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Stability and accuracy of finite element direct

solvers for Electrical Impedance Tomography

Thierry Martin and Jérôme Idier

Abstract

Electrical impedance tomography (EIT) of closed conductive media is an ill-posed inverse

problem. In the general case, the resolution of the direct problem, derived from a second order

partial derivative equation, requires a numerical approximation. The solution brought by the Fi-

nite Element Method (FEM) is often used in EIT, because it preserves the nonlinear dependence

of the observation set upon the conductivity distribution.

This paper addresses the reliability of numerical FEM direct solvers, as basic tools in 2D EIT

inversion methods. Reliability is closely related to the discretization error of the FEM model

but also to its numerical stability. Finely discretized FEM models yield reduced discretization

errors. Meanwhile, special attention must be paid to stability since a more accurate FEM direct

model involves a magnification of input round-off errors. A theorem is established that allows

easy checking of the numerical stability through the computation of the condition number of

the uniform stiffness matrix of the FEM solver. When the latter is stable, global inaccuracy

reduces to the discretization error of the FEM approximation. Simulations reveal that, provided

input current patterns are spatially smooth, the variations of the conductivity distribution have

a limited but non negligeable influence on the discretization error.
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I. Introduction

Electrical Impedance Tomography (EIT) of closed conductive media with steady cur-

rents is a non-invasive imaging technique. It aims at estimating the impedance distribution

within a conductive body from electrical measurements on the surface. Usually, thanks to

surface electrodes, the experiment consists in injecting currents in the body and measuring

the surface voltage distributions. Numerical estimation methods, closely related to well-

known Algebraic Reconstruction Techniques (ART), have been early used to solve this

inverse problem ([1], [2], [3]). Such computed imaging methods require (either explicitly

or implicitly) a numerical direct model z = h(x) (where x stands for the sought object

and z contains the observed data).

The aim of the present paper is to show that direct models provided by the Finite Ele-

ment Method (FEM) are accurate enough (w.r.t. the theoretical analytical model) but also

numerically stable enough to use in EIT inversion methods. This is not a straightforward

issue because the FEM direct model is a nonlinear solver. For EIT and for other problems

deriving from partial derivative equations (PDE), the choice of a linear direct model (such

as Born or Rytov approximations) is accurate only in restricted conditions (limited width

or magnitude of inhomogeneities). For the last two decades, nonlinear (w.r.t. x) numeri-

cal models derived from FEM, or Finite Difference Methods (FDM) have been more and

more used because they provide a better accuracy. Such models read

z = f([A(x)]−1)y, (1)

where y and z concatenate the observed measures and A(x) is an invertible operator which

linearly depends upon x. Higher computation capacity favors good accuracy, thanks to

a larger number of points in y, but at the expense of increased instabilities linked to the

condition number of the matrix A(x).

Studying the accuracy of the direct problem meets with three difficulties, identified in

[4] as three kinds of inaccuracy or errors appearing in the construction of the direct solver:

December 21, 1998 DRAFT



3

• The mathematical modeling error corresponds to the difference between the actual physi-

cal behavior and the mathematical model. In EIT, the mathematical model is the (rarely

explicit) solution of an elliptic second order PDE derived from Maxwell equations. Apart

from technical or geometrical simplifying hypotheses, the mathematical error also incor-

porates 2D and steady current approximations (low-frequency currents are actually used

in most EIT experiments). Characterizing such approximations is out of the scope of the

present paper.

• The discretization error is the theoretical distance between the exact solution of the

mathematical model and the algebraic model (1). In this paper, a FEM algebraic model

is chosen. Actually, FEM provides a piecewise polynomial approximation that can be

identified from values on a limited number of points (stacked in vectors x, y and z). The

discretization error is thus the distance between the piecewise polynomial approximation

and the theoretical solution of the PDE. The difficulty consists in estimating this distance

in order to provide a direct model that is accurate enough to solve the EIT inverse problem.

• Round-off errors correspond to the loss of accuracy due to the limitations of computing

machines. Here, eq. (1) involves a matrix inversion for the direct model so that one

may expect an important magnification of round-off errors through the direct (numerical)

model. As a result, contrary to linear (implicitly well-posed) direct models, the question

of numerical stability arises for such a nonlinear direct model. In the litterature, this

question is tackled only w.r.t. the observed vector y [5], with the analysis of the condition

number of the matrix A(x). Here, in order to solve the inverse problem, this question is

also addressed w.r.t. the unknown object x. Actually, it is important that the round-off

error be small enough to preserve the accuracy of the direct model but also that this error

be negligible (w.r.t. the output), so that the numerical direct model can be identified

with the algebraic direct model. The issue at stake is the possibility to tackle the inverse

problem resolution in the classical algebraic sense, as done for instance in [6], [7], [8] with

a Bayesian approach.

The article is organized as follows:

• In Section II, the FEM EIT direct model is given. For the sake of clarity in the next
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sections, specific EIT notations are adopted.

• In Section III, special care is paid to the question of stability of the direct model and

to the evaluation of the resulting round-off errors. A theorem is established, yielding an

upper bound for the uncertainties on the output z w.r.t. input uncertainties on y and x,

as a function of the condition number of A(x = 1), i.e., of A where the sought object is

uniform. Then, we provide typical extreme eigenvalues of A(x = 1) for some concentric

layer circular meshes (CLCM) frequently used in 2D FEM domain triangulation, and for

two other kinds of triangularized domains. We show that the direct model computation

involves a magnification of the input round-off errors by several orders of magnitude.

However, FEM solvers studied in this paper and used in inversion methods in [6], [7], [8]

are coded on a sufficiently large number of digits to preserve the negligibility of the output

round-off error w.r.t. the output voltage magnitude.

• In Section IV, a more qualitative study is conducted concerning the discretization error.

In a case where there exists an explicit solution to the EIT PDE, we show that the

discretization accuracy is more sensitive to the choice of the input current pattern than to

the choice of the conductivity distribution. Then, we take advantage of the existence of a

dual direct model in 2D to provide a rough but cheap estimator of the discretization error.

From this we can see that, provided the input current pattern is correctly chosen (i.e., as

a spatially smooth varying distribution), the final precision of typical direct models (used

in [6], [7], [8]) approximately ranges from 45 to 70 dB, which happens to be satisfactory

to solve the inverse problem.

II. FEM direct model for EIT

In EIT, the image-data relation derived from Maxwell formulas is ruled by a second

order PDE which yields no analytical solution for arbitrary domain shapes or arbitrary

conductivity distributions. Therefore, one has to approximate the direct problem. Since

the mid 80’s, the Finite Element Method (FEM) has been more often used to solve it

[9], [10], [11], [12], [6]. In this section, the goal is to give a synthetic presentation of

the algebraic direct model. The adopted notations might slightly differ from usual FEM

notations, because they are especially chosen to match with algebraic notations used in
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the terminology of inverse problems. More details about the direct model can be found in

general publications on FEM such as [13], [4], or in [6] where its construction is given in

details.

Let Ω denote a 2D domain and Ω̄ its boundary. Let V and I be respectively the voltage

and current distribution on Ω and V̄ and Ī their restriction on Ω̄. Finally, ~ and ~E are the

current density and the electrical field. From Maxwell formula ~∇× ~E = 0, we deduce the

existence of the voltage potential according to

~E = −~∇V (2)

and from the formula ∇~ = 0 we also deduce the existence (for 2D modelization only) of

the current stream potential

~ = (~∇I)⊥, (3)

where (x, y)⊥ = (−y, x) stands for the counterclockwise 90◦ rotation of the 2D vector

(x, y). Thanks to eq. (3), the variational expression of the problem can be formulated

according to

Π(V, I, σ) =
1

2

∫∫

Ω

[
σ|~∇V |2 + σ−1|~∇I|2

]
dx dy +

∮

Ω̄

V̄
∂Ī

∂s
ds. (4)

Then, the FEM consists in solving a discretized form of the equation Π(V, I, σ) = 0. In

the FEM model adopted here, Ω is discretized into a triangularized domain Ωh composed

of P adjacent triangular elements. The latter define N nodes and N̄ boundary nodes

(N̄ < N < P ). The standard choice for FEM in EIT provides an approximation of σ that

is piecewise constant on each element and approximations of V and I that are piecewise

linear on each element of Ωh. Let us denote respectively v and i the voltage and current

stream vectors (of length N) defined by the resulting approximate distribution values of

V and I on every node of the mesh and σ (of length P ) the vector containing conductivity

values (σp > 0, p = 1, .., P ) defined on each element. Then, the direct EIT model reads

[13]:

v = A−1
� P̄

t
Dı̄. (5)
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Its restriction on the boundary, which is the observable part of the vector, reads

v̄ = P̄A−1
� P̄

t
Dı̄, (6)

where v̄ := P̄ v and ı̄ := P̄ i are respectively the (observed) restriction of i and v on the

boundary. Matrix P̄ (N̄ × N) is merely a binary matrix that operates the projection on

the boundary Ω̄. D (N̄ × N̄) is the first order boundary difference matrix defined by

Dij :=





1/2 if j = i − 1 mod N̄ ,

−1/2 if j = i + 1 mod N̄ ,

0 otherwise ;

(7)

Lastly, A � (N ×N) is the stiffness matrix of the problem. It is very sparse (less than 7N

of its entries are nonzero) and depends linearly upon σ. In [7], it is shown that this matrix

can read:

A � = Qt
∆ � Q, (8)

where ∆ � (4P × 4P ) is a diagonal matrix defined by

∆ � = diag [σt, σt, σt, σt]t

and Q (4P ×N) is a full rank sparse matrix, solely depending upon the geometric features

of the triangular mesh. Let us mention that Q has no unit and that, because of the 2D

modelization, v̄ is in Volt, ı̄ is in A.m−1 and σ is in Ω−1.m−1. Let us introduce the uniform

stiffness matrix (USM) Θ := QtQ, which is a particular case of A � when σ = 1 and plays

a central role in the next section.

Remark II.1 (Implementation and computational cost of the direct model)

The direct model is implemented on Matlab
�

software, which provides specific tools

to handle sparse arrays. Taking the sparsity of A � into account allows to decrease the

computational cost of the linear system (5) drastically [11], [14]. To evaluate the effective

cost as a function of the number of nodes, let us consider direct models built on circular

domains with concentric layer circular meshes (CLCM) (cf. Fig. 1). Such a family of
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meshes reveals quite adapted to triangulate circular domains frequently used in EIT (for

instance, [9]). CLCM use the geometric properties of the circle to build meshes iteratively

by adding a new concentric layer of elements according to the following rule: if l is the

number of the current layer (layers are numbered from the center), 8l + 4 triangular

elements (i.e., 4l nodes) are required to generate the (l + 1)th layer of the mesh (cf.

Fig. 1). If Nl, N and P are respectively the total number of layers, nodes and elements,

we find 



N = 1 + 2Nl(Nl + 1),

P = 4N2
l .

(9)

The computational cost reveals particularly low since it is below the equivalent cost of a

linear approximation (product of a full matrix (N × N) by a vector, cf. Fig 2). The cost

of the resolution for a full linear system is known to be O(N 3) floating point operations

[14]. Since in our case the number of nonzero points in A � is below 7N , a cost of about

O(N2) can be reached thanks to iterative algorithms such as Gauss-Seidel Methods.

III. Round-off error

Input quantities ı̄ and σ are real valued vectors. Thus, their storage on computing

machines implies a possible round-off error caused by truncation of low-weight bits of

their binary coding. Hence, the use of the direct model (6) may involve magnifications

of this discrepancy, yielding possibly erroneous output results. In this section, a theorem

is established to evaluate this magnification when the algebraic model is considered in

its unrestricted sense (i.e., v = A−1
� P̄

t
Dı̄). For the sake of simplicity, the quantity

j := P̄
t
Dı̄ is involved in the theorem instead of ı̄. Vector j can be interpreted as a global

and differential input current distribution (j(n) = 0 if n is not a boundary node).

A. Upper bounding of the uncertainty on the output voltage

Two possible causes of uncertainties δv on the output voltage are considered: conduc-

tivity uncertainties δσ and current uncertainties δj, so that the output voltage becomes:

v + δv = A−1
� +δ � (j + δj). (10)
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Let

|δσ|max := ‖δσ‖∞ = max
p

|δσp| ,

σmin := min
p

σp,

σmax := max
p

σp,

and let λmax
Θ

:= ‖Θ‖2 and λmin
Θ

:=
∥∥Θ

−1
∥∥−1

2
respectively denote the largest and smallest

eigenvalues of the USM Θ = QtQ.

Theorem III.1 (Upper bounding of ‖δv‖2 / ‖v‖2)

If the condition

|δσ|max

σmin
<

λmin
Θ

λmax
Θ

(11)

holds, then the norm of the output uncertainty δv defined in eq. (10), is upper bounded

w.r.t. ‖v‖2 by

‖δv‖2

‖v‖2

6
σmax(λ

max
Θ

)2 |δσ|max

σminλmin
Θ

(σminλmin
Θ

− |δσ|max λmax
Θ

)
+

σmaxλ
max
Θ

‖δj‖2

(σmin − |δσ|max)λ
min
Θ

‖j‖2

. (12)

The proof is given in the appendix. Note that, as far as modern computers are con-

cerned, condition (11) is not restrictive : in the case of standard ANSI/IEEE 64-bit coding

(commonly called double precision), the order of a relative quantity such as the relative

conductivity discrepancy δs := δσ/σmin is given by the floating point relative accuracy

eps = 2.22 10−16 ([14]). For practical sake, a fully normalized version of this theorem

can be easily derived. Let us introduce the relative current variation δc := δj/ ‖j‖2 and

the relative voltage variation δu := δv/ ‖v‖2. Let us also denote ρσ := σmax/σmin and

κΘ := λmax
Θ

/λmin
Θ

the contrast of σ and the condition number of Θ, respectively.

Corollary III.1: If |δs|max < κ−1
Θ

, then

‖δu‖2 6 ‖δu‖sup
2 =

κ2
Θ

ρσ

1 − κΘ |δs|max

|δs|max +
ρσκΘ

1 − |δs|max

‖δc‖2 . (13)

B. Order of magnitude of the output round-off error in the computation of standard EIT

FEM direct model

The number of nodes used in various contributions in the field of EIT ranges from 50

[9] to 6000 [15]. Basically, it is expected that the discretization error be reduced as the
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number of mesh-nodes increases (this question is addressed in Section IV). However, the

bound ‖δu‖sup
2 of eq. (13) crucially depends on the condition number κΘ, which might

increase as the mesh gets finer.

In order to derive the order of magnitude of ‖δu‖sup
2 , let us examine the value of κΘ

w.r.t. the number of nodes. As a general rule, the condition number of FEM stiffness

matrices highly depends on the mesh quality. Especially, 2D triangular meshes bring

badly conditioned USM if some of their elements are far from equilaterality [16]. Even a

single distorted element is enough to make a mesh unsuited to FEM computations. On the

other hand, automatic schemes, such as Delaunay triangulation, yield appropriate meshes

[17]. Here, to study κΘ w.r.t. N , we use again the CLCM family presented formerly, which

provides no distorted element. Figure 3 shows that λmax
Θ

is quasi-constant w.r.t. N while

λmin
Θ

decreases quasi-linearly in a log-log scale. The CLCM displayed on Fig. 1 (N = 145)

was used in [18] in an EIT inversion method. For this mesh, numerical computations yield

λmax
Θ

= 7.06 and λmin
Θ

= 0.0121. On the other hand, most conductivity distributions have

a contrast not higher than ρmax
σ = 100. For such numerical values, eq. (13) reads:

‖δū‖2 6
3.4 107

1 − 583 |δs|max

|δs|max +
5.83 104

1 − |δs|max

‖δc‖2 ,

if |δs|max < 1/583. By reference to the aforementioned 64-bit coding, let us consider

|δs|max = ‖δc‖2 = eps = 2.22 10−16. Then, the condition |δs|max < 1/583 is easily fulfilled

and we obtain the following relative output uncertainty for the direct model:

‖δū‖2 6 7.57 10−9,

which can be considered negligible w.r.t. one. If the number of nodes is 6000, extrapolation

on Fig. 3 yields λmax
Θ

≈ 10 and λmin
Θ

≈ 3 10−4. With the same hypothesis as above,

condition (11) is also fulfilled and inequality (13) reads ‖δū‖2 6 2.47 10−5. The latter

bound may not be considered negligible w.r.t. one. In that case, a numerically more

stable direct model would require to be coded on a greater number of digits.

For sake of exhaustivity, we have considered two other typical meshes: the first one is

a non convex peanut shaped hand meshed domain, and the second one is a convex potato

shaped domain meshed by Delaunay triangulation ([17]). In both cases, extreme USM
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eigenvalues are provided for two different degrees of refinement (Fig. 8), and upper bounds

are displayed in Table I under the same hypotheses as above. On these typical meshes,

double-precision (64-bit) coding for the inputs (conductivity and current) yields at least

a 6-digit precision for the output voltage. Such a precision can be regarded as sufficient

to tackle successfully the inverse problem, as long as the latter is properly regularized.

As a more general matter, with the view to identifying the algebraic and the numerical

FEM direct models, it must be kept in mind that magnification of input round-off errors

may vary from several orders of magnitudes. Given Corollary III.1, computation of the

USM condition number κΘ (even roughly for larger matrices) provides an easy way to

detect possible round-off problems.

IV. Discretization error

As reported in general books devoted to FEM, it is known that convergence toward the

exact solution of the PDE is mathematically obtained as the size of the elements decreases.

In [13], it is expressed by the following theorem:

Theorem IV.1 (EIT FEM convergence rate) Let Ī denote a piecewise linear current

distribution, injected on the boundary Ω̄ of a polygonal domain Ω and let E = V ∗ − V̂

be the difference between the exact solution V ∗ and the FEM estimated solution V̂ on Ω.

Let us also introduce the diameter h of the largest element in the triangularization Ωh of

Ω.

Then, there exists a positive constant C such that

‖E‖2 6 Ch2 max
(x,y)∈Ω

max

{∣∣∣∣
∂2V

∂x2

∣∣∣∣ ,
∣∣∣∣

∂2V

∂x ∂y

∣∣∣∣ ,

∣∣∣∣
∂2V

∂y2

∣∣∣∣
}

, (14)

where the norm ‖.‖2, is associated to the Sobolev space H1(Ω) = W 1
2 (Ω). It is defined by:

‖U‖2 = [〈U, U〉 + 〈~∇U, ~∇U〉]
1

2 ,

where the scalar product 〈U, V 〉 is given by:

〈U, V 〉 =

∫

Ω

U(x, y)V (x, y) dx dy.
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According to Theorem IV.1, convergence of the FEM on Ω is granted when h vanishes.

In the case of non polygonal domain Ω, a more general result is provided in [19] to tackle the

additional geometric truncation error. On the other hand, the constant C is not quantified

in Theorem IV.1. In the FEM literature, more precise and specific estimation methods

do exist to accurately quantify the discretization error (for instance, [20], [21]). In this

section, our goal is slightly different: it is rather to propose qualitative and quantitative

simulation results that illustrate the convergence of a FEM direct model in the context of

EIT.

A. Discretization in the case of an explicit solution

A very simple way to estimate the discretization error is to use an example yielding an

explicit analytic solution and to compare the latter with the numerical FEM simulation.

Here, we study the example of a unit disk of uniform background conductivity σ0 = 1, with

a centered circular inhomogeneity σ of radius R = 1/2. The injected current distribution

chosen is a sine function defined by

j(θ) =
dĪ

d~t
= cos θ,

where θ is the angle of the injection point in polar coordinate. The theoretical voltage

boundary output expression is given in [22]:

V̄ ∗(θ) =
1 − µR2

1 + µR2
cos θ,

where

µ =
σ − 1

σ + 1
.

Using CLCM again (cf. Fig. 4), we have focused on the difference between ̂̄V and V̄ ∗,

w.r.t. σ on the one hand, and on the other hand w.r.t. the number of elements P . More

precisely, the normalized distance

ν(σ) :=
[
∑N̄

n=1(V̄
∗
n − ̂̄V n)2]

1

2

[
∑N̄

n=1(V̄
∗
n )2]

1

2

,

has been computed, where V̄n is the voltage value at the boundary node n.
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Results are displayed on Fig. 5. First, one observes that the discretization error decreases

(by a ratio of 3.5 by mesh-refinement step) along with the size of the largest element. When

σ = 1, the conductivity distribution is uniform on Ω. Thus, the current paths are rectilin-

ear (because of the 1-period sine current input) and there is no discretization error except

the aforementioned truncation error that reveals negligible. Besides, the influence of ln σ

is asymmetric w.r.t. σ = 1. Indeed, it can be checked that the curvature of current paths

tends to be larger around the inhomogeneity domain when the latter is resistive (σ < 1), so

the upper bound in eq. (14) is expected to increase accordingly. Hence, the piecewise linear

paths yielded by the FEM on each element constitute a rougher approximation scheme.

On the other hand, the striking similarity between the three curves is in accordance with

the convergence rate of Theorem IV.1. For low contrasted conductivity distributions, the

FEM reveals precise even with a limited number of elements. Furthermore, highly con-

trasted distributions do not require an ever increasing number of elements to keep the

discretization error moderate, since the latter becomes nearly constant for σ < 0.1 and

σ > 3, for any given number of elements. For intermediary mesh resolution (P = 256)

and for conductive inhomogeneity (σ > 1), the FEM precision is about ν ≈ 1.5 10−3. It

corresponds to a 20 log(ν−1) ≈ 55 dB discretization signal-to-noise ratio (D-SNR). For a

finer mesh resolution (P = 1024), the D-SNR reaches 65 dB.

The latter study brings valuable information concerning the behavior of the discretiza-

tion error in one particular case. From the qualitative point of view, it is expected that the

same conclusions be available in a more general setting. This can be checked by resorting

to the dual direct model.

B. Estimation of the discretization error based on the dual direct model

Equation (6) provides the direct model (ı̄, σ) → v̄. However, one may notice that the

2D variational formulation (4) is symmetric in the sense that the substitutions σ → σ−1,

V → −I and I → V leave eq. (4) unchanged. As studied in [23], [7], there also exists a
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dual direct model (v̄, σ) → ı̄, which reads 1:

ı̄ = −P̄ A−1
�
−1P̄

t
Dv̄. (15)

The behaviour of the dual model can be deduced from that of the primal one by the

simple substitution σ → σ−1. In particular, the dual model reveals more precise for

resistive inhomogeneities σ < 1 in the explicit example Fig. 5.

To estimate the precision of the FEM model, we propose to combine the two available

direct FEM models (ı̄, σ) → (v̄, σ) → (ı̄′, σ) and to compute the boundary remainder ρ

defined by

ρ :=
‖ı̄0 − ı̄′0‖2

‖ı̄0‖2

,

where ı̄0 is the centered value of ı̄. According to Theorem IV.1, the boundary remainder

tends to 0 when the mesh gets finer. This is attested by the values displayed on Fig. 7 for

four different current distributions injected on the boundary of a CLCM (cf. Fig. 6).

Besides, using a uniform conductivity distribution (solid lines on Fig. 7), N being fixed,

one can see that the accuracy of the direct model is better if the input current pattern is

rather low-frequency. Moreover, current patterns with narrow spectra (e.g., piecewise and

half-period sine functions) yield comparatively faster convergence as N grows.

From a qualitative point of view, it is easy to guess that large variations in the input

current pattern tend to create current paths that rewind to the boundary without en-

tering deep into the medium. Moreover, such current paths may require a finer mesh to

be correctly approximated according to Theorem IV.1, since the smaller values of their

curvature radius correspond to larger values of max {|∂2V/∂x2| , |∂2V/∂x∂y| , |∂2V/∂y2|}.

It is also important to notice that the loss of accuracy in the case of a non uniform

conductivity distribution (dashdotted line on Fig. 7) nearly corresponds to an upward

shift of reduced amount compared to the potential influence of current pattern variations.

Empirically, the rate of decrease of the boundary remainder ρ is almost equal to that of

the normalized discretization error ν on Fig. 5, i.e., about half a decade for N → 4N

(remember the mathematical correspondance (9) between P and N). By linear regression

1Because eq. (3) is no longer valid in 3D, there is no such dual 3D formulation, to our best knowledge.
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(in log-log scale), we obtain an approximate relation between ν(σ) and ρ :

log ν(σ) ≈ α log ρ + β,

with α = 1.1378, β = −0.504, with a relative error of 0.85% on log ν.

Extrapolation of this rule to other discretized domains provides a coarse but cheap

estimator of the D-SNR. As an application, we have computed the resulting estimated

D-SNR for various conductivity distributions displayed on the irregular domains of Fig. 8.

The corresponding values are gathered in Table II, from which it can be seen that the

estimated D-SNR ranges from 44 to 70 dB. Since the output round-off error is negligible,

the resolution error of the direct problem reduces to the D-SNR.

In [24], the authors estimate that their real data have been obtained at a SNR of 66 dB

(the corresponding measurement error is a part of the mathematical modeling error). In

such a case, the FEM discretization error may represent another non negligible component

of the total error. In [6], [7], [8], an inversion method has been proposed by the authors in

the Bayesian framework. The different sources of errors have been considered as additive

centered Gaussian white noises. The resulting method provides particularly robust and

good reconstruction results from simulated data, even at a low SNR of 40 dB. Let us stress

that such data have been obtained from a refined mesh, so that the discretization error is

not artificially eliminated in the inversion step.

V. Conclusion

The goal of the present paper is to show that the finite element method (FEM) enables

to build an accurate direct solver for electrical impedance tomography EIT.

First, we have studied the magnification of input round-off uncertainties through the

FEM EIT direct model. We have derived an upper bound that involves the maximal con-

trast of the conductivity distribution and the condition number of the uniform stiffness

matrix (USM). Examples of triangularized domains are provided (among which concentric

layer circular meshes). Numerical computations of USM eigenvalues w.r.t. the number

of nodes show that the magnification of round-off errors through the direct model is sig-

nificant. However, for typical triangularized domains in EIT, it reveals small enough for
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the direct model to be considered numerically stable. More generally, we have pointed out

that the computation of the USM condition number is a suited tool to check whether a

greater number of digits is required to encode the direct model.

In a second part, empirical evaluation of the discretization error has been performed

by means of simulations. We have proposed an original method based on both primal

and dual direct models to estimate the quality of convergence of the FEM solver. It has

been raised that the smoothness of the input current pattern is an important factor to

reduce the discretization error. Provided that the current patterns be smooth enough, one

may easily obtain a signal-to-noise ratio of 50 dB w.r.t. numerical approximations, with

a discrete mesh of about one thousand elements.

As a perspective, extension to 3D EIT direct models could be considered. Since 3D

FEM models often involve a much larger number of nodes (tenths of thousands), avoiding

instabilities should require to encode the data on a larger number of digits than provided

by standard double precision. On the other hand, since the dual formulation (3) has no

known counterpart in the 3D case, our study concerning the discretization error does not

extend in a simple way.

Appendix

A. Proof of theorem III.1

The demonstration mainly consists in finding norms for involved matrices and in using

the upper bound ‖Mu‖ 6 ‖M‖ ‖u‖, with ‖M‖ = ‖M‖2 :=
√

r(M tM), where r stands

for the spectral radius. From eq. (5) and (10), we obtain

δv = (A−1
� +δ � − A−1

� )j + A−1
� +δ � δj (16)

and

A � v = j, (17)

which are respectively useful to find an upper bound for ‖δv‖ and a lower bound for ‖v‖.

From eq. (8), it appears that A � is positive definite. Hence, we get

‖A � ‖ := sup
‖ � ‖=1

vtA � v = λmax�
�
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and
∥∥A−1

�

∥∥−1
:= inf

‖ � ‖=1
vtA � v = λmin�

� ,

respectively for the smallest and the largest eigenvalue of A � . Since Q is a full rank matrix

and Θ = QtQ is Hermitian, we have

∀ v s.t. ‖v‖ = 1, λmin
Θ

6 ‖Qv‖2
6 λmax

Θ
. (18)

Furthermore, since ∆ � is a diagonal positive definite matrix with components of σ on its

diagonal, we have

∀ u s.t. ‖u‖ = 1,
∥∥∆

−1
�

∥∥−1
6 ut

∆ � u 6 ‖∆ � ‖ .

Taking u = Qv/ ‖Qv‖, we obtain:

∀ v s.t. ‖v‖ = 1, σmin =
∥∥∆

− 1

2�

∥∥−2
6

∥∥∆
1

2� Qv
∥∥2

‖Qv‖2 6
∥∥∆

1

2�

∥∥2
= σmax. (19)

Since we have vtA � v =
∥∥∆

1

2
� Qv

∥∥2
, multiplying eq. (18) by eq. (19) yields:

σminλ
min
Θ

6 ‖∆ � Qv‖2
6 σmaxλ

max
Θ

,

which is equivalent to

∀ v s.t. ‖v‖ = 1, σminλ
min
Θ

6
∥∥A−1

�

∥∥−1
6 vtA � v 6 ‖A � ‖ 6 σmaxλ

max
Θ

. (20)

Eq. (11) yields

|δσ|max < σmin.

Thus, from eq. (20), we obtain

∥∥A−1
� +δ �

∥∥ 6
1

(σ + δσ)minλmin
Θ

6
1

(σmin − |δσ|max)λ
min
Θ

(21)

for the upper bounding of ‖δv‖ and

‖A � ‖ 6 σmaxλ
max
Θ

(22)

for the lower bounding of ‖v‖. From eq. (17), the latter is straightforward:

‖v‖−1
6 σmaxλ

max
Θ

‖j‖−1 . (23)
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There remains to find an upper bound for
∥∥A−1

� +δ � − A−1
�

∥∥. For this, we use the following

lemma.

Lemma A.1 (Perturbation theory on matrices) If the invertible matrix M is perturbed

by a matrix δM , and if
∥∥M−1

∥∥ ‖δM‖ < 1, then the norm of the perturbation δ(M−1) :=

(M + δM)−1 − M−1 on the inverse M−1 is bounded by:

∥∥δ(M−1)
∥∥ 6

∥∥M−1
∥∥2

‖δM‖

1 −
∥∥M−1

∥∥ ‖δM‖
. (24)

A demonstration of this result can be found in [25]. As a direct application, consider

M = A � and δM = Aδ � . Indeed, A � being linear w.r.t. σ, we have:

A � +δ � = A � + Aδ � .

Besides, according to eq. (8), we have

Aδ � = Qt
∆δ � Q

so that

‖Aδ � ‖ 6
∥∥QtQ

∥∥ ‖∆δ � ‖ .

Since ‖∆δ � ‖ = ‖δσ‖∞ = |δσ|max,
∥∥QtQ

∥∥ = λmax
Θ

, and (from eq. (20))

∥∥A−1
�

∥∥ 6
1

σminλ
min
Θ

,

the sufficient condition
∥∥M−1

∥∥ ‖δM‖ < 1 is checked if |δσ|max < σminλ
min
Θ

/λmax
Θ

, which

does correspond to condition (11) in the theorem. Consequently,

∥∥A−1
� +δ � − A−1

�

∥∥ 6
λmax

Θ
|δσ|max

σminλmin
Θ

(σminλmin
Θ

− |δσ|max λmax
Θ

)
. (25)

Finally, eq. (21) and (25) yield the expected bounds. Given eq. (16), we obtain

‖δv̄‖ 6
λmax

Θ
|δσ|max

σminλmin
Θ

(σminλmin
Θ

− |δσ|max λmax
Θ

)
‖j‖ +

‖δj‖

(σmin − |δσ|max)λ
min
Θ

. (26)

From (23) and (26), we finally get

‖δv‖

‖v‖
6

σmaxλ
max
Θ

2 |δσ|max

σminλmin
Θ

(σminλmin
Θ

− |δσ|max λmax
Θ

)
+

σmaxλ
max
Θ

‖δj‖

(σmin − |δσ|max)λ
min
Θ

‖j‖
,

which is the announced result.
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Tables

TABLE I USM Θ eigenvalues and accuracy of the output coding for the meshes of 8 and

4. The contrast is ρσ = 100 and the numbers are coded on 16 digits, yielding ε = 2.22 10−16

as floating point relative uncertainty. The range of ‖δū‖sup
2 provides an output accuracy

greater than 6 digits.

TABLE II Values of the remainder and of the estimated D-SNR (= −20 log ν) for the

discretized domain of Fig. 8 a,b,c & d for uniform and non uniform distribution. The

current distribution chosen is the piecewise sine distribution displayed Fig. 6 b. For com-

parison, two points of the CLCM case (cf. Fig. 4, σ = 10) are displayed here. All the

D-SNR are above 40 dB.

Figures

Fig. 1 Exemple of CLCM with 8 layers (N=145, P=256). The black points on Fig. b

locate the 4.5% nonzero elements in the resulting A � stiffness matrix.

Fig. 2 Solid line (−): computational cost of the resolution of the linear system (5) w.r.t.

the number of nodes N for CLCM meshes; dashdotted line (−·): computational cost of

the multiplication of a full matrix (N × N) by a vector, for sake of comparison. If N

is above 100, which is rather small for FEM EIT models, solving the direct problem is

cheaper than a full matrix multiplication of same size.

Fig. 3 Behavior of the extreme eigenvalues of the USMΘ w.r.t. the number of nodes N

with the CLCM family, in a log-log scale. (−) λmax
Θ

, (−·) λmin
Θ

.

Fig. 4 Two examples of CLCM with a centered circular inhomogeneity.

Fig. 5 Study of the discretization error ν(σ) for a circular domain with a circular inho-

mogeneity of conductivity σ. P is the number of mesh elements. ν(σ) decreases when the

mesh gets finer, in an asymmetrical way w.r.t. the vertical asymptote σ = 1.

Fig. 6 Four different boudary current patterns ı̄ used to compute the boundary remain-

der ρ, as displayed on Fig. 7 with the corresponding marks +, ◦,× and ∗.

Fig. 7 Behavior of the remainder as a function of the number of nodes N for the current

distributions of Fig. 6 on CLCM. (−) uniform conductivity distribution, (−·) distribution
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with a centered circular inhomogeneity σ = 10 (Fig. 4).

Fig. 8 Two refinement scales are chosen for the discretization of a peanut-shaped domain

(above) and a potato-shaped domain (below). For each of theses domains, the remainder

ρ is computed from an inhomogeneous conductivity distribution.
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Domain a b c d CLCM CLCM

# nodes N 174 552 184 639 145 545

λmax
Θ

8.426 10.386 6.378 7.03 7.06 7.79

λmin
Θ

0.0241 0.0077 0.0040 0.0010 0.0121 0.00294

‖δū‖sup
2 2.72 10−9 4.04 10−8 5.65 10−8 1.10 10−6 7.57 10−9 1.56 10−7

TABLE I

USM Θ eigenvalues and accuracy of the output coding for the meshes of 8 and

4. The contrast is ρσ = 100 and the numbers are coded on 16 digits, yielding

ε = 2.22 10−16 as floating point relative uncertainty. The range of ‖δū‖sup
2

provides an output accuracy greater than 6 digits.

Distribution a b c d CLCM CLCM

# elements P 296 1002 336 1217 256 1024

ρ 6.90 10−3 2.86 10−3 2.84 10−3 1.70 10−3 9.97 10−3 2.57 10−3

σ unif.

D-SNR 60 dB 68 dB 68 dB 73 dB 56 dB 69 dB

ρ 3.47 10−2 1.43 10−2 3.15 10−2 1.29 10−2 1.27 10−2 5.275 10−3

σ inhom.

D-SNR 44 dB 52 dB 45 dB 54 dB 54 dB 62 dB

TABLE II

Values of the remainder and of the estimated D-SNR (= −20 log ν) for the

discretized domain of Fig. 8 a,b,c & d for uniform and non uniform distribution.

The current distribution chosen is the piecewise sine distribution displayed

Fig. 6 b. For comparison, two points of the CLCM case (cf. Fig. 4, σ = 10) are

displayed here. All the D-SNR are above 40 dB.
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a - CLCM with 8 layers b - Corresponding sparsity of A �

Fig. 1. Exemple of CLCM with 8 layers (N=145, P=256). The black points on Fig. b locate

the 4.5% nonzero elements in the resulting A � stiffness matrix.
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Fig. 2. Solid line (−): computational cost of the resolution of the linear system (5) w.r.t. the

number of nodes N for CLCM meshes; dashdotted line (−·): computational cost of the

multiplication of a full matrix (N × N) by a vector, for sake of comparison. If N is above

100, which is rather small for FEM EIT models, solving the direct problem is cheaper than

a full matrix multiplication of same size.
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Fig. 3. Behavior of the extreme eigenvalues of the USM Θ w.r.t. the number of nodes N with

the CLCM family, in a log-log scale. (−) λmax
Θ

, (−·) λmin
Θ

.

P = 256, N = 145 P = 1024, N = 545
Fig. 4. Two examples of CLCM with a centered circular inhomogeneity.
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Fig. 5. Study of the discretization error ν(σ) for a circular domain with a circular inhomogeneity

of conductivity σ. P is the number of mesh elements. ν(σ) decreases when the mesh gets

finer, in an asymmetrical way w.r.t. the vertical asymptote σ = 1.
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(+) piecewise sine function. (◦) Half-period sine distribution.

(×) Basic triangle function. (∗) Half-period triangle function.

Fig. 6. Four different boudary current patterns ı̄ used to compute the boundary remainder ρ,

as displayed on Fig. 7 with the corresponding marks +, ◦,× and ∗.
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Fig. 7. Behavior of the remainder as a function of the number of nodes N for the current

distributions of Fig. 6 on CLCM. (−) uniform conductivity distribution, (−·) distribution

with a centered circular inhomogeneity σ = 10 (Fig. 4).
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0.1 0.25 0.63 1 1.58 3.97 9.96 25

Logarithmic scale for the conductivity distributions.

a -Medium discretization, 2 inhomoneous areas. b -Fine discretization, 2 inhomoneous areas.

c - Medium discretization, 3 inhomogeneous areas. d -Fine discretization, 2 inhomoneous areas.

Fig. 8. Two refinement scales are chosen for the discretization of a peanut-shaped domain

(above) and a potato-shaped domain (below). For each of theses domains, the remainder ρ

is computed from an inhomogeneous conductivity distribution.
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