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ABSTRACT: Ultrasonic characterization of biologi-

cal tissues provides a cheap and harmless support for

diagnosis and control. In this area, acoustical attenu-

ation is a relevant physical parameter for skin analy-

sis. The attenuation properties of the investigated tissue

can be deduced from series of instantaneous spectra in-

dexed by the investigation depth. Following Kitagawa

& Gersch [4], a smoothness prior time-varying AR

model provide robust short-range analysis by adaptive

AR modeling. The novelty resides in three points:

� The form of the prior, which accounts for the fact that

linear attenuation induces linear variation of the �rst

AR coe�cient while the second one remains roughly

invariant.

� In order to cope more e�ciently with our vectorial

context, we propose to substitute the little known in-

formation form for the classical covariance Kalman

form.

� In the case of a stationary signal with Gaussian PSD,

we devise exact relations between theoretical second-

order regression coe�cients and the PSD.

Experiments on skin attenuation measurement support

the fact that the proposed Bayesian approach provides

more reliable results than periodogram and usual least

squares autoregressive techniques.

KEY WORDS: attenuation measurement, adaptive

spectral estimation, smoothness prior, Kalman smooth-

ing.

1. MOTIVATION

E�orts dedicated to attenuation measurement orig-

inate in the idea that attenuation of ultrasounds in

biological tissues depends on their nature or state.

For instance, Kuc's experiments try to diagnose liver

disease. Here we are interested in the characteriza-

tion of di�erent skin attenuation according to the

age of the patient as well as in showing that some

treatments induce a noticeable modi�cation of skin

attenuation. For sake of statistical evidence, a re-

liable and systematical method of estimation based

upon an echographic data set is necessary.

2. PRINCIPLES

The acoustical attenuation coe�cient A(f) of a ho-

mogeneous tissue at frequency f characterizes the

modi�cation of the spectral content of an ultrasonic

wave as it propagates in the medium. From [5], the

power spectral density (PSD) S

d

(f) when a distance

d is covered (2d in reection mode) is:

S

d

(f) = S

0

(f) exp�4dA(f): (1)

[5] proposes two methods to estimate tissue attenu-

ation.

Spectral di�erence. According to the �rst idea

developed in [5], A(f) is simply deduced from di�er-

ences between log-spectra at variable depths.

Spectral shift. Here we are rather interested in

the second method which lies on two hypothesis.

In the domain of frequencies lower than 10MHz,

assumption of attenuation increasing proportion-

ately with frequency: A(f) = �f is valid. Such an

assumption reduces the problem of medium char-

acterization to the scalar parameter � estimation.

Though the useful frequency band in our case is

rather close to 25MHz we retain the working hy-

pothesis of linear attenuation.

The spectral shift method assumes an incident

pulse with a Gaussian-shaped PSD:

S

0

(f) = K

0

exp�

(f � f

0

)

2

2�

2

0

: (2)

From Eq. (1) it is easy to check that:

S

d

(f) = K

d

exp�

(f � f

d

)

2

2�

2

d

;

with

f

d

= f

0

� 4�d�

2

0

(3)

�

2

d

= �

2

0

: (4)

So the PSD remains Gaussian during its propaga-

tion. The spectrum mean decreases of a characteris-

tic quantity of attenuation while its variance remains

constant. Equations (3) and (4) are su�cient to de-

duce � under the following form:

� =

f

0

� f

d

4d�

2

0

nepers/cm/MHz. (5)

The major interest of the spectral shift method

consists in the search of a linear evolution of a mean

frequency curve preserving a local meaning even if



attenuation behavior di�ers from linearity within ac-

ceptable limits. Therefore, the mean frequency and

spectral variance sequence depict the key informa-

tion proceeding from the PSD sequence, under an

easily visualisable shape.

From this standpoint and whatever the validity

of linear attenuation and Gaussian PSD assump-

tions the quantities of the spectral shift method have

a more immediate and expressive physical mean-

ing than the parameters of the spectral di�erence

method. These considerations explain why we fa-

vored the spectral shift method, more restrictive in

some sense (it is based upon Gaussian spectrum) but

more expressive from a practical standpoint.

From the above de�nitions attenuation measure-

ment is based upon PSD estimation according to

the distance covered by the ultrasonic wave in the

medium. Adaptive PSD estimation is in the scope

of the next two sections.

3. ADAPTIVE SPECTRAL ESTIMATION

3.1. CLASSIC METHODS

An experimental study has been based on 9 sets of

B-mode echographic data from the same context.

Fig. 1 shows one of the data sets. The �rst step

of treatment consists of undersampling, alignment

and selection of unsatured echogeneous areas. Such

pre-processing has been applied before any further

treatment. For instance the data set of Fig. 1 pro-

vides pre-processed data depicted by Fig. 2.

FFT analysis. Periodogram computation is the

basic and most popular method for spectral analysis

based on simple Fast Fourier Transforms (FFT). A

set of 16 samples periodograms has been calculated

and averages over the 75 traces have been performed,

one at each depth. Computations of mean frequen-

cies and spectral widths yield the results shown on

�gure 3 and 4.

These results su�er from the fundamental default

of the periodogram i.e. strong variability of the es-

timated spectral parameters. On the one hand high

variability from an image to the other is observed.

On the other hand, each mean frequency or spectral

width sequence is too rough to allow reliable regres-

sion.

Autoregressive analysis. The well known least

squares AR approach allows better robustness. Yet

results of 5 and 6 also show strong variability. They

have been obtained using second order AR mod-

els, which is a simple way to approximate Gaussian

spectra. Coe�cients have been estimated using a

vectorial form of a 16 samples sliding window least

squares.

Both periodogram and AR results lack of robust-

ness because estimation is performed independently

at each depth. Reduction of variability is aimed in

the next section by accounting for the slowly varying

character of the parameters in the medium.

3.2. SMOOTHNESS PRIOR

TIME-VARYING AR METHODOLOGY

Following Kitagawa & Gersch [4], a smooth-

ness prior time-varying AR model is intro-

duced. Short-range analysis is still provided by

adaptive second order AR modeling, but the slowly

varying character of spectra according to the analy-

sis depth is introduced via a Brownian modeling of

the regression coe�cients series.

For each measured signal fx(n)g, let us consider

the following state model:

State equation a

n+1

= a

n

+ b

n

;

Observation equation x(n) = x

t

n

a

n

+ "(n):

(6)

Then Kalman smoothing yields optimal Bayesian es-

timation of series fa

n

g according to the classical up-

dating equations [1]:

� Prediction of x(n) :

a
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= a

n�1jn�1

(7)
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� Time reversed smoothing step:
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3.3. VECTORIAL SETTING OF

KALMAN SMOOTHER

When a set of M signals (such as Fig. 2) is available

instead of a single measured signal, estimation of a

single series of regression vectors from joint process-

ing remains preferable than ad hoc merging of M

estimated AR series. In the proper vectorial setting,

the state equation remains the same, while the obser-

vation vector becomes x(n) = [x(n; 1); . . .; x(n;M )]

t

and the corresponding observation equation reads:

x(n) = X

t

n

a

n

+ e(n);



where e(n) = ["(n; 1); . . . ; "(n;M )]

t

is the noise vec-

tor with covariance �

2

"

I. X

n

= [x

n

(1); . . . ;x

n

(M )]

is a matrix N �M of past observations.

Both the prediction step (7)-(8) and the smooth-

ing step (13)-(15) remain unchanged whereas the

correction step becomes:
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(19)

The scalar quantity r

n

of equation (10) has been

converted in (17) into a matrix R

n

of size M �M

to be inverted at each step. Such an increase of

computational load is clearly intractable for practi-

cal values of M . However numerical complexity can

be lowered again to very acceptable proportions if we

substitute the so called information form of Kalman

�ltering for the previous covariance form. Such de-

nominations proceed from the statement that the

latter form is based upon updating covariance ma-

trices P

njk

while the former is based upon the inverse

P

�1

njk

, i.e. a Fisher information matrix.

Starting from equations (17) and (19), simple ap-

plications of the matrix inversion lemma provides

the lesser known information form of Kalman �lter-

ing correction step:

P

�1

njn

= P

�1

njn�1

+ �

�2

"

X

n

X

t

n

(20)

a

njn

= �

�2

"

P

njn

(X

n

x(n) + P

�1

njn�1

a

njn�1

) (21)

Calculation of a

njn

still requires inversion of the p�p

matrix P

�1

njn

but it is of low cost (p = 2 or 3 in the

present context) compared to the inversion of the

M�M matrix R

n

(M = 100 in practical cases). Let

us �nally mention that no modi�cation is needed in

the smoothing step (13)-(15).

4. APPLICATION TO SHORT-RANGE

TRACKING OF A GAUSSIAN PSD

4.1. ESTIMATION OF SPECTRAL

MOMENTS

Relevant properties concerning second order AR co-

e�cients are presented now, in order to make the

connection between regression coe�cients and the

mean and variance of a Gaussian PSD for a given

stationary signal embedded in additive noise.

Noiseless case. A �rst estimation method of a

Gaussian spectrum from AR coe�cients a

1

and a

2

would be to compute the empirical mean and stan-

dard deviation of the second order AR spectrum in

the frequency domain � 2 [0; 1=2]. This method

gives acceptable results but evaluation of the spec-

trum on a �ne frequency grid between 0 an 1/2 is

necessary to deduce the spectral moments, in the

absence of known analytical results for the corre-

sponding integrals.

A alternate approach would to consider that the

spectrum is approximately Gaussian with same po-

sition of the maximum and same curvature at this

maximum. Practically this method is less expensive

because explicit expressions of both the maximum

and the curvature are known. It also provides rather

reliable estimates of the Gaussian central frequen-

cies. On the other hand, as second order AR spec-

tra are more spiky than Gaussian spectra of same

variance, computation of variances from curvatures

leads to over estimated attenuation coe�cients.

Both previous methods approximate the assumed

Gaussian spectrum by the AR DSP yielded by re-

gression. In fact such approximation is not necessary

as it is possible to establish a mathematical link be-

tween AR coe�cients a

1

and a

2

and Gaussian spec-

tral characteristics, via the �rst correlation lags of

the process. The advantage of such an approach is

to exploit directly the second order regression coef-

�cients result to estimate the spectrum instead of

assuming that the process is a second order AR.

On one hand the well known link between the p

�rst correlation coe�cients of a wide sense station-

ary process (not necessary autoregressive) and the p

second order optimal regression coe�cients is given

by the Yule-Walker equation. For p = 2:

�

r

0

r

1

r

1

r

0

� �

a

1

a

2

�

=

�

r

1

r

2

�

; (22)

where r

k

= E fx(n)x(n� k)g denotes the kth corre-

lation coe�cient. Given r

0

, inversion of (22) gives:

�

r

1

= r

0

a

1

=(1� a

2

)

r

2

= r

1

a

1

+ r

0

a

2

:

(23)

On the other hand let us connect the correlation

coe�cients r

1

and r

2

of the process to the charac-

teristics of the Gaussian PSD:

dsp

x

(�) =

�

2

x

2

�

N (m

f

; �

2

f

) +N (�m

f

; �

2

f

)

�

; (24)

with mean frequency m

f

, spectral width �

f

and

power �

2

x

. Inverse Fourier transform gives the con-

tinuous time correlation function:

r

t

= �

2

x

exp�2�

2

�

2

f

t

2

cos 2�m

f

t: (25)

Hence the three �rst correlation coe�cients r

0

, r

1

and r

2

of the sampled process are:

8

<

:

r

0

= �

2

x

r

1

= �

2

x

�r

r

2
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2

x

�

4

(2r

2

� 1);

(26)



where � = exp�2�

2

�

2

f

and r = cos 2�m

f

. It re-

mains to inverse (26) in order to deduce r and �

from r

1

and r

2

. Let us note a = r

4

1

=r

3

0

r

2

. Then easy

calculation gives the required result

�

r = sign(r

1

)

p

a+

p

a

2

� a

� = r

1

=r

0

r;

(27)

under rather complex conditions of existence, fortu-

nately satis�ed in practice.

One can derive m

f

and �

2

f

from a

1

and a

2

via (23)

and (27). Let us note that r

0

is of no importance:

each quantity can be expressed as a function of r

1

=r

0

and r

2

=r

0

which are deduced from (23) without the

knowledge of r

0

.

Noisy case. In practice we must cope with sev-

eral possible sources of noise, at least from quan-

ti�cation e�ects. The method can be used under a

slightly modi�ed form to take noise of known vari-

ance into account. Simple accountance for additive

white noise of variance �

2

is obtained by substitu-

tion of r

0

= �

2

x

for r

0

= �

2

x

+ �

2

in (25), whereas

r

1

and r

2

remain unchanged since the noise is as-

sumed to be uncorrelated. Knowledge of r

0

still is

not necessary, but the signal to noise ratio �

2

x

=�

2

is

required.

4.2. AR 2 STATE EQUATION

The previous regularization method tends to line up

the series of spectra because it uniformly penalizes

�rst-order di�erences between successive regression

coe�cients. As a consequence the decrease rate of

mean frequency is arti�cially lowered so that atten-

uation is proportionally underestimated.

It is easy to correct this de�ciency in Kalman �l-

tering framework by means of a proper change in

the state model. First, let us study the respective

role of the two estimated regression coe�cients a

1

and a

2

. Up to a �rst order analysis when mean fre-

quency becomes close to �=2, from (22) and (25),

it is easy to check that a

1

and a

2

are proportional

repectively to the position of the maximum i.e. the

mean frequency and to the spectral width. Thus we

expect rather constant coe�cients a

2

and a linearly

varying coe�cient a

1

.

In the Kalman �lter framework, correction goes

through a suited modi�cation in the state equation

(6). More precisely let us keep a �rst order model

for a

2

and introduce a second order model for a

1

:

a

1

(n+ 1) � a

1

(n) = a

1

(n)� a

1

(n � 1) + b

1

(n)

a

2

(n+ 1) = a

2

(n) + b

2

(n);

These two equations can be rewritten in a new state

equation instead of (6):

h

n+1

= Fh

n

+ b

n

;

with

F =

2

4

0 1 0

�1 2 0

0 0 1

3
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; b

n

=

2

4

0

b

1

(n)

b

2

(n);

3

5

where h

n

= [a

1

(n�1); a

1

(n); a

2

(n)]

t

is the new state

vector for a

n

= [a

1

(n); a

2

(n)]

t

. Adaptation of the

Kalman smoother in its information form to the new

state model yields the following algorithm:

� Prediction of x(n) step:

h
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+ P
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� Correction step after acquisition of x(n)
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� Smoothing step:

A
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= P

njn

F
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where O

N

is the N length nul vector. As the state

vector size increases from 2 to 3, computation is

slightly more expensive but it remains reasonable

and still allows quasi-instantaneous data analysis.

5. EXPERIMENTAL COMPARISON

Figure 7 and 8 have been computed using the pro-

posed method. More reliable results are obtained in

two senses. First each trace shows better regularity

since smoothness prior is taken into account. Sec-

ond we have reduced variability from an image to

the other. Since all images proceed from the same

set of data, this is an good argument in favor of the

proposed method.

Via linear regression on the mean frequencies and

the spectral width we have obtained 9 values of �.

The following table gives the Mean (M) values of

these 9 � and the Standard Deviation (SD):

This results gives quantitative evaluation of vari-

ability reduction.

Moreover the method accounts for noise (a SNR

level of 20dB has been assumed) whereas classical

methods do not, which yields overestimated spectral

widths and consequently underestimates attenuation

coe�cients.



Periodo. usual LS Smooth. prior

method AR method AR method

M 0:73 0:83 1:54

SD 0:16 0:12 0:14

SD % 22 14 8:8

Table 1: Comparison of � estimation performances.

Mean values, standard deviations and percents er-

rors, for the three methods.

6. CONCLUSIONS

We have introduced a particular form of time-

varying second order AR prior model, which ac-

counts for the fact that linear attenuation induces

linear variation of the �rst AR coe�cient and a

roughly constant second coe�cient. In order to cope

more e�ciently with a vectorial context, we have

proposed a costless vectorial information form of

Kalman smoother. Finally exact relations between

theoretical second-order regression coe�cients and

Gaussian PSD parameters have been brought out.

Experiments on skin attenuation measurements

support the fact that the proposed Bayesian ap-

proach provides better repeatability than classic pe-

riodogram or autoregressive techniques.
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Figure 1: Example of raw data, 400 MHz, 1024 �

100 samples.
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Figure 2: Undersampling, alignment and selection

of unsatured areas. 200 MHz, 117 � 75 samples.
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Figure 3: Mean frequencies and periodogram.
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Figure 4: Spectral widths and periodogram.
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Figure 5: Mean frequencies and sliding windows

least squares second order autoregressive model.
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Figure 6: Spectral widths and sliding windows least

squares second order autoregressive model.
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Figure 7: Mean frequencies and smoothness prior

second order autoregressive model
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Figure 8: Spectral widths and smoothness prior sec-

ond order autoregressive model.


