minimization of

(11)

However, the practical computation of the solution is clearly
more difficult in the 2-D case because the optimization problem
is much larger-scale. The choice of a specific minimization
scheme suited to maximum entropy 2-D NMR reconstruction
is a challenging task.

In the context of maximum entropy, [21] proposed the fixed-
point multiplicative algebraic reconstruction technique (MART)
that maximizes the entropy term subject to . The sim-
plicity of MART is attractive. However, as emphasized in [22],
the presence of inherent noise in projection data makes this
method less effective than an approach based on the minimiza-
tion of the penalized criterion (11). In [12], an iterative mini-
mization algorithm based on a quadratic approximation of the
criterion over a low-dimension subspace is developed. However,
according to [23, p. 1022], the convergence of this algorithm is
not established. We have tested its behavior in the 2-D NMR
context. Our conclusions are that this algorithm does not en-
sure a monotonic decrease of the criterion, and that its conver-
gence is very slow [24]. Finally, in a preliminary version of the
present work, we have proposed to make use of a preconditioned
nonlinear conjugate gradient algorithm [25]. Although the latter
shows a good practical behavior, its theoretical convergence is
not ensured, since the preconditioner is a variable matrix.

The goal of the next section is to derive an optimization al-
gorithm that would benefit from stronger theoretical properties
and sufficiently low computational cost to avoid any data com-
pression step.

III. PROPOSED TRUNCATED NEWTON ALGORITHM

A. Minimization Strategy

The truncated Newton (TN) algorithm [26], [27] is based on
iteratively decreasing the objective function by moving the
current solution along a descent direction

(12)

where is the stepsize and is a search direction com-
puted by solving approximately the Newton equations

(13)

with and . The TN algorithm has
been widely used in the context of interior point algorithms with
logarithmic [28], [29] and entropic [22] barrier functions.

In practice, the TN method consists in alternating the con-
struction of and the computation of the stepsize by a line
search procedure. The direction results from preconditioned
conjugate gradient (PCG) iterations on (13) stopped before con-
vergence. The stepsize is obtained by iteratively minimizing
the scalar function until some convergence
conditions are met [18, Ch. 3]. Typically, the strong Wolfe con-
ditions are considered

(14)

(15)

where are tuning parameters that do not depend
on . There exist several procedures to find an acceptable step-
size: exact minimization of , backtracking, approximation of

using cubic interpolations [18], [30] or quadratic majoriza-
tions [31], [32]. However, the entropic penalty term implies that
the derivative of takes the value as soon as any of the
components of the vector vanishes, hence when is
equal to one of the two limit values

(16)

The function is undefined outside , therefore, we
must ensure that during the line search, the stepsize values re-
main in the interval . Moreover, because of the ver-
tical asymptotes at and , standard methods using cubic
interpolations or quadratic majorizations are not well suited.
Our proposal is to adopt the specific majorization-based line
search proposed in [33] and [34] for barrier function optimiza-
tion. Using an adequate form of majorization, we now derive an
analytical stepsize formula preserving strong convergence prop-
erties.

B. Line Search Strategy

The minimization of using the Majorization–Minimiza-
tion (MM) principle [35] is performed by successive minimiza-
tions of majorant functions for . Function is said to
be majorant for at if for all ,

(17)

As illustrated in Fig. 1, the initial minimization of is then
replaced by a sequence of easier subproblems, corresponding to
the MM update rule

(18)

Following [34], we propose a majorant function that
incorporates barriers to account for the entropy term. It is piece-
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Fig. 1. Schematic principle of the MM line search procedure. The tangent ma-
jorant function � ���� � (dashed line) for ���� (solid line) at � is piecewise
defined on the sets �� � � � and �� � � �. The new iterate � is taken as the
minimizer of � ��� � �. Two cases are illustrated. The third and last case where
� is finite and � � �� is the mirror image of case (b). (a) Case � and
� finite; (b) case � � �� and � finite.

wise defined under the following form (whenever unambiguous,
the iteration index will be dropped for the sake of simplicity)

for all

for all
(19)

The parameters , must be defined to ensure
that is actually a majorant of at (see Fig. 1 for
an illustration). A direct application of [34, Prop. 2] allows to
establish expressions for these parameters. The resulting form
of is rather simple, though lengthy to express, so it is
reported in Appendix B. According to [34, Lemma 2], it corre-
sponds to a strictly convex, twice differentiable function in the
set . Moreover, its unique minimizer takes an explicit
form, the latter being also found in Appendix B.

Finally, (18) produces monotonically decreasing values
and the series converges to a stationary point of

[36].

C. Convergence Result

Let us focus on the convergence of the truncated Newton
algorithm when is chosen according to the proposed MM
strategy. A detailed analysis can be found in [34] in a more gen-
eral framework. According to [34], the proposed line search pro-
cedure ensures that

(20)

and that the directions generated by the TN algorithm are gra-
dient related in the sense of [37]. According to [38], inequality
(20), known as Zoutendijk condition, is sufficient to prove the
convergence of the algorithm in the sense .
Finally, the objective function being strictly convex, the pro-
posed algorithm converges to its unique minimizer.

D. Preconditioning

As emphasized in [39], the Hessian of the Shannon entropy
regularization term is very ill-conditioned for points that are
close to the boundary of the positive orthant since some of its
eigenvalues tend to infinity. Furthermore, the exponential de-
cays in kernels and imply that and are also very
ill-conditioned. Preconditioning is a well-known technique to
obtain more clustered eigenvalues of the Hessian of the crite-
rion and to accelerate the convergence of descent algorithms.
The principle is to transform the space of original variables into
a space in which the Hessian has more clustered eigenvalues
by using a preconditioning matrix that approximates the in-
verse of the Hessian. A good preconditioner achieves a
tradeoff between the approximation quality and the computation
cost. General-purpose preconditioning strategies have been pro-
posed in the literature including symmetric successive overre-
laxation and incomplete LU or Cholesky factorizations [40, Ch.
10], [41]. In the context of ME optimization, [22] takes as a
diagonal matrix defined using the Hessian diagonal elements

(21)

We rather propose a more specific preconditioner. It is based on
the fact that, as a consequence of (5), the singular value decom-
position of is given by , with ,

, , being the singular value
decomposition of , , 2. Then, let us define

(22)

where and correspond to truncated versions of and .
In the nontruncated case, and , and then is
equal to the Hessian of at . It remains to define the way we
truncate the singular value decomposition of . Akin to [15],
[42], we separately truncate the decompositions of and
at ranks and we define and according to

(23)

(24)

Let us remark that the resulting approximation of may
slightly differ from the TSVD of . The reason is simple:
although and separately gather the largest singular
values of and , does not necessarily gather the largest
singular values of . As a consequence, our approximation may
be suboptimal compared to the TSVD, the latter being optimal
in the least-square sense [43], but the fact that we maintain
factored expressions for matrices and is essential in terms
of computation cost.

E. Memory Storage and Computation Cost Reduction

The computation cost can be reduced by exploiting the fac-
tored form of the observation model. Three main operations are
involved in the iterative optimization algorithm: the computa-
tion of the gradient vector , and the products of
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and with a vector. The three resulting quantities can be
calculated using low cost operations, as described below.

1) Gradient: The gradient of the criterion can be computed
without explicitly handling matrix , according to

(25)

2) Hessian: In the same manner, products between the Hes-
sian matrix and any vector can be computed as
follows:

(26)

where “./” denotes componentwise division.
3) Preconditioner: In order to compute products involving
, the matrix inversion lemma is applied to (22). Thus,

(27)

with . Moreover, the following factored ex-
pression can be deduced from (23) for the entries of matrix

where and are row and column subscripts that cor-
respond to the linear indexes and , respectively. Thus, the
product can be efficiently computed according to

(28)

where , and ,
denote the equivalent square matrix representations of

and respectively.

F. Resulting Algorithm

The resulting TN algorithm is given in Algorithm 1. The al-
gorithm convergence is checked using the following stopping
rule [18]:

(29)

and the PCG iterations in Algorithm 2 are stopped when [27]

(30)

Typical values of are .

Algorithm 1: TN Algorithm for ME Optimization

Require: Initial value , parameters , , , and
accuracies , .

Ensure: Resolution of (11)

Compute the TSVD of and at ranks , .

while (29) does not hold do
Compute , and using (25), (26) and
(27).

Compute using PCG algorithm (Table II).

Set after iterations of (18).

Update according to (12).

end while

Algorithm 2: PCG Algorithm

Require: , , ,

Ensure: Approximate solution of (13)

while (30) does not hold do

end while

IV. EXPERIMENTAL RESULTS

This section discusses the performances of the proposed
method and illustrates its applicability. First, we consider
synthetic data in order to discuss the influence of the tuning
parameters on the algorithm behavior. Then, the proposed
method applicability is illustrated through the processing of
real NMR data.

In NMR experiments, the pulse angle may not be set ex-
actly to its desired value. Therefore, we analyze the effect of a
potential error in the value of in the observation model and
propose an original strategy allowing to estimated this param-
eter.

The different results are obtained with Matlab 7.5 running on
an Intel Pentium IV 3.2-GHz, 3-GB RAM.

A. Synthetic Data

We consider two spectra A and B (Fig. 2) and the corre-
sponding decays (Fig. 3) according to the observation model (4)
with a signal-to-noise ratio (SNR) of 10 dB, ,

, and (i.e., 90 ). The synthetic spectrum A has
a symmetric Gaussian shape located at T T 0.5 s 1 s
while spectrum B is the sum of two Gaussian patterns. The first
one is symmetric and located at T T 0.5 s 0.5 s . The
second pattern is located at T T 1.5 s 1.5 s and sim-
ulates a positive T -T correlation. The reconstruction is per-
formed for and the algorithm is initialized
with a uniform positive 2-D spectrum. The regularization pa-
rameter is set to minimize the normalized quadratic error

(31)

and the preconditioner truncation parameters are set to
the same value .

1) PCG Subiterations: The parameter controls the accu-
racy of the PCG minimization. The smaller it is, the more accu-
rate the solving of (13). Here, several values are tested within the
range . Let denotes the number of PCG subiter-
ations (inner loop) at iteration . As expected, the average value
of generally increases with [Fig. 4(a)] while the number of
TN iterations (outer loop) decreases [Fig. 4(b)]. The number
of PCG subiterations depends also on the truncation rank of
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Fig. 2. Simulated 2-D spectra: (a) Dataset A and (b) dataset B.

Fig. 3. NMR decays: (a) Dataset A and (b) dataset B.

Fig. 4. Dataset A: Analysis of the TN algorithm performances for different
PCG strategies. The SVD preconditioner with truncature parameter � was used
for (a)–(c) while the truncature parameter � is set to �� for (d). Moreover,
in all cases, the stepsize results from � � � subiteration of MM line search.
(a) Average PCG iteration number; (b) iteration number for different truncation
ranks �; (c) computation time for different truncation ranks �; and (d) compar-
ison between four preconditioning strategies.

the SVD preconditioner, it can be noted that decreases as this
rank increases, corresponding to a more accurate approximation
of the inverse Hessian matrix. The smallest overall minimization
time is achieved when a tradeoff is reached between the number
of outer iterations and the number of inner iterations [Fig. 4(c)].

TABLE I
DATASET A: COMPARISON BETWEEN MM AND MT LINE SEARCH

STRATEGIES IN TERMS OF ITERATION NUMBER AND TIME

BEFORE CONVERGENCE FOR THE TN ALGORITHM

In this example, the best compromise is . This
setting will be retained in the sequel.

2) Preconditioning: Fig. 4(d) illustrates the criterion evolu-
tion for different preconditioners: the proposed approximation

given by (22) with , 1, 4 and the di-
agonal preconditioner resulting from (21). The stopping cri-
terion (29) is fulfilled after 93 and 80 iterations for and

, whereas it is not fulfilled after 1000 iterations neither for
nor for . Moreover, according to Fig. 4(a), the TN iter-

ation number decreases as the SVD truncation rank increases.
However, the choice of involves a compromise between an ac-
celeration of the algorithm and an increase of the computational
cost [Fig. 4(b) and (c)].

3) Line Search: Let us compare the performances of the al-
gorithm when the stepsize is obtained either by the proposed
MM line search or by Moré and Thuente’s cubic interpolation
procedure (MT) [30]. The latter performs an iterative minimiza-
tion of based on cubic interpolation until identifying that
fulfills the strong Wolfe conditions (14) and (15).

According to Table I, the TN algorithm with the MM line
search performs better than with the MT line search with the best
settings for and . Concerning the choice of the sub-iteration
number, it appears that leads to the best results in terms
of computation time which shows that an exact minimization of
the scalar function during line search is not necessary.

4) Regularization Term: As explained in the introduction,
the application of BRD algorithm to 2-D NMR reconstruction
requires data compression. This preprocessing step calls for the
tuning of two additional parameters, and . Table II illus-
trates the reconstruction quality and algorithmic properties of
BRD method for different values of . As expected, the com-
putation cost decreases with . However, according to Fig. 5,
below a certain compression value , the reconstruction
error quickly grows. We observe that for dataset A
and for dataset B. The same behavior was observed
when varying . This shows that the compression tuning not
only depends on spectral properties of matrices [15], but also
on the spectra shape. Therefore, the setting of these parameters
may be problematic when processing real data.

In order to compare the ME and regularizations, we
apply the same compression level . We have
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TABLE II
RECONSTRUCTION QUALITY �, ITERATION NUMBER � AND TIME

BEFORE CONVERGENCE � FOR ��� -BRD RECONSTRUCTION

WITH DIFFERENT LEVELS OF DATA COMPRESSION

Fig. 5. ��� -BRD reconstruction quality of dataset A and B with different
level of data compression. In both cases, the compression parameter �� is equal
to 5 while �� is varying. ���� 	 10 dB
.

Fig. 6. Dataset A: Similarity error for ME (left) and ��� (right) reconstruc-
tions. Average of Monte Carlo simulations with 100 random realizations for
��� 	 5, 10, and 15 dB � �� 	 �
.

tested different noise realizations with 5, 10, and 15 dB.
According to Fig. 6, the minimum value of decreases with
the noise level, for both ME and regularizations, as ex-
pected. Moreover, the two strategies lead to similar reconstruc-
tion minimum errors for the three noise levels. Furthermore,
their sensitivity to is similar. However, as illustrated in Figs. 7
and 8, the entropy penalization leads to spectra whose shape is
closer to the simulated one. More precisely, the ME spectra are
smoother. This regularity is evaluated in Table III, which com-
pares the reconstructions in terms of the Euclidian norm of the
first-order difference .

5) Hyperparameter Estimation: In the previous experi-
ments, the regularization parameter is tuned by minimizing a
quadratic error whose evaluation requires the knowledge of the
reference spectrum. This strategy is impractical in an experi-
mental context but it can be replaced by different procedures
proposed in the literature. In NMR reconstruction [4], [10],

Fig. 7. Dataset A: Reconstructed spectra with optimal setting of� for ME (left)
and ��� (right) regularization (��� 	 10 dB and �� 	 �).

Fig. 8. Dataset B: Reconstructed spectra with optimal setting of � for ME (left)
and TIK (right) regularization (��� 	 10 dB and �� 	 �).

TABLE III
REGULARITY OF RECONSTRUCTED SPECTRA FOR ME AND ���
RECONSTRUCTIONS (��� 	 �
 dB AND �� 	 �). � IS THE

FIRST-ORDER DIFFERENCE MATRIX

[15] and ME optimization [12], [44], a frequently used strategy
is the Chi-square approach.

Given measurements and an estimate of the noise standard
deviation , statistical considerations state that the error

(32)

follows a Chi-square distribution [45], [46]. In the limit of a
large number of independent measurements , the latter
tends to a standard normal distribution with expected value

and variance .
Thus, a classical method for setting the regularization param-

eter and avoiding over-smoothed reconstructions [44], [46] is to
find the value of allowing to reach

(33)

However, when the noise level is high or when the estimation
of is too rough, one can have for all values of
the regularization parameter so that the Chi-square test cannot
be achieved.

An alternative approach, based on the S-curve [47], consists
in choosing such that its reduction does not lead to a signifi-
cant decrease in

(34)
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Fig. 9. Dataset A (��� � �� dB and �� � �): Estimation of the regular-
ization parameter for ME reconstruction. The fulfillment of the Chi-square test
(33) and the S-curve test (34) are illustrated by black and white dots respec-
tively. According to Algorithm 3, the result of the Chi-square test is retained.

TABLE IV
REGULARIZATION PARAMETER ESTIMATES 	� � � 
 OBTAINED RESPECTIVELY

BY MINIMIZING � AND BY APPLYING THE ALGORITHM SUMMARIZED IN

ALGORITHM 3. (��� � 10 dB AND �� � �). (a) DATASET A; (b) DATASET B

Here, we suggest to combine the two latter strategies for the
determination of , as detailed in Algorithm 3 and Fig. 9. We
emphasize that the minimizations (35) can be performed at very
low cost by initializing the TN algorithm of Algorithm 1 with
the solution at previous . Table IV illustrates the efficiency of
the proposed scheme for finding .

Algorithm 3: Chi-Square Method for Regularization
Parameter Estimation

Require: Initial values , , parameter
and accuracy

Ensure: ME resolution with Chi-square tuned

while (33) and (34) do not hold do
Using Table I, compute

(35)

Compute using (32).

end while

6) Pulse Angle Effect: In NMR experiments, the pulse angle
may not be set exactly to its desired value. This uncertainty

introduces a potential error in the value of in the observation
model. Let us first discuss the effect of an inexact value of this

Fig. 10. Dataset A (��� � �� dB, � � �, �� � �): Sensitivity to a wrong
estimation of � in terms of reconstruction error � (left) and optimal regulariza-
tion parameter � (right).

Fig. 11. Sensitivity to a wrong estimation of � in terms of error � between
the T marginalized spectra and the reference T spectrum. (a) Dataset A; (b)
dataset B.

parameter on the reconstruction results. Several reconstructions
using an observation model with have been performed.
Fig. 10 shows the optimal value of the regularization parameter

and the reconstruction error for different values of , for
ME and algorithms. As expected, an error on the value
of leads to a larger reconstruction error. Moreover, a larger
value of has to be chosen to compensate the increase of the
modelization error. We can conclude that the pulse angle param-
eter has an influence on the reconstruction results whatever the
employed inversion algorithm.

7) Pulse Angle Estimation: In [47], some data preprocessing
strategies are proposed to handle systematic errors, including
pulse angle inaccuracy, in NMR experiments. An alternative
strategy allowing to assess the pulse angle value is proposed
here. The basic idea is to use the reconstructed T spectrum, ob-
tained from T relaxation data, as a reference spectrum. Since
these data are obtained for high values of , the underlying
spectrum is not affected by the value of . After performing
several 2-D reconstructions with different values of , we re-
tain the pulse angle value maximizing the similarity between
the marginalized T spectrum and the reference T spectrum.

Fig. 11 illustrates the relative Euclidian distance be-
tween the 1-D recovered T spectrum and the marginalized T
spectra for several values of . The best matching is reached
when equals its actual value, i.e., .

B. Application to Experimental Data

Measurements have been performed on a plant matter sample
(apple) to test the applicability of the proposed algorithm on
experimental data. In the experiment, values of ,
nonuniformly spaced between 30 ms and 12 s were retained. In
all cases, 10 000 echoes with a uniform time spacing of
800 s between 600 s and 8 s were acquired.
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Fig. 12. 2-D ME spectra (top) from experimental data and 1-D distributions
resulting from T marginalization (bottom), for different values of the pulse
angle parameter in the interval [0.9, 1]. The effect of increasing � onto peak
positions and amplitudes is indicated by arrows.

Fig. 13. Error between 1-D ME T reconstruction and 2-D ME marginalized
spectrum. The minimum is reached for � � ���� which corresponds to � �

�� �� .

The proposed algorithm was applied to reconstruct a spec-
trum with values of T and T relaxation
times, equally spaced between 25 ms and 3 s.

1) Reconstruction Algorithm Tuning: The lowest computa-
tion time was reached when using only one sub-iteration of MM
line search and computing the preconditioner with TSVDs at
rank . The proposed strategy in Algorithm 3 was used to
set the regularization parameter.

2) Pulse Angle Parameter Setting: Fig. 12 summarizes the
reconstruction results for different values of between 0.9 and
1. It can be noted that the positions and the amplitudes of some
peaks are highly affected by the pulse angle value. Therefore,
the reconstruction of a reliable spectrum requires the use of an
accurate value of this parameter. The same strategy as that pro-
posed in Section IV-A-7 is used to set the pulse angle value. Ac-
cording to Fig. 13, the retained value corresponds to 85
(i.e., ).

Fig. 14. Reconstructed spectrum from 2-D NMR experimental data with ME
method.

Fig. 15. 1-D distributions resulting from marginalization of the 2-D ME spec-
trum (solid line) or 1-D ME reconstruction (dashed line). (a) T spectrum; (b)
T spectrum.

3) Comparison of Algorithms: Fig. 14 shows the recon-
structed 2-D spectrum for . It can be noted that this
spectrum allows to analyze the correlation between T and T
relaxation times. This correlation appears, for example, in the
peak located around T T . Such information
is very useful to obtain the T T ratio which gives insights
related to the molecular structure of the analyzed sample [7].
Concerning the reconstruction algorithm performances, the
computation time was 59 s for 67 iterations and the final value
of was .

Since there is no ground truth regarding the T -T correla-
tion spectrum of the apple, we compare the 1-D distributions
(T and T ) obtained by 1-D inversion with the 1-D distribu-
tions deduced by marginalization of the reconstructed 2-D dis-
tribution. It can be noted from Fig. 15 the similarity between the
1-D spectra which shows the relevance of the 2-D spectrum.

We also compare these results with the ones obtained by the
algorithm of [47]. This algorithm was tuned with a com-

pression rank and the same strategy as in [47] was
used to determine the regularization parameter. The algorithm
requires a computation time of 11 s for 14 iterations and the
final value of . The reconstructed 2-D spectrum
and the corresponding 1-D distributions are shown in Figs. 16
and 17. Even if the two reconstruction methods led to similar
measurement data fit (98%), a visual comparison reveals sig-
nificant differences between the two spectra shapes in terms of
regularity and amplitude.

V. CONCLUSION

The reconstruction of a T -T spectrum in NMR requires a
numerical inversion of a 2-D Laplace transform. This is known
to be an ill posed inverse problem. In this paper, we presented an
efficient inversion method based on maximum entropy regular-
ization and truncated Newton optimization. A second difficulty
is related to the large scale of the 2-D model. To handle this
problem, rather than compressing the data matrix, we rely on an



CHOUZENOUX et al.: EFFICIENT MAXIMUM ENTROPY RECONSTRUCTION OF NMR T1-T2 SPECTRA 6049

Fig. 16. Reconstructed spectrum from 2-D NMR experimental data with
��� method.

Fig. 17. 1-D distributions resulting from marginalization of the 2-D ���

spectrum (solid line) or 1-D ME reconstruction (dashed line). (a) T spectrum;
(b) T spectrum.

exact data model thanks to an iterative algorithm exploiting the
separability of the convolution kernel. All required quantities
such as gradient, Hessian-vector product are computed with re-
duced memory storage and computation time. Moreover, since
the entropy criterion introduces a barrier in the criterion to min-
imize, an appropriate line search strategy is used. This proce-
dure is fast and ensures the theoretical convergence of the trun-
cated Newton algorithm. Finally, the convergence speed of the
algorithm is increased by applying an adequate preconditioner
using TSVDs of the convolution kernels. The applicability of
the proposed method has been demonstrated through the pro-
cessing of simulated and real data and a comparison with the
constrained Tikhonov approach of [15]. Our conclusion is that
the two methods produce reconstructions of similar quality. The
constrained Tikhonov approach is noticeably faster, at the price
of resorting to a data compression step that needs the tuning of
two parameters. In contrast, our approach remains fast without
data compression.

The processing of real data measurements allowed us to point
out the difficulty of setting the pulse angle parameter appearing
in the observation model. We have shown that an inaccurate
value of this parameter tends to produce a significant error in
peak positions and amplitudes. Up to our knowledge, this point
is only partially addressed in NMR literature where data pre-
processing strategies are suggested. Therefore, we proposed an
original strategy allowing to estimate this parameter. Although
this strategy seems to give satisfying results in our tests, further
investigations and experiments would be needed to validate this
approach. Another perspective would be to build a criterion al-
lowing to reduce the number of peaks in the reconstructed spec-
trum or to propose a strategy based on a parametric 2-D recon-
struction where the number of peaks will be imposed.

From the methodological point of view, we restricted our
analysis to the case of separable convolution kernels. However,
in some NMR measurement models [7], the separability is no
longer valid. It would be interesting to generalize our approach
by considering the case where the observation model can be ex-
pressed as a linear superposition of several separable kernels.

APPENDIX

A. Interpretation of BRD Algorithm Using Legendre–Fenchel
Duality

Let us consider the constrained minimization problem

(36)

The BRD algorithm [10] is based on the equivalence between
the KKT conditions of problem (36) and the following uncon-
strained problem

(37)

with the reparametrization and

(38)

where denotes a componentwise unit step function that takes
the value zero for negative or zero arguments and one for pos-
itive arguments. Let us show that this equivalence can also be
obtained from the Legendre–Fenchel conjugacy theory (see [19]
for a reminder on Legendre–Fenchel theory).

First, let us introduce the Legendre–Fenchel conjugate of
the quadratic , i.e.,

(39)

According to the conjugacy theorem [19, Prop. 7.1.1],

(40)

Moreover, according to the minimax theorem [19, Prop. 2.6.2],
(40) implies

(41)

where

(42)

The minimization problem (42) is convex, separable and the
following expression of the minimizer is easy to derive

(43)

where max is to be considered component-wise. Moreover, we
have

(44)

the latter expression being a consequence of
for all . Finally, given (39), (43), and (44),

(41) also reads
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where the last identity is obtained using the change of variable
. Thus, (36) and (37) are equivalent through Le-

gendre–Fenchel duality, and minimizes in if and
only if minimizes in .

B. Expression of the Majorant Function and of
Its Minimizer

The majorant function is piecewise defined, whether
or . In both cases, it takes the fol-

lowing form:

(45)

while the expressions of parameters , , and are specific
to each case. The notation refers to the derivative of , also
defined as .

1) Case

(46)

2) Case

(47)

where in both cases.
The minimizer of can be expressed as follows:

(48)

with

(49)
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