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Résumé � À cause des singularités de la fonction de vraisemblance, l'approche par maximum de vraisemblance pour l'estimation
des paramètres d'un mélange gaussien est connu pour être un problème d'optimisation mal posé. Nous proposons dans cette
communication, une pénalisation de la fonction de vraisemblance par une distribution a priori de type gamma inverse qui élimine
les singularités et rend ainsi ce problème bien posé. Une conséquence algorithmique intéressante d'un tel choix est de fournir une
version pénalisée de l'algorithme EM qui conserve une structure de remise à jour explicite et qui garantit que les estimées ne sont
pas singulières. Un exemple numérique met en evidence cette dernière propriété.

Abstract � Due to singularities of the likelihood function, the maximum likelihood approach for the estimation of the parameters
of normal mixture models is an acknowledged ill posed optimization problem. Ill posedness is solved by penalizing the likelihood
function. In the Bayesian framework, it amounts to incorporating an inverted gamma prior in the likelihood function. A penalized
version of the EM algorithm is derived, which is still explicit and which intrinsically assures that the estimates are not singular.
Numerical evidence of the latter property is put forward with a test.

1 Introduction

Independent identically distributed (i.i.d.) mixture mod-
els well �t several problems in signal and image processing,
covering a wide range of applications. In [1] a Bernoulli-
Gaussian mixture model is adopted in a deconvolution
problem, while [2] highlights the important role of mix-
ture models in the �eld of cluster analysis. An example
of the application of mixtures in biological (plant mor-
phology measures) and physiological (EEG signals) data
modeling is presented in [3]. Markovian mixture models
are also commonly used, as in [4] where an application to
medical image segmentation is considered.
Our study focuses on i.i.d. mixtures of univariate nor-

mal densities. Parameters are estimated with a penalized
maximum likelihood approach, by mean of the EM algo-
rithm [5].

2 Mixture model

We consider a sample x = fx1; : : : ; xT g of an i.i.d. mix-
ture of N univariate normal densities
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Given x, the maximum likelihood estimate of the mix-

ture parameters is de�ned as:b�T j f(x; b�T ) = sup
�2�
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is the likelihood function.

3 Likelihood function degeneracy

Likelihood function degeneracy toward in�nity is a well
known problem for mixtures of Gaussian distributions,
�rst put forward with a simple example in [6] (see also [7]).
Such an example considered a two class mixture model
with a corresponding likelihood function given by
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Intuitively, the degeneracy is due to the fact that in the
sum of Gaussian densities the variance parameter appears
in the denominator. Indeed, couples such as (�2i = 0; �i =
xk) yield singularities, in the sense that f tends to in�nity



as � approaches one of the corresponding points, located
at the boundary of �, as rigorously stated by the following
property.

Property 3.1 Let us consider the likelihood function (2),
then

8x 2 RT ; 9 �0 2 �� j lim
�!�0

f (x ; �) = +1

where � is the parameter space, �� is the closure of such

a space, �0 =
n
a;� = xk;�

20 = 0
o
2 �� is a point in the

closure of the parameter space, and � =
�
a;�;�2

	
2 � is

a point in the parameter space.

Consequently, the maximum likelihood estimator (1)
cannot be de�ned. In practice, unboundedness of f (x;�)
is a cause of failure of commonly used optimization algo-
rithms, for instance of EM [7] and gradient types.
We will speci�cally refer to the EM algorithm, which

iteratively compute the maximum likelihood estimates by
mean of the following re-estimation formulas
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indicates the iteration.

4 Bayesian solution to degeneracy:

penalized likelihood function

A Bayesian solution is proposed to solve the degeneracy of
the likelihood function in the origin of any of the variance
parameters. The latter are considered as i.i.d. random
variables, leading to a penalized likelihood function
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where g is the common prior probability density of vari-
ance parameters.
Our goal is to adjust g so that the penalized likelihood

is a bounded function that can be locally maximized by
mean of an EM algorithm (which can be referred to as a
�penalized� EM algorithm). In other words, g must satisfy
the requirements of

1. being a proper probability density function,

2. tending appropriately to zero to compensate for the
likelihood singularities,

3. and allowing to maintain explicit re-estimation for-
mulas for the resulting penalized EM algorithm.

The inverted gamma distribution
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where i = 1 : : : N , is proved to satisfy the three conditions.
On the other hand, the inverted gamma distribution is

known as the conjugate prior for the variance of a scalar
Gaussian density [8].
As regard Point 1, the inverted gamma is assured to be

proper by constraining the choice of its parameters: � > 0
and � > 1, as discussed in [8].
As regard Point 2, the following property states the

boundedness of fP on � (whereas, from Property 3.1, f is
an unbounded function under the same conditions), and
it assures that the points of singularity do not maximize
fP.

Property 4.1 The penalized likelihood is bounded above
over the parameters space. Hence, the penalized likelihood
function does not degenerate in any point of the closure of
parameters space ��. Moreover it tends to zero as �2 ! 0.
Hence, no �2i = 0; i 2 f1 : : :Ng maximizes the penalized
likelihood function.

Proof 4.1 see Appendix

Therefore, the existence of the penalized maximum like-
lihood estimator is granted, and such an estimator falls
within the parameters space � (the boundaries are ex-
cluded by the null value of the likelihood).

5 Penalized EM algorithm

As regard Point 3, explicitness directly follows from con-
strained adjustment of g. However, a more thorough anal-
ysis reveals that the re-estimation equations remain ex-
plicit because g is chosen as the conjugate prior of the
likelihood of the complete data.
Indeed, the EM algorithm is based on the maximiza-

tion of a criterion Q which depends indirectly on the like-
lihood function and which guarantees the maximization
of the latter. Explicitness of the re-estimation equations
is related to the form of the terms contained in such a
criterion. In the case of mixture models, one of these
terms is the likelihood function of the complete data (i.e.,
f
�
xjc;a;�;�2

�
where c indicates to which class belongs

each element xi of the sample x). By applying a penaliza-
tion, such a term changes to f

�
x;�2jc;a;�

�
, becoming

proportional to the a posteriori likelihood of the complete
data. On the other hand, the conjugate prior g (�) of a
distribution f (xj�) is, by de�nition (see [8]), the prior that
gives an a posteriori distribution f (�jx) belonging to its
same family. Moreover, in the case of gaussian mixtures,
f
�
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and g

�
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have, with respect to �2, the

same structure. Hence, by substituting f
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, no "structural" changes are made

and the explicitness is maintained.
The re-estimation equations of the penalized EM algo-

rithm are not only explicit, but they also correspond to a



very slight alteration of the standard ones. Indeed, equa-
tions (4) and (5) remain unchanged, while equation (6)
becomes
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Therefore, penalization of the EM does not increase the
computational burden: this is an extremely important as-
pects in the case of large samples or image processing.
Moreover, from equation (9) it is straightforward to see

that every maximizer (either global or local) of the penal-
ized likelihood function yields strictly positive variance
estimates �̂2i � �2min(T ) > 0, where �2min(T ) tends to 0 as
T tends to in�nity.

6 Numerical results

We have tested the penalized and non penalized EM al-
gorithm on a 2 class mixture model, de�ned in (3).
Eight-hundred samples of length �fty have been ran-

domly generated from two gaussian distribution, having
parameters a = [0:5 0:5] ;� = [0 2:5] ;�2 = [1 2].
For each sample, the starting point of the EM iterations

was chosen automatically. Such a choice is based on par-
tioning the empirical histogram of the data, as proposed in
[9]. As in [10], the EM algorithm was considered to have
converged whenever the maximum of the relative stepsize
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for i = 1 : : :N , became less or equal than 10�5.
�gure 1 depicts the histograms for the values of the non-

penalized estimates of �21 and �22 , and the histograms for
the values of the penalized ones.
By comparing the histograms, the e�ciency of penaliza-

tion becomes evident. Without penalization, the distribu-
tion of the estimates spreads toward the singularity (�2 =
0, hence log�2 = �1), and for 13 times the EM algorithm
converges to the singularity itself. On the other hand, co-
herently with the theoretical results of Property 4.1, the
estimates computed by the penalized EM algorithm are
concentrated around the true value and none of them is a
singularity.
By increasing the length of the samples the number of

convergence of the standard EM algorithm to singularities
is reduced (probably as a consequence of a restriction of
the attracting domain of the degeneracy point), but it is
still greater than zero. Table 1 and table 2 summarizes the
results for samples of length �fty and one-hundred of the
non-penalized and penalized EM algorithm, respectively.

Tab. 1: non penalized EM algorithm

800 samples of length: convergence to singularities:
50 13
100 1

7 Concluding remarks

Penalization of the likelihood has revealed itself to be an
e�cient and simple solution to likelihood degeneracy.

Tab. 2: penalized EM algorithm

800 samples of length: min value of �2:
50 0.3951
100 0.4247

Theoretical properties assured the existence of the max-
imum likelihood estimator as well as its belonging to the
parameter space.
The choice of the conjugate prior of the likelihood of

the complete data as penalization term conducted to ex-
plicit EM algorithm re-estimation formulas. While the
role of conjugate priors is acknowledged in Bayesian sam-
pling schemes, including in mixture problems [11], putting
forward the link between conjugate priors and explicit pe-
nalized EM schemes is an original contribution, as far as
we know.
Numerical examples put in evidence the existence of the

singularities and the e�ciency of the penalized solution.
Concerning the asymptotic behavior of the penalized

maximum likelihood estimate, we know from [12] that the
penalization does not alter asymptotic properties such as
consistency. Hence, local consistency of the penalized esti-
mate is a direct consequence of local consistency of the non
penalized one (see [12]). On the other hand, global con-
sistency cannot be similarly deduced, since non penalized
maximum likelihood estimate is globally not even de�ned.
Additionally, proof of global consistency for the penalized
likelihood estimate requires a di�cult mathematical ap-
proach, since classical theorems, as [13] and [6], do not
apply. Although we have not yet rigourously achieved
such a result, we think that the penalized maximum like-
lihood estimate is susceptible to be globally consistent.
Indeed, even if the penalizing term remains �nite while
T !1, it would still compensate singularities.
To our best knowledge, Hathaway's EM re-estimation

formulas [10] are the only preexisting non-degenerate al-
ternative to our penalized version. It is based on con-
strained maximization of the likelihood, within an appro-
priately chosen subset of �. However, Hathaway's version
is substantially more complex to derive and to implement,
and the resulting numerical cost is higher.

8 Appendix

Proof of Property 4.1
For the sake of simplicity the proof refers to a two class

mixture model, without loss of generality.
Akin to the likelihood function, the penalized version (7)

may degenerate only in the origin of any of the parameters �2.

Let us note K = (2�)�
T
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sider the likelihood function (3) penalized by a proper inverted
gamma distribution (7)
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On every compact domain contained in the parameter space,
fP is bounded. This is a straightforward consequence of the
fact that fP is the product of two functions which are bounded
on such domains (the product of sum of gaussian distributions
and the product of inverted gamma distributions). Hence, it is
su�cient to prove that fP remains bounded on the boundaries
of �, and more precisely that it remains bounded in the points
of singularity.
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By considering that lim�2!0
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that the penalized likelihood function tends to zero as �2 ! 0.
Therefore, it is bounded in the point of singularity and its
boundedness on the whole parameter space follows. �
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Fig. 1: histograms of EM �2 estimates; the solid line
indicates the true value while the dashed line indicates a
rupture toward in�nity of the x axis
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