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Abstract. Interval Markov Chains (IMC) are the base of a classic probabilis-
tic specification theory by Larsen and Jonsson in 1991. They are also a popular
abstraction for probabilistic systems.
In this paper we study complexity of several problems for this abstraction, that
stem from compositional modeling methodologies. In particular we close the
complexity gap for thorough refinement of two IMCs and for deciding the exis-
tence of a common implementation for an unbounded number of IMCs, showing
that these problems are EXPTIME-complete. We also prove that deciding con-
sistency of an IMC is polynomial and discuss suitable notions of determinism for
such specifications.

1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to spec-
ify intervals of possible probabilities on state transitions. IMCs have been introduced by
Larsen and Jonsson [13] as a specification formalism—a basis for a stepwise-refinement-
like modeling method, where initial designs are very abstract and underspecified, and
then they are made continuously more precise, until they are concrete. Unlike richer
specification models such as Constraint Markov Chains [5], IMCs are difficult to use
for compositional specification due to lack of basic modeling operators. To address
this, we study complexity and algorithms for deciding consistency of conjunctive sets
of IMC specifications.

In [13] Jonsson and Larsen have introduced refinement for IMCs, but have not de-
termined its computational complexity. We complete their work on refinement, by clas-
sifying the complexity and characterizing it using structural coinductive algorithms in
the style of simulation.

Consider the issue of combining multiple specifications of the same system. It turns
out that conjunction of IMCs cannot be expressed as an IMC itself, due to a lack of
expressiveness of intervals. Let us demonstrate this using a simple specification of a
user of a coffee machine. Let the model prescribe that a typical user orders coffee with
milk with probability x ∈ [0, 0.5] and black coffee with probability y ∈ [0.2, 0.7]
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(customers also buy tea with probability t ∈ [0, 0.5]). Now the vendor of the machine
delivers another specification, which prescribes that the machine is serviceable only
if coffee (white or black) is ordered with some probability z ∈ [0.4, 0.8] from among
other beverages, otherwise it will run out of coffee powder too frequently, or the powder
becomes too old. A conjunction of these two models would describe users who have
use patterns compatible with this particular machine. Such a conjunction effectively
requires that all the interval constraints are satisfied and that z = x+y holds. However,
the solution of this constraint is not described by an interval over x and y. This can be
seen by pointing out an extremal point, which is not a solution, while all its coordinates
take part in some solution. Say x = 0 and y = 0.2 violates the interval for z, while
for each of these two values it is possible to select another one in such a way that z’s
constraint is also held (for example (x = 0, y = 0.4) and (x = 0.2, y = 0.2)). Thus the
solution space is not an interval over x and y.

This lack of closure properties for IMCs motivates us to address the problem of rea-
soning about conjunction, without constructing it — the, so called, common implemen-
tation problem. In this paper we provide algorithms and complexities for consistency,
common implementation, and refinement of IMCs, in order to enable compositional
modeling. We contribute the following new results:

– In [13] a thorough refinement (TR) between IMCs is defined as an inclusion of im-
plementation sets. We define suitable notions of determinism for IMCs, and show
that for deterministic IMCs TR coincides with two simulation-like preorders (the
weak refinement and strong refinement), for which there exist co-inductive algo-
rithms terminating in a polynomial number of iterations.

– We show that the thorough refinement procedure given in [13] can be implemented
in single exponential time. Furthermore we provide a lower bound, concluding that
TR is EXPTIME-complete. While the reduction from TR of modal transition sys-
tems [4] used to provide this lower bound is conceptually simple, it requires a rather
involved proof of correctness, namely that it preserves sets of implementations in a
sound and complete manner.

– A polynomial procedure for checking whether an IMC is consistent (C), i.e. it ad-
mits an implementation as a Markov Chain.

– An exponential procedure for checking whether k IMCs are consistent in the sense
that they share a Markov Chain satisfying all—a common implementation (CI). We
show that this problem is EXPTIME-complete.

– As a special case we observe, that CI is PTIME for any constant value of k. In
particular checking whether two specifications can be simultaneously satisfied, and
synthesizing their shared implementation can be done in polynomial time.

For functional analysis of discrete-time non-probabilistic systems, the theory of
Modal Transition Systems (MTS) [18] provides a specification formalism supporting
refinement, conjunction and parallel composition. Earlier we have obtained EXPTIME-
completeness both for the corresponding notion of CI [3] and of TR [4] for MTSs. In
[13] it is shown that IMCs properly contain MTSs, which puts our new results in a
somewhat surprising light: in the complexity theoretic sense, and as far as CI and TR
are considered, the generalization of modalities by probabilities does come for free.
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Fig. 1: Examples of Markov Chains, Interval Markov Chains and satisfaction relation.

The paper proceeds as follows. In Section 2 we introduce the basic definitions.
All results in subsequent sections are new and ours. In Section 3 we discuss deciding
TR and other refinement procedures. We expand on the interplay of determinism and
refinements in Section 4. The problems of C and CI are addressed in Section 5. We
close by discussing the results and related work in Section 6. The proofs are deferred to
the Appendix, included for the discretion of the referees.

2 Background

We shall now introduce the basic definitions used throughout the paper. In the follow-
ing we will write Intervals[0,1] for the set of all closed, half-open and open intervals
included in [0, 1].

We begin with settling notation for Markov Chains. A Markov Chain (sometimes
MC in short) is a tuple C = 〈P, p0, π, A, VC〉, where P is a set of states containing
the initial state p0, A is a set of atomic propositions, VC : P → 2A is a state valuation
labeling states with propositions, and π : P → Distr(P ) is a probability distribution
assignment such that

∑
p′∈P π(p)(p′) = 1 for all p ∈ P . The probability distribution

assignment is the only component that is relaxed in IMCs:

Definition 1 (Interval Markov Chain). An Interval Markov Chain is a tuple I =
〈Q, q0, ϕ,A, VI〉, where Q is a set of states containing the initial state q0, A is a set
of atomic propositions, VI : Q → 2A is a state valuation, and ϕ : Q → (Q →
Intervals[0,1]), which for each q ∈ Q and q′ ∈ Q gives an interval of probabilities.

Instead of a distribution, as in MCs, in IMCs we have a function mapping elementary
events (target states) to intervals of probabilities. We interpret this function as a con-
straint over distributions. This is expressed in our notation as follows. Given a state
q ∈ Q and a distribution σ ∈ Distr(Q), we say that σ ∈ ϕ(q) iff σ(q′) ∈ ϕ(q)(q′)
for all q′ ∈ Q. Occasionally, it is convenient to think of a Markov Chain as an IMC, in
which all probability intervals are closed point intervals.

We visualize IMCs as automata with intervals on transitions. As an example, con-
sider the IMC in Figure 1b. It has two outgoing transitions from the initial state A. No
arc is drawn between states, if the probability is zero (or more precisely the interval is
[0, 0]), so in the example there is zero probability of going from state A to A, or from
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B to C, etc. Otherwise the probability distribution over successors of A is constrained
to fall into ]0.7, 1] and [0, 0.3[ for B and C respectively. States B and C have valuation
β, whereas state A has valuation α, δ. Figure 1a presents a Markov Chain using the
same convention, modulo the intervals. Notice that our formalism does not allow “sink
states” with no outgoing transitions. In the figures states with no outgoing transitions
are meant to have a self-loop transition with probability 1 (a closed point interval).

There are three known ways of defining refinement for IMCs: the strong refinement (in-
troduced as simulation in [13]), weak refinement (introduced under the name of prob-
abilistic simulation in [9]), and thorough refinement (introduced as refinement in [13]).
We will recall their formal definitions:

Definition 2 (Strong Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉, I2 = 〈S, s0, ϕ2, A, V2〉
be IMCs. A relationR ⊆ Q× S is a strong refinement relation if whenever qR s then

1. The valuation sets agree: V1(q) = V2(s) and
2. There exists a correspondence function δ : Q → (S → [0, 1]) such that for all
σ ∈ Distr(Q), if σ ∈ ϕ1(q), then

(a) for each q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,
(b) for all s′ ∈ S, we have

∑
q′∈Q σ(q′) · δ(q′)(s′) ∈ ϕ2(s)(s′), and

(c) for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′R s′.

I1 strongly refines I2, or I1≤S I2, iff there exists a strong refinement containing (q0, s0).

A strong refinement relation requires existence of a single correspondence, which
witnesses satisfaction for any resolution of probability constraint over successors of q
and s. Figure 2a illustrates such a correspondence between statesA and α of two IMCs.
The correspondence function is given by labels on the dashed lines. It is easy to see that
regardless of how the probability constraints are resolved the correspondence function
distributes the probability mass in a fashion satisfying α.

A weak refinement relation requires that for any resolution of probability constraint
over successors in I1 there exists a correspondence function, which witnesses satisfac-
tion of I2. The formal definition of weak refinement is identical to Def. 2, except that
the condition opening Point 2 is replaced by a weaker one:

Definition 3 (Weak Refinement). Let I1 = 〈Q, q0, ϕ1, A, V1〉, I2 = 〈S, s0, ϕ2, A, V2〉
be IMCs. A relationR ⊆ Q× S is a weak refinement relation if whenever qR s, then

– Their valuation sets agree: V1(q) = V2(s)
– For each σ ∈ Distr(Q) such that σ ∈ ϕ1(q), there exists a correspondence function
δ : Q→ (S → [0, 1]) such that

1. For each q′ ∈ Q such that σ(q′) > 0, δ(q′) is a distribution on S,
2. for all s′ ∈ S, we have

∑
q′∈Q σ(q′) · δ(q′)(s′) ∈ ϕ2(s)(s′), and

3. for all q′ ∈ Q and s′ ∈ S, if δ(q′)(s′) > 0, then q′R s′.

I1 weakly refines I2, or I1 ≤W I2, iff there exists a weak refinement containing (q0, s0).
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Fig. 2: Illustration of strong and weak refinement relations.

Figure 2b illustrates a weak refinement between states A and α of another two
IMCs. Here x stands for a value in [0.2, 1] (arbitrary choice of probability of going
to state C from A). Notably, for each choice of x there exists p ∈ [0, 1] such that
p · x ∈ [0, 0.6] and (1− p) · x ∈ [0.2, 0.4].

Satisfaction Relation. This relation establishes compatibility of Markov Chains
(implementations) and IMCs (specifications). The original definition has been presented
in [13, 14]. Consider a Markov chainC = 〈P, p0, π, A, VC〉 as an IMC with only closed
point interval probabilities, and let I = 〈Q, q0, ϕ,A, VI〉 be an IMC. We say that C
satisfies I , writtenC |= I , iff there exists a weak/strong refinement relationR ⊆ P×Q,
called a satisfaction relation, containing (p0, q0). Remark that when C is a Markov
Chain, the weak and strong notions of refinement coincide. Whenever C |= I , C is
called an implementation of I . The set of implementations of I is written [[I]]. Figure 1c
presents an example of satisfaction on states 1 and A. The correspondence function is
specified using labels on the dashed arrows i.e. the probability mass going from state 1
to 3 is distributed to state B and C with half going to each.

We will say that a state q of an IMC is consistent, if its interval constraint ϕ(q) is
satisfiable, i.e. there exists a distribution σ ∈ Distr(Q) satisfying ϕ(q) so: σ ∈ ϕ(q).
Obviously, for a given IMC, it is sufficient that all its states are consistent in order to
guarantee that the IMC is consistent itself—there exists a Markov Chain satisfying it.
We discuss the problem of establishing consistency in a sound and complete manner in
Section 5.

Finally, we introduce the thorough refinement as defined in [13]:

Definition 4 (Thorough Refinement). IMC I1 thoroughly refines IMC I2, written I1 ≤T
I2, iff each implementation of I1 implements I2: [[I1]] ⊆ [[I2]]

Thorough refinement is the ultimate refinement relation for any specification for-
malism, as it is based on the semantics of the models.

3 Refinement Relations

In this section, we compare the expressiveness of the refinement relations. It is not hard
to see that both strong and weak refinements soundly approximate the thorough re-
finement (since they are transitive and degrade to satisfaction if the left argument is a
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Markov Chain). The converse does not hold. We will now discuss procedures to com-
pute weak and strong refinements, and then compare the granularity of these relations,
which will lead us to procedures for computing thorough refinement. Observe that both
refinements are decidable, as they only rely on the first order theory of real numbers. In
concrete cases below the calculations can be done more efficiently due to convexity of
solution spaces for interval constraints.

Weak and Strong Refinement. Consider two IMCs I1 = 〈P, o1, ϕ1, A, V1〉 and I2 =
〈Q, o2, ϕ2, A, V2〉. Informally, checking whether a given relationR ⊆ P ×Q is a weak
refinement relation reduces to checking, for each pair (p, q) ∈ R, whether the following
formula is true: ∀π ∈ ϕ1(p), ∃δ : P → (Q → [0, 1]) such that π × δ satisfies a
system of linear equations / inequations. Since the set of distributions satisfyingϕ1(p) is
convex, checking such a system is exponential in the number of variables, here |P | · |Q|.
As a consequence, checking whether a relation on P ×Q is a weak refinement relation
is exponential in |P | · |Q|. For strong refinement relations, the only difference appears
in the formula that must be checked: ∃δ : P → (Q→ [0, 1]) such that ∀π ∈ ϕ1(p), we
have that π× δ satisfies a system of linear equations / inequations. Therefore, checking
whether a relation on P×Q is a strong refinement relation is also exponential in |P |·|Q|.

Deciding whether weak (strong) refinement holds between I1 and I2 can be done in
the usual coinductive fashion by considering the total relation P ×Q and successively
removing all the pairs that do not satisfy the above formulae. The refinement holds
iff the relation we reach contains the pair (o1, o2). The algorithm will terminate after at
most |P |·|Q| iterations. This gives an upper bound on the complexity to establish strong
and weak refinements: a polynomial number of iterations over an exponential step. This
upper bound may be loose. One could try to reuse techniques for nonstochastic systems
[12] in order to reduce the number of iterations. This is left to future work.

Granularity. In [13] an informal statement is made, that the strong refinement is strictly
stronger (finer) than the thorough refinement: (≤T) ) (≤S). In [9] the weak refinement
is introduced, but without discussing its relations to neither the strong nor the thorough
refinement. The following theorem resolves all open issues in relations between the
three:

Theorem 1. The thorough refinement is strictly weaker than the weak refinement, which
is strictly weaker than the strong one: (≤T) ) (≤W) ) (≤S).

The first inequality is shown by exhibiting IMCs I4 and I5 such that I4 thoroughly,
but not weakly refines I5 (Figure 3). All implementations of I4 satisfy I5, but state B
can not refine any of β1 or β2: Let σ be a distribution admitted in B giving probability
1 to state C. Because of the interval [0, 0.5] on the transition from β1 to δ1, at least
0.5 must be assigned to γ1, but C and γ1 can not be related. A similar argument shows
that B can not refine β2. The second inequality is shown by demonstrating other two
IMCs, I3 and I2 such that I3 weakly but not strongly refines I2 (Figure 2b). State A
weakly refines state α: Given a value x for the transition A → C, we can split it in

order to match both transitions α
p·x−−→ δ1 and α

(1−p)·x−−−−−→ δ2. Define δ(C)(δ1) = p and
δ(C)(δ2) = (1 − p), with p = 0 if 0.2 ≤ x ≤ 0.4, p = x−0.3

x if 0.4 < x < 0.8, and
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p = 0.6 if 0.8 ≤ x. The correspondence function δ witnesses weak refinement between
A and α. However, there is no such value of p that would work uniformly for all x,
which is required by the strong refinement.

Deciding Thorough Refinement. As weak and strong refinements are strictly stronger
than thorough refinement, it is interesting to investigate complexity of deciding TR. In
[13] a procedure computing TR is given, albeit without a complexity class, which we
establish now closing the problem:

Theorem 2. The decision problem TR of establishing whether there exists a thorough
refinement between two given IMCs is EXPTIME-complete.

The upper-bound in checking whether I1 thorough refines I2 is shown by observing
that the complexity of the subset-simulation algorithm of [13] is O(|Q| · 2|P |), where Q
and P are the set of states of I1 and I2, respectively (see Appendix B.1).

Summarizing, all three refinements are in EXPTIME. Still, weak refinement seems
easier to check than thorough. For TR the number of iterations on the state-space of the
relation is exponential while it is only polynomial for the weak refinement. Also, the
constraint solved at each iteration involves a single quantifier alternation for the weak,
and three alternations for the thorough refinement.

The lower bound of Theorem 2 is shown by a polynomial reduction of the thorough
refinement problem for modal transition systems to TR of IMCs. The former problem
is known to be EXPTIME-complete [4].

A modal transition system (an MTS in short) [18] is a tuple M = (S, s0, A,
→, 99K), where S is the set of states, s0 is the initial state, and →⊆ S × A × S
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are the transitions that must be taken and 99K⊆ S ×A× S are the transitions that may
be taken. In addition, it is assumed that (→) ⊆ (99K). An implementation of an MTS
is a labelled transition system, i.e., an MTS where (→) = (99K). Formal definitions of
refinement and satisfaction for MTSs are given in Appendix B.4.

We describe here a translation of MTSs into IMCs which preserves implementa-
tions, while we delegate the technicalities of the proof to Appendix B.5. We assume we
only work with modal transition systems that have no deadlock-states, in the sense that
each state has at least one outgoing must transition. It is easy to transform two arbi-
trary MTSs into deadlock-free ones, without affecting the thorough refinement between
them. See Appendix B.4 for a proof.

The IMC M̂ corresponding to a MTS M = (S, s0, A,→, 99K) is defined by the
tuple M̂ = 〈Q, q0, A ∪ {ε}, ϕ, V 〉 where Q = S × ({ε} ∪ A), q0 = (s0, ε), for all
(s, x) ∈ Q, V ((s, x)) = {x} and ϕ is defined as follows: for all t, s ∈ S and b, a ∈
({ε} ∪ A), ϕ((t, b))((s, a)) =]0, 1] if t a→ s; ϕ((t, b))((s, a)) = [0, 0] if t 6 a99K s; and
ϕ((t, b))((s, a)) = [0, 1] otherwise. The encoding is illustrated in Figure 4.

Now one can show that I |= M iff [[Î]] ⊆ [[M̂ ]], and use this to show that the
reduction preserves thorough refinement. This observation, which shows how deep is
the link between IMCs and modal transition systems, is formalized in the following
theorem lifting the syntactic reduction to the level of extensional semantics:

Theorem 3. Let M and M ′ be two Modal Transition Systems and M̂ and M̂ ′ be the
corresponding IMCs defined as above. We have

M ≤T M
′ ⇐⇒ M̂ ≤T M̂ ′

Crucially the translation is polynomial. Thus if we had a subexponential algorithm
for TR of IMCs, we could use it to obtain a subexponential algorithm for TR of MTSs,
which is impossible [4].

4 Determinism

Although both are in EXPTIME, deciding weak refinement is easier than deciding thor-
ough refinement. Nevertheless, since these two refinements do not coincide, in general,
a procedure to check weak refinement cannot be used to decide thorough refinement.

Observe that weak refinement has a syntactic definition very much like simulation
for transition systems. On the other hand thorough refinement is a semantic concept,
just as trace inclusion for transition systems. It is well known that simulation and trace
inclusion coincide for deterministic automata. Similarly for MTSs it is known that TR
coincides with modal refinement for deterministic objects. It is thus natural to define
deterministic IMCs and check whether thorough and weak refinements coincide on
these objects.

In our context, an IMC is deterministic if, from a given state, one cannot reach two
states that share common atomic propositions.

Definition 5 (Determinism). An IMC I = 〈Q, q0, ϕ,A, V 〉 is deterministic iff for all
states q, r, s ∈ Q, if there exists a distribution σ ∈ ϕ(q) such that σ(r) > 0 and
σ(s) > 0, then V (r) 6= V (s).
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Weak determinism ensures that two states reachable with the same admissible dis-
tribution always have different valuations. In a semantic interpretation this means that
there exists no implementation of I , in which two states with the same valuation can be
successors of the same source state. Another, slightly more syntactic but semantically
equivalent notion of determinism is given in Appendix C.1.

B2

A

B1 C

β

α

β γ

1]0, 1]

]0, 1]
1

1

Fig. 5: An IMC I whose implementations
cannot be captured by a deterministic IMC.

It is worth mentioning that determin-
istic IMCs are a strict subclass of IMCs.
Figure 9 shows an IMC I whose set of im-
plementations cannot be represented by a
deterministic IMC.

We now state the main theorem of the
section that shows that for deterministic
IMCs, the weak refinement, and indeed
also the strong refinement, correctly capture the thorough refinement:

Theorem 4. For deterministic IMCs I , I ′ with no inconsistent states I≤T I
′ iff I≤W I

′

iff I≤S I
′.

5 Common Implementation and Consistency

We now turn our attention to the problem of implementation of several IMC specifi-
cations by the same probabilistic system modeled as a Markov Chain. We start with
defining the problem:

Definition 6 (Common Implementation (CI)). Given k > 1 IMCs Ii, i = 1 . . . k,
does there exist a Markov Chain C such that C |= Ii for all i?

Somewhat surprisingly we find out that, similarly to the case of TR, the CI problem is
not harder for IMCs than for modal transition systems:

Theorem 5. Deciding the existence of a CI between k IMCs is EXPTIME-complete.

We sketch the line of argument below, delegating to Appendix D for details. To
establish a lower bound for CI of IMCs, we reduce from CI of modal transition systems,
which is known to be EXPTIME-complete [3]. For a set of modal transition systemsMi,
i = 1 . . . k, translate each Mi, into an IMC M̂i, using the same rules as in Section 3.
It turns out that the set of created IMCs has a common implementation if and only
if the original modal transition systems had. Since the translation is polynomial, the
problem of CI for IMCs has to be at least EXPTIME-hard (otherwise it would give a
sub-EXPTIME algorithm for CI of MTSs).

To address the upper bound we first propose a simple construction to check if there
exists a CI for two IMCs. We start with the definition of consistency relation that wit-
nesses a common implementation between two IMCs.

Definition 7. Let I1 = 〈Q1, q
1
0 , ϕ1, A, V1〉 and I2 = 〈Q2, q

2
0 , ϕ2, A, V2〉 be IMCs.

Then R ⊆ Q1 × Q2 is a consistency relation on the states of I1 and I2 iff whenever
(u, v) ∈ R then
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– V1(u) = V2(v),
– there exists a ρ ∈ Distr(Q1 ×Q2) such that

1. ∀u′ ∈ Q1 :
∑
v′∈Q2

ρ(u′, v′) ∈ ϕ1(u)(u′) ∧ ∀v′ ∈ Q2 :
∑
u′∈Q1

ρ(u′, v′) ∈
ϕ2(v)(v′), and

2. ∀(u′, v′) ∈ Q1 ×Q2 st. ρ(u′, v′) > 0, then (u′, v′) ∈ R.

It can be shown that two IMCs indeed have a common implementation if and only
if there exists a consistency relation containing their initial states. The consistency rela-
tion can be computed in polynomial time using a standard coinductive fixpoint iteration,
where pairs violating Definition 7 are successively removed from Q1 × Q2. Each iter-
ation requires solving a polynomial number of linear systems, which can be done in
polynomial time [17]. For the general problem of common implementation of k IMCs,
we can extend the above definition of consistency relation to the k-ary relation in the
obvious way, and the algorithm becomes exponential in the number of IMCs k, as the
size of the state space

∏k
i=1 |Qi| is exponential in k.

As a side effect we observe that, exactly like MTSs, CI becomes polynomial for any
constant value of k, i.e. when the number of components to be checked is bounded by
a constant.

Consistency A related problem is the one of checking consistency of a single IMC I ,
i.e. whether there exists a Markov chain M such that M |= I .

Definition 8 (Consistency (C)). Given an IMC I , does it hold that [[I]] 6= ∅?
It turns out that, in the complexity theoretic sense, this problem is easy:

Theorem 6. The problem C, to decide if a single IMC is consistent, is polynomial time
solvable.

Given an IMC I = 〈Q, q0, ϕ,A, V 〉, this problem can be solved by constructing
a consistency relation over Q × Q (as if searching for a common implementation of
Q with itself). Now there exists an implementation of I iff there exists a consistency
relation containing (q0, q0). Obviously, this can be checked in polynomial time.

The fact that C can be decided in polynomial time casts an interesting light on the
ability of IMCs to express inconsistency. On one hand, one can clearly specify inconsis-
tent states in IMCs (simply by giving intervals for successor probabilities that cannot be
satisfied by any distribution). On the other hand, this inconsistency appears to be local.
It does not induce any global constraints on implementations; it does not affect con-
sistency of other states. In this sense IMCs resemble modal transition systems (which
at all disallow expressing inconsistency), and are weaker than mixed transition systems
[8]. Mixed transition systems relax the requirement of modal transition systems, not
requiring that (→) ⊆ (99K). It is known that C is trivial for modal transition systems,
but EXPTIME-complete for mixed transition systems [3]. Clearly, with a polynomial
time C, IMCs cannot possibly express global behaviour inconsistencies in the style of
mixed transition systems, where the problem is much harder.

We conclude the section by observing that, given the IMC I and a consistency
relationR ⊆ Q×Q, it is possible to derive a pruned IMC I∗ = 〈Q∗, q∗0 , ϕ∗, A, V ∗〉 that
contains no inconsistent states and accepts the same set of implementations as I . The
construction of I∗ is as follows: Q∗ = {q ∈ Q|(q, q) ∈ R}, q∗0 = q0, V ∗(q∗) = V (q∗)
for all q∗ ∈ Q∗, and for all q∗1 , q

∗
2 ∈ Q∗, ϕ∗(q∗1)(q∗2) = ϕ(q∗1)(q∗2).



Decision Problems for Interval Markov Chains 11

6 Related Work and Conclusion

This paper provides new results for IMCs [13] that is a specification formalism for prob-
abilistic systems. We have studied the expressiveness and complexity of three refine-
ment preorders for IMCs. The results are of interest as existing articles on IMCs often
use one of these preorders to compare specifications (for abstractions) [13, 15, 9]. We
have established complexity bounds and decision procedures for these relations, first
introduced in [13]. Finally, we have studied the common implementation problem that
is to decide whether there exists an implementation that can match the requirements
made by two or more specifications. Our solution is constructive in the sense that it can
build such a common implementation.

Our results are robust with respect to simple variations of IMCs. For example sets
of sets of propositions can be used to label states, instead of sets of propositions. This
extends the power of the modeling formalism, which now can not only express abstrac-
tions over probability distributions, but also over possible state valuations. Similarly
an initial distribution, or even an interval constraint on the initial distribution, could be
used instead of the initial state in IMCs without affecting the results.

There exists many other specification formalisms for describing and analyzing stochas-
tic systems; the list includes process algebras [2, 19] or logical frameworks [10]. We
believe that IMCs is a good unification model. A logical representation is suited for
conjunction, but nor for refinement and vice-versa for process algebra. As an exam-
ple, it is not clear how one can synthesize a MC (an implementation) that satisfies two
Probabilistic Computation Tree Logic formulas.

IMCs served the purpose of abstraction in model checking, where a concrete sys-
tem is being abstracted by a less precise system in order to prove the properties more
easily [7, 6, 9, 15]. The main issues related to model checking of IMCs have recently
been addressed in [9].

As we already stated, IMCs are not expressive enough to represent many artifacts
of compositional design. In [5], we have presented Constraint Markov Chains (CMC)
a specification model that, contrary to IMCs, is closed under composition and conjunc-
tion. While more expressive than IMCs, CMCs are not an immediate and universal
replacement for IMCs, given that complexity of decision procedures for them is much
higher. IMCs remain relevant, whenever parallel composition is not required in the ap-
plication, or when they are used as a coarse abstraction (for example) for CMCs. In the
future we expect to see whether our complexity results can be extended to CMCs, and
whether IMCs can be used in counter-example guided abstraction-refinement decision
procedures for CMCs.

In [15, 16], Katoen et al. have proposed an extension of IMCs to the continuous
timed setting. It would be interesting to see whether our results extend to this new
model. Another interesting future work would be to extend our results to other spec-
ification formalisms for systems that mix both stochastic and non-deterministic as-
pects. Among them, one finds probabilistic automata [20] where weak/strong refine-
ment would be replaced by probabilistic simulation [21].

In mathematics the abstraction of Markov set-chains [11] lies very close to IMCs.
It has been, for instance, used to approximate dynamics of hybrid systems [1]. Markov-
set chain have different objective, and compositional reasoning operators have not been
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considered for them, so far. Markov set-chains allow iterative approximation of im-
plementations with increasing state space size. It would be interesting to investigate if
these could be used to define size-parametrized versions of our decision problems, and
whether these could be solved by iterative approximations.
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Fig. 6: Satisfaction relations using direct and indirect redistribution of the probability mass.

A On Satisfaction Relations

There are two classical ways of defining a satisfaction relation for probabilistic spec-
ifications like IMCs, and they are strictly equivalent. In our paper we used an explicit
correspondence function in the definition of satisfaction. This is slightly different, but a
strictly equivalent form [13, 14]:

Definition 9 ((Direct) Satisfaction Relation). Let C = 〈P, p0, π, A, VC〉 be a MC and
let I = 〈Q, q0, ϕ,A, VI〉 be an IMC. A relation R ⊆ P × Q is called a satisfaction
relation if whenever pR q then

– VC(p) = VI(q)
– there exists a probability distribution δ ∈ Distr(P ×Q) such that

1.
∑
q′∈Q δ(p

′, q′) = π(p)(p′) for all p′ ∈ P ,
2.

∑
p′∈P δ(p

′, q′) ∈ ϕ(q)(q′) for all q′ ∈ Q, and
3. if δ(p′, q′) > 0, then p′R q′.

Figure 6 compares the two definitions using an example side by side.

B On Refinement Relations

B.1 Subset Simulation

For the sake of completeness, and in order to clarify several typesetting inaccuracies
of the original presentation, we quote the construction of [13] below and subseqently
analyze its complexity:

Definition 10 (Subset simulation). Let I1 = 〈Q, q0, ϕQ, A, VQ〉, I2 = 〈P, p0, ϕP , A,
VP 〉 be IMCs. A total relation R ⊆ Q × 2P is a subset-simulation iff for each state
q ∈ Q:

1. qRT implies VQ(q) = VP (t) for all t ∈ T
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2. For each probability distribution πQ ∈ ϕQ(q) and each correspondence function
δQ : Q → (2P → [0, 1]) such that support(δQ) ⊆ R, there exists a set T such
that qRT and for each t ∈ T , there exists a probability distribution πP ∈ ϕP (t)
and a correspondence function δP : P → (2P → [0, 1]) such that

(a) if δP (t′)(T ′) > 0 then t′ ∈ T ′.
(b) For all T ′ ∈ 2P we have

∑
q′∈Q

πQ(q′)δQ(q′)(T ′) =
∑
p′∈P

πP (p′)δP (p′)(T ′).

Intuitively, this relation associates to every state q of I1 a sample of sets of states
(T1, . . . , Tk) of I2 that are “compatible” with q. Then, for each admissible redistribution
δ of the successor states of q, it states that there exists one of the sets Ti such that
for each of its states t′, there is a redistribution γ of the successor states of t′ that is
compatible with δ. In [13] it is shown that the existence of a subset-simulation between
two IMCs I1 and I2 is equivalent to thorough refinement between them. We include an
example for this construction in Appendix B.2, for convenience of the reader.

The existence of a subset simulation between two IMCs is decided using a standard
co-inductive fixpoint calculation. The algorithm works as follows: first consider the
total relation and check whether it is a subset-simulation. Then refine it, by removing
violating pairs of states, and check again until a fixpoint is reached (it becomes a subset-
simulation or it is empty). Checking whether a given relation is a subset simulation has
a single exponential complexity. Checking the second condition in the definition can be
done in single exponential time by solving polynomial constraints with fixed quantifiers
for each pair (q, T ) in the relation. There are at most |Q| · 2|P | such pairs, which gives
a single exponential time bound for the cost of one iteration of the fixpoint loop. There
are at most |Q| · 2|P | elements in the total relation and at least one is removed in an
iteration, which gives O(|Q| · 2|P |) as the bound on the number of iterations. Since a
polynomial of two exponentials, is still an exponential, we obtain a single exponential
time for running time of this computation.

B.2 Example of a Subset Simulation

This is example is included for convenience of the reader. The original presentation of
this subset simulation relation can be found in [13], but the example used here is ours.

Example 1. Consider the IMCs I4 = 〈{A,B,C,D}, A, ϕ4, {a, b, c, d}, V4〉 and I5 =
〈{α, β1, β2, δ1, δ2,
γ1, γ2}, α, ϕ5, {a, b, c, d}, V5〉 given in Figure 3. They are such that I4 thoroughly but
not weakly refines I5 (c.f. proof of Theorem 1). Since thorough refinement holds, we
can exhibit a subset simulationR ⊆ P × 2Q between I4 and I5: Let

R = {(A, {α}), (B, {β1}), (B, {β2}), (C, {δ1, δ2}), (D, {γ1, γ2})}.

We illustrate the unfolding ofR for states A and B of I4. The rest is left to the reader.
Consider state A of I4.

1. We have AR{α}, and V4(A) = a = V5(α).
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Fig. 7: Illustration of the weak refinement relation between IMC I3 and IMC I2; p is a parameter.

2. The only distribution π ∈ ϕ4(A) is such that π(B) = 1. Let for example ∆1 ∈
[0, 1]4×27

be the correspondance matrix such that ∆1
B,{β1} = 1/2 and ∆1

B,{β2} =
1/2. Let {α} be the set such that AR{α}. Let ρ be the distribution on Q such
that ρ(β1) = ρ(β2) = 1/2. ρ is indeed in ϕ5(α). Let ∆2 ∈ [0, 1]7×27

be the
correspondance matrix such that∆2

β1,{β1} = 1 and∆2
β2,{β2} = 1. It is then obvious

that
(a) for all t and T , if ∆2

t,T > 0, then t ∈ T ;
(b) π ×∆1 = ρ×∆2 holds.

Consider state B of I4.

1. We have BR{β1} and BR{β2}. It holds that V4(B) = b = V5(β1) = V5(β2).
2. Consider a distribution π ∈ ϕ4(B) (for example such that π(C) < 1/2). Let
∆1 be an admissible correspondance matrix. We must have ∆1

C,{δ1,δ2} = 1 and
∆1
D,{γ1,γ2} = 1. Consider {β1} the set such that BR{β1} (if π(C) > 1/2 then

pick up {β2} instead). Let ρ be the distribution such that ρ(δ1) = π(C) and
ρ(γ1) = π(D). Since π(C) < 1/2, we have ρ ∈ ϕ5(β1). Let ∆2 be a corre-
spondance matrix such that ∆2

δ1,{δ1,δ2} = 1 and ∆2
γ1,{γ1,γ2} = 1. It is obvious

that
(a) for all t and T , if ∆2

t,T > 0, then t ∈ T ;
(b) π ×∆1 = ρ×∆2 holds.

The rest of the unfolding is obvious, andR is thus a subset simulation.

B.3 Proof of Thm. 1

In this section, we give IMCs I3, I2, I4 and I5 proving that

(≤T) ) (≤W) ) (≤S)

Consider the IMCs I3 and I2 given in Figure 7. We prove that I3 weakly but not
strongly refines I2.
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Proof. State A weakly refines state α: Given a value x for the transition A → C, we

can split it in order to match both transitions α
p·x−−→ δ1 and α

(1−p)·x−−−−−→ δ2. Define
δ(C)(δ1) = p and δ(C)(δ2) = (1− p), with

p =

0 if 0.2 ≤ x ≤ 0.4
x−0.3
x if 0.4 < x < 0.8

0.6 if 0.8 ≤ x

δ1 is a correspondence function witnessing a weak refinement relation between A and
α. However, we cannot find a coefficient p that would work for all x.

Consider the IMCs I4 and I5 given in Figure 8. We prove that I4 thoroughly but not
weakly refines I5.

DC

B

A

dc

[0, 1][0, 1]

1

b

a

(a) IMC I4

[0, 0.5][0, 1][0, 1][0, 0.5]

[0, 1] [0, 1]

dcdc

γ2δ2γ1δ1

β1 β2

α

a

b b

(b) IMC I5

Fig. 8: IMCs I4 and I5 such that I4 thoroughly but not weakly refines I5

Proof. Let M be an implementation of I4 and R a corresponding satisfaction relation.
Let P be the set of states of M implementing B. Each state p ∈ P either satisfies β1,
β2 or both. Call P1 the set of states p ∈ P such that p satisfies β1 and P2 the set of
states p ∈ P such that p satisfies β2 and not β1. We build a satisfaction relation R′
such that, for all q ∈ M , if qRA then qRα ; if q ∈ P1, then qR′ β1 ; if q ∈ P2, then
qR′ β2 ; if qRC, then qR′ δ1 and qR′ δ2 ; and if qRD then qR′ γ1 and qR′ γ2.
By construction, R′ is a satisfaction relation, and M is an implementation of I5. Thus,
[[I4]] ⊆ [[I5]].

However, it is impossible to define a weak refinement relation between I4 and I5 :
obviously, B can neither refine β1 nor β2.

B.4 On MTS with no deadlocks

A modal transition system M = (S, s0, A,→, 99K) refines another modal transition
system N = (T, t0, A,→, 99K) iff there exists a refinement relation R ⊆ S × T con-
taining (s0, t0) such that if (s, t) ∈ R then
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1. whenever t a→ t′ then also s a→ s′ for some s′ ∈ S and (s′, t′) ∈ R
2. whenever s

a
99K s′ then also t

a
99K t′ for some t′ ∈ T and (s′, t′) ∈ R

A labelled transition system implements a MTS if it refines it in the above sense. Thor-
ough refinement of MTSs is defined as inclusion of implementation sets, analogously
to IMCs.

In Section 3, we assume that the MTS we consider have no deadlocks, i.e. in ev-
ery state there is at least one output must transition. In this way, the transformation
we present generates IMCs for which all states are consistent. We present here a trans-
formation that takes any two MTS and transform them into MTS without deadlocks
preserving the notion of thorough refinement between them.

LetM = 〈S, s0, A,→, 99K〉 be a MTS. Let⊥ /∈ A be a new action variable, and q /∈
S be a new state variable. Define a new MTSM⊥ = 〈S∪{q}, s0, A∪{⊥},→⊥, 99K⊥〉
as follows: for all s, s′ ∈ S and a ∈ A, s a→⊥ s′ ⇐⇒ s

a→ s′ and s
a
99K⊥ s′ ⇐⇒

s
a
99K s′. Add the following transitions: for all s ∈ S ∪ {q}, s ⊥→⊥ q and s

⊥
99K⊥ q.

In this way, every state of M⊥ has at least one must outgoing transition. Moreover, it
is trivial that this transformation preserves the notion of thorough refinement. This is
stated in the following theorem:

Theorem 7. Let M and M ′ be two MTS. If ⊥ is in neither of their sets of actions, we
have

[[M ]] ⊆ [[M ′]] ⇐⇒ [[M⊥]] ⊆ [[M ′⊥]]

Finally we can safely suppose that all the MTS we consider in the rest of the section
have no deadlocks.

B.5 Details about the reduction of MTSs into IMCs

We describe here the translation of MTSs into IMCs which preserves implementations.
We first recall the transformation presented in Section 3. The IMC M̂ corresponding to
a MTSM is defined by the tuple M̂ = 〈Q, q0, A∪{ε}, ϕ, V 〉whereQ = S×({ε}∪A),
q0 = (s0, ε), for all (s, x) ∈ Q, V ((s, x)) = {x} and ϕ is defined as follows : for all
t, s ∈ S and b, a ∈ ({ε} ∪ A), ϕ((t, b))((s′, a)) =]0, 1] if t a→ s ; ϕ((t, b))((s′, a)) =
[0, 0] if t 6 a99K s ; and ϕ((t, b))((s′, a)) = [0, 1] otherwise.

We first state two lemmas that will be needed in order to prove the main theorem
of the section: the encoding presented above reduces the problem of checking thorough
refinement on modal transition systems to checking thorough refinement on IMCs.

Lemma 1. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a tran-
sition system. We have

I |= M ⇒ [[Î]] ⊆ [[M̂ ]]

Proof. We first recall the definition of a satisfaction relation for MTS: Let M = (S, s0,
A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a transition system. I |= M iff there
exists a relationR ⊆ SI × S such that



18 B. Delahaye, K.G. Larsen, A. Legay, M.L. Pedersen, and A. Wąsowski

1. sI0R s0
2. Whenever sI R s, we have

(a) For all a ∈ A, s′I ∈ SI , sI
a→ s′I in I implies that there exists s′ ∈ S such that

s
a
99K s′ in M and s′I R s′.

(b) For all a ∈ A, s′ ∈ S, s a→ s′ in M implies that there exists s′I ∈ SI such that
sI

a→ s′I in M and s′I R s′.

Such a relation is called a satisfaction relation for MTS.

Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a transition
system. Let M̂ = 〈Q, q0, A ∪ {ε}, ϕ, V 〉 and Î = 〈QI , (sI0, ε), A ∪ {ε}, ϕI , VI〉 be the
IMCs defined as above.

Suppose that I |= M . Then there exists a satisfaction relation for MTSR ⊆ SI ×S
such that sI0R s0. We prove that [[Î]] ⊆ [[M̂ ]].

Let T = 〈QT , p0, π
T , VT , A〉 be an MC such that T ∈ [[Î]]. As a consequence, there

exists a satisfaction relation for IMCs R1 ⊆ QT × QI such that p0R1(sI0, ε). Define
the new relation R2 ⊆ QT × Q such that pR2(s, x) iff there exists sI ∈ SI such that
pR1(sI , x) and sI R s. We prove that R2 is a satisfaction relation for IMCs between
T and M̂ .

Let p, s, sI , x such that pR1(sI , x) and sI R s, i.e. pR2(s, x). If x 6= ⊥, we have

1. Since pR1(sI , x), we have VT (p) = VI((sI , x))
= {x}. Thus VT (p) = V ((s, x)) = {x}.

2. Let δ1 ∈ Distr(QT × QI) be the probability distribution witnessing pR1(sI , x),
and let δ2 ∈ Distr(QT × Q) such that for all p′ ∈ QT , s

′ ∈ S and y ∈ A, if
{s′I ∈ SI | s′I R s′} 6= ∅ and s

y
99K s′, then define

δ2(p′, (s′, y)) =
∑

{s′I∈SI | s′I R s′}

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

;

Else, δ2(p′, (s′, y)) = 0.
Recap that we suppose that all must transitions are also may transitions. The defini-
tion above potentially gives a non-zero value to δ2(p′, (s′, y)) if there exists a may
(or must) transition from s to s′ in S labelled with y and if there exists a state s′I in
I such that s′I R s′.
Let p′ ∈ QT . We prove that

∑
(s′,y) δ2(p

′, (s′, y)) = πT (p)(p′): By definition of
δ1, we have

∑
(s′I ,y)

δ1(p′, (s′I , y)) = πT (p)(p′).

∑
(s′,y)

δ2(p′, (s′, y)) =

∑
{(s′,y) | ∃s′I , s′I R s′ and s

y
99Ks′}

∑
{s′I | s′I R s′}

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

.

(1)
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Clearly, for all (s′I , y) such that δ1(p′, (s′I , y)) > 0, the term

δ1(p′, (s′I , y))

|{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}|

will appear exactly |{s′′ ∈ S | s′I R s′′ and s
y
99K s′′}| times in the expression

above. As a consequence,∑
(s′,y)

δ2(p′, (s′, y)) =
∑

(s′I ,y)

δ1(p′, (s′I , y)) = πT (p)(p′).

Moreover, we show that for all (s′, y) ∈ Q, that
∑
p′∈QT δ2(p′, (s′, y)) ∈

ϕ((s, x)(s′, y)). By construction, ϕ((s, x)(s′, y)) is either {0}, [0, 1] or ]0, 1]. We
will thus prove that (a) if

∑
p′∈QT δ2(p′, (s′, y)) > 0, then ϕ((s, x)(s′, y)) 6= {0};

and (b) if ϕ((s, x)(s′, y)) =]0, 1], then
∑
p′∈QT δ2(p′, (s′, y)) > 0.

(a) Suppose
∑
p′∈QT δ2(p′, (s′, y)) > 0. By definition, there must exist p′ such

that
δ2(p′, (s′, y)) > 0. As a consequence, by definition of δ2, there exists a transi-
tion s

y
99K s′ in M and ϕ((s, x), (s′, y)) 6= {0}.

(b) If ϕ((s, x)(s′, y)) =]0, 1], then there exists a transition s
y→ s′ in M . As

a consequence, by R, there exists s′I ∈ SI such that sI
y→ s′I in I and

s′I R s′. Thus ϕI((sI , x), (s′I , y)) =]0, 1]. By definition of δ1, we know that∑
p′∈QT δ1(p′, (s′I , y))

> 0, thus there exists p′ ∈ QT such that δ1(p′, (s′I , y)) > 0. Since s′I R s′

and s
y→ s′, we have δ2(p′, (s′, y)) > 0, thus∑

p′′∈QT

δ2(p′′, (s′, y)) > 0.

Finally, if δ2(p′, (s′, y)) > 0, there exists s′I ∈ SI such that s′I R s′ and
δ1(p′, (s′I , y)) > 0. By definition of δ1, we have p′R1(s′I , y). As a consequence,
p′R2(s′, y).

R2 satisfies the axioms of a satisfaction relation for IMCs, thus T ∈ [[M̂ ]] and finally
[[Î]] ⊆ [[M̂ ]].

Lemma 2. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a tran-
sition system. We have

[[Î]] ⊆ [[M̂ ]]⇒ I |= M

Proof. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a transition
system. Let M̂ = 〈Q, q0, A∪{ε}, ϕ, V 〉 and Î = 〈QI , qI0 , A∪{ε}, ϕI , VI〉 be the IMCs
defined as above.

Suppose that [[Î]] ⊆ [[M̂ ]]. We prove that I |= M .
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Let T = 〈QT , p0, π
T , VT , A〉 be an MC such that T ∈ [[Î]]. As a consequence, there

exists two satisfaction relations for IMCsR1 ⊆ QT ×QI andR2 ⊆ QT ×Q such that
p0R1(sI0, ε) and p0R2(s0, ε). Define the new relationR ⊆ SI ×S such that sI R s iff
there exists p ∈ QT and x ∈ ({ε} ∪A) such that pR1(sI , x) and pR2(s, x). We have

1. p0R1(sI0, ε) and p0R2(s0, ε). As a consequence, sI0R s0.
2. Let sI , s, p, x such that pR1(sI , x) and pR2(s, x) and let δ1 ∈ Distr(QT × QI)

and δ2 ∈ Distr(QT ×Q) be the associated probability distributions.
(a) Let y ∈ A and s′I ∈ SI such that sI

y→ s′I in I . We prove that there exists
s′ ∈ S such that s

y
99K s′ and s′I R s′.

By definition of Î , we have ϕI((sI , x), (s′I , y)) =]0, 1]. As a consequence,∑
p′′∈QT

δ1(p′′, (s′I , y)) > 0. Thus there exists p′ in QT such that δ1(p′, (s′I ,
y)) > 0. By definition of δ1, we have p′R1(s′I , y), thus VT (p′) = VI((s′I , y)) =
{y}.
Moreover, by definition of δ1, we have

∑
(s′′I ,z)∈QI

δ1(p′, (s′′I , z)) = πT (p)(p′).
Since δ1(p′, (s′I , y)) > 0, we have πT (p)(p′) > 0.
By definition of δ2, we know that

∑
(s′′,z)∈Q δ

2(p′, (s′′, z)) = πT (p)(p′) > 0.
As a consequence, there exists (s′, z) ∈ Q such that δ2(p′, (s′, z)) > 0. By
definition of δ2,we have p′R2(s′, z) and since VT (p′) = {y}, we must have
z = y.
Consequently,

∑
p′′∈QT

δ2(p′′, (s′, y)) > 0. By definition of δ2, we know that∑
p′′∈QT

δ2(p′′, (s′, y)) ∈ ϕ((s, x), (s′, y)), thus ϕ((s, x), (s′, y)) 6= {0},
which means, by definition of M̂ , that there exists a transition s

y
99K s′ in M .

Moreover, there exits p′ ∈ QT such that both p′R1(s′I , y) and p′R2(s′, y),
thus s′I R s′.

(b) Let y ∈ A and s′ ∈ S such that s
y→ s′ in M . We prove that there exists

s′I ∈ SI such that sI
y→ s′I in I and s′I R s′.

By definition of M̂ , we have ϕ((s, x), (s′, y)) =]0, 1]. As a consequence,∑
p′′∈QT

δ2(p′′, (s′, y))
> 0. Thus there exists p′ in QT such that δ2(p′, (s′, y)) > 0. By definition
of δ2, we have p′R2(s′, y), thus VT (p′) = V ((s′, y)) = {y}.
Moreover, by definition of δ2, we have

∑
(s′′,z)∈Q δ

2(p′, (s′′, z)) = πT (p)(p′).
Since
δ2(p′, (s′, y)) > 0, we have πT (p)(p′) > 0.
By definition of δ1, we know that

∑
(s′′I ,z)∈QI

δ1(p′, (s′′I , z)) = πT (p)(p′) >
0. As a consequence, there exists (s′I , z) ∈ QI such that δ1(p′, (s′I , z)) > 0.
By definition of δ1, we have p′R1(s′I , z) and since VT (p′) = {y}, we must
have z = y.
Consequently,

∑
p′′∈QT

δ1(p′′, (s′I , y)) > 0. By definition of δ1,we know that∑
p′′∈QT

δ1(p′′, (s′I , y)) ∈ ϕI((sI , x), (s′I , y)), thus ϕI((s, x), (s′, y)) 6= {0},
which means, by definition of Î , that there exists a transition sI

y→ s′I in I
(remember that I is a classical transition system). Moreover, there exits p′ ∈
QT such that both p′R1(s′I , y) and p′R2(s′, y), thus s′I R s′.
Finally,R is a satisfaction relation for MTS, and I |= M
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From the two lemmas stated above, we can deduce the following theorem.

Theorem 8. Let M = (S, s0, A,→, 99K)be an MTS and I = (SI , sI0, A,→) be a
transition system. We have

I |= M ⇐⇒ [[Î]] ⊆ [[M̂ ]]

We now define a construction f that builds, for all implementations C of M̂ , a
corresponding implementation f(C) of M :

Let M = (S, s0, A,→, 99K) be a MTS. Let M̂ = 〈S × ({ε} ∪ A), (s0, ε), {ε} ∪
A,ϕ, V 〉 be the transformation of M defined as above. Let C = 〈Q, q0, A, π, V ′〉 be a
MC such that C |= M̂ for some satisfaction relation on IMCsR.

Define f(C) = (Q, q0, A,→) the Transition System such that q a→ q′ whenever
π(q, q′) > 0 and V ′(q′) = {a}.

By construction, it is trivial that (1) f(C) |= M for some satisfaction relation on
MTS R′ and (2) C |= f̂(C) for some satisfaction relation on IMCs R′′. These satis-
faction relations are defined as follows: qR′ s whenever there exists x ∈ {ε} ∪ A such
that qR(s, x) ; qR′′(q′, x) whenever q = q′.

Now we swith to the proof of Theorem 3.
LetM andM ′ be two Modal Transition Systems and M̂ and M̂ ′ be the correspond-

ing IMCs defined as above. We have

M �th M ′ ⇐⇒ M̂ �th M̂ ′

Proof. Let M and M ′ be two MTS, and M̂ and M̂ ′ the corresponding IMCs.

⇒ Suppose that M �th M ′, and let C be a MC such that C |= M̂ . We have by
construction f(C) |= M , thus f(C) |= M ′. By Theorem 8, we have [[f̂(C)]] ⊆
[[M̂ ′]], and we know that C |= f̂(C). As a consequence, C |= M̂ ′.

⇐ Suppose that M̂ �th M̂ ′, and let I be a TS such that I |= M . By Theorem 8, we
have [[Î]] ⊆ [[M̂ ]], thus by hypothesis [[Î]] ⊆ [[M̂ ′]]. Finaly, by Theorem 8, we obtain
that I |= M ′.

C On Determinism

C.1 Strong Determinism

One can also propose another, slightly more syntactic definition of determinism:

Definition 11 (Strong Determinism). Let I = 〈Q, q0, ϕ,A, V 〉 be an IMC. I is strongly
deterministic iff for all states q, r, s ∈ Q, if there exist a probability distribution σ ∈
ϕ(q) such that σ(r) > 0 and a probability distribution ρ ∈ ϕ(q) such that ρ(s) > 0,
then V (r) 6= V (s).
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Strong determinism differs from Def. 5 in that it requires that, from a given state q,
one cannot possibly reach two states r and s with the same set of propositions, even us-
ing two different distributions (implementations). Checking weak determinism requires
solving a cubic number of linear constraints: for each state check the linear constraint of
the definition—one per each pair of successors of a state. Checking strong determinism
can be done by solving only a quadratic number of linear constraints—one per each
successor of each state.

B2

A

B1 C

β

α

β γ

1]0, 1]

]0, 1]
1

1

Fig. 9: An IMC I whose semantics
cannot be captured by a determinis-
tic IMC

Luckily, due to the convexity of the set of ad-
missible distributions in a state, these two notions
coincide for IMCs, so the more efficient, strong
determinism can be used in algorithms:

Theorem 9. An IMC I is deterministic iff it is
strongly deterministic.

C.2 Proof of Thm. 9

Let I = 〈Q, q0, ϕ,A, V 〉 be an IMC. I is weakly
deterministic iff it is strongly deterministic.

Proof. It directly follows from the definitions
that strong determinism implies weak determinism. We prove that if an IMC I is not
strongly deterministic, then it is not weakly deterministic either.

Let I = 〈Q, q0, ϕ,A, V 〉 be an IMC. If I is not strongly deterministic, there exist
two admissible distributions on next states for q: σ and ρ ∈ ϕ(q) such that σ(r) > 0,
σ(s) = 0, ρ(r) = 0, ρ(s) > 0 and V (r) = V (s). In order to prove that I is not
weakly deterministic, we build a distribution γ that we prove correct w.r.t the interval
specifications, i.e. γ ∈ ϕ(q), and such that γ(r) > 0 and γ(s) > 0.

Since σ(r) > 0, there exists a > 0 such that ϕ(q)(r) = [0, a] or [0, a[. Moreover,
since ρ(s) > 0, there exists b > 0 such that ϕ(q)(s) = [0, b] or [0, b[. Let c = Min(a, b),
and define γ(q′) = σ(q′) for all q′ /∈ {r, s}, γ(r) = σ(r) − c/2, and γ(s) = c/2. By
construction, γ ∈ ϕ(q) and we have γ(r) > 0 and γ(s) > 0. As a consequence, I is
not weakly deterministic.

Finally, an IMC I is strongly deterministic iff it is also weakly deterministic.

C.3 Proof of Thm. 4

Let I and I ′ be two deterministic IMCs. It is equivalent to say that (1) I thoroughly
refines I ′, (2) I weakly refines I ′ and (3) I strongly refines I ′.

Proof. It directly follows the definitions that (3) implies (2) and (2) implies (1). We will
prove that (1) implies (2), and then that (2) implies (3).

Let I1 = 〈Q1, q10 , ϕ1, A, V1〉 and I2 = 〈Q2, q20 , ϕ2, A, V2〉 be two consistent and
deterministic IMCs such that [[I1]] ⊆ [[I2]].
First, remark that it is safe to suppose that implementations have the same set of atomic
propositions as I1 and I2.
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1. LetR ⊆ Q1×Q2 such that rR s iff for all MCC and state p ofC, p |= r ⇒ p |= s.
Since we consider pruned IMCs, there exist implementations for all states.
Consider r and s such that rR s.
(a) By definition of R, there exists a MC C and a state p of C such that p |= r

and p |= s. Thus VC(p) = V1(r) and VC(p) = V2(s). As a consequence,
V1(r) = V2(s).

(b) Consider ρ ∈ ϕ1(r) and build the MC C = 〈Q1, q10 , π, A, VC〉 such that for all
q ∈ Q1,

– VC(q) = V1(q);
– If q 6= r, π(q) is any distribution in ϕ1(q). At least one exists because I1

is pruned;
– π(r) = ρ.

When necessary, we will address state q of C as qC to differentiate it from state
q of I1. We will now build the correspondence function δ.
C clearly satisfies I1 with a satisfaction relation R1 = Identity, and rC |= r.
By hypothesis, we thus have rC |= s. Consider R2 the satisfaction relation
such that rC R2 s and δ2 the corresponding correspondence function. Let δ =
δ2.

(c) As a consequence,
i. By construction of δ, we have that for all q ∈ Q1, δ(q) is a probability

distribution;
ii. By definition of the satisfaction relationR2, we have that for all s′ ∈ Q2,∑

qC∈Q1 ρ(qC) · δ2(qC)(s′) ∈ ϕ2(s)(s′). As a consequence, for all s′ ∈
Q2,

∑
q∈Q1 ρ(q) · δ(q)(s′) ∈ ϕ2(s)(s′).

2. Let r′ ∈ Q1 and s′ ∈ Q2 such that δr′s′ 6= 0. By definition of C and δ, we have
r′C |= r′ and r′C |= s′. We want to prove that for all implementations C ′ and state
p′ in C ′, p′ |= r′ implies p′ |= s′.

Suppose that this is not the case. There exists an implementation C ′ = 〈P, o, π′, A,
V ′〉 and a state p′ of C ′ such that p′ |= r′ and p′ 6|= s′. Let R′ be the satisfaction
relation witnessing p′ |= r′.
Consider the MC Ĉ = 〈Q̂1 ∪ P̂ , q̂10 , π̂, A, V̂ 〉. Intuitively, Q̂1 corresponds to C and
P̂ to C ′. The state r′C (called r̂′ in Ĉ) will be the link between the two and its
outgoing transitions will be the ones of p′. Define

– π̂(q̂1)(q̂2) = π(q1)(q2) if q1, q2 ∈ Q1 and q̂1 6= r̂′;
– π̂(r̂′)(q2) = 0 if q2 ∈ Q1;
– π̂(q̂1)(p̂2) = 0 if q1 ∈ Q1 and q̂1 6= r̂′ and p2 ∈ P̂ ;
– π̂(r̂′)(p̂2) = π′(p′)(p2) if p2 ∈ P ;
– π̂(p̂1)(q̂2) = 0 if p1 ∈ P and q2 ∈ Q1;
– π̂(p̂1)(p̂2) = π′(p1)(p2) if p1, p2 ∈ P ;
– V̂ (q̂) = V1(q) if q ∈ Q1;
– V̂ (p̂1) = V ′(p1) if p1 ∈ P .
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We want to prove that r̂′ satisfies s′. This should imply that p′C′ also satisfies s′,
which is absurd.
Consider the relation R̂ between the states of Ĉ and the states of I1 defined as
follows :

R̂ ={(q̂1, q1
′
) | (q1C , q1

′
) ∈ R1 and q̂1 6= r̂′}∪

{(p̂1, q1
′
) | (p1, q1

′
) ∈ R′}∪

{(r̂′, q1
′
) | p′R′ q1

′
}

Intuitively, R̂ is equal to R1 for the states q̂1 ∈ Q̂1, except r̂′, and equal to R′ for
the states p̂1 ∈ P̂ . The states related to r̂′ are the ones that were related to p′ with
R′.
We will show that R̂ is a satisfaction relation between Ĉ and I1.
Let t, w such that tR̂w. For all the pairs where t 6= r̂′, the conditions of the satis-
faction relation obviously still hold because they held for R1 if t ∈ Q̂1 and for R′
otherwise. It remains to check the conditions for the pairs where t = r̂′.
Consider w such that r̂′R̂w.
(a) Since r′C and p′C′ are both implementations of r′, it is clear that V̂ (r̂′) = V̂ (p′).

As p′R′ w, we know that V ′(p′) = V1(w). Thus, V̂ (r̂′) = V1(w).
(b) Consider the correspondence function δ′ : P → (Q1 → [0, 1]) given by

p′R′ w. Let δ̂ : (Q̂1∪ P̂ )→ (Q1 → [0, 1]) such that δ̂(p̂1) = δ′(p1) whenever
p̂1 ∈ P̂ . Obviously, this is still a probability distribution on Q1, and it is such
that

i. for all q1 ∈ Q1,
∑
t∈cQ1∪ bP π̂(r′)(t) · δ̂(t)(q1) =

∑cp2∈ bP π′(p′)(p2) ·
δ̂(p̂2)(q1) =

∑
p2∈P π

′(p′)(p2) · δ′(p2)(q1). By definition of δ′, this is
contained in ϕ1(w)(q1).

ii. Moreover, if (π̂(r̂′)(t) 6= 0 and ) δ̂(t)(q1) 6= 0, then tR̂q1. We only need
to consider t = p̂1 ∈ P̂ (since otherwise π̂(r̂′)(t) = 0) and q1 such that
δ̂(p̂1)(q1) 6= 0. In this case, δ′(p1)(q1) 6= 0. As δ′ is a witness of p′R′ w,
it has to be that p1R′ q1, which implies, by definition of R̂, that tR̂q1.

Finally Ĉ satisfies I1, and in particular, r̂ |= r. As rR s, it implies that r̂ |= s.
As a consequence, there exists δ′′ : (Q̂1 ∪ P̂ ) → (Q2 → [0, 1]) such that, for all
q2 ∈ Q2, ∑

t∈cQ1∪ bP
π̂(r̂)(t) · δ′′(t)(q2) ∈ ϕ2(s)(q2)

(A) Consider q2 6= s′ such that V2(q2) = V2(s′). Due to determinism of I2,
and to the fact that s′ is accessible from s, we have ϕ2(s)(q2) = {0}. Since
π̂(r̂)(r̂′) 6= 0 and π̂(r̂)(r̂′) · δ′′(r̂′)(q2) is part of the sum above, we must have
δ′′(r̂′)(q2) = 0.

(B) Consider q3 such that V2(q3) 6= V2(s′) = V1(r′). It is clear that δ′′(r̂′)(q3) = 0
since δ′′ is witnessing satisfaction between Ĉ and I2.
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(C) Moreover, since π̂(r̂)(r̂′) > 0, we know that δ′′(r̂′) is a probability distribution
over Q2.

According to (A) and (B), the only non-zero value in the distribution in (C) must
be δ′′(r̂′)(s′). Since δ′′ is witnessing Ĉ |= I2, this means that r̂′ |= s′.
By construction, r̂′ and p′ only differ by state names. This contradicts the assump-
tion that p′ 6|= s′. Thus r′R s′, andR is a weak refinement relation.

Finally, we have by hypothesis that [[I1]] ⊆ [[I2]], which implies that q10R q20 . We thus
have (1) implies (2).

�
We now prove that (2) implies (3).
We start with the following lemma, which is a direct consequence of the notion of

determinism. It states that correspondence functions associated to a satisfaction relation
for a deterministic IMC are of a particular form.

Lemma 3. Let I = 〈Q, q0, ϕ,A, V 〉 be a deterministic IMC. LetC = 〈P, p0, π, A, VC〉
∈ [[I]] and a satisfaction relation R such that p0R q0. Let p ∈ P and q ∈ Q such that
pR q, and let δ be the associated correspondence function. We have

∀p′ ∈ P, π(p)(p′) 6= 0⇒
|{q′ ∈ Q | δ(p′)(q′) 6= 0}| = 1.

Obviously, the same holds for correspondence functions associated to refinement
relations between deterministic IMCs.

Let I1 = 〈Q1, q10 , ϕ1, A, V1〉 and I2 = 〈Q2, q20 , ϕ2, A, V2〉 be two deterministic
IMCs such that I1 � I2 with a weak refinement relation R. We prove that R is in fact
a strong refinement relation.

Let p ∈ Q1 and q ∈ Q2 such that pR q.

1. By hypothesis, V1(p) = V2(q);
2. We know that for all probability distribution σ ∈ ϕ1(p), there exists a correspon-

dence function δσ satisfying the axioms of a (weak) refinement relation. We will
build a correspondence function δ0 that will work for all σ. Let p′ ∈ Q1.

– If for all σ ∈ ϕ1(p), we have σ(p′) = 0, then let δ0(p′, q′) = 0 for all q′ ∈ Q2;
– Else, consider σ ∈ ϕ1(p) such that σ(p′) 6= 0. By hypothesis, there exists

a correspondence function δσ associated to pR q. Let δ0(p′) = δσ(p′). By
Lemma 3, there is a single q′ ∈ Q2 such that δσ(p′)(q′) 6= 0. Moreover, by
definition of δσ , we know that

∑
q′′∈Q2 δσ(p′)(q′′) = 1, thus δσ(p′)(q′) = 1.

Suppose there exists ρ 6= σ ∈ ϕ1(p) such that ρ(p′) 6= 0. Let δρ be the
associated correspondence function. As for σ, there exists a unique q′′ ∈ Q2

such that δρ(p′)(q′′) 6= 0. Moreover δρ(p′)(q′′) = 1. By definition of δσ and
δρ, we have

µ : q′′′ 7→
∑
p′′∈Q1

(σ(p′′) · δσ(p′′)(q′′′)) ∈ ϕ2(q)

ν : q′′′ 7→
∑
p′′∈Q1

(ρ(p′′) · δρ(p′′)(q′′′)) ∈ ϕ2(q)
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Fig. 10: IMCs I6, I7, and I8

Moreover, both µ(q′) > 0 and ν(q′′) > 0. By determinism of I2, this implies
q′ = q′′.
As a consequence, we have δσ(p′) = δρ(p′), so ∀γ ∈ ϕ1(p), if γ(p′) > 0, then
δγ(p′) = δ0(p′).
Finally, consider δ0 defined as above. Let σ ∈ ϕ1(p). We have
(a) If σ(p′) > 0, then δ0(p′) = δσ(p′) is a distribution over Q2;
(b) For all q′ ∈ Q2,

∑
p′∈Q1(σ(p′) ·δ0(p′)(q′)) =

∑
p′∈Q1(σ(p′) ·δσ(p′)(q′))

∈ ϕ2(q)(q′) by definition of δσ;
(c) If δ0(p′)(q′) > 0, then there exists σ ∈ ϕ1(p) such that δ0(p′)(q′) =

δσ(p′q′) > 0, thus p′R q′ by definition of δσ .

Finally,R is a strong refinement relation.

D On Consistency and Common Implementation

Example 2. Consider the three IMCs in Figure 10. We construct a consistency relation
R for k = 3. The triple (A, 1, α) is in the relation R witnessed by the distribution
ρ that assigns 1

6 to (B, 2, β), 1
6 to (C, 2, β), 1

3 to (D, 3, γ), 1
6 to (E, 4, δ), and 1

6 to
(E, 4, ε). The triples that are given positive probability by ρ are also in the relation
each by the distribution assigning probability 1 to itself. A common implementation
C = 〈P, p0, π, A, VC〉 can be constructed as follows: P = {q|q ∈ R}, p0 = (A, 1, α),
VC(p) is inherited from I6, I7, and I8, and π(p)(p′) = ρ(p′), where ρ is the distribution
witnessing that p ∈ R.

To establish a lower bound for common implementation, we propose a reduction
from the common implementation problem for modal transition systems (MTS). This
latter problem has recently been shown to be EXPTIME-complete when the number of
MTS is not known in advance and PTIME-complete otherwise [3]. We first propose the
following theorem.

Theorem 10. Let Mi be MTSs for i = 1, . . . , k. We have

∃I∀i : I |= Mi ⇐⇒ ∃C∀i : C |= M̂i,

where I is a transition system, C is a Markov Chain and M̂i is the IMC obtained with
the transformation defined in Section 3.
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Proof. ⇒: This direction can be proven, by showing that for arbitrary j ∈ {1, . . . , k},
[[Î]] ⊆ [[M̂j ]]. This is indeed the result of Theorem 8. Now pick a C ∈ [[Î]], and the result
follows.
⇐: Assume that there exists a C such that C |= M̂i for all i = 1, . . . , k. With the
transformation defined in section 3, a implementation I for all Mi for all i can be
constructed as f(C).

We now prove that the existence of a consistency relation is equivalent to the exis-
tence of a common implementation, in the case of k = 2. The above definition and the
following theorem extends to general k.

Theorem 11. Let I1 = 〈Q1, q
1
0 , ϕ1, A, V1〉 and I2 = 〈Q2, q

2
0 , ϕ2, A, V2〉 be IMCs. I1

and I2 have a common implementation iff there exists a consistency relation R such
that q10R q20 .

Proof. ⇒: Assume that there exists a MC C = 〈P, p0, π, A, VC〉 such that C |= I1
and C |= I2. This implies that there exists satisfaction relations R1 ⊆ P × Q1 and
R2 ⊆ P ×Q2 such that p0R1 q

1
0 and p0R2 q

2
0 .

A relation R is constructed as {(q1, q2)|∃p ∈ P : pR1 q1 ∧ pR2 q2}. We now
prove that R is a consistency relation relating q10 and q20 ; indeed (q10 , q

2
0) ∈ R because

p0R1 q
1
0 and p0R2 q

2
0 . Let (q1, q2) ∈ R and p ∈ P such that pR1 q1 and pR2 q2.

1. ByR1 andR2, V1(q1) = VC(p) = V2(q2)
2. Let δ1 and δ2 be the distributions witnessing pR1 q1 and pR2 q2 (using Defini-

tion 9), and let ρ ∈ Distr(Q1 ×Q2), such that

ρ(q′1, q
′
2) =

∑
p′∈P st. π(p)(p′)>0

δ1(p′, q′1) · δ2(p′, q′2)
π(p)(p′)

. (2)

Since
∑
q′1∈Q1

∑
q′2∈Q2

ρ(q′1, q
′
2) = 1, ρ is indeed a distribution on Q1 ×Q2.

Let u′ ∈ Q1.∑
v′∈Q2

ρ(u′, v′) =
∑

(v′∈Q2)

∑
(p′∈P st. π(p)(p′)>0)

δ1(p′, u′) · δ2(p′, v′)
π(p)(p′)

=
∑

p′∈P st. π(p)(p′)>0

δ1(p′, u′)

∑
v′∈Q2

δ2(p′, v′)
π(p)(p′)

=
∑

p′∈P st. π(p)(p′)>0

δ1(p′, u′) by definition of δ2

∈ ϕ1(q1)(u′) by definition of δ1.

Similarly, for all v′ ∈ Q2,
∑
u′∈Q1

ρ(u′, v′) ∈ ϕ2(v)(v′).
3. Let q′1 ∈ Q1 and q′2 ∈ Q2 be states such that ρ(q′1, q

′
2) > 0. Then at least one term

in Eq. (2) is positive. Thus, there exists p′ such that δ1(p
′,q′1)·δ2(p

′,q′2)
π(p)(p′) > 0. This

implies that both factors in the nominator are positive, and by definition of δ1 and
δ2, we have that (p′, q′1) ∈ R1 and (p′, q′2) ∈ R2 and therefore q′1R q′2.
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This proves thatR is a consistency relation.
⇐: Assume that there exists a consistency relation R relating q10 and q20 . We now

construct a common implementation C, such that C |= I1 and C |= I2; we prove the
former first. Let C = 〈P, p0, π, A, VC〉 such that

– P = {(q1, q2) ∈ Q1 ×Q2 | q1R q2}
– p0 = (q10 , q

2
0)

– VC((q1, q2)) = V1(q1) = V2(q2) by definition ofR
– For each (q1, q2), (q′1, q

′
2) ∈ P , π((q1, q2)(q′1, q

′
2)) = ρ(q′1, q

′
2), where ρ is the

distribution witnessing the membership of (q1, q2) inR.

To show satisfaction between C and I1, the relationRs is used. It is defined as follows:
for all (u, v) ∈ P , (u, v)Rs w iff u = w. We now show thatRs is a satisfaction relation
between C and I1 (using Definition 9).
Let (u, v) ∈ P such that (u, v)Rs u.

1. By definition of C, VC(u, v) = V1(u)
2. Let δ be the distribution derived as follows: δ((u′, v′), q1) = π((u, v), (u′, v′)) if
u′ = q1 and 0 else.
(a) Let (u′, v′) ∈ P .∑

q1∈Q1

δ((u′, v′), q1) = π((u, v), (u′, v′)) by definition.

(b) Let q1 ∈ Q1.∑
(u′,v′)∈P

δ((u′, v′), q1) =
∑

(q1,v′)∈P

π((u, v), (q1, v′))

=
∑
v′∈Q2

ρ(q1, v′)

∈ ϕ1(u)(q1) by definition of R .

(c) Let (u′, v′) ∈ P and q1 ∈ Q1 such that δ((u′, v′), q1) > 0. Then u′ = q1 and
by definition, (u′, v′)Rs q1.

Rs is a satisfaction relation, and thus C |= I1. Analogously, it can be shown that
C |= I2. Finally C is a common implementation of I1 and I2.

Theorem 12. Deciding the existence of a common implementation between 2 IMCs is
PTIME-complete.

Using the result in [3], we derive the following theorem.

Theorem 13. Deciding the existence of a common implementation between k IMCs is
PTIME-complete when k is a constant. Deciding the existence of a common implemen-
tation between k IMCs is EXPTIME-complete when k is a variable.

Theorem 14. Given an IMC I and its pruned IMC I∗. Then [[I]] = [[I∗]].
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Proof. 1. We first prove that [[I]] ⊆ [[I∗]]. Let R ⊆ Q × Q be a consistency relation
such that (q0, q0) ∈ R, and let C = 〈P, p0, π, A, VC〉 be a MC such that C |= I
with satisfaction relationRs. We build a satisfaction relationR′s ⊆ P ×Q∗ where
pR′ q∗ iff there exists q ∈ Q such that pRs q and q = q∗. Let p ∈ P , q ∈ Q, and
q∗ ∈ Q∗ such that (p, q∗) ∈ R′. We now show that R′ is a satisfaction relation
between P and I∗.

– By construction, VC(p) = V ∗(q∗).
– Let δ1 ∈ Distr(P ×Q) be the distribution witnessing pRs q. The distribution
δ2 ∈ Distr(P ×Q∗) is chosen identical to δ1. We know that for all q′ ∈ Q such
that ¬∃σ ∈ ϕ(q′) then for all p′ ∈ P , we have that δ1(p′, q′) = 0. To see this,
assume the contrary, namely that δ1(p′, q′) 6= 0 for a p′ ∈ P and a q′ ∈ Q for
which ¬∃σ ∈ ϕ(q′); then p′Rs q′. By the definition af satisfaction, q′ allows a
distribution, which is a contradiction.
Since δ1 satisfies the axioms of satisfaction, then δ2 also satisfies them.

2. To show that [[I∗]] ⊆ [[I]], we use the same reasoning as above.
By mutual inclusion, [[I]] = [[I∗]].

Example 3. Consider the IMC I in Figure 11a. Building a consistency relation, we
see that (1, 1) is in the relation witnessed by the distribution assigning probability 0.8
to (2, 2) and 0.2 to (4, 4). This probability distribution "avoids" the inconsistent state
(3, 3); this state does not admit a probability distribution. Likewise, (2, 2) and (3, 3)
are in the relation, witnessed by the distributions that gives probability 1 to (2, 2) and
(3, 3), respectively.
I∗ is shown in Figure 11b.

1

2

3

4I

α

β

γ

δ
[0.1, 0.3]

[0, 0.2]

[0.7, 0.8]
1

[0.2, 0.3]

1

(a) IMC I

1
[0.1, 0.3]

[0.7, 0.8]
1

I∗

α

β

δ

1

2

4

(b) Pruned IMC I∗

Fig. 11: An IMC and its pruned version


