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ABSTRACT
This paper proposes a new algorithm for Bernoulli-Gaussian
(BG) blind deconvolution in the Markov chain Monte Carlo
(MCMC) framework. To tackle such a problem, the classical
Gibbs sampler is usually adopted, as proposed by Chenget
al. [1]. However, as already pointed out by Bourguignon and
Carfantan [2], it fails to explore the state space efficiently.
In principle, a more efficient exploration technique could be
obtained by integrating the Gaussian amplitudes out of the
target distribution. Unfortunately, some of the sampling steps
then become intractable. Therefore, our solution mixes steps
in which the amplitudes are integrated out with others where
they are not. Theinvariant conditionis shown to hold, and
simulations indicate that it behaves much more satisfactorily
than the reference Gibbs sampler.

Index Terms— Blind deconvolution, Bernoulli-Gaussian
model, Markov chain Monte Carlo methods

1. INTRODUCTION

The problem of the restoration of a sparse spike train dis-
torted by a linear system and noise arises in many fields such
as seismic exploration [1, 3]. It is classically dealt with us-
ing a discrete-time noisy convolution model for the observed
vectorz = [z1, . . . ,zN]t:

zn =
P

∑
k=0

hk xn−k + εn, ∀n = 1, . . . ,N. (1)

h = [h0, . . . ,hP]t denotes the impulse response (IR) of the
system (assumed finite here). For the sake of simplicity, the
“zero boundary” condition is imposed on the sparse spike
train to be restored, such thatx = [x1, . . . ,xM]t, M = N−P.
ε is a stationary white Gaussian noise. The deconvolution
problem is saidblind whenh is unknown.

In the present study, we adopt a BG model for the spike
trainx, following [3] and many posterior contributions such
as [1, 4]. A BG signal is defined in two stages involv-
ing a Bernoulli sequenceq = [q1, . . . ,qM]t, such that:∀m=
1, . . . ,M.

qm ∼ Bi(λ ), (xm | qm) ∼ N (0,qmσ2
x ). (2)

The sparse nature of the spikes is governed by the Bernoulli
law, while amplitudes are assumed iid zero-mean Gaussian.
The MCMC approach [5, 6] is a powerful numerical tool, ap-
propriate to solve complex inference problems such as blind
deconvolution. In the field of blind BG deconvolution, Cheng
et al. pioneered the introduction of MCMC methods [1].
They proposed to rely on a Gibbs sampler, for which their

algorithm constitutes a simple and canonical example of the
application. However, our simulation results indicate that
it lacks reliability: from different initial conditions, signifi-
cantly different estimations are obtained, even after consid-
erable iterations. This conclusion agrees with that of Bour-
guignonet al. in the context of BG spectral analysis [2].

The recent contribution of [7] already identified a conver-
gence issue linked to time-shift ambiguities, and proposed
an efficient way to solve it. There exists another source of
inefficiency, unrelated to the time-shift ambiguity: instead
of exploring the 2M configurations at an acceptable speed,
the Gibbs sampler tends to get stuck in one particular con-
figuration of q or another, as shown in Sect. 2.2. In fact,
in a multi-modal space a Markov chain equilibrates rapidly
within a mode (a configuration ofq), but takes a long time
to move from mode to mode. Guan [8] studied a comparable
slow convergence phenomenon of alocal chain in compari-
son with hissmall worldMCMC approach.

The new Gibbs-type sampler proposed here explores the
posterior distributionmarginally to the amplitudesx, such
that it probes the Bernoulli sequenceq more freely in its
space than Chenget al.’s Gibbs sampler. However, a plain
Gibbs sampler of the marginal posterior distribution involves
hardly implementable sampling steps. In particular, it is
all but simple to simulateh conditional onz and q and
marginally w.r.t.x. Our scheme solves this problem by in-
corporating steps where the sampling ofx is still involved,
while q is sampled marginally w.r.t.x. Therefore, it is a
Gibbs-type sampler, though fully valid from the mathemati-
cal viewpoint, since the invariant condition is shown to hold.
A comparable idea is found in statistical signal segmenta-
tion [9] where some hyperparameters are partially marginal-
ized, though without mathematical justification. Finally,for
the sake of conciseness, it will remain implicit that the time-
shift ambiguities are dealt with according to [7] in Chenget
al.’s Gibbs sampler, as well as in the proposed sampler.

In Sect. 2, the blind BG deconvolution problem is for-
mulated. The Gibbs sampler of the joint posterior distribu-
tion [1] is also presented, and an example illustrates its in-
efficiency. Our Gibbs-type sampler is introduced in Sect. 3
and a simulated example gives an insight into the way it es-
capes from suboptimal configurations. The invariant condi-
tion is shown to hold, and an adapted implementation in-
spired from [4] is proposed. Finally, simulation results are
presented in Sect. 4

2. PROBLEM FORMULATION

2.1 Statistical model

Akin to [1], the following assumptions are made:



• ε ∼ N (0,σ2
ε I) is independent ofx andh;

• x is a BG process defined by (2) withσx = 1;
• h ∼ N (0,σ2

hIP+1);
σx is arbitrarily set to one in order to remove the scale ambi-
guity inherent to the blind deconvolution problem. Accord-
ing to the Monte Carlo principle, a posterior mean estimator
of Θ = {q,x,h,λ ,σε ,σh} givenz can be approximated by:

Θ̂ =
1

I −J

I

∑
k=J+1

Θ(k), (3)

where the sum extends over the lastI − J samples. In the
MCMC framework, the samples are generated recursively, so
that the asymptotic distribution ofΘ(k) is the joint posterior
distribution [6]:

ρ(Θ |z) ∝ g(z−x⋆h;σ2
ε IN)g(x;σ2

x
diag{q})

g(h;σ2
hIP+1) p(q;λ ) p(σh) p(λ ) p(σε) (4)

where diag{q} denotes a diagonal matrix whose diagonal is
q, g(·;R) the centered Gaussian pdf of covarianceR, and⋆
the convolution operator as defined in Eq. (1).

2.2 Classical Gibbs Sampling

Chenget al.’s Gibbs sampler proceeds along Tab. 1.

1© Let y = (q,x). For eachi = 1. . . ,M,

(a) drawq(k+1)
i |y

(k+1)
1:i−1 ,y

(k)
i+1:M,h(k),σ (k)

ε ,λ (k),z

(b) drawx(k+1)
i |y

(k+1)
1:i−1 ,y

(k)
i+1:M,q(k+1)

i ,h(k),σ (k)
ε ,z

2© drawh(k+1) |x(k+1),σ (k)
h

,σ (k)
ε ,z

3© drawσ (k+1)
ε |x(k+1),h(k+1),z

4© drawλ (k+1) |q(k+1)

5© drawσ (k+1)
h

|h(k+1)

Table 1. Chenget al.’s Gibbs sampler (see [1] for implemen-
tation details).

The five simulation steps are iterated until convergence
towards the posterior distribution, and̂Θ is finally built ac-
cording to (3). This scheme presents several drawbacks de-
spite its simplicity. Labat and Idier [7] have already pointed
out that time-shift ambiguities could lead to unreliable esti-
mates, depending on the initialization ofh. Here, we rather
focus on the fact that step 1 explores the state space of(q,x)
with a low efficiency. More precisely, the correspondingly
sampled chains hardly escape from local maximizers of the
posterior likelihood, due to highly dependent consecutive
samples. Fig. 1 illustrates this phenomenon, in which simu-
lation data are generated from a single spike, convolved with
the IR defined by

hi = cos
(
(i −10)

π
4

)
exp

(
−|0.225i −2|1.5

)
, i = 0, . . . ,20,

and plotted on Fig. 2(b). A suboptimal configuration is cho-
sen as the initial state. The chain takes several hundreds of
iterations to visit the optimal configuration for the first time.
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Fig. 1. Sampled BG sequences obtained by Chenget al.’s
sampler on a simple example. From a suboptimal configu-
ration chosen as initial state, the Markov chain spends sev-
eral hundreds of iterations before visiting the solution,i.e., a
unique spike in position 10 (marked as a bullet).

As a consequence, Chenget al.’s method tends to pro-
duce unreliable estimated values, as shown in Fig. 2. The
same IR is adopted here whilex is the well-known Mendel’s
test sequence [3]. The data are corrupted by a Gaussian noise
with σ2

ε = 4× 10−6, corresponding to SNR= 12.81 dB.
Non-informative conjugate prior laws on the parameters are
adopted:

σ2
ε ∼ IG(1,1), σ2

h
∼ IG(1,1), λ ∼ Be(1,1).

Initialization of the Markov chainΘ(0) is done according to:

σ (0)
ε = 10−2, q(0) = 0, h(0) =

‖z‖1

M
δ (n−11), λ (0) = 0.1.

The three estimation results in Fig. 2 are obtained from the
same simulated dataz, and the same initialization, the only
difference being the random seed value. 1000 samples are
produced for each Markov chain and the last 250 are aver-
aged to compute the estimation. Substantial variations exist
from one estimated result to the other, especially in the num-
ber and the positions of spikeŝx. Actually, it can be checked
that each sequence{q(k)} tends to become constant for very
long period of time, without fully exploring the state space.
It should be stressed that these results are typical,i.e., not
selected on purpose.

The inefficiency of Chenget al.’s Gibbs sampling has al-
ready been noticed by Bourguignonet al. [2]. Their solution
involves proposals to shift several adjacent BG components,
very similar to the idea introduced by Chi and Mendel [10] in
the context of deterministic posterior likelihood maximiza-
tion. Our approach, however, aims to tackle the problem in-
directly by marginalizing the amplitudesx out of the target
posterior distribution, and by so doing releases the Markov
chain from local maxima of the likelihood.

3. TOWARDS A MORE EFFICIENT SAMPLER

3.1 Partial marginalization of x

The motivation to excludex from the Gibbs sampler is
twofold. Firstly, the determination ofx conditional on(Θ̃,z)

with Θ̃ = (q,h,σε ,σh,λ ) is a linear estimation, easy to solve
afterwards. Secondly, a Gibbs sampler withρ(Θ̃ |z) as its
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Fig. 2. Three different solutions of Chenget al.’s method
(under the improved version of [7]), obtained by changing
the random seed value only. The actual values are marked as
bullets.

target distribution is likely to be more efficient than Chenget
al.’s sampler, particularly w.r.t. to the Bernoulli sequenceq.
Theoretical foundations are available in [11] and [5, Chap-
ter 6.7] regarding the convergence rate of the so calledcol-
lapsedGibbs sampler, that converges to the marginalized dis-
tribution ρ(Θ̃ |z) =

∫
ρ(Θ |z)dx by analytically integrating

x out of the scheme. According to [5, Chapter 6.7], the col-
lapsed Gibbs sampler produces a substantial gain in terms of
convergence rate if the integrated variables form highly de-
pendent pairs with others in the Markov chain (see also [12]
and references therein). This is exactly the case of the pair
{x,q} in the spike train deconvolution problem.

3.2 Proposed Gibbs-type sampler

Unfortunately, marginalizingx leads to practical difficulties.
In particular, the conditional sampling ofh given Θ̃\h be-
comes extremely difficult whenx is integrated out, since
ρ(h |q,σh,σε ,z) is a multivariate, non Gaussian law with
a complex structure. Instead of a plain Gibbs sampler on
Θ̃, the sampling scheme of Tab. 2 is proposed to circumvent
the direct conditional sampling ofh,σε ∈ Θ̃. The four steps
are iterated until convergence towards the posterior distribu-
tion ρ(Θ̃ |z). Compared with the classical sampler, the main
difference appears in step 1, wherex has been analytically

1© for eachi = 1. . . ,M,

drawq(k+1)
i |q

(k+1)
1:i−1 ,q

(k)
i+1:M,h(k),σ (k)

ε ,λ (k),z

2© (a) drawx |q(k+1),h(k),σ (k)
ε ,z

(b) drawh(k+1) |x,σ (k)
h

,σ (k)
ε ,z

(c) drawσ (k+1)
ε |x,h(k+1),z

3© drawλ (k+1) |q(k+1)

4© drawσ (k+1)
h

|h(k+1)

Table 2. The proposed Gibbs-type sampler.

integrated out. Subsect. 3.3 provides an efficient way to im-
plement step 1. On the other hand, in step 2,x only plays
the role of an auxiliary quantity, since it does not belong to
the Markov chain anymore. Steps 2(b), (c) are structurally
identical to steps 2, 3 in Tab. 1. In order to justify that the
sampling scheme of Tab. 2 is mathematically valid, we let
Θ̃′ = (q,h′,σ ′

ε ,σh,λ ) and check theinvariant condition, i.e.,
that

∫

h,σε
κ2(h

′,σ ′
ε |Θ̃,z)ρ(Θ̃ |z)dhdσε = ρ(Θ̃′ |z) (5)

holds for step 2, whereρ and κ2 denote the invariant tar-
get distribution and the transition kernel corresponding to the
step 2, respectively. We actually have

κ2(h
′,σ ′

ε |Θ̃,z) =
∫

x

ρ(x |Θ̃,z)ρ(h′ |x,Θ̃\h,z)ρ(σ ′
ε |x,Θ̃′\σ ′

ε ,z)dx. (6)

We emphasize that Eq. (6) is not obtained by Monte Carlo
integration. It is rather the exact expression of the transition
kernel of steps 2 to update the pair{h,σε} while x is no
longer retained in the chain. It follows that the left handside
of Eq. (5) reads
∫

ρ(x,Θ̃ |z)ρ(h′ |x,Θ̃\h,z)ρ(σ ′
ε |x,Θ̃′\σ ′

ε ,z)dhdσεdx

=
∫

ρ(x,Θ̃\h|z)ρ(h′|x,Θ̃\h,z)ρ(σ ′
ε |x,Θ̃′\σ ′

ε ,z)dσεdx

=
∫

ρ(h′,x,Θ̃\h |z)ρ(σ ′
ε |x,Θ̃′\σ ′

ε ,z)dσεdx

=
∫

ρ(x,Θ̃′\σ ′
ε |z)ρ(σ ′

ε |x,Θ̃′\σ ′
ε ,z)dx

=
∫

ρ(x,Θ̃′ |z)dx = ρ(Θ̃′ |z).

It is thus proven that the partial marginalization technique
can be applied to generate a Markov chain{Θ̃(k)} that con-
verges to its equilibrium distributionρ(Θ̃ |z).

To compare with the example of Fig. 1, our Gibbs-type
scheme escapes from a local maximum configuration within
an acceptable number of iterations, as Fig. 3 illustrates. The
real configuration is reached after 20 iterations. Moreover, it
is observed from the configurations obtained at the 18th and
19th iterations that our scheme is able to radically modify the
amplitude vectorx in one single step.
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Fig. 3. Sampled BG sequences obtained by our Gibbs-type
scheme in the example of Fig. 1. The Markov chain escapes
rapidly the initial configuration neighborhood.

Finally, it is worthwhile to mention that an efficient sam-
pler should meet the two conflicting criteria [5, Chapter 7]:
• drawing each component conditional on others should be

computationally simple (complexity per iteration);
• the induced Markov chain should converge reasonably

fast to its equilibrium law (number of iterations).
The next section deals with the issue of the complexity per
iteration, whereas the overall computational costs are com-
pared in Sect. 4 using simulation tests.

3.3 Marginal posterior distribution

In this subsection, an efficient implementation of step 1 of
Tab. 2 is proposed, inspired from the recursive method in [4]
to evaluateρ(qi = 0,1|Θ̃\qi ;z) sequentially. While the lat-
ter is based on the storage and update of anN2

e (Ne = ∑i qi)
matrix, we finally propose an even less burdensome strategy
based on the handling of its Cholesky factor only.

LetH denote theN×M Toeplitz matrix such that (1) also
readsz = Hx+ ε. Then, the conditional posterior distribu-
tion of qi takes the following form:

ρ(qi |Θ̃\qi ;z) ∝ |B|−1/2exp
(
−

1
2
zt

B
−1z

)(
λ

1−λ

)qi

∝ exp(− f (qi)/2)

where

B = Hdiag{q}Ht +σ2
ε IN,

f (qi) = zt
B

−1z + log|B|+2qi log(1/λ −1).

After normalization, the marginal probability ofqi reads:

ρ(qi = 1|Θ̃\qi ,z) = (1+exp(−( f (0)− f (1))/2))−1,

which reduces to the evaluation off (0)− f (1), using the
following steps [4]:

τ̃i = δi + µht
iB̃

−1
0 hi

B̃
−1
i = B̃

−1
0 −µB̃

−1
0 hi τ̃−1

i ht
iB̃

−1
0

|B̃−1
i | = |B̃−1

0 |δi τ̃i

where B̃ = B/σ2
ε , µ = σ−2

ε and δi = ±1 depending on
whether 1 is added or removed atqi ; hi denotes theith col-
umn of matrixH while B̃i andB̃0 differ only atqi .

Further simplifications are also introduced in [4] by ex-
ploiting the sparse nature of̃B and then applying the matrix
inversion lemma. Noticing that the rank ofHdiag{q}Ht is
only Ne, B̃ takes the alternate form̃B = µGG

t + I, where
G = HD is full rank,D being made of the nonzero columns
of diag{q}. Then, we havẽB−1 = I− µGC̃

−1
G

t, where
C̃= µG

t
G+I is Ne×Ne. Thus, onlyC̃−1 needs to be stored

and updated instead of̃B−1, which amounts toO(N2
e) oper-

ations instead ofO(N2). In the case of adding a pulse atqi ,
the formula for the update of̃C−1

i is

C̃
−1
i =

[
C̃

−1
0 + b̃τ̃ib̃

t
b̃

b̃
t τ̃−1

i

]
(7)

whereb̃ = −µτ̃−1
i C̃

−1
0 G

t
0hi . On the other hand, it can be

shown thatf (1−qi)− f (qi) takes the following form:

f (1−qi)− f (qi) =

log(δi τ̃i)−µτ̃−1
i σ−2

ε (zt
B̃

−1
0 hi)

2 +2δi log
( 1

λ
−1

)
(8)

where

τ̃i = δi + µ ‖hi‖
2−µ2‖R̃0G

t
0hi‖

2,

zt
B̃

−1
0 hi = zthi −µ(R̃0G

t
0z)t(R̃0G

t
0hi).

Last but not least, the computation and memory require-
ments can be still lowered, by updating and storing the upper
triangularCholeskyfactor R̃ of C̃

−1, instead ofC̃−1. Since
(x |Θ̃,z) is Gaussian with covariancẽC−1, its Cholesky fac-
tor allows to solve step 2(a) inO(N2

e) operations instead of
O(N3

e). In the mean time,̃R can be updated inO(N2
e) by

using aCholesky updatemethod, given that (7) also reads:

C̃
−1
i =

[
C̃

−1
0 0
0 0

]
+

[
b̃

√
τ̃i

1/
√

τ̃i

][
b̃

√
τ̃i

1/
√

τ̃i

]t

Finally, step 1 of Tab. 2 can be summarized as follows:

• Evaluate ρ(qi = 0,1|Θ̃\qi ;z) using (8), and sample

q(k+1)
i accordingly;

• UpdateR̃ if needed,i.e., if q(k+1)
i 6= q(k)

i .

4. SIMULATION RESULTS

A test scenario is designed to compare our proposed method
with that of Chenget al.’s sampler [1], in terms of robustness
w.r.t. different random initial conditions, while the time-shift
ambiguities are dealt with in both methods according to [7].

Brookset al.’s convergence diagnostic [13] is based upon
parallel chains. Let{Φ jt , j = 1, . . . ,m; t = 1, . . . ,n} denote
samples fromm independent Markov chains of equal length
n, andΦ j.(andΦ..) the local mean of thej th chain (resp.the
global mean). Let the intra-chain and inter-chain variances
be defined as covariace matrix averages:

Vintra =
1

m(n−1)

m

∑
j=1

n

∑
t=1

(Φ jt −Φ j.)(Φ jt −Φ j.)
t

Vinter =
1

m−1

m

∑
j=1

(Φ j. −Φ..)(Φ j. −Φ..)
t.



Vintra andVinter allow to characterize the convergence be-
havior. Brooks and Gelman [13] proposed to evaluate:

R̂=
n−1

n
+

(m+1
m

)
λ (V−1

intraVinter)

whereλ (·) denotes the largest eigenvalue, and to wait until
R̂ is close to one (e.g.,R̂< 1.2).

Let us reexamine the example of Fig. 2. To concentrate
on the convergence quality of the Bernoulli sequence, we
take Φ jt = q jt for 10 independent Markov chains. Fig. 4
shows that whileR̂ is near but still above 1.2 after 10000
iterations for the reference Gibbs sampler, this thresholdis
reached after about 1000 iterations for the proposed sampler.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0
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8

10
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14

iteration number

⋄ Reference Gibbs sampler
◦ Proposed Gibbs-type sampler
−·− Brooks and Gelman’s threshhold

Fig. 4. Evolution ofR̂ for both methods in the case of SNR=
12.81 dB.R̂has been computed every 100 samples.

To further illustrate the robustness of the proposed sam-
pler, deconvolution results are shown in Fig. 5 to compare
with that of the reference sampler in Fig. 2 under identical
initial conditions. Only one of the results is reported, as they
are undistinguishable from each other (perfectly consistent
estimations). We noticed that instead of calculating the pos-
terior Gaussian mean based on{q̂, ĥ,z}, the estimator̂x can
also be obtained by averaging the auxiliarily sampledx(k)

in step 2(a). In fact, as{Θ̃(k)} is shown to converge to the
distributionρ(Θ̃ |z) in Sect. 3.2, step 2(a) samplesx condi-
tional onΘ̃ andz such that taken marginallyx(k) follows the
distributionρ(x |z).
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Fig. 5. Estimation result using the proposed sampler, under
the same conditions as in Fig. 2. The 10 independent Markov
chains yield undistinguishable estimates.

Most importantly, it should also be noted that 1000 itera-
tions of the Gibbs-type sampling take slightly less time than
2000 iterations of the reference Gibbs sampler [7]. We are
thus able to conclude that our Gibbs-type sampler achieves a
far better compromise between the two criteria [5] than the
classical Gibbs sampler [1, 7]: in the displayed example, the
time required to reach convergence is reduced by a factor of
at least 5.
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