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ABSTRACT The present paper proposes a synthetic overview
of regularization techniques for the reconstruction of piecewise
regular signals and images. The stress is put on Tikhonov pe-
nalized approach and on subsequent non-quadratic and half-
quadratic generalizations. On one hand, a link is made between
the detection-estimation formulation and the non-convex penal-
ization approach. On the other hand, it is highlighted that con-
vex penalizing functions provide a good edge-preserving com-
promise between quadratic regularization and the numerically
burdensome detection-estimation approach.

INTRODUCTION: TIKHONOV REGULARIZATION
Generalities

In general, solutions of ill-posed problems are brought by
restricting the class of admissible solutions, given suitable prior
knowledge. One of the most basic regularization method has
been introduced by Tikhonov and Arsenin (1977). Assume that
an unknown univariate signal x∗ is to be estimated from the
data y = Ax∗ + noise, where A is a linear operator. Tikhonov
approach requires the choice of a stabilizing functional ‖Px‖2,
where P is also a linear operator. Then, an estimated solution
is x̂ that minimizes the objective functional

J (x) = ‖y − Ax‖2 + λ ‖Px‖2 , (1)

where λ is a regularization parameter, which controls the trade-
off between the regularity of a solution and its fidelity to the
data. It can be shown that under mild conditions the criterion
J is strictly convex and a unique solution exists.

The first term of J (x) in (1) is a quadratic norm that penal-
izes the discrepancy between the “output” for admissible func-
tions x and given data. It is an optimal choice in a certain
statistical sense when the noise is assumed to be a realization
of a white centered Gaussian random process. Other common
choices derive from different statistical assumptions. For in-

stance, a Poisson distribution may be preferable for corpuscu-
lar imaging, as encountered in CCD image processing, X-ray
tomography, positron emission tomography. When statistical
information lacks, quadratic penalties are still useful to define
solutions in the least squares sense. The present paper rather
focuses on the second term of J (x), i.e., on the construction of
stabilizing functionals.

In Tikhonov original contribution, the stabilizing functional
is given by

‖Px‖2 =

RX
r=0

Z
cr(t)

��x(r)(t)
��2 dt,

where the weights cr are strictly positive functions and x(r) in-
dicates the rth derivative of x. It is clear that such a choice
corresponds to the prior knowledge that the estimated signal x
is smooth to a certain extent.

Multivariate extensions have been proposed. More specif-
ically, the two-dimensional case has been developed for the
purpose of image restoration. For instance, Hunt’s pioneering
work (Hunt, 1977) is devoted to image deblurring based on the
2D discrete counterpart of (1) and on fast computation in the
Fourier domain.

Limitation
A great deal of inverse problems involve piecewise homoge-

neous objects, such as blocky signals, images with well-separated
regions, isolated defects within homogeneous media. In such con-
text, methods based on Tikhonov approach often fail to detect
or even to preserve the expected discontinuities.

As an illustration, consider the following simulated 1D ex-
periment: let y = [y0, . . . , yN ]t represent a noisy data vector
sampled from a piecewise smooth univariate function x∗ on [0, 1]:
yn = x∗(n/N)+bn. x∗ and y are depicted on Figure 1. WithR =
2, c0 = c1 = 0, c2 = 1, and ‖y −Ax‖2 =

PN
n=0 |yn − x(n/N)|2,
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Figure 1: A piecewise smooth univariate function x∗, and a
noisy data series (yn), n = 0, . . . , N = 50, sampled from x∗.

(1) reads

J (x) = ‖y − Ax‖2 + λ

Z 1

0

��x′′(t)
��2 dt. (2)

Let us introduce a discrete approximation for (2), based on finite
differences:

JM (x) = ‖y −Ax‖2 + λM3
M−1X
m=1

|2xm − xm−1 − xm+1|2 , (3)

where ‖y −Ax‖2 =
PN

n=0

��yn − xnM/N

��2, x = [x0, . . . , xM ]t,
and M + 1 is a multiple of N + 1. Define the estimated vectorbxλ as the minimizer of JM . It is a classical result that pointwise
convergence of bxλ towards the unique minimizer of (2) holds
when M → ∞. Figure 2 depicts bxλ for M = 400 and for the
“best” value of λ in the L1 sense, i.e., the one that minimizes
E(bxλ, x

∗), with

E(x, x∗) =

MX
m=0

|xm − x∗(m/M)| . (4)

This procedure is artificial, since it requires the knowledge of x∗,
but it is adopted here to allow fair comparisons.

The solution bxλ is not satisfying, because it is uniformly
smooth, whereas the expected solution is only piecewise smooth.
In comparison, the simple estimate obtained from y by linear
interpolation reaches a lower L1-norm error value of 17.04%.

If the number P and the positions t = [t1, . . . , tP ] of the
discontinuities were known, then a convenient approach would
be to replace J by

Jt(x) = ‖y − Ax‖2 + λ
PX

p=0

Z tp+1

tp

��x(t)′′��2 dt,

Figure 2: Smooth linear estimate bxλ obtained as the
minimizer of (3), M = 400 for the optimal value of λ in the L1

sense: E(bxλ, x
∗) = 18.16%.

with t0 = 0 and tP+1 = 1. The discrete counterpart reads

Jb(x) = ‖y −Ax‖2 + λM3
M−1X
m=1

bm |2xm − xm−1 − xm+1|2 , (5)

where b = [b1, . . . , bM−1] is a binary vector of edge variables:
bm = 0 corresponds to the presence of a discontinuity at the
mth position. In practice, this approach is very limited, because
the discontinuities are usually not known. In the following sec-
tions, we introduce the main ideas brought in the signal and
image processing community to tackle the problem of restoring
piecewise regular functions.

THE DETECTION-ESTIMATION APPROACH
Principle

A fruitful idea was introduced to cope with discontinuities
in the field of computer vision (Mumford and Shah, 1985; Blake
and Zisserman, 1987). It consists in jointly considering the esti-
mation problem of x and the detection problem of t or b. For this
purpose, jointly minimizing Jt(x) in (x, t) or JM (x, b) in (x, b)
is not adequate, since it is not difficult to see that this strat-
egy would lead to a maximal number of discontinuities. This is
not so if a “price to pay” α > 0 is imposed for each discontinu-
ity. The resulting augmented criterion to minimize is either
K(x, t) = Jt(x) + αP , or

K(x, b) = Jb(x) − α

M−1X
m=1

bm (6)

for the discrete counterpart. Here, only the number of disconti-
nuities is penalized. Accounting for various kinds of information
can also make penalization depend on their relative positions.
For instance, neighboring discontinuities can be over-penalized
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if the “price to pay” is a decreasing function of the distance be-
tween them. When such “position-dependent” penalization is
adopted, the edge variables are said interacting. For the pur-
pose of image segmentation, specific forms of interacting edge
variables have been introduced to produce closed contours (Ge-
man and Geman, 1984; Marroquin et al., 1987; Jeng and Woods,
1991).

Figure 3: Piecewise smooth estimate bxλ,α obtained as the
joint minimizer of (6) for optimal values of λ, α in the L1

sense: E(bxλ,α, x
∗) = 16.22%.

In the field of image processing and computer vision, many
researchers worked within the detection-estimation framework
during the eighties (Mumford and Shah, 1985; Terzopoulos, 1986;
Blake and Zisserman, 1987). The common features of their con-
tributions are

• the presence of binary edge variables in an augmented form
of criterion. Such variables can be referred to as hidden
variables w.r.t. the observation process, since they do
not enter the observation equation. From both conceptual
and practical viewpoints, handling hidden variables consti-
tutes a very powerful tool to incorporate sophisticated prior
knowledge.

• In most cases, the augmented criterion is half-quadratic
(HQ): a function K will be said HQ if it depends on two
sets of variables, say, x and b, so that K is a quadratic
function of x (but not of (x, b)).

Drawbacks
The main drawback of the detection-estimation scheme lies

in its computational load. Numerically heavy methods are of-
ten required to tackle the combinatorial problem induced by the
binary variables. Most of them are based on relaxation princi-
ples, either in a stochastic framework (e.g., simulated annealing –
Geman and Geman, 1984) or in a deterministic framework (e.g.,
continuation methods such as graduated non convexity (GNC) –
Blake and Zisserman, 1987).

As pointed out by several authors (Bouman and Sauer, 1993;

Li and Huang, 1995), the lack of stability may constitute another
weakness of the detection-estimation approach. Mathematically,
it corresponds to the fact that the estimated signal bxλ,α (ob-
tained as the joint minimizer of (6)) is not necessarily a contin-
uous function of the data, as illustrated by Figure 4, following
an example given in Li and Huang (1995). In other words, the
third Hadamard condition (Tikhonov and Arsenin, 1977) is not
fulfilled by bxλ,α, so the problem is still ill-posed.

Figure 4: Instability of bxλ,α as a function of data: in solid
line, two estimated solutions bxλ,α arising from the same data

set, but for one point (data points are either depicted by
circles or crosses).

Actually, bxλ,α is “piecewise stable”, and such a behavior is
intrinsic to the edge detection capability of such an approach. In
some cases, this is a desirable feature since it allows automatic
decision-making. Otherwise, the detection-estimation approach
is not recommended.

THE NON-QUADRATIC APPROACH
Nonquadratic penalization approaches have been taking

much importance during the last years (Bouman and Sauer,
1993; Künsch, 1994; Li and Huang, 1995). The principle is to
replace Tikhonov quadratic penalizer by an even function φ that
could be better suited to the preservation of discontinuities. For
instance,

Jφ(x) = ‖y −Ax‖2 + λ

Z 1

0

φ(x′′(t)) dt (7)

is a generalization of (2) for the continuous case, as well as

Jφ(x) = ‖y −Ax‖2+
λ

M

M−1X
m=1

φ

�
2xm − xm−1 − xm+1

1/M2

�
, (8)

for the discrete counterpart. In order to preserve sharp edges
between homogeneous regions, it is quite clear that φ should be
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growing slower than a parabola, so that the cost associated to
large steps be reduced. Two main families of such functions have
been proposed in the litterature:

• “L21” functions, i.e., convex, continuously differentiable,
asymptotically linear functions with a quadratic behavior
near 0. A typical example is the hyperbola branch (Fig-
ure 5(b))

φ(u) =
p
s2 + u2, s > 0.

The corresponding minimizer of (8) is depicted by Figure 6.
It provides a quite good compromise between the preserva-
tion of smooth plateaux and sharp edges. Other families of
convex functions, such as “Lp” functions φ(u) = |u|p , 1 <
p < 2, yield the same qualitative behavior (Bouman and
Sauer, 1993).

• “L20” functions, i.e., asymptotically constant functions
with a quadratic behavior near 0. A typical example is
(Geman and McClure, 1987; Figure 5(c))

φ(u) =
u2

r2 + u2
, r > 0.

Such functions are nonconvex. As a mathematical con-
sequence, global minimization makes sense in the finite-
dimensional setting of (8), but not in the continuous setting
of (7). The minimizer of (8) is not represented here. It has
the same piecewise smooth character as the solution ob-
tained with the detection-estimation approach (Figure 3).
Other families of nonconvex functions, such as concave, in-
creasing functions on R+, e.g., φ(u) = |u| /(r + |u|), r > 0,
have been recommended (Geman and Reynolds, 1992).

(a) (b)

(c) (d)

Figure 5: φ(u) = (a) u2, (b)
√
s2 + u2,

(c)
u2

r2 + u2
, (d) min{u2, r2}

Actually, the two classes of functions φ provide quite con-
trasted estimates in terms of behavior and of computational cost.

Figure 6: Smooth nonlinear estimate bxλ,s obtained as the
minimizer of (8), with φ(u) =

√
s2 + u2 for optimal values of

λ, s in the L1 sense: E(bxλ,α, x
∗) = 16.57%.

On one hand, the “L21” approach yields convex criteria. Un-
der simple technical assumptions, this allows to define a unique
global minimizer for (8) and also for (7). Furthermore, con-
vex criteria admit no local minima, so the convergence of stan-
dard minimization techniques is granted. Another interesting
property is that the resulting solution is “robust” (Bouman and
Sauer, 1993; Künsch, 1994; Li and Huang, 1995), i.e., it fulfills
the third Hadamard condition, contrarily to solutions obtained
by detection-estimation.

On the other hand, the “L20” approach shares the main
characteristics of the detection-estimation approach: it is truly
edge-detecting (and only piecewise stable), but it is also nu-
merically demanding, because of the possible presence of local
minima.

The similarity between the respective outputs of the
detection-estimation approach and the “L20” approach is not
a coincidence, as explained in the next section.

HALF-QUADRATIC AUGMENTED CRITERIA
Handling HQ criteria has recently spread out as a powerful

numerical device in the field of edge-preserving image restora-
tion (Charbonnier et al., 1994; Brette and Idier, 1996; Cohen,
1996; Charbonnier et al., 1997; Vogel and Oman, 1998). As pre-
viously mentioned, HQ objective functions initially incorporated
binary edge variables, either interacting or decoupled, within the
detection-estimation approach. Mainly following Geman and
Reynolds (1992), the present section shows that HQ criteria
cover a much broader range of situations. More precisely, many
non-quadratic penalization approaches can be equivalently re-
formulated in a HQ framework. The consequences are twofold.
From the formal viewpoint, such an equivalence provides bet-
ter insight into the real issues of signal and image modeling.
From the practical viewpoint, new minimization tools for non-
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quadratic criteria derive from the HQ formulation.

Duality between non-quadratic and HQ augmented criteria
In the case of a HQ criterion with decoupled binary edge

variables, such as K(x, b) defined by (6), Blake and Zisserman
(1987) pointed out that it could be considered as an augmented
equivalent of a non-quadratic criterion J(x), in the sense that

min
b∈{0,1}M−1

K(., b) = J(.).

More precisely, given (5) and (6), we have

min
b∈{0,1}M−1

K(x, b) = ‖y −Ax‖2

+
M−1X
m=1

min
bm∈{0,1}

�
λM3bm |2xm − xm−1 − xm+1|2 − αbm

�

= ‖y −Ax‖2 +
M−1X
m=1

min{0, λM3 |2xm − xm−1 − xm+1|2 − α}

= Jφr (x) + const ,

where Jφr is defined by (8) for the truncated quadratic function
φr(u) = min{u2, r2} (Figure 5(d)), and r =

p
α/λM .

As a consequence, J andK share the same minima, that can
be seeked using any suited numerical device working on either J
or K. In practice, Blake and Zisserman defined the HQ function
K as the objective function, deduced J from K, and proposed a
GNC approach to minimize the non-quadratic function J .

Later, D. Geman and co-workers’ contributions (Geman and
Reynolds, 1992; Geman and Yang, 1995) generalized Blake and
Zisserman’s construction to a larger class of decoupled auxiliary
processes. In fact, they also reversed the construction process:
they showed that there exist HQ augmented counterparts K for
a wide range of non-quadratic edge-preserving criteria J , so that

inf
b∈B

K(., b) = J(.) (9)

for an appropriate set B, generally different from {0, 1}.
In Geman and Reynolds (1992), the construction applies to

edge-preserving functions φ that satisfy the following hypotheses:

φ is even, (10)

φ(
√
.) is concave on R+, (11)

φ is continuous near zero and C1 on R
∗. (12)

Then the following duality relation can be obtained from convex
analysis (Rockafellar, 1970):

φ(u) = inf
b∈R+

�
bu2 + ψ(b)

�
, (13)

where

ψ(b) = sup
u∈R

�
φ(u) − bu2� . (14)

Given (8) and (13), it is easy to deduce (9) for the HQ
augmented criterion

K(x, b) = Jb(x) +
λ

M

M−1X
m=1

ψ(bm).

Such an equivalence has also been obtained for the continuous
framework, in the more restrictive case of a convex function
φ (Aubert and Vese, 1997).

Either convex or not, most regularizing functions brought
in the litterature satisfy (10)-(12), as, for example, the two func-
tions of Figure 5(b) and 5(c).

• For the hyperbola branch φ(u) =
√
s2 + u2, s > 0, (14)

yields

ψ(b) =

�
s2b+ 1/4b if b ∈ (0, b∞ = 1/2s]
1 if b ≥ b∞

• For φ(u) =
u2

r2 + u2
, r > 0, (14) yields

ψ(b) =

�
(1 − r

√
b)2 if b ∈ (0, b∞ = 1/r2]

1 if b ≥ b∞

In both cases, the edge variables bm are continuous, instead of
being binary. However, in practice, their values are either close
to 0 or to b∞, especially in nonconvex cases.

Minimization of HQ criteria
Geman and Reynolds (1992) supported the idea that mini-

mizing K rather than J has some structural advantages thanks
to half-quadraticity (see also Geman and Yang (1995)). When
φ is not convex, they developed simulated annealing techniques
based on alternate pseudo-random sampling.

Other authors developped simpler deterministic counter-
parts (Charbonnier et al., 1994; Brette and Idier, 1996; Cohen,
1996; Charbonnier et al., 1997; Vogel and Oman, 1998; Delaney
and Bresler, 1998), that benefit from half-quadraticity by alter-
nating updates of x given b, and of b given x, i.e., by inter-
twining the two following steps from an arbitrary initial couple
(x, b):

• Minimize K(x, b) as a quadratic function of x, while b is
held constant. This is a simple linear programming prob-
lem that corresponds to an adaptive version of Tikhonov
regularization, since a variable factor bm is introduced for
each penalizing term.

• Since K is a separable function of the variables bm when x

is held constant, it can be minimized as a function of b in
a parallel form. Moreover, the updating equation for each
bm is explicit: it can be shown that the infimum of (13) is
reached at

bb(u) =

�
b∞ if u = 0,
φ′(u)/2u otherwise,

(15)

and the expression of ψ is not even required to computebb(u).
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When φ is convex, such a coordinate descent procedure has
been shown to converge to the unique minimum under broad
conditions (Charbonnier et al., 1997; Idier, 1999). On the other
hand, a technically similar procedure is long since known in a
different context, as a reweighted least squares method (Yarla-
gadda et al., 1985). Although many other optimization tech-
niques (e.g., gradient-based) can reach the minimizer of J un-
der the same regularity conditions, the reweighted least squares
approach has one remarkable practical advantage: it allows to
skip from Tikhonov quadratic penalization to almost any non-
quadratic extension in a straightforward way. It only requires
that a variable factor bm be introduced for each penalizing term,
and that each bm be iteratively updated according to (15).

When φ is not convex, the reweighted least squares tech-
nique converges to the local minima of J (Delaney and Bresler,
1998), akin to other deterministic descent algorithms. Numer-
ically heavier techniques, such as simulated annealing, are re-
quired to avoid local minima (Geman and Reynolds, 1992; Ge-
man and Yang, 1995).

CONCLUSION
Within the penalization framework for the reconstruction of

piecewise regular objects, three alternatives have been presented.
Ordered by growing complexity:

• Tikhonov original approach corresponds to quadratic penal-
izers. If the observation equation is linear, computing the
corresponding solution simply amounts to linear inversion.

• Non-quadratic convex penalizers provide robust estimates
that better perserve edges. Such solutions can be itera-
tively computed using deterministic descent methods such
as gradient descent. In the present paper, a reweighted
least squares approach has been put forward. It is also a
deterministic descent method, that performs iterative linear
inversion. Formally, it identifies with a coordinate descent
strategy for an equivalent half-quadratic augmented crite-
rion.

• The detection-estimation strategy truly allow the recovery
of distinct zones with abrupt changes. However, this is
achieved at the expense of increased numerical cost. On the
other hand, such a formulation is the half-quadratic coun-
terpart of non-convex penalization approach (more specifi-
cally, using truncated quadratic functions).

Realistic applications of the presented methodology (partic-
ularly, of the convex penalization approach) can be found in sev-
eral domains, such as image deblurring (Brette and Idier, 1996),
spectral analysis (Ciuciu et al., 1999), computed tomography,
under the assumption of a linear observation equation (Bouman
and Sauer, 1993; Charbonnier et al., 1997). Nonlinear observa-
tion equations have been also considered within the same frame-
work, e.g., for inverse scattering (Carfantan and Mohammad-
Djafari, 1996) and electrical impedance tomography (Martin and
Idier, 1996). However, such nonlinear cases are more complex,
because convex penalizers do not necessarily induce convex ob-
jective functions anymore, since the fidelity-to-data term be-

comes a non-quadratic (and presumably nonconvex) function of
the unknown object.
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