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Abstract

The dominant approach in Bernoulli-Gaussian myopic deconvolution consists in the
joint maximization of a single Generalized Likelihood with respect to the input signal
and the hyperparameters. The aim of this correspondence is to assess the theoretical
properties of a related Generalized Marginal Likelihood criterion in a simplified frame-
work where the filter is reduced to identity. Then the output is a mixture of Gaussian
populations. Under a single reasonable assumption we prove that the maximum gener-
alized marginal likelihood estimator always converge asymptotically. Then numerical
experiments show that this estimator can perform better than Mazimum Likelthood
(ML) in the finite sample case, moreover asymptotic estimates are significant although

biased.



1 Introduction

The problem of the restoration of spiky sequences distorted by a linear system and additive
noise arises in areas such as seismic exploration [1], non-destructive evaluation and biomedical
engineering [2].

When the filter is assumed known, the ill-posed nature of the induced deconvolution
problem may be coped in a Bayesian framework using prior information about the expected
structure of the input in the form of prior probability models. To allow for a better flexibility,
a family of parametered priors is used instead of a unique one, and the set of those parameters
as well as those of the noise distribution are often referred as to hyperparameters. The
problem of the estimation of the input given hyperparameters is often referred as to simple
deconvolution.

A recurrent problem in the context of Bayesian estimation is the practical problem of
hyperparameter identification. A rather general methodology for this identification task relies
on maximization of the likelihood of the parameters, i.e. the probability of the data given
the parameters. In many circumstances, a maximum likelihood (ML) approach guarantees
consistency and asymptotic efficiency of the related estimators [3].

In many contexts such a scheme cannot be implemented, due to the fact that the like-
lihood cannot be computed nor maximized in practice, and alternative schemes are to be
seeked for. The aim of this correspondence is to assess, in a special case, the asymptotic
properties of one alternative methodology based on a Generalized Likelihood (GL), i.e. the
probability of the data and the input given the hyperparameters, to be maximized relatively
either to the input and hyperparameters. Such methods and variants have been successfully
implemented in the various areas of control [4] and image processing [5]. Despite their ques-
tionable theoretical properties [6] [7], maximum GL (MGL) techniques are backed by their
empirical efficiency.

More specifically, the study presented here is restricted to the case of Bernoulli-Gaussian
prior models for the input, and Gaussian white stationary process for the noise. The use
of a BG process corresponds to an explicit model of the spiky nature of the input. BG
models may be seen as discrete-time composite processes, the first part which is denoted
g, modeling the time location for a spike, and the second, denoted r, its amplitude. Up to
now, GL maximization has been the dominant method in BG deconvolution problems [§]
[9] mainly because of its practicability. Let z denote the observed data, then GL estimation
corresponds to the maximization of the joint likelihood p(z,r,¢,0) in r, ¢ and 6. Gassiat et
al. [10] presented a theoretical study of that estimator when the filter is reduced to identity.
Their results established the poor behavior of such a criterion, and the inability to ensure
the existence and the stability of corresponding estimates. Conversely, when estimates exist
they may exhibit a small bias.

Based on the remark that joint criterions are not used anymore in the practice of BG
simple deconvolution, the following study considers the finite sample and asymptotic behav-
ior associated to a Generalized Marginal Likelihood (GML) criterion p(z,¢,6) in ¢ and 6,
where amplitudes of the spikes have been “integrated out”. Compared to marginal likelihood



methods, joint likelihood detection and estimation demonstrate too many false alarms unless
these are penalized in an ad-hoc manner (e.g. see [8] on the Chi-t deconvolution method).

In order to be able to carry out mathematical derivations, we had to limit ourselves,
following [10], to the case with no distortion. Then the output signal is reduced to the
mixture of two zero-mean univariate Gaussian distributions. The estimation of the param-
eters governing a Gaussian mixture is a yet well documented area [11][12], for which many
consistent estimators as ML are already available [13][14]. Our purpose is not to propose
another competing estimator in that area but to assess, in a particular case some properties
of GML methods. Moreover, such techniques are readily implemented in the general case of
a filtered mixture , and may be competitive with more sophisticated ones based on stochastic
approximations of ML approaches [15, Chapter 4].

The conclusions of this study are more balanced than those drawn by Gassiat et al.
on GL criterion: first, we prove the existence of a global maximum for the GML both
in the finite sample and asymptotic case. Second, the corresponding estimates possess a
scale invariance property, and they asymptotically recover the true power of the signal.
We prove the convergence of finite sample estimates toward the global maximum of the
asymptotic GML under the reasonable assumption of uniqueness of this maximum. Finite
sample and asymtotic maximum GML (MGML) estimates cannot be derived in closed-form.
However computation of finite sample MGML estimates can be performed exactly in an
efficient manner. A presented Monte Carlo experiment shows that MGML estimation can
exhibit smaller bias and mean square error than ML estimation. Furthermore, the associated
computationnal load can be neglected compared to ML estimation. The price paid is the
loss of consitency for the MGML estimator and a further numerical experiment shows that
the asymtotic bias ranges from moderate to large, depending on the amount of noise and
the intensity of the pulse process.

2 Problem statement-Finite sample properties

In this section we study the case of a N-sized sample, then corresponding asymptotic ex-
pressions will be derived in Section 3.

2.1 Problem formulation

In the absence of distortion, the input-output equation reduces to a spike process corrupted
by an additive noise z = r + n. The noise n is assumed to be zero-mean white stationary
of variance r,, and independent from r. The latter is modeled as a sample of a BG process
X = (Q,R) of the parameters A, r, and defined as follows: Q and R consist of independent
random variables (RV) Qr and Ry (1 <k < N) ;

Qr is a Bernoulli RV: P(Qr =1) = A (1)

(Ri | Qr = q) is a zero-mean Gaussian RV of variance g¢r,.



Let 6 = (X, rz,r,) denote the vector of hyperparameters that control the different prob-

ability distributions, and 6* = (A\*,r%,r}) denote the “true” parameters assumed to belong

to A é]O, 1[x]0, +oc[®. Then the joint maximization of p(z,q;#) with respect to (w.r.t.) q
and # amounts to minimization of:

L(d A ray ) 2 LG (7 ) — 205 () V),

by by
where Lg\p(quzfarn) éNeln(Tz‘{’rn)‘{’(N_Ne)lnrn‘}' ! +_0,

and: L' (q,\) 2 Noln A+ (N — N)In (1 — A).
Finally N, ¥g and ¥; are defined by:

N N

Ne=> q(k), Zo=> (1 —q(k))z*(k) and E; = kz_: q(k)2*(k).

k=1 k=1

For further notationnal convenience we introduce the quantity 7, a SN Z2(k)/N.

We seek a minimum of this function as q spans {0,1}", and @ spans A. First, we keep q
fixed and optimize on . As q spans a finite set we will conclude to the existence of a global
minimum for Ly. Then we will optimize among gs having same N.. We will thus reduce
the original optimization problem to a minimization among at most N distinct values. This
result is the basis for an exact numerical optimization scheme for Ly that consists merely
in NV evaluation of a simple function.

Before proceeding on the optimization of Ly we underline the connections between the

MGML and ML methodologies.

2.2 Connections with ML estimation

The GML estimate (é, q) is defined by:
(0,&) = arg max p(z, ¢; 0),
7q
then 6 can be put in the form:
= arg max {mc?xp(z, q; 0)} .

Let f(z;r) denote the density of a univariate zero-mean Gaussian RV of variance r, then it
can be easily shown that:

) N
0 = arg m@ax{H max {Af(z,r: + 1), (1 — )\)f(zz,rn)}} ,

=1



whereas ML estimation yields:

0 = argméaX{H M (ziyre+r)+ (1 — )\)f(z“rn))} )

=1

Thus, the GML criterion may be viewed as an approximation of the likelihood. In the next
sections, it will be shown that this approximation yields much algebraic simplifications at
the expense of the loss of consistency. However, the Monte Carlo experiments of Section 4.1
demonstrate that the MGML estimator can yield smaller bias and MSE than ML in the
finite sample case.

2.3 Minimization of Ly(q,0) w.r.t. ¢

First, we treat the boundary cases q = 0 and q = 1. q = 0 leads to the estimates 5\(0) =0
(at the boundary of the domain), ,(0) = 7, and

Ly(0,1(0),74,7,(0)) = N + Nln#,.

The dual case q = 1 leads to 5\(1) = 1: signal and noise are indistinguishable, r, 4+ r, is
estimated through 7, and

A

Ln(1, A1), rg, 7y — 1) = N+ Nlnr,.

These criterions are not sensitive to r,. This means that whenever q = 0 or q = 1, the
output is white stationary Gaussian and we cannot tell what is signal or what is noise nor if
there is a signal indeed.

(2)

We will now discuss the general case. The maximization of Ly’ w.r.t. A is straightforward:

R N, .
Ma) =+ and L¥(q,Mq)) = N.InN,+ (N = N)In(N = N.)— NInN.  (2)

Before proceeding we had rather define p = (r, + r,)/r, and swap dependent variables

(re,rn) < (py7,) in L%). Then g spans |1, +oo[. Let us hold p fixed and optimize w.r.t. r,:
. Ly .
Q1) = & (#7'81 + o) (3)

and Lg\lf)(q,,u,fn(q,u)) =NIn (,u_lZl + Zo) + Nelnp+ N — NIn N.

Finally, let us optimize w.r.t. g on |1, 4+ool:

. (N = No)Ey
fi(q) = maX{N—anl} (4)
0 { Nln(r,)+ N if (N — N )X < N3

Ly'(a) =

Neln(E1/Ne)+ (N = No)In (3g/ (N = N.))+ N otherwise
(5)



A

Thus we reduced the minimization of Ly(q, ) to the minimization of Ly(q,8(q)), which
spans a set of at most 2V distinct values. This result ensures the existence of a finite
minimum for Ly, possibly at the boundaries of the set spanned by the hyperparameters.
This property is not shared by the joint criterion studied in [10].

2.4 Minimization of Ly(q,0(q)) w.r.t. q
2.4.1 N, held fixed

We proceed the optimization among the set {q,1'q = N.} (N, held fixed). This will enable
us to devise an optimization scheme for Ly that can be implemented in a simple way in
order to compute the corresponding parameters.

To see this, let us sort the data z(k),k = 1..N in descending order of z*(k). At first
glance, ¥, spans a finite set of values between s,,;, = E%—Ne-l—l (k) and S0 = 301 22(k),
and the function N.Ins + (N — N.)In(z'z — s) is strictly increasing from s,,;, to § = N7,
then strictly decreasing from 35 to $,.4,. It seems that we have to choose between two
potential minima unless we recall that the expression for L%) is valid for the s such that
(N — N.)¥1 > N.Xg, or equivalently ¥; > §. Therefore, when N, is held fixed, the minimum
is obtained while setting to 1 variables ¢(k) corresponding to the N, largest values z*(k).
This conclusion is tightly linked to the well known following fact: when 8 is held fixed, the
optimization of Ly is a mere threshold test depending on 6.

2.4.2 Optimization w.r.t. N,
Finally, let L%, be a function defined on {0,1,..., N} by
Ne

2(k
L'v(N.) = N, In %() + (N —=N.)In

Ziv:Ne-H ZQ(k)
(N —=N.)® (6)

because Liy(N.) = Ln([1...10...0]) = N — 2N In N, the global minimization of Ly is
equivalent to the minimization of L}y w.r.t. N..

A closed form expression for the minimum of this function could not be derived. Nev-
ertheless, the computation of MGML hyperparameter estimates associated to one signal
sample is extremely simple: it mainly requires the numerical evaluation of L% (N.) for
N. € {0,1,...,N — 1}. The Monte Carlo study of Section 4.1 makes use of repeated
minimizations of Ly in order to efficiently compute the MGML estimates.

The next section is devoted to an asymptotic study for the estimator.

3 Asymptotic behavior

For each N, we are guaranteed at least a GML estimate denoted fx. This section is devoted
to the limiting behavior of the series (fx). By the means of a slight modification of Theorem
1 and Lemma found in [10], we prove that the convergence of (fy) is linked to the existence
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and the uniqueness of a global minimum of an auxiliary function depending on a unique
threshold variable. Then we prove the existence of such a minimum and we supply numerical
experiments in order to support the conjecture of uniqueness and to study the bias of related
GML estimates.

3.1 Limiting expressions

We first derive an asymptotic expression for equation (6). A straightforward derivation is not
obvious and, following [10], we tackle this difficulty through the introduction of an auxiliary
function of an explicit threshold variable 7' € [0, 400 defined by:

; on(T) | < on(T)
Ly(T) = An(1)1 An (1) 1In =
V= Ay A ) "
1 X 1
where Ay (T') = N E 12 y>1y, on(T) = N ZZQ(k)l{ZQ(k)ZT}’ (8)
k=1 k=1

)\N(T) + S\N(T) =1 and O'N(T) + 5‘N(T) = f‘z
Because NLY(T) = Ly(NAN(T)) + 2N In N, the optimization of LY, w.r.t. T is equivalent

to the optimization of L% w.r.t. N, but an asymptotic expression for L% is more easily
derived.

Let Z denote a random variable distributed as Z(1) for instance, after the strong law of
large numbers, we obtain almost surely (a.s.

~—

]\;I_IEOAN(T) =3 E[I{ZQZT}] (9)
lim on(T) 2 E[Z%1 ] . (10)
oo(T) < 0o (1)

Thus LY, converges a.s. toward L (T) = Ao (T)1

+ Ao (T)1

" ND) DRI
where the quantities subscripted by oo are limiting values corresponding to the quantities
subscripted by N.
Theorem

Let (éN) be any series of GML estimates and (TN) denote the associated threshold series.
Assume L’ has a unique minimum T, then limy_ o TN 1 and Impy oo éN “5 § where:

A A 5o (T (T)  &..(T ,
e (D), 7= 2Dy oelT) o) e A (12)
Aoo(T) Aol T)  No(T)

This theorem relies on the following lemma:
Lemma

Let (f,.) be a series of real monotonous random equations defined on [0, +oc] and assume
that f,(s) converges a.s. towards a function f(s) continuous on [0,+0oc]. Then let (s,) be
any series such that lim,_ s, = S5 exists in [0, +00], fu(s,) converges a.s. toward f(su).
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Proof of the lemma will not be given here, for it consists in a minor adaptation of the

similar lemma in [10] required to handle infinity. Let T+ 2 lim sup TN, possibly infinite,
then there is a strictly increasing function ¥ on IN such that limy_ Td,( N) = T+. We have

L%(N)(Tq/,(]\z)) < L%(N)(T) VT € [0, —}—oo]: applying the lemma to series (T¢(N)) and tAo the
monotonous random functions Ay )( ), Ap(N )( ), o Ty(N )() and oy )( ) we obtain L” (1) <

A

L7,(T), VT € [0, +oc]. Because L7 is assumed to have a unique global minimum, T ="1.
It can be proved similarly that liminfy TN = T so that th_mT — T. Associated
expressions for 0 follow from the limiting form of ﬁnlte sample estimates (2)(3)(4).

3.2 Existence of a global minimum in A

As L7 is a function of 6%, we may write L7 (T, 6*). L” is easily expressed in terms of error
functions. Careful computations show that:

(1= A%

L// Tg* :1 x AN )z
O = = e

oo(T)(1 +0(1)) when T — 400, (13)

ilpin% LY (T,0°) =Inr; where r; = X7+, (14)

0o (T') is positive strictly decreasing from r? to zero, then limp_ 4o L” (T,0*) = InrZ. As
L7 (T, 6%) is a continuous function of 7', and admits finite limits on its boundaries L” (7', %)
is a bounded function of T'. Moreover Equation (13) means that L” (T',0*) < Inr} for T large
enough. This inequality guarantees the existence of a global minimum T €]0, 4+o0[. Up to
date, no proof for the uniqueness has been found because of the tedious analytical expression
for the derivative of L” . However, practical studies of L” for values of §* scattered over A
support the assumption of uniqueness.

Further study of the asymptotic bias can be performed numerically only. Nevertheless,
some properties valid for all #* may be shown that are useful for the numerical study. First,
it may be easily checked that A\fy + 7, = Nr* + 75 = E[Z*. Moreover we have a kind of
homogeneity relationship:

LI (T, Xy =LY (aT, X ark,arl) —Ina ,Va >0

Y x? ' n

which enables us to assess a scale invariance property for the estimators:
1 * * * *
AN arr ar) = )\()\ ST )
A * * *
Fe( A arn, ary) = arg(A",r, )
A * * * A
r( A ars,ary) = ar, (A, )

YTxrY'n

The estimates obtained in [10] do not satisfy these properties.



4 Numerical experiments

4.1 Finite sample ML and MGML estimates

10000 independant samples where drawn from a single univariate Gaussian mixture of pa-
rameters A* = 0.1, rX = 100 and r; = 1. This corresponds to a “signal-to-noise ratio” (SNR)
of 10dB where the SNR is defined as 10log(A*r%/r*). The ratio and the tested values are
standard in the context of BG deconvolution. The samples were gathered by N in order
to study the statistical behavior (bias and mean square error (MSE)) of estimates based on
samples of size N. N spans {5,6,...,70}, at N =70 the ML and MGML estimators exibit
an asymtotic behavior.

MGML estimates are easily computed using N computations of function Ly (N.), N. =
L...N—1 (see Section 2). Computation of corresponding ML estimates required much more
effort.

Previous work on ML estimation for two-component Gaussian mixtures [12][16][13] re-
ports to main issues: first, the undboundedness of the likelihood and second, the existence
spurious local maximas.

The first problem does not occur here, because we do not try to estimate the means of
the Gaussians, they are assumed zero in this study and the likelihood considered here is
truely bounded above.

In order to deal with the second problem and to get more reliable ML estimates we
proceed in two steps. First we compute the log-likelihood on a grid spanning the parameter
space, then we start an EM procedure [12][11] until the norm of the gradient decreases under
1078, where we may consider the gradient vanishes. A further computation of the Hessian is
performed for the obtained estimates in order to insure that at least a local maximum has
been attained.

The first step of search for a maximum on a coarse grid over A has been restricted to a
search on (A, r,) € [0,1] x [0, 7.] by the means of the following identity:

ATy + T = T,

where tilded quqntities reffer to ML estimates. That identity derives from expressions of
the derivative of the log-likelihood which vanishes at a maximum. To our knowledge this
identity has neither been pointed out nor used explicitly in previous work, but it is implicit
in the EM algorithm. Making use of this identity the search can be restricted to the surface
described by Ar, +r, = 7, which contains the ML estimate. Then the likelihood is expressed
in terms of the two dependent variables A € [0,1] and r,, € [0,7.].

Figure 1 (resp. Figure 2) summarize the results relative to mean estimates (top figure)
and MSE (bottom figure) for \* (resp. r}) expressed as a function of N the size of the
considered sample. Concerning the parameter A the MGML performs better than ML until
N =50 in terms of bias an MSE. Then the asymtotic behaviour of ML begins to take over
MGML in terms of bias. These conclusions are almost identical for parameter r,, except

for the MSE of very small samples (N = 5...10) where MGML is much higher than ML.



It should be pointed out, however, that the relative MSE for parameter r, is always smaller
than for the other parameters, that means that r is always better estimated than A\* and r}.
To a certain extend these results are consistent with previous reports of empirical success of
Generalized Likelihood approaches.

4.2 Asymptotic MGML estimates

The domain A of §* is sampled, and for each value of 6* on the grid the corresponding
estimates of §* are computed using on one hand a numerical minimization of L” (7', 6*), and
the identity (12) on the other hand. The scale invariance property enables us to restrict the
study to a grid in (A*,r*) only and set r* = 1 for instance.

The numerical optimization of L (T,0*) w.r.t. T has been performed using an exhaustive
search on a grid as a first step. This rough optimum is then refined by a fixed point method.

The graphs presented on Figure 3, correspond to a “signal-to-noise ratio” (SNR) of 10dB.
Values of A* are regularly sampled between 0.01 and 0.4. For the sake of clarity, we have
reported only the results corresponding to the estimates of A versus the true value A\*.

The graphs compare an asymptotically unbiased estimator like ML, the GML estimator
and the GL estimator of Gassiat et al.. Because the latter does not exhibit any scale in-
variance property we represented two graphs of GL estimates corresponding to r? = 1 and
rr = 0.1. GL and GML estimates show a systematic bias, A is always under-estimated.
And it should be stressed that GL estimates do not always exist as shown on the graph for
r* = 0.1. The bias is moderate for small \*, and cannot be neglected otherwise. However,
the estimates remain significant, at least for the chosen SNR. Further studies reported in
[15] show that increasing the SNR diminishes the bias.

5 Conclusion

The question of the relevance of generalized likelihood techniques in the context of BG
myopic deconvolution led us to the detailed study of a simpler problem, namely the MGML
identification of a two-component Gaussian mixture.

The results obtained on this MGML estimator relieves some of the criticism against MGL
estimation that concluded a former paper. In particular, we prove the existence of finite
sample MGML estimates and propose an algorithm that computes exactly these estimates.
Moreover the associated numerical cost that can be neglected compared to ML estimation.
In the case of small samples, a Monte Carlo experiment shows that MGML can enjoy a
smaller bias and MSE than ML.

Considering asymptotic properties, the convergence of MGML estimates is assessed un-
der a reasonable assumption. A further numerical experiment supports this assumption
and quantifies the asymptotic bias of MGML estimates. This bias may indeed range from
moderate to large but corresponding estimates remain significant.

In the broader context of filtered mixtures, GL-like criterions have been used mainly for
practical purposes, and showed a seemingly practical success. A common setback associated



to GL methods is the impossibility to assess the existence of estimates because GL criterions
are not bounded above and a local maxima may not exist. We believe that the use of GML
criterions could be a satisfactory practical answer to this problem when consistent schemes

cannot be implemented, provided that their finite sample behavior has been more seriously
investigated.
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Figure 1: Comparison of finite sample estimates for parameter A. Mean A estimates (top
figure) and mean square error (bottom figure) are represented as functions of sample size.
(...) : True value A* = 0.1. (- -) MGML estimation. (—) ML estimation. The comparative
asymptotic behaviour of the estimators is best seen on the top figure where ML converges
towards the true value whereas MGML converges to a slighly inferior value. Conversely,
MGML performs better both in bias and MSE for sample sizes lower than 50.
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Figure 2: Comparison of finite sample estimates for parameter r,. Mean r, estimates (top
figure) and mean square error (bottom figure) are represented as functions of sample size.
(...) : True value A* = 0.1. (- -) MGML estimation. (—) ML estimation. The comparative
asymptotic behaviour of the estimators is best seen on the top figure where ML converges
towards the true value whereas MGML converges to a slighly greater value. MGML performs
better in bias for sample sizes lower than 40. MGML compares well in terms of MSE for
sample sizes over 10, however for samples of smaller size the MSE of MGML ranges from 5
times to 10 times larger than that of ML, due to variance.
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Comparison of asymptotic estimates
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Figure 3: Different asymptotic estimates of A versus A*, keeping SNR = 10log(A\*r/r¥) =
10. The estimators are systematically biased, but the estimates remain significant. (—) True
A. (- -) GML estimates. (...) GL estimates for > = 1. (o0o) GL estimates r,, = 0.1. Note
that the last curve is interrupted due to non existence of corresponding estimates.
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