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Abstract. We address the minimization of penalized least squares (PLS) criteria customarily
used for edge-preserving restoration and reconstruction of signals and images. The minimization of
PLS criteria can be addressed using a half-quadratic (HQ) scheme, according either to Geman &
Reynolds (1992) or to Geman & Yang (1995) constructions. In the case of large-scale problems, the
cost of the HQ approach is usually too high. In practice, it is rather proposed to implement an
inexact HQ algorithm using a truncated conjugate gradient (TCG) method. This principle echoes
that of truncated-Newton algorithms. Our contribution is to establish the convergence of the resulting
truncated algorithms (HQ or Newton), under the same conditions required for the exact HQ scheme.
Indeed, convergence is granted whatever the number of performed iterations of TCG. According
to our experimental study on a deconvolution problem, the fastest versions correspond to severe
truncation. This reinforces the interest for the truncated schemes, as fully valid algorithms in the
field of image restoration.
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1. Introduction. This work addresses a wide class of problems where a sought
vector x̂ ∈ RN (e.g., an image or a signal) is estimated based on degraded data
y ∈ RQ. A usual approach is to minimize the following penalized least squares
(PLS) criterion J : RN 7→ R which combines a quadratic data-fidelity term and a
regularization term Φ, weighted by a parameter λ > 0:

J (x) = ‖Hx − y‖2
+ λΦ(x). (1.1)

Here, we restrict ourselves to the case where H is a linear operator, described as a
Q × N matrix, and we focus on regularization terms of the form

Φ(x) =

C∑

c=1

φ([Vx]c), (1.2)

where V ∈ RC×N is typically the first or second-order difference matrix. The case
where V is the identity matrix is also of interest.

Such a minimization problem is most commonly met in image restoration and
reconstruction, which is our main concern [7, 8, 4, 15, 1]. It is also relevant in much
wider contexts including inverse problems, robust statistical estimation, matching
pursuit decomposition, and machine learning issues. Here we focus on coercive, edge-
preserving potential functions φ : R 7→ R in (1.2), because they give rise to image
and signal estimates of high quality, involving edges and homogeneous regions.

The local minimization (i.e., the search of a local minimum) of criterion J (1.1)
can be addressed using a half-quadratic (HQ) approach that exploits the PLS structure
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exhibited by J , either according to Geman and Reynolds (GR) or to Geman and
Yang (GY) constructions [7, 8]. In both cases, the resulting algorithm is shown to fall
within the class of constant stepsize, gradient-related methods [1]. Both GR and GY
algorithms are of the following form

xk+1 =xk + θdk (1.3)

dk = − A−1
k ∇J (xk), (1.4)

where the normal matrix Ak is symmetric, positive definite (SPD). In the GR case,
Ak = BGR(xk) depends on the current iteration according to:

BGR(x) = 2HtH + λVtL(x)V, (1.5)

L(x) = Diag{φ′([Vx]c)/[Vx]c}, (1.6)

while it is a constant matrix Ak = Ba
GY in the GY case, defined by:

Ba
GY = 2HtH + λVtV/a. (1.7)

Some convergence results for both HQ algorithms can be found in [4, 15, 1].
In general, the nontrivial inversion of a linear system (1.4) is needed within the

HQ approach to compute the search direction dk, at each iteration. In the case of
large-scale problems, the resulting numerical cost is usually too high. In practice,
it is rather proposed to compute an inexact search direction using a truncated pre-
conditioned conjugate gradient (TPCG) method [4, 14, 15]. Truncated means that
the preconditioned conjugate gradient (PCG) method is stopped before exact con-
vergence, since the latter would require a prohibitive number of iterations, even as
large as the size of the sought vector. In short, let us refer to the resulting family of
truncated HQ algorithms as HQ+TPCG.

The principle of HQ+TPCG methods echoes that of truncated-Newton algorithms
for solving large nonlinear optimization problems by approximately solving the New-
ton equation [5, 6, 12]

dk = −∇2J (xk)−1∇J (xk), (1.8)

assumed defined, using an inner iterative algorithm. Here the Hessian of J reads

∇2J (x) = 2HtH + λVtDiag{φ′′([Vx]c)}V. (1.9)

Some variant of the linear conjugate gradient (CG) method is almost always used to
perform the inner iterative algorithm for solving (1.8) [12, p. 46].

The HQ+TPCG family and the truncated-Newton method can be cast into a
unique formulation:

xk+1 =xk + αkdk (1.10)

dk =uIk
(xk), (1.11)

where uIk
(xk) is the vector obtained after Ik ∈ {1, . . . , N} iterations of the PCG

algorithm described in Section 2 with u0(xk) = 0 as initial guess, applied to the
following linear system

Aku = −∇J (xk), (1.12)



Convergence of truncated half-quadratic algorithms (June 22, 2007) 3

where Ak is either the GR matrix (1.5), the GY matrix (1.7), or the Hessian (1.9).
Note that uIk

(xk) turns out to be a descent direction in xk and the sequence {Ik} is
not necessarily constant.

The new estimate of the solution is obtained as xk+1 = xk + αkdk, where αk

is the stepsize. In inexact Newton methods, the stepsize is determined either by a
constant stepsize (unitary) [5] [17, Algorithm 1] with local convergence or by a line
search strategy (backtracking) [6] [3] [17, Algorithm 2] with global convergence.

In the present paper, we propose the following stepsize formula as a simple line
search strategy:

αk = −θ
dt

k∇J (xk)

dt
kBkdk

(1.13)

where Bk is either the GR matrix (1.5) or the GY matrix (1.7). In the exact HQ case
(i.e., when Ak = Bk and Ik = N), it is obvious that αk = θ. Actually, it will be shown
later that αk = θ remains true for the HQ+TPCG family, for all Ik ∈ {1, . . . , N}.

Indeed, the stepsize formula (1.13) identifies with a single iteration of a one-
dimensional (1D) HQ algorithm applied to the minimization of f(α) = J (xk + αdk).
This is readily seen by applying the scheme (1.3)-(1.4) with a zero initialization to
the minimization of f , which reads

αk = 0 − θ
f ′(0)

dt
kBkdk

= −θ
dt

k∇J (xk)

dt
kBkdk

where either Bk = BGR(xk) or Bk = Ba
GY. Note that the stepsize formula (1.13) is

the same as in [11] and is also reminiscent of the one in [16], both within nonlinear CG
methods. Up to our knowledge, the stepsize formula (1.13) is new for Newton type
methods. In what follows, the truncated-Newton methods obtained by (1.10)-(1.13)
when Ak = ∇2J (x) will be referred to as N+TPCG, and the whole family defined by
(1.10)-(1.13) and gathering HQ+TPCG and N+TPCG methods will be designated as
HQ/N+TPCG.

The contribution of this paper can be examined at different levels of generality.
The first level of results deals with the convergence of truncated HQ schemes to min-
imize the PLS criterion (1.1). A higher level of generality is obtained by introducing
two distinct matrix sequences {Ak} and {Bk} to govern the search direction and the
stepsize scheme, respectively. Whereas the two sequences are structurally identical
within the HQ approach, our paper shows that a broad family of converging, trun-
cated methods can be obtained by relaxing this constraint. In particular, the case
where {Ak} is the Hessian of the criterion is of specific interest.

Moreover, our convergence results are available for any level of truncation Ik ∈
{1, . . . , N}, which means that even very rough inversion of (1.12) leads to conver-
gence. In practice, this property has important consequences: according to our
experience, the fastest versions of HQ/N+TPCG are obtained when (1.12) is only
roughly inverted, i.e., when the HQ scheme or Newton is severely truncated. Of
course, a more severely truncated algorithm may require a larger number of global
iterations to meet a given stopping criterion, but each of these global iterations takes
less time. Using a severely truncated scheme, the computation time is actually re-
duced by a factor two to ten compared to the HQ algorithms with a lighter truncation,
as implemented in [14].

Finally, let us underline that our core results address the minimization of criteria
with a more general structure than the PLS expression (1.1). Basically, they deal with
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all differentiable criteria, lower bounded, and admitting an upper convex quadratic
approximation in a neighborhood of the level set L(x0) = {x ∈ RN |J (x) ≤ J (x0)}.

The paper is structured as follows. Useful properties concerning the PCG di-
rections (1.11) are gathered in Section 2. The convergence of the HQ/N+TPCG
algorithms defined by (1.10)-(1.13) is studied in Section 3. Finally, Section 4 is de-
voted to numerical results.

2. Background material on linear preconditioned conjugate gradient.

The present section gathers technical results concerning the directions generated by
(1.11), which will be useful afterwards to derive global convergence properties. Some
of them could probably be derived as particular instances of more general properties
of linear CG. For the sake of a self-contained paper, they are rather stated and proved
as standalone results.

The method [10] and the preconditioned extension are among the most prominent
iterative methods for solving linear systems. Let us consider the linear system

Au = b,

where b, u ∈ RN , and A ∈ RN×N is a SPD matrix.
Let us consider a SPD preconditioning matrix M ∈ RN×N . Let u0 ∈ RN be the

initial guess, r0 = b − Au0 and p0 = M−1r0. The PCG algorithm can be defined as
follows [9, Algorithm 10.3.1]:

αi =
‖ri‖2

M−1

‖pi‖2

A

(Optimal stepsize), (2.1)

ui+1 =ui + αipi (Update iterate), (2.2)

ri+1 =ri − αiApi (Update residual), (2.3)

βi =
‖ri+1‖2

M−1

‖ri‖2

M−1

(Conjugacy formula), (2.4)

pi+1 =M−1ri+1 + βipi (Update descent direction), (2.5)

where the notation ‖y‖Q = (ytQy)1/2 denotes the Q-norm of vector y. In exact
arithmetic, convergence is obtained in at most N steps. In (2.1)-(2.5), index i belongs
to {1, . . . , N}, which will remain implicit in the rest of the paper.

The basic CG method involves no preconditioning, i.e., M identifies with the
identity matrix. The use of a well-chosen, context-dependent preconditioning matrix
can significantly improve the efficiency of CG method [9].

Let us first state the following orthogonal property of the PCG algorithm.
Lemma 2.1. For any initial guess u0 ∈ RN , the PCG algorithm (2.1)-(2.5)

ensures that the residual ri is orthogonal to the previous descent directions p0, . . . , pi−1

rt
ipj = 0, ∀i, ∀j < i. (2.6)

Proof. ¿From [9, p. 534] we have rt
iM

−1rj = 0 for all i, j < i, and given (2.5) we
deduce (2.6) by immediate recursion.

In the sequel, a zero initial guess u0 = 0 is assumed.
Lemma 2.2. Let u0 = 0. The PCG algorithm (2.1)-(2.5) ensures that the residual

ri is orthogonal to the iterate ui

rt
iui = 0, ∀i, (2.7)
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and

btui = ‖ui‖2

A , ∀i. (2.8)

Proof.
According to (2.2), we have

uj = u0 +

j−1∑

ℓ=0

αℓpℓ, ∀j.

Using (2.6), we deduce that rt
iuj = rt

iu0, for all i, j ≤ i. Hence, (2.7) is readily
obtained given u0 = 0. On the other hand, (2.2) and (2.3) imply ri+1 = ri −
A(ui+1 − ui). ¿From u0 = 0, we deduce

ri = r0 − A(ui − u0) = b − Aui, ∀i (2.9)

by immediate recursion. The latter identity yields rt
iui = btui − ut

iAui, for all i,
from which we deduce (2.8), given (2.7).

Lemma 2.3. Let u0 = 0. The PCG algorithm (2.1)-(2.5) ensures that

‖ui+1‖2
M ≥ ‖ui‖2

M , ∀i. (2.10)

Proof. According to (2.2) we have

‖ui+1‖2

M = ‖ui‖2

M + α2
i ‖pi‖2

M + 2αiu
t
iMpi ≥ ‖ui‖2

M + 2αiu
t
iMpi.

Since αi ≥ 0, we deduce that (2.10) holds if

ut
iMpi ≥ 0 (2.11)

is true. Let us show the latter inequality by recursion on i. Since u0 = 0, we have
ut

0Mp0 = 0.
Let us assume now that (2.11) holds, and let us show that ut

i+1Mpi+1 ≥ 0.
According to (2.5), we have

ut
i+1Mpi+1 = ut

i+1ri+1 + βiu
t
i+1Mpi.

According to (2.7) we deduce

ut
i+1Mpi+1 = βiu

t
i+1Mpi.

Given (2.2) we get

ut
i+1Mpi+1 = βi(u

t
iMpi + αi ‖pi‖2

M),

which is nonnegative since βi, αi ≥ 0.
Consider a SPD matrix Q ∈ RN×N . Let ν1(Q) > 0 and ν2(Q) > 0 denote the

smallest and largest eigenvalues of Q, respectively, so that we have

ν1(Q) ‖v‖2 ≤ ‖v‖2

Q ≤ ν2(Q) ‖v‖2
, ∀v ∈ RN . (2.12)
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Lemma 2.4. Let u0 = 0. The PCG algorithm (2.1)-(2.5) ensures that

btui ≥
τ2

ν1(A)
‖b‖2 , ∀i, (2.13)

where

τ =
ν1(M)ν1(A)

ν2(M)ν2(A)
∈ (0, 1). (2.14)

Proof. Given (2.12) we have

µ1 ‖v‖2

A ≤ ‖v‖2

M ≤ µ2 ‖v‖2

A , ∀v ∈ RN , (2.15)

where µ1 = ν1(M)/ν2(A) > 0 and µ2 = ν2(M)/ν1(A) > 0.

¿From (2.10), by immediate recursion we get ‖u1‖2

M ≤ ‖ui‖2

M. According to
(2.15), we deduce

µ1 ‖u1‖2
A ≤ ‖u1‖2

M ≤ ‖ui‖2
M ≤ µ2 ‖ui‖2

A (2.16)

On the other hand, (2.9) yields ‖ui‖2

A = ut
iAui = btui − rt

iui. According to
(2.7), we deduce

‖ui‖2
A = btui. (2.17)

In particular,

‖u1‖2
A = btu1. (2.18)

Given u1 = u0 + α0p0 = α0p0 = α0M
−1b and

α0 =
‖r0‖2

M−1

‖p0‖2

A

=
‖b‖2

M−1

‖M−1b‖2

A

,

we have

btu1 =
‖b‖4

M−1

‖M−1b‖2

A

=

∥∥M−1b
∥∥4

M

‖M−1b‖2

A

.

According to (2.15), we deduce

btu1 ≥ µ1

∥∥M−1b
∥∥2

M
= µ1 ‖b‖2

M−1 .

According to (2.15) and (2.12), we obtain

btu1 ≥ µ1ν1(M
−1) ‖b‖2 =

µ1

ν2(M)
‖b‖2 =

µ1

µ2ν1(A)
‖b‖2 . (2.19)

Finally, according to (2.16), (2.17), (2.18), (2.19), and τ = µ1/µ2, we deduce

btui ≥ τbtu1 ≥ τ2

ν1(A)
‖b‖2 .
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Lemma 2.5. Let u0 = 0. The PCG algorithm (2.1)-(2.5) ensures that

‖ui‖ ≤ 1

τ1/2ν1(A)
‖b‖, ∀i, (2.20)

where τ is defined by (2.14).

Proof. ¿From (2.10), we get ‖ui‖2

M ≤ ‖uN‖2

M by immediate recursion. According
to (2.15), we obtain

‖ui‖2

A ≤ 1

τ
‖uN‖2

A . (2.21)

According to (2.12), we have

‖ui‖2 ≤ 1

ν1(A)
‖ui‖2

A . (2.22)

The PCG algorithm (2.1)-(2.5) ensures that uN = A−1b after N iterations. Hence,

‖uN‖2

A =
∥∥A−1b

∥∥2

A
= ‖b‖2

A−1 ≤ ν2(A
−1)‖b‖2 =

1

ν1(A)
‖b‖2, (2.23)

according to (2.12). Finally, (2.20) is easily deduced from (2.22), (2.21) and (2.23).

3. Global convergence.

3.1. Results for general criterion. For the sake of generality, the convergence
of algorithm (1.10)-(1.13) is established for a generic SPD matrix Ak. We also consider
a generic differentiable, lower bounded criterion J in a neighborhood N of the level
set L(x0) = {x ∈ RN |J (x) ≤ J (x0)}.

Definition 3.1. A sequence of SPD matrices Q = {Qk} ∈ RN×N has a uni-
formly bounded spectrum with a strictly positive lower bound if there exist ν1(Q),
ν2(Q) ∈ R such that

ν2(Q) ≥ ν2(Qk) ≥ ν1(Qk) ≥ ν1(Q) > 0, ∀k.

For the sake of brevity, Q will then be said uniformly bounded.
The following assumptions are considered.
Assumption 3.2. The matrix sequence A = {Ak} used in (1.12) to determine

the search direction (1.11) and the preconditioning matrix sequence M = {Mk} in
the PCG algorithm are uniformly bounded.

Assumption 3.3. The matrix sequence B = {Bk} in the stepsize formula (1.13)

is uniformly bounded and such that J is upper bounded by Ĵk(·, x), i.e.,

Ĵk(x+, x) ≥ J (x+), ∀x, x+ ∈ N , ∀k, (3.1)

where

Ĵk(x+, x) = J (x) + (x+ − x)t∇J (x) + (x+ − x)t Bk (x+ − x)/2. (3.2)

Lemma 3.4. Let xk be defined by (1.10)-(1.13) with θ ∈ (0, 2), and let Assump-
tions 3.2 and 3.3 hold. Then (1.11) defines a descent direction in xk, i.e.,

dt
k∇J (xk) < 0, ∀k,
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and the stepsize sequence {αk} is positive. Moreover, the sequence {J (xk)} is non-
increasing:

J (xk) ≥ J (xk+1), ∀k. (3.3)

Thus, the whole sequence {xk} stays inside N .

Proof. Let b = −∇J (xk), A = Ak and dk = uIk
(xk). According to (2.8) we

have

−dt
k∇J (xk) = dt

kAkdk (3.4)

which is strictly positive for dk 6= 0 since Ak is SPD. From (2.10) we have

‖dk‖2

M = ‖uIk
‖2

M ≥ ‖u1‖2

M = α2
0 ‖b‖2

M−1 = α2
0 ‖∇J (xk)‖2

M−1 .

Thus, dk is a descent direction and from (1.13) the stepsize αk is positive.
The nonincreasing property of the sequence {J (xk)} is a corollary of [11, Lemma 3.1],
which is true for a generic differentiable criterion in N and a generic search direction
dk

1.

Definition 3.5. The stepsize sequence {αk} satisfies the Armijo condition with
Ω ∈ (0, 1) if

J (xk) − J (xk+1) + Ωαkdt
k∇J (xk) ≥ 0, ∀k. (3.5)

Lemma 3.6. Let xk be defined by (1.10)-(1.13) with θ ∈ (0, 2), and let Assump-
tions 3.2 and 3.3 hold. Then the stepsize sequence {αk} defined by (1.13) satisfies
the Armijo condition with Ω = 1 − θ/2 ∈ (0, 1).

Proof. According to (3.1) we have

Ĵk(xk+1, xk) ≥ J (xk+1).

Given (1.10) and (3.2), we get

J (xk) − J (xk+1) + αk dt
k∇J (xk) + α2

k dt
kBkdk/2 ≥ 0,

which also reads

J (xk) − J (xk+1) +

(
1 + αk

dt
kBkdk

2dt
k∇J (xk)

)
αkdt

k∇J (xk) ≥ 0. (3.6)

According to (1.13), we get the Armijo condition (3.5) with Ω = 1 − θ/2 ∈ (0, 1).

Definition 3.7. [2, p. 35] The direction sequence {dk} is gradient related to
{xk} if for any subsequence {xk}k∈K

that converges to a nonstationary point, the
corresponding subsequence {dk}k∈K

is bounded and satisfies

lim sup
k→∞,k∈K

dt
k∇J (xk) < 0.

1In [11, Lemma 3.1], a generalized, iterated formula is considered for the stepsize. For the sake
of simplicity, the present paper is restricted to the stepsize yielded by a single iteration.
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Lemma 3.8. Let xk be defined by (1.10)-(1.13), and let Assumptions 3.2 and 3.3
hold. Then we have

T 2

ν1(A)
‖∇J (xk)‖2 ≤ −dt

k∇J (xk) (3.7)

and

‖dk‖ ≤ 1

T 1/2ν1(A)
‖∇J (xk)‖, (3.8)

where

T =
ν1(M)ν1(A)

ν2(M)ν2(A)
∈ (0, 1). (3.9)

Thus, the direction sequence {dk} is gradient related to {xk}.
Proof. For any value of k, let b = −∇J (xk), A = Ak, M = Mk and dk =

uIk
(xk). Since both sequences A and M are uniformly bounded, it is easy to see that

(2.14) and (3.9) imply T ≤ τ , as well as

T 2

ν1(A)
≤ τ2

ν1(A)

and

1

τ1/2ν1(A)
≤ 1

T 1/2ν1(A)
.

Then (3.7) and (3.8) are obvious consequences of (2.13) and (2.20), respectively.
According to [2, p. 36], inequalities (3.7) and (3.8) are sufficient conditions to ensure
that {dk} is gradient related to {xk}.

Lemma 3.9. The stepsize formula (1.13) identifies with the constant stepsize θ
of HQ algorithms (1.3)-(1.4) when Ak and Bk are chosen accordingly, that is either
Ak = Bk = Ba

GY, or Ak = Bk = BGR(xk).
Proof. Obvious given (1.13) and (3.4).
Theorem 3.10. Let xk be defined by (1.10)-(1.13) with θ ∈ (0, 2), and let As-

sumptions 3.2 and 3.3 hold. Then we have convergence in the sense

lim
k→∞

∇J (xk) = 0.

Proof. Given (3.4) and Lemma 3.6, we have

J (xk) − J (xk+1) ≥ −αkΩdt
k∇J (xk) = αkΩdt

kAkdk.

Thus, according to (1.13) we get

J (xk) − J (xk+1) ≥ −θΩdt
k∇J (xk)

dt
kAkdk

dt
kBkdk

≥ −θΩdt
k∇J (xk)

ν1(A)

ν2(B)
. (3.10)

Let Ω1 = θΩT 2/ν2(B) > 0. Inequalities (3.7) and (3.10) yield

J (xk) − J (xk+1) ≥ Ω1‖∇J (xk)‖2 ≥ 0. (3.11)



10 C. LABAT AND J. IDIER

On the other hand, given (3.3) and the lower boundedness of J , we have

J (xℓ) ≥ inf
x∈N

J (x) > −∞, ∀ℓ.

Then (3.11) allows to deduce

∞ > J (x0) − inf
x∈N

J (x) ≥ J (x0) − J (xℓ) ≥ Ω1

ℓ−1∑

k=0

‖∇J (xk)‖2, ∀ℓ. (3.12)

Hence, limk→∞ ∇J (xk) = 0.

3.2. Application to PLS criteria. The global convergence result of Sub-
section 3.1 is now applied to the PLS criterion (1.1) with either Ak = BGR(xk),
Ak = Ba

GY or Ak = ∇2J (xk), which take the respective forms given by (1.5), (1.7)
and (1.9). Let us consider the following assumptions on the function φ. The first two
are associated with the HQ+TPCG schemes, while the last one is associated with the
N+TPCG variant.

Assumption 3.11.

(i) φ is C1 and coercive,
(ii) φ′ is L-Lipschitz.

Assumption 3.12.

(i) φ is C1, even and coercive,
(ii) φ(

√
.) is concave on R+,

(iii) 0 < φ′(t)/t < ∞, ∀t ∈ R.
Assumption 3.13.

(i) φ is C2, even and strictly convex,
(ii) 0 < φ′′(t) < ∞, ∀t ∈ R.

Let us introduce an additional assumption, which is a necessary condition to
ensure that the penalization term (1.2) regularizes the problem of restoring x from y

in a proper way.
Assumption 3.14. H and V are such that

ker(HtH) ∩ ker(VtV) = {0} . (3.13)

The following lemma ensures the majorization character of quadratic approxima-
tions involving HQ matrices.

Lemma 3.15. Let J be defined by (1.1), where H and V satisfy Assumption 3.14.
• If Assumption 3.11 holds, then B = {Ba

GY} satisfies Assumption 3.3 for all
a ∈ (0, 1/L).

• If Assumption 3.12 holds, then B = {BGR(xk)} satisfies Assumption 3.3.
Proof. Let us first show that B is uniformly bounded. According to (3.13) the

proof is immediate for B = {Ba
GY} with 0 < a, since Ba

GY is then a SPD matrix.
¿From [1, Prop. 8], B = {BGR(xk)} is also uniformly bounded.

On the other hand, from [1, Prop. 1], (3.1) holds when Bk = Ba
GY with 0 < a <

1/L, and also when Bk = BGR(xk)). Note that in [1, Prop. 1 and 8], the assumption
that φ is convex can be replaced by the assumption that φ is coercive.

The following theorem establishes the convergence of the HQ+TPCG schemes.
Theorem 3.16. Let J be defined by (1.1), where H and V satisfy Assump-

tion 3.14. Let xk be defined by (1.10)-(1.13) where θ ∈ (0, 2), M is a uniformly



Convergence of truncated half-quadratic algorithms (June 22, 2007) 11

bounded sequence of SPD matrices, and Ak = Bk = Ba
GY with 0 < a < 1/L (resp.,

Ak = Bk = BGR(xk)). If Assumption 3.11 (resp., Assumption 3.12) holds, then the
sequence {J (xk)} is nonincreasing:

J (xk) ≥ J (xk+1), ∀k, (3.14)

and we have convergence in the following sense:

lim
k→∞

∇J (xk) = 0. (3.15)

Proof. According to Assumptions 3.11(i), 3.12(i) and to (3.13), the PLS cri-
terion J defined by (1.1) is differentiable and lower bounded. From Lemma 3.15,
Assumption 3.3 holds. Then, (3.14) and (3.15) result from the direct application of
Lemma 3.4 and Theorem 3.10, respectively.

In a similar way, the following theorem establishes the convergence of the N+TPCG
variant.

Theorem 3.17. Let J be defined by (1.1), where H and V satisfy Assump-
tion 3.14. Let xk be defined by (1.10)-(1.13) where θ ∈ (0, 2), M is a uniformly
bounded sequence of SPD matrices, Ak = ∇2J (xk), and Bk = Ba

GY with 0 < a < 1/L
(resp., Bk = BGR(xk)). If Assumption 3.13 holds as well as Assumption 3.11 (resp.,
Assumption 3.12), then the sequence {J (xk)} is nonincreasing and converging in the
sense of (3.15).

Proof. Let us first remark that φ is coercive, since it is even and strictly convex.
Then, according to Assumption 3.13(i) and to (3.13), the PLS criterion J defined by
(1.1) is differentiable and lower bounded. Thus, from (1.9) and Assumption 3.13(ii),
the sequence

{
∇2J (xk)

}
is uniformly bounded if {xk} ∈ N . The latter is true by

immediate recursion, given (3.3). Hence, Assumption 3.2 holds with Ak = ∇2J (xk).
¿From Lemma 3.15, Assumption 3.3 also holds. Then, (3.14) and (3.15) result from
the direct application of Lemma 3.4 and Theorem 3.10, respectively.

4. Numerical results. Two image restoration problems are considered here.
In the first one, y is a noisy, blurred image obtained using a Gaussian point spread
function (PSF) of standard deviation 2.24 and of size 17 × 17. Moreover, the convo-
lution product is implemented under the zero boundary condition (i.e., the Dirichlet
boundary condition). In the second problem, only noise is added to the original im-
age. In both cases, the noise is white Gaussian, and the original image is the fishing
boat image (N = 512 × 512, 8 bits/pixel). The first-order difference matrix V is
considered, and it is easy to show that Assumption 3.14 holds for both problems.
The edge-preserving function φhyp(u) =

√
δ2 + |u|2 is considered. It is a strictly con-

vex function that fulfills all the conditions of Assumptions 3.11, 3.12 and 3.13, so
that Theorem 3.16 and Theorem 3.17 apply, ensuring the convergence of HQ+TPCG
and N+TPCG schemes, respectively. The convex PLS criterion associated with each
problem depends on the parameters λ and δ. They are assessed so that the restored
image is visually the closest to the original image. Fig. 4.1 respectively displays:

(a) the noisy image at a signal-to-noise ratio (SNR) of 20dB,
(b) the blurred and noisy image at a SNR of 40dB,
(c) the denoised image deduced from (a) with δ = 13 and λ = 10,
(d) the restored image deduced from (b) with δ = 13 and λ = 0.2.
The purpose of this section is to test the convergence speed for different mem-

bers of the HQ/N+TPCG family. Both HQ matrices Ba
GY and BGR(0) are close
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(a) Noisy image, 20dB SNR (b) Noisy, blurred image, 40dB SNR

(c) Denoised image (d) Denoised and deblurred image

Fig. 4.1. (a)-(b) Degraded images. (c)-(d) Restored images by minimization of edge-preserving
criteria.

to block Toeplitz-plus-Hankel matrices. Thus, preconditioning based on 2D Cosine
Transform (CT) is considered since the PSF is symmetric [13]. The global stopping
rule ‖∇J (xk)‖/

√
N < 10−4 is considered, while the TPCG is used with the stopping

rule suggested in [14]:

‖ri‖/‖r0‖ < η. (4.1)

Note that this stopping rule corresponds to a varying sequence {Ik}. The parameter
η controls the accuracy of the TPCG. The smaller it is, the more accurate the solving
of (1.12). In [14], η was chosen as small as 10−6. Here several values are tested
within the range [10−6, 1], which has been empirically chosen to allow each algorithm
to reach its best performance. Following [15], we choose θ = 1 and a = 1/φ′′(0) = δ
in the case of the GY scheme.

The experiments were undertaken with Matlab 7.1 on a PC P4 3GHz RAM 2Gb.
For each tested scheme, Tab. 4.1 and 4.2 display iteration numbers under the form
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DENOISING DEBLURRING

No precond. CT precond. No precond. CT precond.

Iter. Time Iter. Time Iter. Time Iter. Time

GR+TPCG(0.9) 21/1.0 28.2 19/1.0 35.9 56/4.2 508.3 53/1.3 256.8

GR+TPCG(0.8) 21/1.0 28.2 19/1.0 36.2 38/5.4 419.0 44/1.6 241.6

GR+TPCG(0.7) 21/1.0 28.1 19/1.0 35.6 33/6.2 409.2 33/2.2 224.1

GR+TPCG(0.6) 14/1.1 19.4 19/1.0 36.4 30/7.1 414.7 27/2.4 199.3

GR+TPCG(0.5) 10/1.5 14.2 19/1.0 36.0 27/9.1 465.7 26/2.5 194.7

GR+TPCG(0.4) 9/1.8 12.9 13/1.2 26.7 26/10.4 501.8 24/2.8 197.4

GR+TPCG(0.3) 9/1.9 13.2 12/1.5 26.8 25/12.7 577.9 23/3.1 201.8

GR+TPCG(0.2) 9/1.9 13.2 10/1.9 24.9 24/14.6 631.9 22/4.4 256.9

GR+TPCG(0.1) 11/2.4 16.2 10/1.9 25.2 23/19.0 775.7 21/5.6 301.9

GR+TPCG(10−2) 11/4.0 18.2 10/3.8 36.3 21/35.1 1273.3 21/10.5 526.3

GR+TPCG(10−3) 11/6.2 20.8 11/5.2 48.8 21/51.7 1852.0 21/15.5 754.2

GR+TPCG(10−4) 11/8.3 22.9 11/6.8 58.9 21/68.9 2448.1 21/20.4 980.6

GR+TPCG(10−5) 11/10.4 25.7 11/8.7 72.1 21/86.5 3079.0 21/26.1 1228.2

GR+TPCG(10−6) 11/12.4 27.6 11/10.6 83.7 21/103.4 3655.8 21/31.8 1472.1

GY+TPCG(0.9) 21/1.0 9.0 22/1.0 21.8 124/3.2 791.5 150/1.0 489.2

GY+TPCG(0.8) 21/1.0 8.9 22/1.0 22.2 98/3.7 703.8 131/1.1 445.3

GY+TPCG(0.7) 21/1.0 9.0 22/1.0 21.9 84/4.1 660.1 123/1.1 440.7

GY+TPCG(0.6) 21/1.0 9.1 22/1.0 22.1 79/4.3 650.7 77/1.5 335.4

GY+TPCG(0.5) 18/1.1 8.0 22/1.0 21.9 76/4.6 669.1 77/1.6 362.2

GY+TPCG(0.4) 17/1.2 7.8 22/1.0 21.6 80/6.4 942.3 76/2.1 432.5

GY+TPCG(0.3) 19/1.3 8.9 22/1.0 22.1 80/7.3 1057.0 75/2.3 451.4

GY+TPCG(0.2) 21/1.7 10.5 22/1.0 21.6 80/7.8 1124.9 77/2.5 511.2

GY+TPCG(0.1) 23/2.0 12.3 23/2.0 35.8 79/11.3 1572.4 76/3.2 621.5

GY+TPCG(10−2) 23/3.6 16.1 23/2.3 41.8 78/20.1 2715.9 78/6.3 1163.5

GY+TPCG(10−3) 23/5.6 21.1 23/3.6 60.4 77/31.0 4065.0 77/10.2 1802.3

GY+TPCG(10−4) 23/7.7 26.6 23/5.0 78.8 77/41.9 5493.6 77/14.2 2484.0

GY+TPCG(10−5) 23/9.9 32.3 23/6.1 96.5 77/52.8 6875.7 77/18.2 3096.2

GY+TPCG(10−6) 23/12.2 38.2 23/7.2 113.1 77/64.0 8322.1 77/22.2 3805.7

Table 4.1

Comparison of HQ+TPCG algorithms for the denoising and deblurring problems. The best
minimization time (s) for each algorithm is underlined.

g/s, where g is the number of global iterations, and s is the average number of TPCG
subiterations per global iteration. Global minimization times in seconds are also given
for each algorithm.

As expected, the number of global iterations g generally increases with η, while
the average number of TPCG subiterations s decreases. Only the number of global it-
erations of GY+TPCG and N+TPCG with Bk = Ba

GY slightly departs from this com-
mon behavior in the denoising case, both without preconditioning. The GR schemes
perform better than the GY schemes for the deblurring problem while they show simi-
lar performance for the denoising problem. As expected, the N+TPCG schemes based
on the Hessian show a smaller number of global iterations than HQ+TPCG when
equation (1.12) is solved accurately (η small). Nonetheless, for all tested schemes,
the smallest global minimization time is achieved when a tradeoff is reached between
the number of global iterations and the number of TPCG iterations. In all cases, we
observed that the corresponding best value of η is comprised between 0.1 and 1, which
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DENOISING DEBLURRING

Stepsize with No precond. CT precond. No precond. CT precond.

Bk = BGR(xk) : Iter. Time Iter. Time Iter. Time Iter. Time

N+TPCG(0.9) 21/1.0 37.9 19/1.0 44.7 43/6.4 582.8 39/2.1 288.2

N+TPCG(0.8) 21/1.0 38.0 19/1.0 45.1 38/6.6 544.3 36/2.4 290.0

N+TPCG(0.7) 21/1.0 38.1 19/1.0 45.5 34/7.6 534.3 30/3.5 312.3

N+TPCG(0.6) 11/1.3 20.7 19/1.1 45.8 33/9.0 602.2 28/3.5 296.0

N+TPCG(0.5) 9/1.6 17.0 11/1.6 30.9 29/8.9 514.0 27/4.6 346.9

N+TPCG(0.4) 9/1.8 17.3 10/1.7 29.3 31/12.0 721.5 29/4.2 348.6

N+TPCG(0.3) 9/1.9 17.6 10/1.8 29.1 26/20.3 966.1 27/5.6 405.1

N+TPCG(0.2) 7/2.1 13.8 9/1.9 26.5 25/20.9 960.6 25/7.6 484.9

N+TPCG(0.1) 7/2.9 14.7 7/2.7 24.7 17/28.8 884.9 26/8.6 560.9

N+TPCG(10−2) 8/4.8 18.3 8/4.6 36.8 11/66.4 1278.2 17/15.4 601.2

N+TPCG(10−3) 8/6.9 19.7 8/6.6 46.0 9/101.2 1545.5 9/29.8 615.1

N+TPCG(10−4) 8/8.9 21.0 8/8.5 56.0 9/160.8 2438.8 9/49.6 1006.8

N+TPCG(10−5) 8/10.9 22.9 8/10.4 66.1 9/208.9 3166.4 9/64.7 1282.2

N+TPCG(10−6) 8/12.9 24.4 8/13.1 79.6 9/252.2 3820.3 9/78.7 1553.0

Bk = Ba

GY
:

N+TPCG(0.9) 21/1.0 38.0 22/1.0 52.9 95/5.2 1088.0 74/3.0 695.0

N+TPCG(0.8) 21/1.0 37.9 22/1.0 51.5 90/8.0 1468.8 71/3.4 735.5

N+TPCG(0.7) 21/1.0 38.1 22/1.0 51.7 85/8.2 1425.1 61/3.5 641.2

N+TPCG(0.6) 10/1.6 19.3 22/1.0 52.6 92/9.8 1797.7 67/5.4 984.3

N+TPCG(0.5) 10/1.6 18.7 22/1.0 51.9 96/8.6 1693.4 72/5.3 1032.2

N+TPCG(0.4) 10/1.6 19.6 22/1.0 52.2 93/9.6 1771.9 69/7.0 1252.2

N+TPCG(0.3) 9/1.9 17.7 19/1.9 56.2 74/19.8 2723.2 71/6.3 1176.6

N+TPCG(0.2) 9/1.9 17.6 16/1.9 46.8 75/23.7 3243.5 56/11.1 1515.5

N+TPCG(0.1) 13/2.9 26.2 11/2.8 38.5 46/31.0 2509.1 82/7.0 1466.1

N+TPCG(10−2) 15/4.9 34.6 15/4.8 71.1 21/64.5 2372.9 18/14.5 682.3

N+TPCG(10−3) 15/6.9 37.8 15/6.8 89.8 12/97.6 2042.8 12/29.8 801.3

N+TPCG(10−4) 15/8.9 41.7 15/8.7 111.0 19/166.8 5344.5 19/51.3 2162.2

N+TPCG(10−5) 15/10.9 44.5 15/10.7 125.3 20/217.8 7320.4 20/67.0 2931.4

N+TPCG(10−6) 15/12.9 47.8 15/13.5 157.9 20/264.1 8854.3 20/81.8 3591.1

Table 4.2

Comparison of N+TPCG algorithms for the denoising and deblurring problems. The best min-
imization time (s) for each algorithm is underlined.

corresponds to a very approximate solving of (1.12) compared to that envisaged in
[14]. The computation time is then reduced by a factor two to ten, which represents
a substantial gain.

Our conclusion is that the HQ/N+TPCG family should not be viewed only as
approximate versions of HQ or Newton algorithms, but as algorithms on their own,
with specific convergence properties and tuning parameters. In particular, the present
study indicates that they are worth to be considered to solve large-scale problems in
the field of image restoration.
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