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Raisonnement Compositionel pour les Contrats
(Probabilistes)

Résureé : Ce document présente un modéle de contrats Assume/Geargui con-
sistent en (i) un modeéle non-déterministe pour le congment de composants et (ii)
un modele stochastique et non-déterministe de fautasx pes de contrats capables
de capturer des propriétés de fiabilité et dispondsivbnt présentés. Il est démontré
que la satisfaction et le raffinement peuvent étre varpgigr des méthodes effectives en
les réduisant & des problemes de vérification classigueles processus de décision
Markoviens et les systemes de transitions. Des thé@ea&ssurant un raisonnement
compositionel et permettant I'analyse modulaire de sgstecomplexes sont présentés.

Mots-clés : Raisonnement Assume/Guarantee, Contrats, Raisonnenodatiiliste,
Analyse de fiabilité, Disponibilité.
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1 Introduction

Several industrial sectors involving complex embeddedesys have recently expe-
rienced deep changes in their organization, aerospacewtochative being the most
prominent examples. In the past, they were organized aroartitally integrated
companies, supporting in-house design activities. Thes®ss have now evolved into
more specialized, horizontally structured companiesigmant suppliers an@riginal
EquipmentManufacturers (OEMs). OEMs perform system design and iategr by
importing/reusing entire subsystems provided by equigrsappliers. As a conse-
guence, part of the design load has been moved from OEMs fdistgp An incon-
venient of this change is the increased occurrence of late @iscovery, system level
design errors uncovered at integration time. This is paldity true for system relia-
bility, for state of the art reliability analysis technicgiare not modula#, ?].

A corrective action, taken in the last decade is that the OBM# focus on the
part of the system design at the core of their business, afar as possible, rely on
industry-wide standard platforms. This has an impact oigdesethods and modeling
formalisms: Virtual prototyping and design space expioraare required early in the
design cycle. Component based design has emerged as thenmwossing technique
to address the challenges resulting from this new orgdoizaf the industry.

However, little has been done regarding the capture otbiéitiarequirements, their
formalization in behavioural models and the verificatiacht@ques capable of analyz-
ing in a modular way the reliability aspects of a system, aearly stage of design.
The paper contributes to solve these issues: The semaatingdtions presented in
the paper consists in a mathematical formalism designagjecst a component based
design methodology and to offer modular and scalable rigtiaanalysis techniques.
At its basis, the mathematical formalism is a language #ténabstraction of systems
behaviour. The central concept of the formalism is the motibcontract built on top
of a basic behavioural formalism. Contracts allow to digtiish hypotheses on a com-
ponent (assumption) from hypotheses made on its envirohfgearantee). Contracts
are central to component based design methodologies. Tiectbased formalism
can be instantiated to cover several aspects, includingifumal [?], timeliness, hybrid
and reliability.

In this paper, we focus on two models of contracts : (i) a netedninistic model
of components behaviour, and (ii) a stochastic and nonaétéstic model of systems
faults. These contracts are capable of capturing reltgtziBpects of components and
systems. We consider two types of systems properties : Bldlaand availability.
Availability is a measure of the time during which a systetis§ias a given property,
for all possible runs of the system. In contrast, reliapilt a measure of the set of
runs of a system that satisfy a given property. While relighis the notion that is
generally considered in formal verification, we observé #évailability is crucial when
designing, for instance, fault-tolerant systems.

Our second contribution is to propose definitions of (pradlic) composition,
conjunction, refinement, and quotient relations for (ptolstic) contracts. Conjonc-
tion and compositon are the classical notions considerg@inWe say that a con-
tract refines another contract if it guarantees more andhessiless. The definition
is boolean for nondeterministic systems and stochastieraibe. The quotient oper-
ation corresponds to the so called “component reuse”, wtnetsists in syntethizing
a contract from a global specification and one of its comptawhich is assumed to
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4 B. Delahaye, B. Caillaud & A. Legay

be reusable in several designs. We also establish a congpasiteasoning theory for
those operations and the two notions of satisfiability wesater. The theory differs
with the type of contracts under consideration. As an exampé will show that if a
non stochastic systeiy reliably satisfidh a contractC; and a non stochastic system
S, reliably satisfies a contracts, then the composition of the two systems reliably
satisfies the composition of the two contracts. When mowrgjdchastic systems, we
will show that if S; satisfiesC; with probabilitya and.S; satisfiesC; with probability

5, then their composition satisfies the compositiorCefand C with probability at
leasta + 8 — 1. The advantage being that the composition, which may be |alges
not need to be computed. Our theory is fully general as itrassuthat both systems
and contracts are possibly infinite sets of runs.

Our last contribution is to propose effective and symbddigresentations for con-
tracts and systems. Those representations, which arengatidre than an instance
of what we can be handled by automated methods, rely on amataebased repre-
sentation of possibly infinite sets of runs. Assuming thatiagptions and guarantees
are represented with Biichi automata, we observe that eigeifla (stochastic) system
satisfies a reliability property can be done with classieehhics implemented in tools
such as SPINY] or LIQUOR [?]. In the paper, we show that satisfaction of availability
properties can be checked with an extension of the work ptedén [?]. Another con-
tribution is to show that operations between and on corgrean easily be performed
on the automata-based representations.

From the theoretical point of view, our work is the first calmtition on probabilistic
contracts that consider both reliability and availabilitith compositional reasoning
theorems. From the practical point of view, our work is arpiretion for extending
tools such as SPIN and LIQUOR from non modular to modulafication.

Related work This work is based on previous work on non-probabilistictcacts
presented inY] and also in P], where the same mathematical theory is recast in a
reactive synchronous language setting. Remark that notteedfvo papers consider
system availability, a key contribution of the present pape

Works on behavioral types in process algebras bear comitiesabith contract
theories. In a similar way, the probabilistic contract ttyemust be compared with
stochastic process algebr&s P]. In both cases, the main difference is that composi-
tional reasoning is possible only in contract theories kisao the fact that contracts
are implications where an assumption implies a guarantecAnd major difference
with process agebras, is that contract theories are geaedatan be instantiated in
many different effective automata-based settings. Thisigmany logical frameworks
(CTL, LTL, PCTL, PSL,...) for specifying properties of components. [7],[Chat-
terjee et al. proposes compositionality results in a qtetiie setting. Their approach
differs from our approach as they do not consider stochaspects and satisfiability.

Organization of the paper Section[® recalls basic language-theoretic concepts of
runs and systems. Sectibh 3 recalls non-probabilisticraots, their compositions,
introduces their quotients and two types of satisfactefimement relations: One for
reliability and one for availability (contribution of theaper). Both types of relations
will play an important role in Sectiofll 4, where the main cimttion of the paper
will be presented: A probabilistic contract theory with bogliability and availability
satisfaction/refinement/ quotient relations. Composiiaheorems of Sectidd 3 are

1“Reliably satisfy” means that all the runs that satisfy teeuantion must satisfy the guarantee
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Compositional Reasoning on (Probabilistic) Contracts 5

generalized to probabilistic systems/contracts, wheséesys faults are captured in a
probability distribution over a set of global stochasticighles. Sectiofil]l5 deals with
effective, automata and logic based instantiations of tio@abilistic contract theory,
allowing scalable compositional reasoning on possiblgdaystems.

Some proofs had to be omitted due to space constraints. &cetéined long version
of this paper is available a®].

2 Preliminaries

DenoteN,, = NU{w} the closure of the set of natural integers &hd= [0...n — 1]
the interval ranging from to n — 1. For the sake of generality, dendfg, = N.

LetV be afinite set ofariablesthat takes values indomainD. A stepo : V — D
is a valuation of variables df’. A run onV is a sequence of valuations of variables
of V. More precisely, a finite or infinite run is a mapping: N,, — V' — D, where
n € N4 is the length ofw, also denotedhw|. Denotes the run of length). Given a
variablev € V and atime > 0, the value ob at timei is given byw(i)(v). Givenw a
finite run onV ando a step on the same variablesg is the run of lengthw| 4 1 such
thatVvi < |w|, (w.0)(i) = w(i) and(w.o)(|w|) = o. The set of all finite (respectively
infinite) runs onV is denoted byV]" (respectivelyjV']“). The set of finite and infinite
runs onV is denotedV|™ = [V]* U [V]“. Denote[V]" (respectivelyV']=") the set
of all runs onV of length exactlyn (respectively not greater thar). Thecomplement
of Q C [V]™ is given by—Q = [V]> \ Q. Theprojectionof w onV’ C V is the
runw |y- such thatw |v/| = |w| andVv € V', ¥n > 0, w [y (n)(v) = w(n)(v).
Given a runw’ on V', theinverse-projectiorof w’ on V is the set of runs defined by
w V= {we [VI* |w |y=w'}.

We now definesystemsLet V' be a set of variables. A system ovéris a pair
(V,Q), whereQ) is a set of (finite and/or infinite) runs or. Let S = (V,Q) and
S" = (V') be two systems. Theompositiorof S andsS’, denotedV, Q)N (V’, '),
is given by(V U V/, Q") with Q" = Q VYY" nQ/ VYY", Thecomplemenof S,
denoted—S, is given by—S = (V,-Q). The restriction of systen§ = (V,Q) to
runs of length not greater thanc N, (respectively exactly) is the systenf|<" =
(V,Q N [V]=") (respectivelys|” = (V, QN [V]™)).

In Sectiorf#, it will be assumed that systems can responceiy @ossible input on
a set of probabilistic variables. Such systems are said tedsptive to those variables.
GivenU C V, a set of distinguished variables, systém= (V, Q) is U-receptiveif
and only if for all finite runw € Q N [V]" and for all inputp : U — D, there exists
astepc : V — D suchthats |y= p andw.c € Q. GivenU C V NnV’, two
U-receptive system§ = (V,Q) andS’ = (V',Q’) areU-compatible if and only if
SN S"is U-receptive.

3 Non-Probabilistic Contracts

We introduce the concept of contract and its compositiomjlgtction / quotient opera-
tors and implementation/refinement relations. Finally weatude with results related
to compositional reasoning on contracts.
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6 B. Delahaye, B. Caillaud & A. Legay

3.1 Contracts and Satisfiability

We recap the concept abntract[?], supporting assume-guarantee style of reasoning
on systems of components.

Definition 1 (Contract) A contract over// is a tupleC = (V, A, G), whereV is the
set of variables o, systemA = (V,4) is theasumptiorand systentz = (V, Q¢)
is theguarantee

ContractC is in canonical formif and only if -A C G. The canonical form is needed
to have uniform notions of composition and conjunction leEwcontracts (see Section
B3).

We turn to the problem of deciding whether a system satisfeemfract. A system
that satisfies a contract is @amplementatiorof the contract. There are two types of
implementation relations, depending on the property captby a contract. A first
possible interpretation is when the contract represerpeties that are defined on
runs of the system. This includes safety properties. Indbigext, a system satisfies
a contract if and only if all system runs that satisfy the agstion are included in the
guarantee. This applies to reliability properties, andsiesy implementing a contract
in this way is said tdR-satisfythe contract. Another possible interpretation is when
the contract represents properties that are defined on firéfexes of the runs of the
system and when one wants to evaluate how often the systesfiesathe contract. We
will say that a system\-satisfiesa contract with levetn if and only if for each of its
runs, the proportion of prefixes of system runs that are eithéhe guarantee or in the
complement of the assumption is greater or equahtoThis concept can be used to
checkaverage safetiness reliability, i.e., to decide for each run whether the average
number of positions of the run that do satisfy a local condiis greater or equal to a
given threshold.

Definition 2 (R-Satisfaction) Systems = (U, 2) R-satisfies contradt’ = (V, 4, G)
up to timet € N, denotedS =%(*) C, ifand only ifS|<* N A C G.

Definition of A-satisfiability is more involved and requiradditional notations. As
already explained above, the idea is to compute an invamaasure of the amount of
time during which the system satisfies a contract..L.&t [V]* be a (finite or infinite)
run andC = (V, A, G) be a contract. Define functiop : N;,,; — {0,1} such that
eS(n) =1 < wp, € GU-A. If we fix an horizon in timef € N, and a
discount factord<1, define:

td, N _ L Cy P
DEw) = 3 3 #C0) ifd=1
i=0
t.d 1-d « ey -
DC(W):WZCZQDUJ(’L) |fd<1
=0

ng(w) is the mean-availability until position t along the exeouttorresponding
to w with discount facto. The concept is illustrated in Appendik 1. A-Satisfaction
can now be defined:

Definition 3 (A-Satisfaction) A systemS = (U,2) A-satisfies at leveln contract
C = (V, A, G) until positionT with discount factor/, denotedS ):3.,(72) C, iff;

INRIA
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Mean-availability until po-
sition 6 is computed for
the runs of the system w.rit
a contract with assump)
tion {x, y}* and guarantee
the set of finite runs ovef
{z,y} such that in the fina
G = {we {m ) [wllwh(@ # 1V w(w)e) # 1} stater # 1 ory # 1. Posi-
tions where the contract i
satisfied are white.

o7

Figure 1: lllustration of mean-availability.
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Figure 2: lllustration of operations between / on contracts

WE(SIITlIiJ%V)‘TDS?UUV(w) >m ifr<w

min lim inf D%?

WE(STULV)|T  t—T cruuv (UJ) >m if r = w.

Itis easy to see that the limit in Definiti@h 3 converges,eiﬂ@d > 0. In Sectiorfb
we will propose techniques to check satisfiability for cants that are represented with
symbolic structures.

Example 1 The concept of A-Satisfaction is illustrated in Figlie 1.

3.2 Compositional reasoning

We first define operations between and on contracts (seedffArfor a summary)
and then propose a compositional reasoning framework furacts. We start with the
definition for composition and conjunction.

Definition 4 LetC; = (V;, 4;,G;) withi = 1,2 be two contracts in canonical form.
We define
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8 B. Delahaye, B. Caillaud & A. Legay

» Theparallel compositiobetweenC; and Cs, denoted”; || Cs, to be the con-
tract (‘/1 UVs, Ay NAsU ﬁ(G1 n Gg), Gin Gg)

» Theconjunctionbetweer(C; andC5, denoted”; A Cs, to be the contractl; U
Vo, A1 U Ay, G N Gg)

It is easy to see that both conjuction and parallel composjireserve canonicity.

Remark 1 The following observation (which is missing ifi]) clarifies the choice
of working with contracts that are in canonical form. Assutwe contractsC; =
(V,0,[V]>)andCy = (V,0,0). Suppose thaf is in canonical form, whil&; is not.
Assume also that every system satisfies bgtand C>. The composition betwe&r
andC, as defined in the paper is the following contrékt [V]>°, 0)). This contract is
only satisfied by the empty system. Assume now the coatfaet(V, (§, [V']>°), which

is the canonical form fo€. It is easy to see that the composition betwégrand C?,
as defined in the paper is satisfied by any system. We did riettkt non-canonical
contract cannot be composed. Indeed, two non-canonicélaasC; = (V4, A1, Gy)
andCy = (V4, A2, G3) can be composed as followd ||, Co = (V4 U Vo, (A1 U
-G1) N (A2 U—Gs), G1 N G2). Observe that this new combination requires one more
complementation operation, which may be computationménisive depending of the
data-structure used to representddand G (see Sectiofl 5).

We now turn to the definition ofefinementwhich leads to an order relation be-
tween contracts.

Definition 5 We say that”; refinesC, up to timet € N, denotedC; <(=Y) (s,
if it guarantees more and assumes less, for all runs of lemgthgreater thant:
Al TVlUVQZ_) (A2 TVlUV2)|§t and (Gl TVlUV2)|§t g GQ TVIUVZ-

We propose the following results for compositional reasgrin a contract-based
setting.

Theorem 1 ([?]) ConsiderSy, S; two systems and', Cs two contracts in canonical
form. The following propositions hold for alle N :

* Sl IZR(t) Cl A SQ IZR(t) CQ = (Sl N SQ) IZR(t) (Cl H CQ);
e 5 'ZR(t) Ci NS 'ZR(t) Cy <— 5, ):R(t) (Cl A\ CQ),
* 5 'ZR(t) Ci1NCh j(gt) Cy =5 'ZR(t) Cs.

Theorem 2 ConsiderS; and S; two systems and';, Cs two contracts in canonical
form. Letd < 1 be a discount factor. The following propositions hold fdrta¢é N.:

e S ':1(257?1 Cy NSy ):35?2 Cy = (Sl N Sg) ):A(t) (Cl H CQ),

d,mi+mo—1

S e o NCI S M e NI S (C1 A Ca);

mi+mo—1

e S |:1d4,51t1) CiNCy j(gt) Cy = 5 'ZQEZ) Cs.

INRIA



Compositional Reasoning on (Probabilistic) Contracts 9

The last item of each of the theorems also stands; iand Cy are not in canonical
form. Theoreni]l was already proposed?h [Theorenf® is our contribution.

Reusing a systerq; that satisfies a contract, to realize a global systet$i that sat-
isfies a contracC amounts to exhibit a residual contra€fc, such that any system
S that satisfies”|¢, is such that the composition ¢f and S, satisfies the contract
C. This correspond to the notion of quotient which is congddrereafter. We again
make the distinction between A-Satisfaction and R-Satigfa.

Definition 6 (R-Quotient) ConsiderC = (V, A,G) andCy = (V4, A1, G;) two con-
tracts in canonical form and let € N... Assumé’; C V andG C G; 1V. The set
of residuations of” by C1, denotecb’|g57), is the set of contract€” that satisfy the
following relation

e Ol =
S lZR(T) C'=VS ):R(T) Ci, SNS,y ):R(T) C.

The following theorem states thé?llg'f” has a largest element w.r.t refinement, and
allows to compute it.

Theorem 3 ConsiderC = (V, A, G) andCy = (V4, 41, G1) two contracts in canon-
ical form and letr € No.. Assumé/;, C V andG C G; TV. DefineC, to be the
contract(V, -G N G1,GU —G1), we have

« CyeCED,
< VO e CET, ¢ <57 0,

We now switch to the case of A-Satisfaction. Given two cartg@’ andC'; and
two levels of A-Satisfactiony andx, we aim at finding a contraet’ and a level of
satisfactions such that ifS” A-SatisfiesC” with level at leasp3, then for all the systems
S, that A-SatisfyC; with level alpha, we will haves’ N .Sy =2 C. This is formalized
with the following definition.

Definition 7 (A-Quotient) ConsiderC = (V, A, G) andC; = (V1, A1, G1), two con-
tracts in canonical form. Let € N, andd € [0,1] and assumd; C V and
G C G1 1V. Givena andx € [0, 1], the set of A-residuations 6t by C; with param-
etersa andz, denoted3'|’éfT’d)’a’x is the set of pair$C’, 3) that satisfy the following
relation.

(C,B) € ClaT ™™™ =

¥8,51, (S LS O A (S LD ) = sns LT C
Observe that, as A-Satisfaction is a mean-value, a systém\v@atisfy with the

same level several contracts that only differ for a small am@f time / states / runs.

There is thus no notion of largest quotient linked to A-Saigability. Nevertheless,

the following theorem suggests a methodology to computéeanent inC’|éfT’d)’a’”“'.

Theorem 4 ConsiderC = (V, A, G), C1 = (V1, A1, G1) two contracts in canonical
form. Letr € N, d,« andx € [0,1]. LetCy = (V, -G N G1,GU—Gy). We have

(CQ,O( 41— LC) c C|gf7'7d)aa7z-
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10 B. Delahaye, B. Caillaud & A. Legay

4 Probabilistic Contracts

In the spirit of [?], we now consider that the valuation of some variables demen
a probability distribution. This allows to model systemduiges. The easiest way
to describe probabilistic variables that will be sharedaeein contracts and imple-
mentations is to fix a set of global probabilistic variablésWe consider a probabil-
ity distribution P over [P]* and extend it tgP]* as follows: Vw € [P]*, P(w) =
f{w/epw | wewy P(@)dw'.

4.1 Probabilistic contracts and satisfiability

We will say that a contrao®® = (V, A, G) is aprobabilistic contractiff P C V,
i.e. iff its set of variables contains all the probabilistariables. We now turn to the
problem of deciding whether a systesh= (U, (2) satisfies a probabilistic contract
C = (V,A,G). As it was already the case for non-probabilistic contrageswill dis-
tinguish R-Satisfaction and A-Satisfaction.

Ouir first step is to introduce the definition of scheduler thifitbe used to resolve non-

determinism in assumption and guarantee of contracts. nGiveystems = (U, (),

a schedulerf maps every finite runv on probabilistic variables® to a run f(w)

of S which coincides withw for every probabilistic variable. In addition, it is as-
sumed that schedulers are causal, meaning that they resohseterminism on a

step by step basis. This is ensured by a monotonicity assoumgt the schedulers:

Vw,w' € [P]",w < w' = f(w) < f(w').

Definition 8 (Scheduler) A schedulerf of systens = (U, §2) is a monotonous map-
ping [P]* — Q such that that for allv € [P]*, f(w) | p= w.

The set of schedulers corresponding to a systasdenoted byched(S). Our notion
of schedulers is a generalization of the one proposed fokdabecision Processes
(see also Sectidn3.3).

In SectiorB, R-Satisfaction was defined with respect to ddkointerpretation : ei-
ther the system R-satisfies a contract or it does not. Wheringoo the probabilistic
setting, we can give qualitativedefinition for R-Satisfactionfor any scheduler, is the
probability to satisfy the contract greater or equal to at@én threshold\Ve propose
the following definition.

Definition 9 (P-R-Satisfaction) A systemS = (U, 2) R-satisfies a probabilistic con-
tractC = (V, A, G) for runs of lengthk (k € N°°) with level«, denotedS |Hf(k) C,
iff
inf P([f([P]*) N (GuU-A4) 1YY > o
seschan b o) (LAAP) N( ) 1770 p) 2«
Though A-Satisfaction was already qualitative, we now haviake into account
the probabilistic point of view: instead of considering thanimal value of the mean-

disponibility for all runs of the system, we now consider thi@imal expected valugf
the mean-disponibility for all schedulers.

INRIA



Compositional Reasoning on (Probabilistic) Contracts 11

Definition 10 (P-A-Satisfaction) A systent = (U, 2) A-satisfies a probabilistic con-
tractC = (V, A, G) for runs of lengthk (k € N°°) with levela and discount factod,
denotedS ||:§(f) C, iff

Ifhk<w: 7

in{ P ’ Dk’du dw >
fescheg(lSTUUV) /wE[P]k (w) [ cv v(f(U)))] w 2«

fk=w:

inf P(w) - [lim inf D44 dw > o
fescheldr(lSTUUV) /wG[P]k (w) [1?1}1? CTUUV(‘f(w))] w > o

4.2 Operations on probabilistic contracts and Compositioal rea-
soning

We now leverage the compositional reasoning results ofi@e&2 to probabilistic
contracts. We consider composition/conjunction and refen@/quotient separately.
The theory is then illustrated with a toy example.

4.3 Composition and Conjunction

Composition and conjunction of probabilistic contractdeé$ined as for nonprobabilis-
tic contracts (see Definitidd 4). We thus propose an extensiorheorem§ll andl 2
which takes the probabilistic aspects into account.

Theorem 5 (P-R-Satisfaction) Consider three systents = (U, ), S; = (U1, )
and Sy = (Us,€2) and two probabilistic contracts; = (14, 4;,G;1) andCy =
(Va, Aa, Go) that are in canonical form. We have the following results :

1. Composition. Assume thai and S, are P-compatible. IfS; |Ff(k) ¢, and
S “:g(k) Co, thenS; NSy H:’I;(k) Ci || Cawithy > a + 5 — 1.

2. Conjunction. Assume thatis P-receptive. IS |Ff(k) C; andS |F§(k) Co, then
SIER® ey neywithy > a+ 8- 1.
Theorem 6 (P-A-Satisfaction) Consider three systents = (U, ), S; = (U1,h)
and Sy = (U, ) and two probabilistic contract€; = (V1,A;,G1) andCy =
(Va, Aa, Go) that are in canonical form. We have the following results :

1. Composition. Assume th&t and S, are P-compatible. IfS; |Ff7(f) C, and
s [E0) CouthenSy 0 Sy =4 €y || Cowithy > o+ 5 — 1.

2. Conjunction. Assume thé&tis P-receptive. IS ||:§7(f) CiandS ||:§7(ﬁk) Co, then
S e nCywithy > a+ 8- 1.
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12 B. Delahaye, B. Caillaud & A. Legay

4.4 Refinement and Quotient

We consider refinement for probabilistic contracts. Cailyréo the case of nonproba-
bilistic contracts, we will distinguish between R-Satddfan and A-Satisfaction.

Following our move from R-Satisfaction to P-R-Satifactiare propose the notion of
P-Refinemerthat is the quantitative version of the refinement we progasé&ection
B. We have the following definition.

Definition 11 (P-Refinement) A probabilistic contracC; = (V4, A1, G1) P-Refines
a second probabilistic contrack, = (Va, Aa, G2) for runs of lengthk (k € N°°) with
level o, denoted’; jf(k) Co, iff

Vf S SChed((Gl U _|A1) TleVQ),
P([f([P]F) N (G2 U —A43) TV19%2] |p) > a.

Qualitative refinement is compatible with the definition oRPSatisfaction, which
brings the following result.

Theorem 7 Consider aP-receptive systens = (U,€2) and two probabilistic con-
tractsC; = (V;, A;, G;) fori = 1,2. If (G1 U —A;) is P-receptive and prefix-closed,
then

SIEE® cine <5V e = SR .

P-A-satisfaction and qualitative refinement are orthogqualitative measures. In-
deed, P-A-satisfaction measures the infimal expectedaditiy of a system for all
schedulers, while qualitative refinement measures the ahfset of traces of a prob-
abilistic contract that corresponds to another probdhilsontract. In such context,
the minimal schedulers for the two notions may differ. Capsmntly, we are only
able to propose the following result, which links P-A-Stision with the definition
of refinement proposed for non-probabilistic contracts.

Theorem 8 Consider aP-receptive systens = (U,2) and two probabilistic con-
tractsC; = (V;, A;, G;) fori = 1,2. If S|):3_(Of‘) C, andC, <(=R) ¢, thenS ):C‘?_(Of”’)
Cs. ' '

We now leverage the notion of quotient to the probabilistittisg. We again make
the distinction between R-satisfaction and A-satisfactio

Definition 12 (P-R-Quotient) ConsiderC = (V, A, G) andC; = (V1, A1, G1), two
probabilistic contracts in canonical form. Letandx € [0, 1], andT € N,. Assume
Vi C VandG C G; 1Y. The set of P-R-Residuations®by C; with parameters

« andz, denote(f|§l(7)’°"x, is the set of pairgC’, 3) that satisfy the following relation

(,B) e ClFM™" =
v8, 51, (SIEST e A (S IEET ) = sn s EET e

Observe that, as P-R-Satisfaction is a probability measargystem will P-R-
Satisfy with the same level several contracts that onlyedifor a small amount of
time / states / runs. Thus, as for A-Satisfactiability, thisrno notion of largest quo-
tient linked to P-R-Satisfaisability. Nevertheless, tloddiving theorem suggests a
methodology to compute an elemenﬂ}fl(”""’m.
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Theorem 9 ConsiderC = (V, A,G) andC; = (V1, A1, G1) two probabilistic con-
tracts in canonical form. Assume andz € [0,1] andT € N,. The contract
Cy = (V,-GNGy,GU~Gy) is such that

(Co,a+1—z)€ C|5bl(7'),a,z.

Definition 13 (P-A-Quotient) ConsiderC = (V, A, G) andC; = (V1, A1, G1), two
probabilistic contracts in canonical form. Latandz € [0, 1], 7 € N, and a discount
factord € [0,1]. Assumd/; C V andG C G, TV. The set of P-A-Residuations®f
by C; with parametersy,z andd, denotecC|A(T D is the set of pair¢C’, 8) that
satisfy the following relation

(.B) e Clem DT =
VS, Sy, (S |H‘<T> YA (SiELT a) = sns e

Once again, there will be no notion of largest quotient lohke P-1-Satisfaction.

However, the following theorem suggests a methodology topmde an element in
C|A(‘r d),a,x

Theorem 10 ConsiderC = (V, A, G) andC; = (V4, A1, G1) two probabilistic con-
tracts in canonical form. Assume andz € [0,1], 7 € Ny, andd € [0,1]. The
contractCe = (V, -G N G1,G U —Gr) is such that

(6270[4»17:17) EC|A(7'),o¢zd

4.5 Anexample

Consider the systems and contracts given in Fifflire 3. If wesider that the proba-
bilistic variables are pairwise independant and suchthat N, P(f; (i) = 1) = 1073

andP(f>(i) = 1) = 2.107%, then itis clear tha8 |=(i*}) . s, €1 and

S |):ﬁ(52 1o-2y20 C2. It would be more difficult to deduce the probability for whic

S1N Sy satlsfles the contracy || C, but, thanks to Theorel 5, we know for sure that
this probability is at leasf0.999)%° + (0.998)°° — 1 = 0.86. ConsideringC; =
({ f1, fasa,c,d},”true”,”0(d = ((a A —f1) V ¢) A —f2)”), itis clear thatC; ||

Co jf”(m) Cs3, which implies thatS; N Ss gg%o) Cs.

5 Towards implementation : on effective Representa-
tions

We suggest symbolic and effective automata-based repedigers for contracts and
systems. The latter is needed to handle possibly infinieeafetins with a finite mem-

ory. Our representations allow to build on existing work whahecking for (P-)R-

Satisfaction. We will see that the case of (P-)A-Satistactian be checked with an
extension of the work presented ][ Finally, we will also show how to perform
operations between and on contracts using those représesta
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——— b=aA~f1 [ d=(bVe)Afrg—
SystemS'1 b SystemSo
Yfl Yf2 Yfl Yfz
Ay "true” Ay : 7true”
Gy :700b=aA—f) Gy :70(d = (bVe)A—fa))

(a) Implementations; and.S2 and probabilistic contractd; andCs.

f2

d=|((a A=f1)Ve)
—f2

; V= {f17f2;a7bacad}

2 A true

. s [ ] bdan-s G: O(b=ar—f)
Ad = (bVe)A—fs)

f1

(b) ImplementationS; N Sz and probabilistic contraa; || Ca.

Figure 3: Reliability : Example

The section is divided in three parts. In the first part, weallelzasic concepts on
automata-theory. In the two last parts, parts, we presergytmbolic representations.

5.1 Background on automata theory and transition systems

We will be working with variables defined overfaite domainD. We assume the
reader to be familiar with automata theory (see Appeldix 8doe definitions and no-
tations). We recap the definition of automata. An automa@ntupled = (%, Q, Qo,

0, F), whereX is a finite alphabet() is a set ofstates @y € @ is the set ofinitial
statesd : Q x ¥ — 29 is atransition function(d : Q x £ — @ if the automaton is
deterministic), and is an acceptance condition.

We propose examples of effective symbolic representafimnpossibly infinite sets
of runs. According to our theory, a symbolic representaisoffective for an assump-
tion (resp. a guarantee) if inclusion is decidable and tpeasentation is closed under
complementation (needed for refinement), union, and iet¢ian. A representation is
effective for a system (that is not an assumption or a gueearit it is closed under
intersection and (inverse) projection, and we can chedkiigbility/availability.

We assume that systems that are not assumptions or guaranéeeepresented with
symbolic transition systems

INRIA



Compositional Reasoning on (Probabilistic) Contracts 15

Definition 14 A symbolic transition system ovEris a tupleSymb = (V, Qs, T, Qso),
whereV is a set of variables defined oveffiaite domainD, Q) is a set of states (a
state is a mapping froif to D), T : Q4 x Q is the transition relation, and),, C Q.
is the set of initial states.

A run of Symb is a possibly infinite sequence of statgsgs: ... such that for each
i>0 (gsi> gs(i+1)) € T andgso € Q0. A symbolic transition system for a system
(V,Q) is a symbolic transition system ov&r whose set of runs i®. Operations of
(inverse) projection and intersection easily extend tolsglia transition systems. To
simplify the presentation, we will assume that all runs ofisolic transition system
are infinite.

We now propose a symbolic representation for contracts.

Definition 15 LetC = (V, A, G) be a contract. A symbolic contract f6f is a tuple
(V, B4, Bg), whereB 4 and B¢ are automata withl.(B4) = Aand L(Bg) = G.

5.2 Non-probabilistic contracts

We first introduce the definition afynchronous produdietween automata and sys-
tems.

Definition 16 LetV be a set of variables defined over a finite domiand Symb =
(V,Qs, T, Qs0) be a symbolic transition system oviér Let A = (X,Q, Qo,0, F C
) be an automaton such that is a mapping” — D. The synchronous product
betweernd and Symb is the automato’ = (0, Q’, Qy, ', F'), whereQ' = Qs x Q,
Q) = Qs0 X Qo, (¢, V') € 8 ((a,b),0) iff (a,a’) € T andb’ € §(b,a), F' = {(a,b) €
Q'|b e F}.

Each state in the product is a pair of states : one&fpnb and one forA. If we do not
take the information from thd into account, a run of the product corresponds to a run
of Symb.

We distinguish between R-Satisfiability and A-SatisfidjilMe consider a symbolic
contractC' = (V, B, B¢) and a symbolic transition systefiymb = (V, Qs, T, Qo).

* Reliability. When considering R-satisfaction, we will assume tBatand B¢
are Buchi automata, which allows to consider logics suchTaq ?]. It is con-
ceptually easy to decide wheth8ymb R-satisfiesC. Indeed, following re-
sults obtained for temporal logicg[?], implemented in theSPINtoolset [7],
this amounts to check whether the Biichi automaton obtdigedking the syn-
chronous product betweeymb and —(G U —A) is empty. Observe that as-
sumptions and guarantees can also be represented by lémicellisms that
have a direct translation to Buichi automata, which incldd [?] andETL[?].
The theory generalizes to other classes of infinite wordraata closed under
negation and union and other logical formalisms suc@ak[?] or PSL[?)].

« Availability with level m and discount factor d. In [?], de Alfaro et al. pro-
posedDCTL, a quantitative version of the CTL logie]] DCTL has the same
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syntax as CTL, but its semantics differs : in DCTL, formulasl atomic propo-
sitions take values betwe@®mand1 rather than in{0,1}. Let ¢, andps be two
DCTL formulas, the value op; A s (resp. ¢1 V ¢2) is the minimum (resp.
maximum) between the values ¢f andy,. The value ofvy; (resp.Jp1) is

the minimum (resp. maximum) valuation @f over all the runs. In addition to
its quantitative aspect, DCTL also allows to discount onvidlee of the formula
as well as to compute its averag@ ( operator, wherel is the discount : see
the semantics withi = 1 andd < 1 page 6 of P]) on a possibly infinite run.
We assume tha4 and Bg are completefinite-word automata and show how
to reduce A-satisfaction to the evaluation of a DCTL prope®@ur first step is

to computeSymb’, the synchronous product betweSpmb andG U —A. The
resulting automaton can also be viewed as a symbolic transystem whose
states are labelled with a propositipavhich is true if the state is accepting and
false otherwise. In fact, finite sequences of stateSipfil’ whose last state is
accepting are prefixes of runs 8fym that satisfyG U =A. Hence, checking
whetherSymb A-satisfiesC' boils down to compute the minimal average to see
p = 1in Symd’. Our problem thus reduces to the one of checking for each
initial state of Symb’ whether the value of the DCTL propeiy\, p is greater

or equal tom.

Since both finite-word and Biichi automata are closed underptementation,
union and intersection, it is easy to see that the compasétial the conjunction of
two symbolic contracts is a symbolic contract. Moreovergsiinclusion is decidable
for those automata, we can always check whether refinemég.ho

Systems that are not assumptions or guarantees could beseeped by visibly
pushdown autom£{1?] whose language would be the set of runs of the system. In this
context, R-Satisfaction can be checked with the technigtreduced in P]. There
will be some efforts for A-satisfaction as there exists rgoathm for model checking
DCTL on (visibly) pushdown automata. We could also modetesys withtimed au-
tomata][?]. The theory for R-Satisfaction and timed words has alrdzen proposed
in [?], but there exists no theory for A-Satisfaction.

5.3 Probabilistic contracts

We assume the reader to be familiar with the concepts ofrtiscMarkov Chain and
turn-based Markov Decision Processes. Roughly speakiki@rkov Chain is a sym-
bolic transition system whose states are labeled with Vialsfor variables in® and
transitions by probabilities. The labelling by probalié follows a probability distri-
bution : for a given state, the sum of the probability valussall outgoing transitions
must be less or equal to one. A Markov Decision Process imaitian system with
two types of states : the nonprobabilistic states that assiglue to variables i \ P
and the probabilistic states that assign a value to vasabl®. Transitions from non-
probabilistic states go to probabilistic states and arelatarministic, transitions from
probabilistic states go to nonprobabilistic states arelbwith probability values.

Let C = (V, B, Be) be a symbolic contract anglymb = (V, Qs, T, Qso) be a sym-
bolic transition system. We consider a getC V' of probabilistic variables. We

2Recap that visibly pushdown automata are closed undesétton.
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assume that the distribution ovBris symbolically represented with a Markov Ctfhin
At each state, we have a probability distribution over theside set of valuations for
the variables. The Markov chain is finitely-branching/ass finite.

Example 2 The concept of representiigwith a Markov Chain is illustrated in Figure
B(@], whereP = {b} and D = {0, 1}. As an example, the probability that a run starts
with b = 0 is 1/2. The probability that a run starts with = 0,b = 1,b = 0 is given
by (1/2) x (1/4) x (1/3).

Observe now that each state ®fmb can be splited into two states, one for the
valuations of the non-probabilistic variables followeddne for the valuations of the
probabilistic variables. The result is a new symbolic systeymb” where one first
evaluatel” \ P and thenP.

Example 3 The split is illustrated in Figur&l4. Consider the stafe= {a = 1,b =
0,c = 1} in the system given in Figure (a). This state can be splitéal two states,
A={a=1,c=1}andE = {b = 0}. Thestatey = {a = 1,b = 1,¢ = 1} can
be splited intoB = {a = 1,¢ = 1} andF = {b = 1}. In the split, there will be
transitions fromA to £ and fromB to F'. Any transition fromX (resp.Y) toY (resp.
X) will now be fromE (resp. F) to B (respA). SinceA and B have the same label
and successors, they can be merged, which gives the splgumer(b).

It is easy to see that we can use the Markov Chain for the pilityatistribution
to “transform” the transitions from a non probabilistic iedole state ofSymb’ into
a probability distribution over the probabilistic varialdtates simply by synchroniz-
ing the two systems. Hencgymb” becomes aurn-based Markov Decision Process
(MDP). Recall that a turn-based MDPs mixes both nondetésmirand probability.
In our setting, nondeterminism will come from the choice luf walues for the non-
probabilistic variables, while probability will come whavaluating variables irP.
The transitions from states that are labeled with prokghiiriables are thus nonde-
terministic (since one has to pick up the next values for tirgonobabilistic variables).
Transitions from states that are labeled with nonprobstiilivariables form a proba-
bility distribution on the possible values of the probatiiti variables. In this context,
a run for the MDP is simply an alternance of valuations of theprobabilistic and the
probabilistic variables. A scheduler for a Markov DecisRnocess?] is a mechanism
that, in a non deterministic state, selects the succesgensithout taking predecessors
into account. This definition particularizes the one we pi&d in DefinitiodB.

Example 4 The concept of turn-based Markov Decision Process regufiiom the
product of a split and a Markov chain fd? is illustrated in Figurdb. Observe that the
state{a = 1,¢ = 1} has been duplicated. Indeed, according to the Markov Chain i
Figure 5.(a), the probability to seledth = 0} in the first step is not the same as the
one to select it after the first step.

Assuming that the combination of the system with the digtidn can be repre-
sented with a MDP, we now briefly discuss P-R-SatisfactiahRsA-Satisfaction.

e P-R-Satisfaction Assuming tha3 4 andB¢ are Blchi automata, P-R-Satisfaction
can be checked with the technique introduced?n?] (which requires a de-
terminization step from Buchi to deterministic Rabi)[and implemented in

SRoughly speaking, a Markov Chain is a transition system wim@nsitions are labeled with probability
values. For a given state, the sum of the values for all onggansitions must be less or equal to one.
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\/

(a) A symbolic transition systefiymb for V' = {a, b, c},

(==
s
where the domain of, c is 1 and the domain o is {0, 1}, b

is the probabilistic input and the set of runs is given(fyy = (b) The splitSymbd’ for Symb.
1,b=1,c=1)U(a=1,b=0,c=1))“.

Figure 4: A symbolic transition system and its split.

(s e
)
1/2
& T

O
(b) A MDP for the product between the Markov chain

(@) AMarkov Chain for the distribution |  Figure[5{d) and the transition system in Fighre A(b).

over variables in P.

=}

Figure 5: The product of a splitted symbolic transition systwith a Markov Chain.

the LIQUOR toolset[?]. Indeed, this technique allows to compute the mini-
mafl probability for a Markov decision process to satisfy a prop&hich is
represented with a Blchi automaton. We can thus considemgsgtions and
guarantees represented with logical formalism that havarstation to Bichi
automata, e.g., ETL.

» A-Satisfaction with level m and discount factor d The DCTL logic can also
be interpreted over MDPs. The synchronous product of Definff8 easily
extends to MDPs. The product between a MDP and an automatolpeciter-
preted as a MDP. We can thus use the labelling technique wahogitions that
was proposed for the nonprobabilistic case (assuming lieastates of the au-
tomaton have also been splitted (see the split for trams#tystem)). For a given
scheduler (which transforms the MDP into a Markov chain)care compute the
expected valuéor the formula’\; p. We then compute the minimum between
the expected values for all schedulers and check whethemjtaater thamn.
More details about model checking DCTL over MDPs can be faarfslection
2.2 of [?]. The overall formula we model checki¥§[A 4 p], whereE states for
“expected value”.

We observe that probabilistic refinement and quotient cachleeked with a tech-
nigue similar to the one we propose for P-R-Satisfaction.

4With respect to a given scheduler.

INRIA



Compositional Reasoning on (Probabilistic) Contracts 19

6 Conclusion

We have proposed a new theory for (probabilistic) contrastich extends the one
we developed for the European proj&REEDS$?]. The new contributions are : (1) a
theory for quotients and availability, (2) a treatment &f girobabilistic aspects and (3)
a discussion on effective symbolic representations.

We are currently implementing the non probabilistic apphda the SPIN toolset]
and we plan to implement the probabilistic approach in tHgUOR toolsetP]. To this
purpose, we will have to implement algorithms frothénd enrich PROMELA?] and
PROBMELA [?] languages with compositional reasoning operators.

In addition to implementation, there are various otherdadioms for future research.
A first direction is to develop a notion of qualitative refinemt that is compatible with
A-satisfaction. We also plan to consider other symboligespntations such as visi-
bly pushdown system8&]. Considering such representations will require new DCTL
model checking algorithms. Finally, we will extend our rigsto the timed setting.

References
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7 Preliminaries on finite automata

Let > be an alphabet. A finite word ové&r is a mappingw : {0,...,n — 1} — X.
An infinite word (or w-word) w overy is a mappingy : N — ¥. An automaton is a
tuple A = (%, Q, Qo, 0, F'), whereX is a finite alphabet) is a set ofstates Qy € Q
is the set ofinitial states 6 : Q x ¥ — 29 is atransition function(d : Q x ¥ — Q
if the automaton is deterministic), add C () is a set ofacceptingstates. Afinite run
of A on a finite wordw : {0,...,n — 1}—X is alabelingy : {0,...,n}—Q such that
p(0) € Qo,and(V0<i<n —1)(p(i+1) € §(p(i), w(7))). Afinite runp is accepting
for w if p(n) € F. Aninfinite runof A on an infinite wordw : N—X is a labeling
p : N—Q such thaip(0) € Qo, and(V0 <1i)(p(i + 1) € d(w(i), p(7)). An infinite run
pis acceptingor w with the Bichi condition ifnf (p) N F' # (), whereinf (p) is the set
of states that are visited infinitely often by

We distinguish between finite-word automata that are finitermata accepting finite
words, and Buchi automat@][that are finite automata accepting infinite words. A
finite-word automaton accepts a finite wardf there exists an accepting finite run for
w in this automaton. A Blchi automaton accepts an infiniteduoiif there exists an
accepting infinite run fow in this automaton. The set of words acceptediy called
thelanguage accepted by, and is denoted by, (A). Finite-word and Buchi automata
are closed under intersection, union, and complementatiariusion and emptiness
are also decidable.

8 Properties common to all proofs

In this section, we recap properties and Lemmas that willds&lin all proofs.
Property 1 Let F; and E», be two sets of runs ové?. We have:
P(=(E1 N Ey)) <P(=Ey) 4+ P(—E2)
= 1-P(E1NEz) < (1 -P(E1)) + (1 - P(Ey))

Property 2 ConsiderV/ C V' C V" three sets of variables anfl and E” two sets of
runs overl and V"’ respectively. We have:

E) " =17 @
(E1V") Ly =B 1Y (3)
(E" lv) lv =FE |lv; (4)
weE =w|yecE |y; (5)
weE=wtVCET. (6)

Lemma 1 ConsiderS = (U, §2) a P-receptive systenf, € Sched(S) a scheduler of
andU’ a set of variables. We have:
[P — S lu

PQU/gUéflUIS{ w — f(w)

} S SChed(S lU/).
lu
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Proof :

Let f' = f |y By definition,f’ : [P]* — S |y/. Nonsider noww € [P]* and
w' < w. Sincew’ < w, we havef(w’) < f(w). As a consequencg,(w’) < f'(w).
Moreover,f(w) | p=w andP C U’, thus by[)(f(w) ly/) | p= w.

Lemma 2 ConsiderS = (U, Q2) a P-receptive systenf, € Sched(.S) a scheduler of
andU’ andU"” two sets of variables. P C U’ C U, P C U"” C U andU'UU" = U,
then

Vw € (P)*°, flur (w) N f lur (w) = {f(w)}.
Proof :

Letw' = f |y (w) andw” = f |y» (w). w, w" andw” are such thatvi €
N,Vo € V| f(w)(@)(v) = w'(i)(v) andVi € N,Vv € V", f(w)(i)(v) = w" (i)(v).
Moreover, because’ and w” are both projections off(w), Vi € N,Vvo € V' N
V7 Fw) (@) (v) = w'(i)(v) = w” (i) (v).

Now, considerwy € f |y (w) N f Ly» (w). Sincewy € (f v+ (w)) TV, we have
wo Lyr=w'. Thusvi € N,Vo € V', wo(i)(v) = w'(i)(v) = f(w)(i)(v).

Similarly, sincewy € (f lv» (w)) 1V, we havevi € N,Vo € V', wo(i)(v) =
w”(i)(v) = f(w)(@)(v).

Finally, Vi e N,Vo e V =V U V", w’(i)(v) = f(w)(i)(v), thusw” = f(w).

Lemma 3 ConsiderS = (U,Q) and S’ = (U, ') two systems over the same set of
variablesU. If S andS’ are P-receptive and i’ is prefix-closed, then

Vf € Sched(S), 3f € Sched(S') s.t.vw € [P]*, f(w) € 8 = f'(w) = f(w).

Proof :
Considerf € Sched(S) and letf’ : [P]* — S’ such that :

flle)=¢
f(w.o) = f(w.o)if f(w.o) e S
fl(w.o) = f(w).o st f'(w).c' € " ando’ | p= 0.
First of all, sincesS’ is prefix-closed, iff (w) € S’, then for allw’ < w, f(w') € 5,
and as a consequengé(w’) = f(w’). Moreover, sinces’ is P-receptive, iff’(w) €
S’, then for allo € P — D, there exist’ € U — D such thate’ | p= o and

f(w).0’ € 8. This ensures that the definition ffis coherent.
We will now prove by induction thgt € Sched(S”).

* f'(e) = ¢ satisfies the prefix property.
* Letw € [P]* andw’ < w. Suppose thaf’(vw') < f'(w). Lete € P — D.

— If f(w.o) € §', thenf'(w.0) = f(w.o) andVw” < w, f'(w") = f(w").
Sincef is a scheduler, we havg(w’) < f(w.o).

— Else, f/(w.c) = f'(w).c’ and as a consequencé,(v’') < f'(w) <

f(w).o’.
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9 Proof of Theorem[2

For the sake of simplicity, we will consider that= w. The proofs fork < w are
simpler versions of the ones presented here.

1. Proof:
LetS = (U Q) =S5 NSyandC = (V A G) (& H Cs. SinceC; andCy
are contracts in canonical form, we hatg = G1 U—-A; andGy = Gy U—As.
Similarly, since composition preserves canonicity, weet@vw= G U - A.

Considerw € ((S; TV1PV2 NGy 1UWU2) UUVYE | etw; = w |y,uy, and
w2 =w |y,uy,- By @), we have

wy € (((Sy TVrY02) ULV 1k |1 oy, . By @) and [B), this implies that, €
(81 1YYV |k, Similarly, we also haves, € (Sy 1V2VV2)|k.

Considert < kandi < ¢. By definition, ifoC1""" (i) = 0, thenwy ; ¢
G 1Y°V. By [@), we deducBwi (o) ¢ G1 1V"9Y) V (wape, ¢ G2 1V2972)].
As a consequence,

uvuv UV UgU V5
PS> G () + 0GR (1) 1
=Vt <k, DUy (w) > DS v, (wn) + DY, 00, (w2) — 1

d
= hm mf DgTU)UV( ) > hm mf Dg T)Uluvl

(w1) +ligxlinf Dg T)Uzuvz (wg) —1.
By hypothesis, we have

lim inf D(t’?)uluvl (w1) > my

t—k

lim inf D(t

oty Ca1U2UV2 (w2) > ma.

As a consequence,

1i£n iélf Dgﬁj)uv (w) > mq +mg — 1.

Finally,
Y € (S TUUV)VC, ]jminf Dg%dU)uv (w) >mq +mg —1
. t,d
T we(Sov e h?ilzflfD( {Pov (w) = my 4 mg — 1.
2. Proof:

LetC = (V, A, G) = C1 ACs. SinceC; andC,, are contracts in canonical form,
we haveG; = G; U —A; andG, = Go U —A,. Similarly, since conjunction
preserves canonicity, we hate= G U - A.
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Considerw € (S; 1YYk, Letw; = w |y,uy, andwe = w y,01,- By
@), we havew; € ((S1 TN F |v,uv,- By @), this implies thaty, €
(81 VYV |k Similarly, we also have, € (S; 1V1VV2)|k.

Considert < k andi < t. By definition, ifoC1"""" (i) = 0, thenwy ;) ¢
G 1YYV, By [@), we deducBwio ¢ G1 1V"9Y") V (wap ¢ Ga 1V19Y2)].
As a consequence,

A O e O F A O

w2

=Vt <k, DI v (w) = DS o, (w1) + DS o, (w2) — 1

= liminf D) (w) > hm mf pi (w1)+li?iinf Dg T)Ulu‘,Z (wg)—1.

ok CTUlUV Ch TU1UV1
By hypothesis, we have

hm mf D(t

C11U1uv1 (wl) > my

lim inf D(t

oty CoU1UV2 ('LUQ) > ma.

As a consequence,

hmlnfD(CTU)lw( ) >mq +mg — 1.

Finally,
Yw € (S TVYV)|F, hmlnfD(tT%)luv( ) >mq+mg—1
= we(Sf?ll}llUV”k h?i»l/?f D(CTU)wV( ) >mq +mg — 1.
3. Proof:

Considerw € (S; T1V1VV2)|F. Letw’ € w 1V1VV1YV2 andw; = w' |y,uv,- By
@) and [3), we have, € (S; TV1VV1)|F,

Consider nowt < k andi < t. By definition, 11" (i) = 1
W1[o,4] S (Gl U ﬁAl) TUlUVl. By hypothesis((G1 UﬁAl) TVlUVQ)lgk -
((G2 U —A) TV19%2)[F. Thus, bylB)((G1 U —Ay) V1V10V2) [k C

(G2 U =Ag) TV SR 1f QTP (4) = 1, then

w1, € ((G1U~A1) U1V Sk

= wy [072] TU1UV1UV2§ ((Gl U “Al) TU1UV1UV2)|S]€ g ((G2 U ﬁ142) TU1UV1UV2)|S]€

= wa,i] € (G2 U—Ay) TU1UV1UV2
= wfo,z'] Lo € (Ga U =Ay) 1UiWViVve |,
= wjg ) € (G2 U~Ay) TV1V2

RR n° @7%52TU1UV2 (Z) .



24 B. Delahaye, B. Caillaud & A. Legay

Thus,
UqUVse Uq UV
VE <k, Vi<t o1 (6) = 0T (4)

w1

= Vi <k, DY (w) > D%? (w1)

CoU1UV2 Ci U1V

I t,d P t,d
= h?i}l]ilf DCQTU1UV2 (w) > 11£1£f DclTUlu"l (wq).

By hypothesis,

lim inf D¢

mint Dl (1) 2 m.

As a consequence,
et
Vw € (S 1V1VV2)|k, h?ilglfDCQTUlqu (w) >m

= min lim inf D%?

>m.
we(S11U1UVay |k t—k  C2l1P%2 (w) >=m

10 Proof of Theorem[3

Proof:

1 Cyec|3:
ConsiderS; and S, two systems such thay =) ¢y and Sy R C,.
By theorenil, we havs; N S, =8 €y || C, = C’. After simplifications,
C’ = (V,~GU-Gy, GNGy). By definition(5; N.55)|(S7) € GNGy U—(-GU
~G1) = GNG, CGU-A. ThusS; NSy =R ¢,

2.YC" e C|E7, ¢ <=7 oy

LetC’ = (V/,A',G') € C|§ET). Considers’ = (V',G"), S, = (V1,G;) and

Sy = (V/,-A"). We haveS’ =57 ¢” andS; =7(7) C,. By definition, we
thus haveS’ N S; =77 C, and as a consequencg;’ 1"* NG1)|<™ C G.

Thus(G' TY1)|5™ € G U -G;.

Moreover, sinceSy =) C’, we havg(-4’) 1V NG4]|<7 C G. This implies
[(=A") TV1]|=™ € GU—G1, and hencé-~G N G4]|=™ C A" V1.

11 Proof of Theorem[4

Proof :
Consider two systemS; and S, such thatS; Fﬁ,g) Cy and Sy Fi(;)rl_m Cy. By

theorer®, we havé, N S, =17 €y | Co = €. After simplificationsC’ =
(V,-G1 U-G, G NG). '

By definition,Yw € ((Sy N S2) V)7, Vi <t < 7,95 (i) =1 = wyy €
(G1NG) = wp, € (GU-A) = ¢ (i) = 1. As a consequence,
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Vw € ((S1N82) T, Vi <7, o > ¢
=Vt <7, Yw e ((81 N S) TV)|7, De*(w) > D5 (w)
=508 ) C.

12 Proof of Theorem®

1. Proof:
LetS = (U,Q) = S1 NSy andC = (V, A,G) = C; || C2. SinceC; andC, are
in canonical form and since composition preserves cantpiaie will consider
thatG; = G1 U A4, Gy = Go U -4y andG = G U —A.

Considerf € Sched(S 1YVV). SinceS; and S, are P-compatiblef is defined
over all runs in[P}%. Moreover, sinces = (S; TV1YV2)N (S, 1V1902), we have
(f € Sched((Sy TV1WU2) 1ULV)) A (f € Sched((Sp TUVV2) 1UUVY),

= (f € Sched(S1 1V%Y)) A (f € Sched(S2 1VV)) by @)

Letf; = f lu,uv, and fo = f |u,uv,- By Lemmdll, we have

(f1 € Sched((S1 17°Y) Lv,uw))
A
(f2 € Sched((S2 T7°Y) Lunuvs))
= (f1 € Sched(S; TV'"V) A (f2 € Sched(Sy 1Y27"2)) by @)

Consider noww € [P]*. If fi(w) € Gy V19", then by[B) andq2)f; (w) TVVV C
G 1YYV, Similarly, if f2(w) € Ga TV29V2, thenfa(w) VUV C Gy 1YYV, As
a consequence; (w) TVYY Nfa(w) 1V9VC (G1NGe) VY, and, by Lemma
B f(w) € (G1 NGy) 1YYV, As a consequence,

Eq Es

[A1([P]F) NGy 19N e [fo([P]F) N G2 1929Y2] |p
CFPM)NG 17 |p.
E

This implies, byl{ll), tha®(F) > P(F;) + P(E,) — 1. Moreover, by hypothesis,

P(Er)
P(E2)

(AVARLYS

B.
ThusP(F) > a+ 3—1and
Vf € Sched(S 179Y), P(If([PI") NG 179V] |p) > a+ 6 - 1.

i k vuv
- feSchehIggTqu)P([f([P] )ﬁ G171 v ] lP) >a+8-1.
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2. Proof:
We will useC = (V, A, G) = C1 ACs. SinceC; andC, are in canonical form and
since conjunction preserves canonicity, we will consithet &y = G U = A4,
Gy =Gy U—-45 andG = G U —A.

Considerf € Sched(S TVVV). SincesS is P-receptivef is defined over all runs
in [P]*.

Letfi = f lvuv, and fo = f |yuv,. By Lemm@ll, we have

{A(f1 € Sched((S 1Y) luuw))
(f2 € Sched((S 17°Y) Luuwy))

= (f1 € Sched(S 1Y“Y1) A (f2 € Sched(S 1Y29"2)) by (@)
Consider nows € [P]*. If fi(w) € Gy 1V9"1, then by[[B) andl2)f; (w) 1YYV C
Gy 1YYV, Similarly, if f2(w) € Ga TV9V2, then fo(w) VPV C Gy 1YYV, As

a consequencd; (w) TVYY Nnfa(w) 1YYV C (G1 N Gy) 1YYV, and, by Lemma
B, f(w) € (G1 NGy) 1YYV, As a consequence,

AP NG 1Y Len[f2([PF) NGy T79Y2] | p
C (P NG 1YY |p.

E

This implies, byl(l1), thab(F) > P(E;) + P(E2) — 1. Moreover, by hypothesis,

P(Er)
IP(EQ)

(AVARLYS

G-
ThusP(F) > a+ 3 —1and

Vf € Sched(S 1Y), P([f([PI*) NG 1Y°Y] |p) > a+ -1

i k Uuv
= oo PSP NG 1] Lp) 2 = 1.

13 Proof of Theorem[®

For the sake of simplicity, we will consider that= w. The proofs fork < w are
simpler versions of the ones presented here.

1. Proof:
LetS = (U,Q) = S1 NSy andC = (V, A,G) = C; || C2.SinceC; andC, are
in canonical form and since composition preserves cantpiaie will consider
thatG1 =G1 U _‘Al, Gy =Gy U _‘AQ andG = G U —A.
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Considerf € Sched(S 1YVV). SinceS; and S, are P-compatiblef is defined
over all runs in[P]*. Moreover, sincé = (S; 1V1VV2)N (S, 1U1V02), itis clear
that (f € Sched((S1 TV*YY2) 1VYV)) A (f € Sched((Sy TV1VVz2) 1UVVY),

= (f € Sched(S; TV°V)) A (f € Sched(S2 17V)) by @)
Letfi = f lv,uv, @andfo = f |v,uv,- By Lemmdll, we have
{ (fl € SChed((Sl TUUV) lUIUVI))
={A

(f2 € Sched((S2 17°Y) Lunuvs))
= (f1 € Sched(S; TY*YY1) A (f2 € Sched (S, 1Y292)) by @)

Considerw € [P]*, t < kandi < t. If @?EZ;V(i) = 0, then f(w)p, ¢

G 1YYV, By (@) and[(B), we deduce thiaif; (w)p.q & G1 TUIUVI)v(fg(w)[Oﬁi] ¢
G TV29V2)]. As a consequence,

cruuv Ci V1Y vVe CaV2VV2

Crwy ) 2¢gw) (O Feg, @)1

= vt <k, Doy (f(w)) = DED, o, (fr(w)) + DS, o, (F2(w)) — 1

cpuuv CL V1V CaU2UV2

= liminf pitd)
t—k

Eioy (F(w)) > limint DED, v, (f1(w))

+ lim inf Dgﬁ)@uw (f2(w))

— 1.
As a consequence,

v € [P)*, liminf DEY0y (f(w)) > liminf DE, o, (1 (w)
+ lim inf Dgﬁ)@w (f2(w))

-1

N / [P]kIP’(w)-1i£riig1ng’T‘?w(f(w))dw2
we

/ - P(w) - lim inf DD, o, (1 (w))dw
we

/ Plk (w) i —>k D(Cé )LZUVQ (fQ(w))d'LU
we t

By hypothesis, we have

RR n° 6970



28 B. Delahaye, B. Caillaud & A. Legay

ClTUl uvy

P(w) - lim inf DD (fi(w))dw > o

P(w) - hmme( D, v, (f2(w))dw > B.

Cs TU2UV2

Thus,

Vf € Sched(S TVVY), / P(w) - lim inf D&y (f(w))dw > a+ -1

. A (t,d) > B
= ooy [y PO Bt DD ()t 51

2. Proof:
LetC = (V, A,G) = C; A C2.SinceC; andC, are in canonical form and since
conjunction preserves canonicity, we will consider that= G; U —A4;, Gy =
Gy U =45 andG = G U —A.

Considerf € Sched(S TVVV). SincesS is P-receptivef is defined over all runs
in [P]*. Letf; = f luuw, and fo = f |uyuv,. By Lemmd@ll, we have

(f1 € Sched((S TY“Y) |yuw,))
= <A
(f2 € Sched((S TY“Y) lvuw,))
= (f1 € Sched(S 1Y“Y*) A (f2 € Sched(S 1YY"2)) by @).

Considerw € [P]*,t < kandi < t. If wfcg;])w(i) = 0, then f(w)p,q ¢

G 1UYY . By [B) andIB), we deduce thi (1), , ¢ Gi 1V°V)v <f2<w>[ol ¢
G TYY"2)]. As a consequence,

cTUYV Cc tUuvL C,1UUV2
P () 295l @O +eil, (-1

=Vt <k, DEdov (F(w)) 2 DG oo, (f1(w) + DEuor, (fa(w)) -

= hrn mf D (f(w)) > lign i;lf D (f1(w))

cruvv C11UvvV1
+liminf DD, L (Fa(w))
ok CoTUVV2 2
—1.
As a consequence,

o td o t,d
vuw € [P]*, h?i,l;?f DéTU)UV(f(w)) > h?i)l;lf Dé‘lT)UUVI (f1(w))

+ 1i£rii]£1f Dgﬁ)uux@ (f2(w))

-1
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:>/ P(w) - hmme(CTU)w(f(w))de
we[P]*

t—k

/ P lim inf DY ov, (F1.(w)dw
we

+/ P(w) - hmmeg Tqug(f2( w))dw
we [Pk
— 1.

By hypothesis, we have

/ . P(w) .nggfpgﬁw (f1(w))dw > o
we
/ ) i DD (o) 2
we

Thus,

Vf € Sched(S YY), / P(w) - hmlnf D(CTU)UV(f(w))dw >a+p-1

we[Plk

P(w) - lim inf D) (f(w)dw > a+ 5 —1.

= inf
fESched(STUVY) /we[P]k t—k croev

14 Proof of TheoremT

Proof :

Considerf € Sched(S TYY"2). By LemmdlL, there exisfé € Sched(S 1VYV1VV2)

suchthatf’ |yuv,= f. Letfi = f' luuy,- By Lemm@ll, we havg € Sched(S 1V
). LemmdB states that there exigts € Sched((G; U —A;) 1VYV1YV2) such that
Yw € [P]*, f'(w) € (G1 U—Ar) 179MY2e= fi(w) = f'(w). Letfo = f3 Lviuvs-

By Lemmdll, we havg € Sched((G1 U —Ap) TV19V2,

Considerw € [P]*. If fi(w) € (G1 U—-A4;) TVY", then by [B),f'(w) € (G1 U

—Ap) VIOV f() = f/(w). Moreover, iffo(w) € (GaU—A43) T Vi U Vs, then
by (H),fé(w) S (GQ U ﬁAg) TUUVIUVZ. Thus,

F(w) € (Go U—Ay) 1UOVILV2
= f(’LU) € (GQ U —|A2) TUUV2 by E)-
As a consequence,

Eq Eo

[fl([P]k) N(G1U—4,) TUUV1] lpN [fg([P]k) N (G2 U —4») TV1UV2] lp

C [f([PT*) N (G2 uEﬁA2> U] | p
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This implies, bylll1), thak(E) > P(E,) + P(E,) — 1. Moreover, by hypothesis,
P(E;) > «
P(Es) = 5.

Vf € Sched(S TV9%2), P([f([P]F) N (G2 U —=42) 1V°Y2] |p) > a+ -1

i k ULV, _
- fEScheé?SfTUUVz)P([f([P] )N (G2U—Az) 1777 |p) 2 a4 B — 1.

ThusP(E) > a+ 5 — 1 and

15 Proof of Theorem3

For the sake of simplicity, we will consider that= w. The proof fork < wis a
simpler version of the one presented here.

Proof :

Considerf € Sched(S TVV"2). By LemmdlL, there exisfé € Sched(S 1VVVibU"2)
such thatf’ |puv,= f. Letfi = f' lyuw,- By Lemmdll again, we havg €
Sched(S 1YYV1). Consider now € [P]*,t < kandi < t. By definitiomp?ll(f)w1 (i) =
1 <= fi(w)p, € (G1U-4) TUVUVi | By hypothesis,

((G1 U ﬁAl) TV1UV2)|S1€ C ((G2 U ﬁ142) TV1UV2)|§k-
Thus, by[(B),
((GrU=Ay) 170V ER C (G U —Ag) 1YIVI012) =8,
If <P?11(Tw) "(i) =1, then
f1(w)[0 i € ((Gy U—4y) TUUV1)|<I<:
= f1(w)w[0,z] TUUV1UV2§ ((G1U—A;) TquluV2)|§k C (G2 U—4y) Tquluv2)|gk
F(w),q € (G2 U—Ay) TVIVV2

F (W), luow€ (G2 U=Az) 179192 [ py, by @)
= f( )[Oi (Ga U—Ay) TV by @)
= i =1
Thus,

. UuVy vuvy
vVt <k, Vi<t, @?(ZT) (1) > ?ll(Tw) (7)
=Vt <k, Do (F(w)) = DE8oy, (fi(w))
= hmlnf DC fuove (f(w)) > hmlnf DC 1oon (f1(w)).

By hypothesis, 4
h?i}]?f DtélTqul (fl (’LU)) = o
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As a consequence,

Yw € [P)F, liminf D2 .. (f(w)) > m

t—k C2TUUV2

we

Finally,

Vf € Sched(S 1VY"2), / P(w) - lim inf D%* (f(w))dw >m

we[ Pk t—k  C2l70V2

P(w) - liminf D2 o (f(w))dw > m.

= inf /
feSched(STV2V2 [y Pk

Lk C2TUUV2
16 Proof of Theorem®
Proof :
Consider two system, and S, such thats; =5 ¢; and S, [=7{")__ C,. By theo-

rem[3, we haves; N So |Ff(7)61 || C2 = C'. After simplificationsC’ = (V, -Gy U
-G,G1 NG).
Let f € Sched(S; N Sz 1Y), we have by definition
P([f([PI*) N (GinG) Y] Lp) > o

Moreover,G; NG C G U —A. As a consequence,

P(F([P)N(GLNG) 1V Lp)

[

P([f([PI") N (GU=G1) 1V] |p)
=P([f([P1") N (GU=G1)1Y] |p)

A\VARAY

17 Proof of Theorem[I0D

Proof:

Consider two systemS; and S, such thatS; |h2§:) C; and S |h2(;)rl_$ Cy. By
theorenB, we havé; NS, |):3_(of) C1 || C2 = C'. After simplifications¢’ = (V, -G, U
-G,G1 NG). '

By definition,yw € [P]7, Vf € Sched((S1 N Ss) 1Y), Vi <t <7, gp?,(w)(i) -

1 = f(w)[o,l] € (Gl N G) = f(w)[o,l] € (GU _'A) = gﬁ?(w)(l) = 1. Asa
consequence,

Vw € [PI¥, Vf € Sched((S1 1 82) 1V),Yi <7, 0§ () > ¥F ()
=Vt <7, Y € [P]¥, ¥ € Sched((S1 11 52) 1), DE'(f(w)) > D (f(w)

=510 =, ¢.
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