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Abstract. Conjugate gradient methods are efficient to minimize differentiable ob-
jective functions in large dimension spaces. However, converging line search strategies
are usually not easy to choose, nor to implement. In Refs. 1, 2, Sun and colleagues
introduced a simple stepsize formula. However, the associated convergence domain
happens to be overrestrictive, since it precludes the optimal stepsize in the con-
vex quadratic case. Here, we identify this stepsize formula with one iteration of
Weiszfeld’s algorithm in the scalar case. More generally, we propose to make use
of a finite number of iterates of such an algorithm to compute the stepsize. In this
framework, we establish a new convergence domain, that incorporates the optimal
stepsize in the convex quadratic case.

Key Words. Conjugate gradient methods, convergence, stepsize formula, Weiszfeld’s
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1 Introduction

Let us consider the following unconstrained minimization problem:

min
x∈

�
n
J (x) (1)

where J is a differentiable objective function. In the implementation of any conjugate
gradient (CG) method, the stepsize is often determined by certain line search conditions
such as the Wolfe conditions (Ref. 3). These types of line search involve extensive com-
putation of function values and gradients, which often becomes a significant burden for
large-scale problems. Most recently, a simple stepsize formula was proposed by Sun and
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Zhang (Ref. 1) and by Chen and Sun (Ref. 2) for several CG methods. Here, we pursue
in the same direction, by proposing a generalized stepsize formula. We also reexamine
the convergence conditions, which leads us to a broadened convergence domain for several
types of conjugacy.

In this paper, we restrict ourselves to the following family of CG algorithm:

xk+1 = xk + αkdk (2)

ck = − gk + βkdk−1 (3)

dk =

{
ck if gt

kck ≤ 0

−ck otherwise
(4)

βk =

{
0, for k = 0

βµk,ωk

k , for k ≥ 1

where k ∈
�

, gk = ∇J (xk) and with the following conjugacy formulas:

Dk = (1 − µk − ωk)‖gk−1‖
2 + µkd

t
k−1yk−1 − ωkd

t
k−1gk−1 (5)

βµk,ωk

k = gt
kyk−1/Dk (6)

where ‖ . ‖ is the Euclidean norm, “t” stands for the transpose, yk−1 = gk − gk−1, and Dk

depends on parameters µk ∈ [0, 1] and ωk ∈ [0, 1 − µk]. Let us remark that the descent
direction dk is defined such that gt

kdk ≤ 0.
The parametrized expression (6) is taken from Ref. 2. It only covers a subset of a larger

family introduced by Dai and Yan in Ref. 4. Three classical versions of nonlinear CG are
particular cases of formula (6):

β1,0
k = βHS

k = gt
kyk−1/d

t
k−1yk−1 Hestenes-Stiefel (Ref. 5)

β0,0
k = βPRP

k = gt
kyk−1/‖gk−1‖

2 Polak-Ribière-Polyak (Ref. 6, 7)

β0,1
k = βLS

k = −gt
kyk−1/d

t
k−1gk−1 Liu-Storey (Ref. 8)

Other important cases are not covered by the present study, such as the Fletcher-Reeves
method (Ref. 9), the Conjugate Descent method (Ref. 10) and the Dai-Yuan method
(Ref. 11).

On the other hand, we focus on the following stepsize strategy:

αk = α1
k = 0 if dk = 0; (7)

otherwise,





α0
k = 0 (8a)

αi+1

k = αi
k − θdt

k∇J (xk + αi
kdk)/d

t
kQ

i
kdk, i ∈ {0, . . . , I − 1} (8b)

αk = αI
k (8c)
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where I ∈
�

− {0}, θ ∈ � is a parameter, {Qi
k} ∈ � n×n is a series of symmetric, positive

definite matrices with a uniformly bounded spectrum and a strictly positive lower bound,
i.e., there exist ν1, ν2 ∈ � with ν2 ≥ ν1 > 0 such that

ν1‖v‖
2 ≤ vtQi

kv ≤ ν2‖v‖
2, ∀k ∈

�
, ∀i ∈ {0, . . . , I − 1}, ∀v ∈ � n. (9)

The fixed number of iterations of (8b) yields a family of CG methods with a closed-form
stepsize formula (CFSF). It actually stays in the same spirit as the CG methods without
linesearch introduced in Refs. 1, 2, since no stopping condition is involved in the stepsize
scheme to ensure convergence. In the case of a single application of (8b) (I = 1), our
stepsize formula boils down to

αk = α1
k = −θgt

kdk/d
t
kQ

0
kdk, (10)

which is exactly the formula introduced in Refs. 1, 2. According to (4), note that the latter
expression for αk is nonnegative provided that θ > 0.

To ensure convergence, the condition θ ∈ (0, ν1/µ) is introduced in Refs. 1, 2, where µ
is a Lipschitz constant (see Assumption 1 below). In Section 5, we show that this condition
is overrestrictive, so that the stepsize formula proposed in Refs. 1, 2 produces too small
steps. This becomes obvious in the convex quadratic case, since the optimal stepsize θ = 1
does not belong to the interval (0, ν1/µ) ⊂ (0, 1).

In this paper, we propose relaxed convergence conditions. In particular, the optimal
stepsize becomes admissible in the convex quadratic case. The key ingredient we incor-
porate consists in approximating J by a convex quadratic function from above, which is
the basic principle of the Weiszfeld’s method (Refs. 12, 13). First of all, we put forward
that the stepsize formula proposed in Refs. 1, 2 identifies with one iteration of Weiszfeld’s
algorithm in the scalar case. More generally, our iterated version (8b) corresponds to a
fixed number of the same scalar algorithm. The majorizing convex quadratic approxima-
tion framework provides altered convergence conditions compared to the conditions found
in Refs. 1, 2: in particular, θ ∈ (0, ν1/µ) is replaced by θ ∈ (0, 2) for any finite value of I.

The paper is organized as follows. Some preliminary results on the family of CG
methods with the closed-form stepsize formula (7)-(8) are given in Section 2. We also
introduce the additional assumption of a majorizing convex quadratic function that allow us
to make the connection between the closed-form stepsize formula and the scalar Weiszfeld’s
method. Section 3 gathers some properties concerning the stepsize series generated by (8)
useful for the next section. Section 4 includes the main convergence properties of the two-
parameter family of CG methods defined by (2)-(8). Finally, discussions on the convex
quadratic case and the general case are given in Section 5.

2 Preliminaries

Let N be a neighborhood of the level set L = {x ∈ � n|J (x) ≤ J (x0)}, which is assumed
bounded in the sequel. The following assumption is also adopted.
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Assumption 1. Let us assume that J : � n 7→ � is differentiable on N , and that ∇J is
Lipschitz continuous on N with the Lipschitz constant µ > 0:

‖∇J (x) −∇J (x′)‖ ≤ µ‖x − x′‖, ∀x, x′ ∈ N.

In short, it will be said that J is µ-LC1.

In the sequel, Assumption 1 will appear to be sufficient for the global convergence of
the CG method when µk = 0 and ωk ∈ [0, 1], which encompasses the PRP and the LS
cases, but not the HS case. Thus, we consider the following stronger assumption for the
more general case µk ∈ [0, 1], ωk ∈ [0, 1 − µk].

Assumption 2. Let Assumption 1 hold, and let J be strongly convex on N : there exists
λ > 0 such that

[∇J (x) −∇J (x′)]
t
(x − x′) ≥ λ‖x − x′‖2, ∀x, x′ ∈ N.

Note that Assumption 2 implies that L bounded since a strongly convex function has
bounded level sets.

Finally, let us introduce convex quadratic majorizing functions through the following
assumption.

Assumption 3. Let

Ĵ i
k(x

′, x) = J (x) + (x′ − x)t ∇J (x) + (x′ − x)t Qi
k (x′ − x)/2 (11)

where {Qi
k} is a series of positive definite matrices, be such that

Ĵ i
k(x

′, x) ≥ J (x′), ∀x, x′ ∈ N, (12)

for all k ∈
�

, i ∈ {0, . . . , I − 1}.

For sake of notational simplicity, let f(α) = J (xk + αdk). Moreover, the current
iteration index k will remain implicit whenever unambiguous: typically, the stepsize αi

k

will be abridged into αi. Using such compact notations, the stepsize update (8) also reads





α0 = 0

αi+1 = αi − θḟ(αi)/ai, i ∈ {0, . . . , I − 1}

αk = αI

(13)

with ḟ(αi) = dt
k∇J (xk + αidk) and ai = dt

kQ
i
kdk.

According to (9) we have

0 < ν1‖dk‖
2 ≤ ai ≤ ν2‖dk‖

2. (14)
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According to (11), let

qi(α
′, α) = Ĵ i

k(xk + α′dk, xk + αdk) = f(α) + (α′ − α)ḟ(α) + (α′ − α)2ai/2, (15)

which is a convex parabola as a function of α′.
Let us rely on a fixed number I of iterations of Weiszfeld’s method for the determination

of the stepsize. The (scalar) function to minimize is f and, according to Assumption 3,
qi(α

′, α) is an upper convex quadratic approximation of f(α′). Then, the successive itera-
tions of Weiszfeld’s method are defined by

αi+1 = arg min
α′

qi(α
′, αi) (16)

= αi − ḟ(αi)/ai

Hence, (13) identifies with a relaxed version of Weiszfeld’s method to minimize f . Note that
the number of iterations I can be chosen arbitrarily: the convergence results in Section 4
hold regardless of the value of I. This is in contrast with usual line search procedures,
where appropriate stopping conditions (e.g., Wolfe conditions) must be checked to ensure
convergence.

As already mentioned, the stepsize formula (10) proposed in Refs. 1, 2 formally cor-
responds to one iteration of the same relaxed Weiszfeld’s method. We are now led to
a deeper result: the condition θ ∈ (0, ν1/µ) stated in Refs. 1, 2 for the convergence of
their CG method implies that our Assumption 3 holds. First, let us give an equivalent
formulation for (10).

Let Q̃0
k = Q0

k/θ, so that (10) also reads αk = −gt
kdk/d

t
kQ̃

0
kdk. From (9) and θ ∈

(0, ν1/µ), we deduce that

vtQ̃0
kv ≥ µ‖v‖2, ∀k ∈

�
, ∀v ∈ � n, (17)

i.e., the spectrum of matrices Q̃0
k is bounded from below by µ. Such a simple change of

notations shows that the constraint θ ∈ (0, ν1/µ) stated in Refs. 1, 2 can be translated
into a constraint on the matrices Qi

k. The following lemma shows that matrices Q̃0
k yield

convex quadratic majorizing approximations in the sense of Assumption 3 (provided that
N is a convex set).

Lemma 2.1. Suppose that Assumption 1 holds, and also that the lower bound ν1 is not
smaller than the Lipschitz constant µ. Let us restrict ourselves to the case where N is a
convex set. Then Assumption 3 holds, i.e., the function Ĵ i

k(x
′, x) defined by (11) fulfills

(12) over N .

Proof. According to the Descent Lemma (Ref. 14, Prop. A.24), we have

J (x′) − J (x) − (x′ − x)t∇J (x) ≤ µ‖x′ − x‖2/2 (18)

for any x, x′ ∈ � n if J is µ-LC1on � n. Actually, it is easy to check that (18) still holds
for any x, x′ ∈ N if J is µ-LC1on N , provided that N is convex.
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Since the spectrum of {Qi
k} is bounded from below by ν1 ≥ µ, we have

µ‖x′ − x‖2 ≤ ν1‖x
′ − x‖2 ≤ (x′ − x)

t
Qi

k (x′ − x)

Jointly with (18), the latter yields

J (x′) − J (x) + (x − x′)t∇J (x) ≤ (x′ − x)
t
Qi

k (x′ − x) /2,

i.e., Ĵ i
k(x

′, x) ≥ J (x′).

Lemma 2.1 indicates that Assumption 3 is not a restrictive condition compared to the
hypotheses found in Refs. 1, 2. On the contrary, it is a weaker assumption (let alone the
fact that Lemma 2.1 only applies when N is a convex set), so that a convergence proof
based on Assumption 3 would be of broader applicability. This is the goal reached in
Section 4, where J is not necessarily assumed ν1-LC

1(and N is not necessarily convex).

3 Properties of the stepsize series

The present section gathers technical results concerning the stepsize series αi = αi
k gener-

ated by (8), which will be useful to derive the global convergence properties of the next
section.

Let us introduce the notation Γ(a, b) = [min(a, b), max(a, b)] to handle with intervals
with unordered endpoints.

Lemma 3.1. Suppose that Assumption 1 and Assumption 3 hold and that θ ∈ (0, 2). Then

J (xk + αdk) ≤ J (xi
k), ∀α ∈ Γ(αi

k, α
i+1

k ) (19)

for all k ≥ 0, i ∈ {0, . . . , I − 1}, where xi
k = xk + αi

kdk.

Proof. Let us first assume xi
k ∈ N , and then let us show that (19) holds, recursively on i

and on n.
ḟ(αi

k) exists since J is differentiable on N . We have α0
k = 0 and ḟ(0) = gt

kdk ≤ 0, but
the sign of ḟ(αi

k) = dt
k∇J (xk + αi

kdk) is indeterminate for i > 0. Let us study each case
separately (the index k is omitted in the rest of the proof).

• Suppose ḟ(αi) = 0. According to (13), αi+1 = αi so (19) is true.

• Suppose ḟ(αi) < 0. According to (13) and ai > 0 we have αi+1 > αi. Let us prove
(19) by contradiction: suppose, on the contrary, that there exists α′ ∈ (αi, αi+1] such
that

f(α′) > f(αi). (20)
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Let `i = {α ∈ � |f(α) ≤ f(αi)}. Since f is continuous on `i, according to (20) and
ḟ(αi) < 0, there exists α′′ ∈ (αi, α′) such that f(α′′) < f(αi). There also exists
α′′′ ∈ (α′′, α′) such that

f(α′′′) = f(αi); (21)

in the contrary case, since f is continuous on `i, the inequality f(α) < f(αi) would
hold for all α ∈ (α′′, α′). In particular, we would get

lim
α→α′

α<α′

f(α) < f(αi), (22)

thus α ∈ `i for all values of α ∈ (α′′, α′) arbitrary close to α′. (22) would be
incompatible with (20) given the continuity of f on `i.

Let q(α) = qi(α, αi), where qi is defined by (15). Since q̇(αi+1) = ḟ(αi)(1 − θ),
q̇(αi) = ḟ(αi) < 0 and θ ∈ (0, 2), we have q̇(αi+1) ∈ (q̇(αi),−q̇(αi)). Because q is
a convex parabola and α′′′ ∈ (α′′, α′) ⊂ (αi, αi+1), we can conclude that q(α′′′) <
q(αi) = f(αi). Hence, according to (21), we get q(α′′′) < f(α′′′), which contradicts

the majorizing character (12) of Ĵ i
k w.r.t. J at xk + α′′′dk ∈ N .

• Suppose ḟ(αi) > 0. According to (13) and ai > 0, we have αi+1 < αi. We are led
back to the previous case if we replace f(α) by f(−α).

Our intermediate conclusion is that (19) holds if xi
k ∈ N : in particular J (xi+1

k ) ≤ J (xi
k).

Since x0 ∈ N and x0
k+1 = xI

k = xk, we get

J (xi
k) ≤ . . . ≤ J (x0

k) = J (xI
k−1) ≤ . . . ≤ J (x0

k−1) ≤ . . . ≤ J (x0
1) = J (x0)

by immediate recursion, which proves that (19) holds for all k ≥ 0, i ∈ {0, . . . , I − 1}.

An immediate consequence of Lemma 3.1 is

xk + αdk ∈ N, ∀α ∈ [0, αi
k], (23)

for all k ≥ 0, i ∈ {0, . . . , I − 1} since x0 ∈ N . Thus, according to (12),

qi(α
j, αi) ≥ f(αj), ∀i, j ∈ {0, . . . , I − 1}. (24)

The following three lemmas are specific to the case when ḟ(0) = gt
kdk does not cancel

for the current iteration k, i.e., gt
kdk < 0. Then dk 6= 0, and the sequence {αi

k} is well
defined according to (8b).

Lemma 3.2. Suppose that Assumption 1 and Assumption 3 hold. Assume also that ḟ(0) <
0 and θ ∈ (0, 2). Then the whole sequence {αi} is strictly positive:

αi > 0, ∀i ∈ {0, . . . , I − 1}. (25)
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Proof. According to (24), we have

qi(0, α
i) = f(αi) − αiḟ(αi) + (αi)2ai/2 ≥ f(0).

Since {f(αi)} is a nonincreasing sequence according to Lemma 3.1, we deduce that

−αiḟ(αi) + (αi)2ai/2 ≥ 0

so that, according to (13) and ai > 0,

αi(αi+1 − 2δḟ(αi)/ai) ≥ 0 (26)

with

δ = 1 − θ/2 ∈ (0, 1) . (27)

Now, let us show (25) by a recurrence on i. We have α1 > 0 according to (13). Let us
assume now that αi > 0 for some i.

• If ḟ(αi) ≤ 0, then αi+1 > 0 according to (13).

• If ḟ(αi) > 0, then given αi > 0, inequality (26) yields αi+1 > 0.

Lemma 3.3. Suppose that Assumption 1 and Assumption 3 hold. Assume also that ḟ(0) <
0 and θ ∈ (0, 2). Then, for all i ∈

�
− {0},

f(αi) ≤ q0(α
1, 0), (28)

cminα1 ≤ αi, (29)

where

cmin =
(√

1 + 2µθδ/ν1 − 1
)
ν1/θµ ∈ (0, 1) . (30)

Proof. The proof of (28) is straightforward: according to (24), we have q0(α
1, 0) ≥ f(α1).

Then (28) holds, because {f(αi)} is a decreasing sequence according to Lemma 3.1.
The derivation of (29) is not so direct. Let g the concave parabola defined by

g(α) = f(0) + αḟ(0) − µa0α
2/2ν1. (31)

Remark that g(0) = f(0) and that g is decreasing on � + since ġ(0) = ḟ(0) < 0.
Let us first show that

g(αi) ≤ f(αi). (32)
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Let us consider α ∈ [0, αi]: xk + αdk ∈ N according to (23). Since f(α) = J (xk + αdk)
and Assumption 1 holds, we have

|ḟ(α) − ḟ(0)| =
∣∣dt

k (∇J (xk + αdk) −∇J (xk))
∣∣ ≤ ‖dk‖

2µ|α|

and according to (14), we get

|ḟ(α) − ḟ(0)| ≤ a0µα/ν1.

Given |ḟ(α)| ≤ |ḟ(α) − ḟ(0)| + |ḟ(0)| and ḟ(0) < 0, we obtain

|ḟ(α)| ≤ a0µα/ν1 − ḟ(0). (33)

In particular,

ḟ(0) − a0µα/ν1 ≤ ḟ(α)

or equivalently

ġ(α) ≤ ḟ(α), ∀α ∈ [0, αi] (34)

according to (31). Since g(0) = f(0), (32) is obtained by integrating (34) between 0 and
αi.

According to (13), (15) and (27), we have

q0(α
1, 0) = f(0) + α1ḟ(0) + (α1)2a0/2

= f(0) + δα1ḟ(0). (35)

Let αmin = cminα1. Combining (31) and (35), it is easy to establish that g(αmin) = q0(α
1, 0).

Moreover, {αi} is positive according to Lemma 3.2. We are now in position to show (29)
by contradiction: assume that there exists i > 0 such that 0 ≤ αi < αmin. According to
(32) and given that g is decreasing on � +, we get f(αi) ≥ g(αi) > g(αmin) = q0(α

1, 0),
which contradicts (28).

Finally, it is obvious that cmin > 0. Let us consider the alternate expression

cmin = 2δ/
(√

1 + 2µθδ/ν1 + 1
)
,

so it becomes also apparent that cmin < δ < 1.

Lemma 3.4. Suppose that Assumption 1 and Assumption 3 hold. Assume also that ḟ(0) <
0 and θ ∈ (0, 2). Then

αi ≤ cmax
i α1 (36)

∀i ∈
�

− {0}, with

cmax
i =

(
1 + ν2θµ/ν2

1

)i−1
(1 + ν1/θµ) − ν1/θµ ≥ 1. (37)
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Proof. It is easy to check that cmax
i is not smaller than 1 for all i > 0. Let us show the

inequality (36) recursively on i. It is valid for i = 1, since cmax
1 = 1. Now let us suppose

that αi ≤ cmax
i α1, and let us prove that αi+1 ≤ cmax

i+1 α1.

According to (13), we have αi+1 ≤ αi + |ḟ(αi)| θ/ai and according to (14), we have also
ai ≥ a0ν1/ν2. Thus,

αi+1 ≤ αi + |ḟ(αi)| θν2/ν1a0. (38)

On the other hand, (33) implies

|ḟ(αi)| ≤ a0µαi/ν1 − ḟ(0).

In combination with the latter inequality and with α1 = −θḟ(0)/a0, (38) yields

αi+1 ≤ αi(1 + ν2θµ/ν2
1) + ν2α

1/ν1,

which corresponds to a recursive definition of the series (cmax
i ) according to

cmax
i+1 = cmax

i (1 + ν2θµ/ν2
1) + ν2/ν1.

Given cmax
1 = 1, it can be checked that (37) is the general term of the series.

Definition 3.1. The stepsize sequence {αk} satisfies the Armijo condition with Ω ∈ (0, 1)
if

J (xk) − J (xk+1) + Ωαkg
t
kdk ≥ 0, ∀k. (39)

Lemma 3.5. Suppose that Assumption 1 and Assumption 3 hold. Assume also that θ ∈
(0, 2). Then the stepsize sequence defined by (8) satisfies the Armijo condition with

Ω = ΩI = δ/cmax
I ∈ (0, 1) , (40)

where δ and cmax
I are defined by (27) and (37), respectively.

Proof. We have ḟ(0) = gt
kdk ≤ 0. Let us first examine the particular case ḟ(0) = 0:

according to (8), αk vanishes, so that (39) holds trivially.
Suppose now ḟ(0) < 0. According to (35), (28) also reads

f(0) − f(αI) + δḟ(0)α1 ≥ 0. (41)

Finally, since ḟ(0) < 0 and α1 ≥ αI/cmax
I > 0 according to (36), (41) implies that

f(0) − f(αI) + δḟ(0)αI/cmax
I ≥ 0,

which identifies with (39) with Ω = ΩI .

Remark 3.1. In Lemma 3.5, ΩI = δ/cmax
I does not depend on k, which is an essential

point for the fulfillment of the Armijo condition.
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The following theorem sums up the main results that will be useful in the next section.

Theorem 3.1. Let xk be defined by (2)-(8) with θ ∈ (0, 2), and let Assumption 1 and
Assumption 3 hold. Then the Armijo condition (39) is satisfied by the stepsize sequence
{αk} with Ω = ΩI = δ/cmax

I , where δ and cmax
I are defined by (27) and (37), respectively.

Moreover, we have

0 ≤ cminα1
k ≤ αk ≤ cmax

I α1
k, ∀k, (42)

where cmin is defined by (30).

Proof. Lemma 3.5 corresponds to the fulfillment of the Armijo condition.
On the other hand, we have ḟ(0) ≤ 0. If ḟ(0) = 0, then αk = 0, so (42) trivially holds.

Otherwise, we have ḟ(0) < 0, so (42) is a joint consequence of Lemmas 3.3 and 3.4.

4 Global convergence

The two following lemmas establish results for the whole two-parameter family of conjugacy
coefficient βk = βµk,ωk

k . Then, we will draw conclusions for specific CG methods.

Lemma 4.1. Under the conditions of Theorem 3.1, we have

∑

k,dk 6=0

(gt
kdk)

2/‖dk‖
2 < ∞. (43)

Proof. According to Theorem 3.1, the Armijo condition (39) is satisfied with Ω = ΩI .
Given (42) and gt

kdk ≤ 0, we deduce that

J (xk) − J (xk+1) ≥ −ΩIc
minα1

kg
t
kdk. (44)

If dk 6= 0, we have
α1

k = −θgt
kdk/d

t
kQ

0
kdk ≥ −θgt

kdk/ν2‖dk‖
2 (45)

according to (10) and (9), so that

J (xk) − J (xk+1) ≥ c0(g
t
kdk)

2/‖dk‖
2 ≥ 0 (46)

with c0 = ΩIc
minθ/ν2 > 0. Given Assumption 1 and the fact that L is bounded, (46)

implies limk→∞J (xk) is finite. Finally, we obtain

∞ > (J (x0) − lim
k→∞

J (xk))/c0 ≥
∑

k,dk 6=0

(gt
kdk)

2/‖dk‖
2.
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Lemma 4.2. Let k ∈
�

. Under the conditions of Theorem 3.1, we have

|gt
k+1dk| ≤ −gt

kdk (1 + cmax
I θµ/ν1) . (47)

Moreover, if Assumption 2 holds, then

−gt
k+1dk ≤ −gt

kdk(1 − cminθλ/ν2). (48)

Proof. (47) and (48) are trivial assertions if dk = 0. Otherwise, following Refs. 1, 2, let
us define

φk =

{
(gk+1 − gk)

t (xk+1 − xk) /‖xk+1 − xk‖
2 = yt

kdk/αk‖dk‖
2 for αk 6= 0

0 for αk = 0.
(49)

Note that according to (23), xk ∈ N . If Assumption 1 holds, then |φk| ≤ µ according to
Cauchy-Schwartz inequality. If Assumption 2 holds, then φk ≥ λ > 0.

According to (10) and (49), we have

gt
k+1dk = gt

kdk + yt
kdk = gt

kdk + αkφk‖dk‖
2. (50)

According to (42), (50), µ ≥ |φk|, and gt
kdk ≤ 0, we deduce that

|gt
k+1dk| ≤ −gt

kdk + µcmax
I α1

k‖dk‖
2.

According to (10), we have also

|gt
k+1dk| ≤ −gt

kdk − gt
kdkµcmax

I θ‖dk‖
2/dt

kQ
0
kdk.

Finally, since ν1 > 0 is a lower bound for the spectrum of Q0
k, and gt

kdk ≤ 0, we obtain
(47).

Let us suppose now that Assumption 2 holds. Given (42) and φk ≥ λ > 0, (50) implies

gt
k+1dk ≥ gt

kdk + λcminα1
k‖dk‖

2

and according to (45), we obtain (48).

Lemma 4.3. Suppose that Assumption 2 holds, as well as the conditions of Theorem 3.1.
Then

Dk ≥ (1 − µk − ωk)‖gk−1‖
2 − dt

k−1gk−1(ωk + µkc
minθλ/ν2) ≥ 0, ∀k ∈

�
− {0}. (51)

Proof. Since yk−1 = gk − gk−1, (48) also reads

dt
k−1yk−1 ≥ −dt

k−1gk−1c
minθλ/ν2, ∀k ∈

�
− {0}.

Then, given the expression (5) of Dk and dt
k−1gk−1 ≤ 0, the conclusion is immediate.

12



Remark 4.1. Let us examine the case where the denominator Dk of βµk,ωk

k cancels. Here,
we assume that the conditions of Theorem 3.1 hold.

Let us suppose first that Assumption 2 is valid. If Dk cancels, then (51) implies

(1 − µk − ωk)‖gk−1‖
2 − (ωk + µkc

minθλ/ν2)d
t
k−1gk−1 = 0.

Since the left-hand side is the sum of two nonnegative terms, we obtain
{

(1 − µk − ωk)‖gk−1‖
2 = 0, (52a)

(ωk + µkc
minθλ/ν2)d

t
k−1gk−1 = 0. (52b)

• Case 1: If µk+ωk < 1, (52a) boils down to ‖gk−1‖
2 = 0, which means that convergence

is reached at iteration k − 1. This case includes the PRP method.

• Case 2: If µk + ωk = 1, (52b) implies dt
k−1gk−1 = 0, so that αk−1 = 0. Thus,

xk = xk−1, yk−1 = 0, and the numerator of βµk,ωk

k cancels. In this case, we let
βµk,ωk

k = 0, conventionally. This case includes the HS and the LS method.

In the situation where Assumption 2 is not necessarily valid, our study only covers the
case µk = 0: then Dk is the sum of two nonnegative terms, so Dk = 0 implies that both
cancel:

{
(1 − ωk)‖gk−1‖

2 = 0,

ωkd
t
k−1gk−1 = 0.

• If ωk < 1, the conclusion is the same as in Case 1. This case includes the PRP
method.

• If ωk = 1, the conclusion is the same as in Case 2. This case includes the LS method.

Lemma 4.4. Under the conditions of Theorem 3.1, we have

lim inf
k→∞

‖gk‖ > 0 =⇒ lim
k→∞

β0,ωk

k = 0.

Moreover, if Assumption 2 is valid, then

lim inf
k→∞

‖gk‖ > 0 =⇒ lim
k→∞

βµk,ωk

k = 0.

Proof. According to (2) and (42), we have

‖xk+1 − xk‖
2 = α2

k‖dk‖
2 ≤ (cmax

I )2(α1
k)

2‖dk‖
2.

Given that (10) holds unless dk = 0, we deduce that
∑

k

‖xk+1 − xk‖
2 ≤ (cmax

I θ)2
∑

k,dk 6=0

(
gt

kdk

)2
‖dk‖

2/
(
dt

kQ
0
kdk

)2
,

≤ (cmax
I θ/ν1)

2
∑

k,dk 6=0

(
gt

kdk

)2
/‖dk‖

2
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according to (9). Given (43), we conclude that limk→∞ ‖xk+1 − xk‖
2 = 0. Because J

is continuously differentiable and ‖gk‖ is bounded according to Assumption 1 and the
boundedness of L, we have also limk→∞ yk−1 = 0 and

lim
k→∞

gt
kyk−1 = 0. (54)

If lim infk→∞ ‖gk‖ > 0, then there exists γ > 0 such that

‖gk‖ ≥ γ > 0 ∀k. (55)

According to (6), we have
|gt

kyk−1| = |βµk,ωk

k ||Dk|. (56)

On the one hand, suppose that Assumption 2 is valid.
Firstly, let us consider the iteration indices k such that µk + ωk ∈ [0, 1/2]. According

to (51) and dt
k−1gk−1 ≤ 0, (56) implies that

|gt
kyk−1| ≥ |βµk,ωk

k |(1 − µk − ωk)‖gk−1‖
2,

which leads to
|gt

kyk−1| ≥ |βµk,ωk

k |γ2/2, (57)

given (55).
Let us establish a similar result in the more complex case µk + ωk ∈ (1/2, 1]. As a

preliminary step, let us show that

gt
kdk ≤ −γ2/2 (58)

for all sufficiently large values of k.
According to Remark 4.1, in the case gt

k−1dk−1 = 0, we have βµk,ωk

k = 0, so dk = −gk

and (58) is valid according to (55).
Now let us consider the case where gt

k−1dk−1 < 0. Given (3) and (6), we have

gt
kck = gt

k(−gk + βµk ,ωk

k dk−1) = −‖gk‖
2 + (gt

kyk−1)(g
t
kdk−1)/Dk.

According to (47), (51), and (58), we deduce

gt
kck ≤ −γ2 + |gt

kyk−1| (1 + cmax
I θµ/ν1) /(ωk + µkc

minθλ/ν2). (59)

Given (54), the latter inequality yields gt
kck ≤ −γ2/2 for all sufficiently large k. Because

of (4), we can conclude that (58) holds.
Given (51) and (58), (56) implies

|gt
kyk−1| ≥ |βµk,ωk

k |
(
(1 − µk − ωk)γ

2 + (ωk + µkc
minθλ/ν2)γ

2/2
)

= |βµk,ωk

k |
(
1 − ωk/2 − (1 − cminθλ/ν2)µk

)
γ2
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for all sufficiently large values of k. Given µk + ωk ∈ (1/2, 1], the latter inequality implies

|gt
kyk−1| ≥ |βµk,ωk

k |mγ2, (60)

where m = min{1/2, cminθλ/ν2}.
Since m ≤ 1/2, (60) is implied by (57), so that (60) holds in the whole domain µk ∈

[0, 1] , ωk ∈ [0, 1 − µk]. Finally, (54) and (60) jointly imply limk→∞ |βµk,ωk

k | = 0.
On the other hand, consider the case where Assumption 2 is not necessarily valid. If

µk = 0, then we have

|gt
kyk−1| ≥ |β0,ωk

k |γ2/2.

The proof is similar to that of (60), where the two cases to examine are ωk ∈ [0, 1/2] and
ωk ∈ (1/2, 1]. Finally, according to (54), we have limk→∞ |β0,ωk

k | = 0.

Remark 4.2. The proof of Lemma 4.4 is inspired from that of Ref. 2, Lemma 3.2, but
we deal with the more general case of the iterated formula (8). Moreover, µk and ωk are
possibly varying, while they are constant parameters in Ref. 2.

Theorem 4.1. Let xk be defined by (2)-(8) with θ ∈ (0, 2), and let Assumption 1 and
Assumption 3 hold.

Then we have convergence in the sense lim infk→∞ gk = 0 for the PRP and LS methods,
and more generally for µk = 0 and ωk ∈ [0, 1].

Moreover, if Assumption 2 holds, then we have also lim infk→∞ gk = 0 in all cases.

Proof. Assume on the contrary that ‖gk‖ ≥ γ > 0 for all k. Since L is bounded, both
{xk} and {gk} are bounded.

Let us first suppose that Assumption 2 holds. Since lim infk→∞ ‖gk‖ > 0, by Lemma 4.4
we have limk→∞ βµk ,ωk

k = 0.
Since

‖dk‖ = ‖ck‖ ≤ ‖gk‖ + |βµk,ωk

k |‖dk−1‖,

we conclude that {‖dk‖} is uniformly bounded for sufficient large k. Thus we have

|gt
kdk| = |gt

k(−gk + βµk ,ωk

k dk−1)|

≥ ‖gk‖
2 − |βµk,ωk

k |‖gk‖‖dk−1‖

≥ ‖gk‖
2/2

for sufficient large k. Then there exists ε > 0 so that

gt
kdk/‖dk‖‖gk‖ ≥ ‖gk‖/2‖dk‖ ≥ ε

for sufficient large k. Finally, we conclude that
∑

k,dk 6=0

‖gk‖
2
(
gt

kdk/‖dk‖‖gk‖
)2

= ∞.

This is a contradiction to Lemma 4.1.
The same proof applies to the case where µk = 0, and Assumption 2 is not necessarily

valid.

15



Remark 4.3. The proof of Theorem 4.1 is partly inspired from that of Ref. 2, Theorem
3.3. However, our result deals with variable parameters µk, ωk. Moreover, Assumption 2
is not necessary in the case µk = 0, which contains the PRP and LS methods.

5 Discussion

5.1 The convex quadratic case

Let us show that the convergence condition θ ∈ (0, ν1/µ) is too restrictive for the stepsize
formula proposed in Refs. 1, 2, in the case of a convex quadratic objective function. Let

Q(x) = xtQx/2 − btx, x ∈ � n

where Q is a symmetric, positive definite matrix. Let ν1 and ν2 respectively denote the
smallest and largest eigenvalue of Q, so that (9) holds.

Now, consider the stepsize formula (10) with Q0
k = Q. When θ = 1, it yields the

optimal stepsize αk = arg minα J (xk + αdk).
In the convex quadratic case, Theorem 4.1 ensures the convergence for θ ∈ (0, 2) and

for any fixed I > 0. Remark that Assumption 3 is easily checked, since

Q̂(x′, x) = Q(x) + (x′ − x)t ∇Q(x) + (x′ − x)t Q (x′ − x)/2 = Q(x′).

In the case of the optimal stepsize, i.e., θ = 1, the classical linear CG algorithm is covered,
since all conjugacy formulas reduce to the FR method.

On the contrary, the convergence domain deduced from Refs. 1, 2 is θ ∈ (0, ν1/ν2) ⊂
(0, 1), since ∇Q is µ-LC1with µ not larger than ν2. Hence, the convergence of the clas-
sical linear CG algorithm is not recovered. In particular, the condition θ ∈ (0, ν1/ν2)
will produce excessively small and inefficient stepsizes when the Hessian matrix Q is ill-
conditioned.

5.2 The general case

In the general case, the nontrivial computation of ν1 and µ is a prerequisite to check
the convergence condition θ ∈ (0, ν1/µ). In Ref. 2, it is rather proposed to ensure the
convergence empirically by choosing an arbitrarily small value of θ. Unfortunately, the
resulting algorithm will be hardly competitive, compared to CG methods with a usual line
search procedure.

Our convergence results do not share the same drawback, provided that, as a pre-
liminary step, a convex quadratic function has been found to approximate the objective
function from above. According to Lemma 2.1, finding such a convex quadratic majorizing
function is always possible when N is a convex set.

In practice, case-by-case considerations may provide tighter convex quadratic approxi-
mations, that will result in larger stepsizes. This issue is actually not new, since finding a
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good convex quadratic majorizing function is already a crucial step in the use of Weiszfeld’s
method Ref. 13. The latter reference provides examples in the field of optimal location
(which was Weiszfeld’s original concern), and in structural mechanics. Robust regression
is another classical area where Weiszfeld’s method is widely applied, under the name of
Iterative Reweighting (Ref. 15). More recently, the latter has also become a standard ap-
proach for edge preserving image restoration, under the name of Half-Quadratic Scheme
(Refs. 16, 17). Edge preserving image restoration is structurally similar to the robust re-
gression problem, but of much larger scale since digital images commonly gather billions of
pixels. Direct application of Weiszfeld’s method then becomes inefficient or even imprac-
ticable, since each iteration amounts to solve a linear system of size n. In Ref. 18, we go
further into the details of the image restoration application, to support that our proposed
CG method is a natural substitute for Weiszfeld’s method.
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