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Abstrat

Probabilisti Automata (PAs) are a widely-reognized mathematial framework

for the spei�ation and analysis of systems with non-deterministi and stohas-

ti behaviors. This paper proposes Abstrat Probabilisti Automata (APAs),

that is a novel abstration model for PAs. In APAs unertainty of the non-

deterministi hoies is modeled by may/must modalities on transitions while

unertainty of the stohasti behaviour is expressed by (underspei�ed) stohas-

ti onstraints. We have developed a omplete abstration theory for PAs, and

also propose the �rst spei�ation theory for them. Our theory supports both

satisfation and re�nement operators, together with lassial stepwise design

operators. In addition, we study the link between spei�ation theories and

abstration in avoiding the state-spae explosion problem.

Keywords: spei�ation; abstration; ompositional reasoning; interfae

automata; probabilisti automata

1. Introdution

One of the main researh areas in omputer siene onsists in studying new

spei�ation formalisms for reasoning on system's behaviors. Among existing

suh formalisms one �nds the one of Transition Systems (TS). In TS, the be-

havior of the system is represented by states modeling the urrent values of

the variables, and a relation between states, alled transitions, representing the

evolution of the system, i.e., update of variables. Transitions are often labeled

with ations representing the possibly non-deterministi deisions taken at a
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given moment of time to govern this evolution. TSs are aknowledged to be a

simple but elegant formalism powerful enough to apture the ontrol-�ow of pro-

gramming languages; the formalism is used in most of existing formal validation

tehniques proposed in the literature [3℄.

As systems beome more and more omplex, it is neessary to add new

features to TSs. Suh features an be used either to apture new phenomena

suh as ontinuous evolution, or to reason on new properties of the system

suh as energy onsumption. Partiularly, as soon as systems inlude random-

ized algorithms, probabilisti protools, or interat with physial environment,

probabilisti models are required to reason about them. This is exaerbated by

requirements for fault tolerane, when systems need to be analyzed quantita-

tively for the amount of failure they an tolerate, or for the delays that may

appear. As Henzinger and Sifakis [4℄ point out, introduing probabilities into

design theories allows assessing dependability of IT systems in the same manner

as ommonly pratied in other engineering disiplines.

Probabilisti Automata (PAs) onstitute a mathematial framework for the

spei�ation and analysis of non-deterministi probabilisti systems. PAs are

TSs whose evolution depends not only on non-deterministi ations but also

on a probability distribution that, together with the ation, drives the hoie

of the suessor state. PAs have been developed by Segala [5℄ to model and

analyze asynhronous, onurrent systems with disrete probabilisti hoies in

a formal and preise way. PAs are akin to Markov deision proesses (MDPs).

A detailed omparison with models suh as MDPs, as well as generative and

reative probabilisti transition systems is given in [6℄. PAs are reognized as

an adequate formalism for randomized distributed algorithms and fault tolerant

systems. They are used as semantis model for formalisms suh as probabilisti

proess algebra [7℄ and a probabilisti variant of Harel's stateharts [8℄. An

input-output version of PAs is the basis of PIOA and variants thereof [9, 10℄.

PAs have been enrihed with notions suh as weak and strong (bi)simulations [5℄,

deision algorithms for these notions [11℄ and a statistial testing theory [12℄.

This paper brings two new ontributions to the �eld of probabilisti automata:

the theories of abstration and of spei�ation.

As a �rst main ontribution, we propose several abstration tehniques for

PAs. Abstration is pivotal to ombating the state spae explosion problem in

the modeling and veri�ation of realisti systems suh as randomized distributed

algorithms. It aims at model redution by ollapsing sets of onrete states

to abstrat states, e.g., by partitioning the onrete state spae. This paper

presents a three-valued abstration of PAs. The main design priniple of our

model, named Abstrat Probabilisti Automata (APAs), is to abstrat sets of

distributions by onstraint funtions. This generalizes earlier work on interval-

based abstration of probabilisti systems [13, 14, 15℄. To abstrat from ation

transitions, we introdue may (?) and must (⊤) modalities in the spirit of modal

transition systems [16℄. If all states in a partition p have a must-transition on

ation a to some state in partition p′, the abstration yields a must-transition

between p and p′. If some of the p-states have no suh transition while others

do, it gives rise to a may-transition between p and p′. Our model an be viewed
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Figure 1: Examples of PA, APA and abstration

as a ombination of both Modal Automata [17℄ and Constraint Markov Chains

(CMC) [18, 19℄ that are abstrations for transition systems and Markov Chains,

respetively. APAs an further be abstrated by merging their states or by

simplifying their orresponding onstraints. We shall see that those abstrations

introdue new behaviors in the orresponding PAs, but that their preision an

be ontrolled. Conretely, the PA of Figure 1a gives the hoie between two non-

deterministi ations a and b, both of them induing a probability distribution on

the set of suessor states. In addition, all states are equipped with sets of atomi

propositions. Assuming that both state 1 and 2 belong to the same partition

B and that states 0 and 3 are mapped to partitions A and C, respetively, we
obtain the APA given in Figure 1b. Notie that, in order to merge states 1 and

2 into a single state B, one has to onsider sets of sets of atomi propositions.

There one an see that there is a must transition from A to B as any state in

A goes to a state in B with ation a. However, the transition from B to A is

a may transition as there are states in B (here state 2) for whih ation a does

not lead to a state in A. The ase of ation b illustrates the use of onstraints
to math the original distributions starting from states in B.

As a seond major ontribution, we also propose a new spei�ation the-

ory for PAs. Our study is motivated by the observation that several industrial

setors involving omplex embedded systems have reently experiened deep
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hanges in their organization, aerospae and automotive being the most promi-

nent examples. In the past, they were organized around vertially integrated

ompanies, supporting in-house design ativities from spei�ation to imple-

mentation. Nowadays, systems are tremendously big and omplex, and it is

almost impossible for one single team to have the omplete ontrol of the entire

hain of design from the spei�ation to the implementation. In fat, omplex

systems now result from the assembling of several omponents. These many

omponents are in general designed by teams, working independently but with

a ommon agreement on what the interfae of eah omponent should be. Suh

an interfae spei�es the behaviors expeted from the omponent as well as the

environment in whih it an be used. The main advantage is that it does not

impose any onstraint on the way the omponent is implemented, hene allow-

ing for independent implementation. Aording to state of pratie, interfaes

are typially desribed using Word/Exel text douments or modeling languages

suh as UML/XML. We instead reommend to follow a more mathematial ap-

proah relying most possibly on mathematially sound formalisms, thus best

reduing ambiguities. Our new theory is equipped with all essential ingredi-

ents of a ompositional design methodology: a satisfation relation (to deide

whether a PA is an implementation of an APA), a onsisteny hek (to deide

whether the spei�ation admits an implementation), a re�nement (to ompare

spei�ations in terms of inlusion of sets of implementations), logial ompo-

sition (to ompute the intersetion of sets of implementations), and strutural

omposition (to ombine spei�ations). Our framework also supports inre-

mental design [20℄. To the best of our knowledge, the theory of APAs is the �rst

spei�ation theory for PAs where both logial and strutural ompositions an

be omputed within the same framework.

Our notions of re�nement and satisfation are, as usual, haraterized in

terms of inlusion of sets of implementations. Our notion of satisfation is a

ompatible extension of the lassial notion of probabilisti bisimulation [5, 21℄.

More preisely, one an show that two PAs that are probabilisti bisimilar satisfy

exatly the same APAs. One of our other important theorems shows that for

the lass of deterministi APAs, re�nement oinides with inlusion of sets of

implementations. This latter result is obtained by a redution from APAs to

CMCs, for whih a similar result holds. Hene, APAs an also be viewed as a

spei�ation theory for Markov Chains (MCs). The model is as expressive as

CMCs, and hene more expressive than other theories for stohasti systems

suh as Interval Markov Chains [13, 22, 14℄.

Our last ontribution is to propose several abstration-based methodologies

that allow to simplify the behavior of APAs with respet to the re�nement rela-

tion � as we pointed above, abstration is ruial to avoid state-spae explosion.

We show that our abstration preserves re�nement, and that re�nement is a

pre-ongruene with respet to parallel omposition. These results provide the

key ingredients to allow ompositional abstration of PAs. Consider again the

APA N of Figure 1b. This APA an be further abstrated by merging partitions

B and C, whih leads to the APA N ′
given in Figure 1. Sine there must be an

a transition from A to B in N , there is a must a transition from A to (B,C) in
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N ′
. Inversely, sine only one state out of two in (B,C) requires a b transition to

B or C, the abstrated state (B,C) will allow but not require this b transition.
The onsequene of this abstration is not only the redution of the state spae,

but also a simpli�ation of the onstraint assoiated to ation b in state (B,C).
Another way of abstrating the APA of Figure 1b is to simplify the onstraints

by approximating them with intervals, as illustrated in Figure 1d.

Organisation of the paper. In Setion 2, we introdue the onepts of PAs

and APAs as well as several of their properties. Setion 3 is onerned with

several notions of re�nements and abstrations as well as the relation between

satisfation and probabilisti bisimulation. Setion 4 introdues the notion of

onsisteny and strutural omposition (aka onjuntion), while Setion 5 pro-

poses a ompositional reasoning theory based on APAs. Setion 6 studies the

strong link between APAs and CMCs and proposes results for the lass of deter-

ministi APAs. Sine all the previous results are obtained for APAs with equal

sets of ations and atomi propositions, Setion 7 presents a methodology for

extending sets of ations and atomi propositions, showing that all our results

arry over to APAs with dissimilar alphabets. Finally, Setion 8 onludes the

paper. For larity of the presentation, some repetitive proofs have been lifted

to an appendix.

2. Spei�ations and Implementations

In this setion, we present the basi notions used in our formalism. We

�rst introdue the de�nitions of Labeled Transition Systems (LTS) and Markov

Chains (MC), whih are lassial notions of implementations, and then present

Probabilisti Automata (PA), that unify LTSs and MCs. We then introdue

Modal Transition Systems and Constraint Markov Chains, two lassial notions

of spei�ation theories for LTS and MC respetively. Finally, we present a new

notion of Abstrat Probabilisti Automata (APA), a �nite representation for a

possibly in�nite set of PAs. APAs will at as a spei�ation theory for PAs. Let

Act be a universe of ations.

Implementations. Labeled transition systems are usually used to represent

non-stohasti systems. We �rst introdue their de�nition.

De�nition 1 (Labeled Transition System). A Labeled Transition System is

a tuple (S,A, L,AP, V, s0), where S is a �nite set of states with initial state

s0 ∈ S, A ⊆ Act is a �nite set of ations, L: S × A × S → B2 is a two-valued

transition funtion, AP is a �nite set of atomi propositions, and V : S → 2AP

is a state-labeling funtion.

The set B2 = {⊥,⊤} denotes a lattie with the ordering ⊥ < ⊤ and meet (⊓)
and join (⊔) operators. The transition funtion L identi�es the transitions of

the automaton: L assoiates (1) the value ⊤ to a triple (s, a, s′) whenever there
is a transition from state s to state s′ labeled with ation a, and (2) ⊥ otherwise.
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Figure 3: A PA with a single transition to a distribution [0, 0.3, 0.2, 0.5]

An example of a LTS T is given in Figure 2a, where transitions with value ⊥
are left out of the piture.

When moving to the stohasti setting, the simplest notion of implementa-

tion is the one of Markov Chain.

De�nition 2 (Markov Chain). A Markov Chain is a tuple (S, π,AP, V, s0),
where S is a �nite set of states with initial state s0 ∈ S, π : S → Dist(S) is a

probability transition funtion:

∑
s′∈S π(s)(s′)=1 for all s ∈ S, AP is a �nite

set of atomi propositions, and V : S → 2AP is a state-labeling funtion.

We use Dist(S) to denote a set of probability distributions on the �nite set S.
An example of a MCM is given in Figure 2b, where transitions with probability

0 are left out of the piture.

A PA [5℄ resembles a LTS, but its transitions target probability distributions

over states instead of single states. Hene, PAs an be seen as a ombination of

MCs and LTSs.

De�nition 3 (Probabilisti Automata). A probabilisti automaton (PA) is a

tuple (S,A, L,AP, V, s0), where S is a �nite set of states with initial state s0 ∈ S,
A ⊆ Act is a �nite set of ations, L: S × A × Dist(S) → B2 is a two-valued

transition funtion, AP is a �nite set of atomi propositions, and V : S → 2AP

is a state-labeling funtion.

We write s
a
→ µ meaning L(s, a, µ) = ⊤. In the rest of the paper, we assume

that PAs are �nitely branhing, i.e., for any state s, the number of pairs (a, µ)
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suh that s
a
→ µ is �nite. The labeling funtion V indiates the propositions

(or properties) that are valid in a state. Hene a Markov Chain, as de�ned

previously, is a PA with a single ation and a single outgoing transition from

eah state, i.e. for eah s ∈ S there exists exatly one triple (s, a, µ) suh that

L(s, a, µ) = ⊤. Without loss of generality, we assume in the rest of the paper

that Act ∩AP = ∅ for all PAs.

Example. Figure 3 presents a PA with L(s1, a, µ) = ⊤, where µ(s2) = 0.3,
µ(s3) = 0.2, and µ(s4) = 0.5. We adopt a notational onvention that represents

L(s1, a, µ) = ⊤ by a set of arrows with tails loated lose to eah other on the

boundary of s1, and heads targeting the states in the support of µ.

Spei�ations. We now introdue Abstrat Probabilisti Automata, that is a

spei�ation formalism for PAs. APAs are the ombinations of Modal Transition

Systems and Constraint Markov Chains�spei�ation formalisms for labeled

transition systems and Markov Chains, respetively. We �rst brie�y introdue

Modal Transition Systems and Constraint Markov Chains, and then move to

APAs.

A Modal Transition System (MTS) [23, 16℄ is an automaton whose transi-

tions are typed with may and must modalities. Informally, a must transition

is available in every model of the spei�ation, while a may transition may be

absent in some design.

De�nition 4 (Modal Transition System). AModal Transition System is a tuple

(S,A, L,AP, V, s0), where S is a �nite set of states with initial state s0 ∈ S,
A ⊆ Act is a �nite set of ations, L: S × A × S → B3 = {⊥, ?,⊤} is a three-

valued transition funtion, AP is a �nite set of atomi propositions, and V :
S → 2AP is a state-labeling funtion. Transitions (s, a, s′) with L(s, a, s′) =?
are alled may transitions, and transitions (s, a, s′) with L(s, a, s′) = ⊤ are

alled must transitions.

Here, B3 = {⊥, ?,⊤} denotes a lattie with the ordering⊥ < ? < ⊤ and meet

(⊓) and join (⊔) operators. An example of an MTS N is given in Figure 4a.

There, and throughout the paper, may transitions are represented by dashed

arrows and must transitions by plain ones. One an easily see that LTS T given

in Figure 2a is an implementation of N . Indeed, the must transition from state

0 to state 1 with ation a in N is present in T , while the transition from state 0
to state 3 with ation c in T orresponds to a may transition in N and all state

labels are mathing.

A Constraint Markov Chain (CMC) [18, 19℄ is a MC equipped with a on-

straint on the next-state probabilities from any state. Roughly speaking, an

implementation of a CMC is a MC, whose next-state probability distributions

satisfy the onstraint assoiated with eah state. A onstraint funtion ϕ :
Dist(S) → {0, 1} represents a set of distributions on S. Let Sat(ϕ) denote the
set of distributions µ that satisfy onstraint funtion ϕ (i.e. suh that ϕ(µ) = 1),
and C(S) the set of onstraint funtions de�ned on state spae S.

7
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Figure 4: Examples of MTS and CMC

De�nition 5 (Constraint Markov Chain). A Constraint Markov Chain is a

tuple C = (S, ψ,AP, V, s0) where S is a �nite set of states with initial state

s0 ∈ S, ψ : S → C(S) is a state-onstraint funtion, AP is a set of atomi

propositions, and V : S → 22AP

is a state labeling funtion.

For eah state s ∈ S, the state-onstraint funtion ψ is suh that, for all

distributions π on S, ψ(s) is a onstraint funtion as de�ned above. Intuitively,

ψ(s)(π) = 1 i� distribution π is allowed in state s. The funtion V labels eah

state with a subset of the powerset of AP, whih models a disjuntive hoie

of possible ombinations of atomi propositions, thus allowing a higher level of

abstration w.r.t. implementations.

An example of a CMC C is given in Figure 4b. Remark that the MCM given

in Figure 2b is an implementation of C. Indeed, the distribution µ outgoing from

state 0 in M agrees with the onstraint ϕ spei�ed in C and the sets of atomi

propositions in M are inluded in the labels spei�ed in C.
A CMC whose onstraints are of the form l ≤ µ ≤ r, where l, r are onstant

vetors and µ is a probability distribution over the state spae is alled an

Interval Markov Chain (IMC) [13℄.

We now present the entral de�nition of the paper:

De�nition 6 (Abstrat Probabilisti Automata). An Abstrat Probabilisti

Automaton (APA) is a tuple (S,A, L,AP, V, s0) where S, A, AP are �nite sets

of states, ations, and atomi propositions respetively, s0 ∈ S is the initial

state, L : S ×A× C(S) −→ B3 is a three-valued state-onstraint funtion, and

V : S −→ 22AP

maps a state onto a set of admissible valuations.

A CMC is thus an APA, where for eah s ∈ S, there exists exatly one triple
(s, a, ϕ) suh that L(s, a, ϕ) = ⊤. The labeling L(s, a, ϕ) identi�es the �type�

of the onstraint funtion ϕ ∈ C(S): ⊤, ? and ⊥ indiate a must, a may and

the absene (forbidden) of a onstraint funtion, respetively. Without loss of

generality, we assume in the rest of the paper that Act ∩AP = ∅ for all APAs.

In pratie, as will be seen in later de�nitions, a lak of value for given

argument is equivalent to the ⊥ value, so we will sometimes avoid de�ning
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Figure 5: An APA N with two transitions: may to onstraintϕy and must toϕz

⊥-value rules in onstrutions to avoid lutter, and oasionally will say that

something applies if L takes the value of ⊥, meaning that it is either taking this

value or it is unde�ned.

We oasionally write Must(s) for the set of ations a suh that there ex-

ists ϕ, so that L(s, a, ϕ) = ⊤, and write May(s) for the set of ations b suh
that there exists ϕ, so that L(s, b, ϕ) 6= ⊥. Remark that in our formalism,

Must(s) ⊆ May(s). This implies that we do not allow inonsistenies at the

level of modalities, i.e. required but not allowed transitions.

We ould have limited ourselves to onstraints denoting unions of inter-

vals. However, as for CMCs, polynomial onstraints are needed to support both

onjuntion and parallel omposition [19℄. Later, we shall see that almost all

APAs whose states are labelled with a set of subsets of atomi propositions

an be turned into an equivalent (in the sense of implementations set) APA

whose states are labeled with a set that ontains only a single subset of atomi

propositions.

Finally, observe that a PA is an APA in whih every transition (s, a, ϕ) is a
must-transition with |Sat(ϕ)| = 1, and eah state-label onsists of a single set

of propositions.

Example. Consider the APA N given in Fig. 5. State s′1 has two outgoing

transitions: a may a-transition (s′1, a, ϕy) and a must a-transition (s′1, a, ϕz).
The ϕy and ϕz onstraints are shown under the automaton in the �gure.

The onstraints allow that eah of the automaton's two transitions an over

multiple transitions in a onrete implementation PA. As an example, the a-
transition (s1, a, (0, 0.3, 0.2, 0.5)) of the PA given in Fig. 3 mathes the must

a-transition (s′1, a, ϕz): if we write z4 = 0.2 + 0.5 the sum of all probabilities

going to states whose valuations are in the set spei�ed in s′4, and z5 = 0.3 the

sum of all probabilities going to states whose valuations are in the set spei�ed

in s′5, then we an verify that z′4 + z′5 = 1, hene satisfying ϕz. In order to

avoid lutter, the transitions that do not admit any positive probabilities are not

represented in the �gures.

In the rest of the paper we distinguish the lass of deterministi APAs.

The distintion will be of partiular importane when omparing APAs in Se-

tion 3.1. We �rst present the de�nition of determinism for CMCs and MTS, as

9



introdued in [18, 19℄. We say that a CMC C = (S, ψ,AP, V, s0) is deterministi

if and only if for all states s, s′, s′′ ∈ S, if there exists π′ ∈ Dist(S) suh that

(ψ(s)(π′)∧ (π′(s′) 6= 0)) and π′′ ∈ Dist(S) suh that (ψ(s)(π′′)∧ (π′′(s′′) 6= 0)),
then we have that V (s′) ∩ V (s′′) = ∅.

We say that a MTS N = (S,A, L,AP, V, s0) is deterministi if and only

if there is at most one outgoing transition for eah ation in all states, i.e.

∀s ∈ S, ∀a ∈ A, |{s′ | L(s, a, s′) 6= ⊥}| ≤ 1.
In APAs, the non-determinism an arise due to sets of valuations in states,

like for CMCs, or due to ations that label transitions, like for MTS. Informally,

an APA is (1) ation-deterministi if there is at most one outgoing transition

for eah ation in all states; and (2) valuation-deterministi if two states with

overlapping atomi propositions an never be reahed with the same transition.

Remark that the de�nition for valuation-determinism is similar to the notion of

determinism for CMCs presented above.

De�nition 7 (Determinism). An APA N = (S,A, L,AP, V, s0) is

• ation-deterministi if ∀s∈S, ∀a∈A, |{ϕ ∈ C(S) | L(s, a, ϕ) 6= ⊥}| ≤ 1.

• valuation-deterministi if ∀s∈S, ∀a∈A, ∀ϕ∈C(S) with L(s, a, ϕ) 6= ⊥:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S, (µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅) .

An APA N is deterministi if and only if it is ation-deterministi and

valuation-deterministi.

Satisfation. We relate APA spei�ations to PAs implementing them by

extending the de�nitions of satisfation for probabilisti systems introdued in

[13℄. In this setion, we only onsider PAs / APAs with equal sets of ations and

equal sets of atomi propositions. The ase of dissimilar alphabets is treated in

Setion 7.

The following notion of simulation haraterizes equivalent distributions a-

ording to a given relation on sets of states. This de�nition is similar to the one

given in [13℄. In Setion 3.2, we show how this notion of simulation and the sub-

sequent notion of satisfation are related to the lassial notion of probabilisti

bisimulation for probabilisti automata [5℄.

De�nition 8 (Simulation). Let S and S′
be non-empty �nite sets of states.

Given µ ∈ Dist(S), µ′ ∈ Dist(S′), a funtion δ : S → (S′ → [0, 1]), and

a binary relation R ⊆ S × S′
, µ is simulated by µ′

with respet to R and δ,
denoted µ ⋐

δ
R µ

′
, if and only if

1. for all s ∈ S, if µ(s) > 0, then δ(s) ∈ Dist(S′),

2. for all s′ ∈ S′
,

∑
s∈S µ(s)δ(s)(s′) = µ′(s′), and

3. for all s, s′ ∈ S, if δ(s)(s′) > 0, then (s, s′) ∈ R.

In the rest of the paper, we write µ ⋐R µ′
whenever there exists a funtion δ

suh that µ ⋐
δ
R µ

′
. Suh δ is alled a orrespondene funtion.

10
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Figure 6: A simulation between distributions µ1 and µ2 with respet to relation

R = {(1, A), (2, B), (3, B), (3, C), (4, C)} and a orrespondene funtion δ.

Example. Simulation is illustrated in Fig. 6, where distribution µ1 is simulated

by distribution µ2 with respet to the relation R = {(1, A), (2, B), (3, B), (3, C),
(4, C)}. In the piture, the orrespondene funtion δ is represented by the

labeled dashed arrows.

We now de�ne a satisfation relation between PAs and APAs. Remark that

this de�nition is a mix between the notion of satisfation for MTS [23, 16℄ and

the notion of satisfation for CMCs [18, 19℄.

De�nition 9 (Satisfation Relation). Let P = (S,A, L,AP, V, s0) be a PA and

N = (S′, A, L′, AP, V ′, s′0) be an APA. R ⊆ S × S′
is a satisfation relation if

and only if, for any (s, s′) ∈ R, the following onditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃µ ∈ Dist(S) : L(s, a, µ) =
⊤ and ∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ

′
,

2. ∀a ∈ A, ∀µ ∈ Dist(S), if L(s, a, µ) = ⊤, then ∃ϕ′ ∈ C(S′) : L′(s′, a, ϕ′) 6=
⊥ and ∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ

′
, and

3. V (s) ∈ V ′(s′).

P satis�es N , denoted P |= N , if and only if there exists a satisfation relation

relating s0 and s′0. If P |= N , P is alled an implementation of N .

Thus, a PA P is an implementation of an APA N if and only if any must-

transition of N is mathed by a must-transition of P that is simulated by one

of the probability distributions spei�ed by the onstraint, and reversely, P
does not ontain must-transitions that do not have a orresponding (may- or

must-) transition in N . The set of implementations of N is denoted by [[N ]] =
{P | P |= N}.

Example. The relation R = {(s1, s′1), (s2, s
′
5), (s3, s

′
4), (s4, s

′
4)} is a satisfation

relation between the PA P (Fig. 3) and the APA N (Fig. 5). Indeed, all pairs

(s, s′) ∈ R have mathing valuations, and the outgoing must transition from s′1
is mathed by the outgoing transition from s1 (see previous example).

11
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ϕy ≡ y2 + y3 = 1
ϕw ≡ w4 + w5 + w6 = 1.

Figure 7: Normalization N (N) of the APA N presented in Fig. 5

Single valuation normal form. As for CMCs [18, 19℄, a large lass of APAs

whose states are labeled with a set of subsets of atomi propositions an be

turned into an equivalent APA (in terms of sets of implementations) whose

states are labeled with sets that ontain a single subset of atomi propositions.

The latter are alled APAs in single valuation normal form. Single valuation

normal form makes the manipulation of satisfation/re�nement relations easier.

However, as we shall see, building the single valuation normal form of a given

APA may lead to an exponential blowup in the number of states.

De�nition 10 (Single Valuation Normal Form). An APA N = (S,A, L,AP, V, s0)
is in single valuation normal form (SVNF) i� all its admissible valuations sets

are singletons, i.e. ∀s ∈ S, |V (s)| = 1.

It turns out that any APA with a single valuation in the initial state an be

turned into an APA in single valuation normal form that admits the same set

of implementations. This transformation is alled normalization.

We introdue it with an example, �rst. Consider the APA N in Fig. 5. Sine

the valuation of state s′4 is not a singleton, N is not in SVNF. In the normal-

ization proess we translate eah state of the original APA into a olletion

of states�one per eah valuation. This mapping is aptured by a normaliza-

tion funtion; the following funtion N is the normalization funtion for our

example. Note that the only interesting ase is for state s′4:

s′1 7→ {s′′1}, s
′
2 7→ {s′′2}, s

′
3 7→ {s′′3}, s

′
4 7→ {s′′4 , s

′′
5}, s

′
5 7→ {s′′6}.

Subsequently, eah probability distribution onstraint targeting a split state,

needs to be rewritten, so that the sum of the split probabilities, substituted for

the original value, still satis�es the onstraint. Applying the normalization to

N results in the APA N (N) given in Fig. 7. State s′4 of N is split into states s′′4
and s′′5 in N (N). The ombined probability of reahing these states in N (N),
namely w4 +w5, is substituted for z4 in ϕz�the original probability of reahing

s′4 in N .

De�nition 11 (Normalization). Let N = (S,A, L,AP, V, s0) be an APA. Let

S′
be a set of states and let N : S → 2S

′

be a funtion suh that

12



1. S′ =
⋃
s∈S N (s),

2. For all s1, s2 ∈ S suh that s1 6= s2, N (s1) ∩ N (s2) = ∅,

3. for all s ∈ S, |N (s)| = |V (s)|.

If |V (s0)| = 1, then the normalization of N , denoted N (N), is the APA N (N) =
(S′, A, L′, AP, V ′,N (s0)) suh that

1. For all s′ ∈ S′
, |V ′(s′)| = 1,

2. For all s ∈ S, V (s) =
⋃
s′∈N (s) V

′(s′),

3. For all s ∈ S, for s′1, s
′
2 ∈ N (s), s′1 6= s′2 ⇐⇒ V ′(s′1) 6= V ′(s′2), and

4. for all s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥,
then for all s′ ∈ N (s), L′(s′, a, ϕ′) = L(s, a, ϕ) for ϕ′ ∈ C(S′) suh that

Sat(ϕ′) = {µ′ ∈ Dist(S′)|µ : s 7→
∑

u∈N (s) µ
′(u) ∈ Sat(ϕ)}.

Remark 1. In the above de�nition, a set S′
and a funtion N always exist.

However, when |V (s0)| 6= 1, any normalization of N would need to have several

initial states, whih we do not onsider here.

Clearly, N (N) is an APA in single valuation normal form.

The following theorem asserts that normalization preserves implementations.

Theorem 12. For any APA N = (S,A, L,AP, V, s0) with |V (s0)| = 1, [[N ]] =
[[N (N)]].

Proof. Let N = (S,A, L,AP, V, s0) be an APA suh that |V (s0)| = 1, and let

N (N) = (S′, A, L′, AP, V ′,N (s0)) be the normalization of N , given the funtion

N : S → 2S
′

. We prove the two diretions separately.

• [[N ]] ⊆ [[N (N)]]: Let P = (SP , A, LP , AP, VP , s
P
0 ) be any PA suh that P ∈

[[N ]] with satisfation relationR ⊆ SP×S. We show that P ∈ [[N (N)]]. LetR′ ⊆
SP × S′

be the relation suh that pR′ s′ i� (VP (p) ∈ V ′(s′) and (pRN−1(s′),
where N−1(s′) is the unique state s suh that s′ ∈ N (s). We prove that R′

is

a satisfation relation relating sP0 and N (s0).
Let p ∈ SP and s′ ∈ S′

be suh that pR′ s′, and let s = N−1(s′). We show that

R′
satis�es the axioms of a satisfation relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤. By de�nition of

N (N), there must exist a onstraint ϕ ∈ C(S) suh that L(s, a, ϕ) = ⊤
and for all µ′ ∈ Sat(ϕ′), the distribution µ : t 7→

∑
u∈N (t) µ

′(u) is in

Sat(ϕ).
Sine P |= N , there exists µP ∈ Dist(SP ) suh that LP (p, a, µP ) = ⊤ and

∃µ ∈ Sat(ϕ) suh that µP ⋐R µ. We will now show that ∃µ′ ∈ Sat(ϕ′)
suh that µP ⋐R′ µ′

.

Let δ : SP → (S → [0, 1]) be the orrespondene funtion witnessing

µP ⋐R µ. Let δ′ : SP → (S′ → [0, 1]) be suh that δ′(q)(t) = δ(q)(N−1(t))
if VP (q) ∈ V ′(t), and 0 otherwise.

Let µ′
be the distribution on S′

suh that µ′(t) =
∑

q∈SP
µP (q)δ′(q)(t).

The following holds:

13



(a) Let q ∈ SP suh that µP (q) > 0. By R, we have that δ(q) is a

distribution on S. Let r ∈ S suh that δ(q)(r) > 0. By onstrution

of N (N), there exists a single t ∈ S′
suh that t ∈ N (r) and V (q) ∈

V (t). As a onsequene, for all r ∈ S,
∑
t∈N (r) δ

′(q)(t) = δ(q)(r).

Thus, we have

∑
t∈S′ δ′(q)(t) =

∑
r∈S δ(q)(r). Finally δ

′(q) is also a

distribution on S′
.

(b) By onstrution, we have that for all t ∈ S′
,

µ′(t) =
∑

q∈SP

µP (q)δ′(q)(t).

() Let q ∈ SP and t ∈ S′
suh that δ′(q)(t) > 0. By onstrution of δ′,

we have that (1) δ(q)(N−1(t)) > 0 and (2) V (q) ∈ V (t). By (1), we

have that qRN−1(t). As a onsequene, by de�nition of R′
and (2),

we have qR′ t.

Thus µP ⋐R′ µ′
. We now prove that µ′ ∈ Sat(ϕ′). Let µ0(r) =∑

t∈N (r) µ
′(t). By de�nition of µ′

, we have

µ0(r) =
∑

t∈N (r)

µ′(t) =
∑

t∈N (r)

∑

q∈SP

µP (q)δ′(q)(t)

=
∑

q∈SP

µP (q)
∑

t∈N (r)

δ′(q)(t)

=
∑

q∈SP

µP (q)δ(q)(r) = µ(r)

Thus µ0 = µ ∈ Sat(ϕ) and by de�nition of ϕ′
, we have µ′ ∈ Sat(ϕ′).

Finally, there exists µP ∈ Dist(SP ) suh that LP (p, a, µP ) = ⊤ and there

exists µ′ ∈ Sat(ϕ′) suh that µP ⋐R′ µ′
.

2. Let a ∈ A and µP ∈ Dist(SP ), suh that LP (p, a, µP ) = ⊤. By a similar

argument, there exists ϕ′ ∈ C(S′) suh that L′(s, a, ϕ′) 6= ⊥ and there

exists µ′ ∈ Sat(ϕ′) suh that µP ⋐R′ µ′
.

3. By onstrution of R′
, we know that VP (p) ∈ V ′(s′).

We onlude that sP0 R′ N (s0), sine VP (sP0 ) ∈ V (s0) = V ′(N (s0)) and s
R
0 R

N−1(N (s0))) whih is equivalent to saying that sP0 R s0.

• [[N ]] ⊇ [[N (N)]]: Let P = (SP , A, LP , AP, VP , s
P
0 ) be any PA suh that P ∈

[[N (N)]] with satisfation relation R′ ⊆ SP × S′
with sP0 R s0. We show that

P ∈ [[N ]]. Let R ⊆ SP × S be the relation suh that pR s i� there exists

s′ ∈ N (s) suh that pR′ s′. By a similar reasoning as in the previous ase, R is

a satisfation relation and sP0 R s0, thus P |= N .

In the rest of the paper, we sometimes require that APAs are in single valu-

ation normal form in order to make the manipulation of satisfation/re�nement

relations easier. By the above theorem, there is no loss of generality in making

this assumption when the initial state is already in single valuation normal form.

When it is not, it is equivalent to onsider a set of APAs with inital states in

single valuation normal form, one for eah valuation of the original initial state.
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3. Re�nement, Bisimulation and Abstration

Being able to ompare spei�ations is entral to stepwise design. Systemati

omparison enables simpli�ation of spei�ations (abstration) and adding de-

tails to spei�ations (elaboration). Usually, spei�ations are ompared using

a re�nement relation. In this setion, we �rst introdue several notions of re-

�nement for APAs and study their ordering. Then we show that our formalism

is bakward-ompatible with the lassial notion of bisimulation for PA [5, 21℄.

Finally, we propose two notions of abstration for APAs.

3.1. Re�nement

A re�nement ompares APAs with respet to their sets of implementations.

More preisely, if APA N re�nes APA N ′
, then the set of implementations of N

should be inluded in the one of N ′
. The ultimate re�nement relation that an

be de�ned between APAs is thus Thorough Re�nement that exatly orresponds

to inlusion of sets of implementations.

De�nition 13 (Thorough Re�nement). Let N = (S,A, L,AP, V, s0) and N
′ =

(S′, A, L′, AP, V ′, s′0) be APAs. N thoroughly re�nes N ′
, denoted N �T N ′

, i�

[[N ]] ⊆ [[N ′]].

For most spei�ation theories, it is known that deiding thorough re�ne-

ment is omputationally intensive (see for example [24℄). For many models suh

as Modal automata or CMCs, one an partially avoid the problem by work-

ing with a syntatial notion of re�nement. This de�nition, whih is typially

stritly stronger than thorough re�nement, is easier to hek. The di�erene

between syntati and semanti re�nements resembles the di�erene between

simulations and trae inlusion for transition systems.

We onsider three syntati re�nements. These relations extend two well

known re�nement relations for CMCs and IMCs by ombining them with the

re�nement de�ned on modal automata. By tweaking the alternation of quan-

ti�ers in the assoiated formulas, one an de�ne several syntatial notions of

re�nements with di�erent expressivity. For the sake of ompleteness, we de-

�ne all three notions and ompare their granularity. We start with the strong

re�nement.

De�nition 14 (Strong Re�nement). Let N = (S,A, L,AP, V, s0) and N ′ =
(S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S × S′

is a strong re�nement relation if

and only if, for all (s, s′) ∈ R, the following onditions hold:

1. ∀a ∈A, ∀ϕ′ ∈C(S′), if L′(s′, a, ϕ′) =⊤, then ∃ϕ ∈C(S) : L(s, a, ϕ) = ⊤
and there exists a orrespondene funtion δ : S → (S′ → [0, 1]) suh that

∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) with µ ⋐
δ
R µ

′
,

2. ∀a∈A, ∀ϕ∈C(S), if L(s, a, ϕ) 6= ⊥, then ∃ϕ′ ∈C(S′) : L′(s′, a, ϕ′) 6= ⊥
and there exists a orrespondene funtion δ : S → (S′ → [0, 1]) suh that

∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) with µ ⋐
δ
R µ

′
, and

3. V (s) ⊆ V ′(s′).
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We say that N strongly re�nes N ′
, denoted N �S N ′

, if and only if there exists

a strong re�nement relation relating s0 and s′0.

Observe that strong re�nement imposes a ��xed-in-advane� orrespondene

funtion δ in the simulation relation between distributions. In this way, it

strongly resembles the notion of satisfation presented in De�nition 9. This

assumption is lifted with the de�nition of weak re�nement:

De�nition 15 (Weak Re�nement). Let N = (S,A, L,AP, V, s0) and N ′ =
(S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S×S′

is a weak re�nement relation if and

only if, for all (s, s′) ∈ R, the following onditions hold:

1. ∀a∈A, ∀ϕ′ ∈C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃ϕ∈C(S) : L(s, a, ϕ) = ⊤
and ∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) suh that µ ⋐R µ

′
,

2. ∀a∈A, ∀ϕ∈C(S), if L(s, a, ϕ) 6= ⊥, then ∃ϕ′ ∈C(S′) : L′(s′, a, ϕ′) 6= ⊥
and ∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) suh that µ ⋐R µ

′
, and

3. V (s) ⊆ V ′(s′).

We say that N weakly re�nes N ′
, denoted N � N ′

, if and only if there exists a

weak re�nement relation relating s0 and s′0.

Weak weak re�nement weakens the assumption even more by allowing to

hoose, for eah solution of the left onstraint, both a di�erent orrespondene

funtion and a di�erent onstraint (transition) to whih it will be linked:

De�nition 16 (Weak Weak Re�nement). Let N = (S,A, L,AP, V, s0) and

N ′ = (S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S × S′
is a weak weak re�nement

relation if and only if, for all (s, s′) ∈ R, the following onditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃ϕ ∈ C(S) : L(s, a, ϕ) = ⊤
and ∀µ ∈ Sat(ϕ), ∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ

′
,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s, a, ϕ) 6= ⊥, then ∀µ ∈ Sat(ϕ), ∃ϕ′ ∈ C(S′) :
L′(s′, a, ϕ′) 6= ⊥ and ∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ

′
, and

3. V (s) ⊆ V ′(s′).

We say that N weakly weakly re�nes N ′
, denoted N �W N ′

, if and only if

there exists a weak weak re�nement relation relating s0 and s′0.

It is easy to see that the above de�nitions are ombinations of the de�nitions

of strong and weak re�nement of CMCs with the modal re�nement of Modal

Automata. Hene algorithms for heking weak weak, weak, and strong re�ne-

ments for APAs an be obtained by ombining existing �xed-point algorithms

for CMCs [19℄ and Modal Automata [17℄. For the lass of polynomial-onstraint

APAs, the upper bound for deiding weak/strong re�nement is thus exponential

in the number of states and doubly-exponential in the size of the onstraints [19℄.

Notie that all three re�nement relations are preorders on the set of APAs.

Weak weak, weak, and strong re�nement all imply inlusion of sets of imple-

mentations. However, the onverse is not true. The following theorem lassi�es

the re�nement relations.
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Figure 8: APAs N1 and N2 suh that N1 �W N2, but not N1 � N2.

Theorem 17. Thorough re�nement is stritly �ner than weak weak re�nement,

weak weak re�nement is stritly �ner than weak re�nement, and weak re�nement

is stritly �ner than strong re�nement. That is,

(�T ) ) (�W ) ) (�) ) (�S).

Proof. We �rst prove the inlusions, and then show that all of them are strit.

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S): By a swap of quanti�ers in the de�nitions, it is

obvious that strong re�nement implies weak re�nement, and that weak re�ne-

ment implies weak weak re�nement. We prove that weak weak re�nement im-

plies thorough re�nement. Let N = (S,A, L,AP, V, s0) and N
′ = (S′, A, L′, AP,

V ′, s′0) be APAs suh that N �W N ′
with a weak weak re�nement relation

R′ ⊆ S × S′
.

If [[N ]] = ∅, we have [[N ]] ⊆ [[N ′]]. Otherwise, let P = (SP , A, LP , AP, VP , s
P
0 ) be

a PA suh that P |= N . Then there exists a satisfation relation R′′ ⊆ SP × S
suh that sP0 R′′ s0.
Let R ⊆ SP ×S′

be the relation suh that uRw i� there exists v ∈ S suh that

uR′′ v and vR′ w. The proof that R is a satisfation relation is standard and

follows the same lines as the proof of Theorem 12. We give the key arguments

of this proof and report the details to Appendix A.

Let u ∈ SP and w ∈ S′
be suh that uRw, and let v ∈ S be suh that

uR′′ v and vR′ w.

• Let a ∈ A′
and ϕ′ ∈ C(S′) be suh that L′(w, a, ϕ′) = ⊤. By R′

, there

exists ϕ ∈ C(S) suh that L(v, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ), ∃µ′ ∈ Sat(ϕ′)
suh that µ ⋐R′ µ′

. Moreover, by R′′
, there exists µP ∈ Dist(SP ) suh

that LP (u, a, µP ) = ⊤ and µS ∈ Sat(ϕ) suh that µP ⋐R′′ µS .

Let µS ∈ Dist(S) and µ′ ∈ Dist(S′) be suh that µP ⋐R′′ µS and

µS ⋐R′ µ′
. Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be

the orrespondene funtions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
re-

spetively. The orrespondene funtion for R is δ : SP → (S′ → [0, 1])
suh that δ(s)(t) =

∑
r∈S δ

′′(s)(r)δ′(r)(t). It follows that µP ⋐
δ
R µ′

.
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• Let a ∈ A and µP ∈ Dist(SP ) be suh that LP (u, a, µ) 6= ⊥. By R′′
,

there exists ϕ ∈ C(S) suh that L(v, a, ϕ) 6= ⊥ and ∃µS ∈ Sat(ϕ) suh

that µP ⋐R′′ µS . Moreover, by R′
, we have that for all µ ∈ Sat(ϕ), there

exists ϕ′ ∈ C(S′) suh that L′(w, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh that

µ ⋐R′ µ′
.

Let µS ∈ Dist(S) be suh that µP ⋐R′′ µS . Let ϕ′ ∈ Dist(S′) be

suh that L′(w, a, ϕ′) ≥? and let µ′ ∈ Sat(ϕ′) suh that µS ⋐R′ µ′
.

Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the orre-

spondene funtions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
respetively.

The orrespondene funtion for R is δ : SP → (S′ → [0, 1]) suh that

δ(s)(t) =
∑

r∈S δ
′′(s)(r)δ′(r)(t). It follows that µP ⋐

δ
R µ′

.

Thus R is a satisfation relation. Moreover, sine sP0 R′′ s0 and s0 R
′ s′0, we

have that sP0 R s′0, and we onlude that P ∈ [[N ′]], therefore N �T N ′
.

• �W 6=�: We show that for APAs N1 and N2, given in Fig. 8, we have

N1 �W N2, but N1 6� N2.

• N1 �W N2: We show that R = {(s1, s′1), (s2, s
′
2), (s3, s

′
3), (s4, s

′
4), (s5, s

′
5)}

is a weak weak re�nement relation. By onstrution, the pairs (s2, s
′
2),

(s3, s
′
3), (s4, s

′
4) and (s5, s

′
5) satisfy the axioms of a weak weak re�nement

relation. We now show that the pair of initial state (s1, s
′
1) also satis�es the

axioms of a weak weak re�nement relation. For distributions µ ∈ Sat(ϕx)
suh that µ(s2) > 0 or µ(s3) > 0 we hoose the onstraint ϕy, and for

other distributions we hoose ϕz . It is then lear that

∀µ ∈ Sat(ϕx), ∃ϕ
′ ∈ {ϕy, ϕz}, ∃µ

′ ∈ Sat(ϕ′) : µ ⋐R µ
′.

• N1 6� N2: There exists no onstraint ϕ′ ∈ C(S′) suh that L′(s′1, a, ϕ
′) 6=

⊥ and ∀µ ∈ Sat(ϕx), ∃µ′ ∈ Sat(ϕ′) : µ ⋐R µ
′
.

• �6=�S: We now show that for the APAs N3 and N4, given in Fig. 9, we

have N3 � N4, but N3 6�S N4.

• N3 � N4: We show that R = {(s1, s′1), (s2, s
′
2), (s3, s

′
3), (s3, s

′
4), (s4, s

′
5)} is

a weak re�nement relation. Again, the pairs (s2, s
′
2), (s3, s

′
3), (s3, s

′
4) and

(s4, s
′
5) all satisfy the axioms of a weak re�nement relation by onstrution.

We now show that the pair of initial states (s1, s
′
1) also satis�es the axioms

of a weak re�nement relation.

There is a onstraint funtion ϕx ∈ C(S) suh that L(s1, a, ϕx) =? and a

onstraint funtion ϕy ∈ C(S′) suh that L(s′1, a, ϕy) =?. We now show

that ∀µ ∈ Sat(ϕx), ∃µ′ ∈ Sat(ϕy) : µ ⋐R µ′
. Let µ ∈ Sat(ϕx) and let

δ : S → (S′ → [0, 1]) be given as

(s1, s
′
1) 7→ 1, (s2, s

′
2) 7→ 1, (s3, s

′
3) 7→ γ, (s3, s

′
4) 7→ 1 − γ, (s4, s

′
5) 7→ 1,

where γ = 0.7−µ(s2)
µ(s3) , if µ(s2) ≤ 0.7, and γ = 0.8−µ(s2)

µ(s3) otherwise.
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s2 s3 s4

s1

a, x4, ?a, x3, ?a, x2, ?

{{l}}

{{m}} {{n}} {{o}}

ϕx ≡ (x2 + x3 ≥ 0.7)∧
(x3 + x4 ≥ 0.2) ∧ (x2 + x3 + x4 = 1)

(a) N3

s′2 s′3 s′5s′4

s′1

a, y5, ?a, y2, ?

{{l}}

{{o}}{{n}}{{n}}{{m}}

a, y4, ?a, y3, ?

ϕy ≡ (y2 + y3 ≥ 0.7)∧
(y4 + y5 ≥ 0.2) ∧ (y2 + y3 + y4 + y5 = 1)

(b) N4

Figure 9: APAs N3 and N4 suh that N3 � N4, but not N3 �S N4.

1. By de�nition of δ, for eah s ∈ S, δ(s) is a distribution on S′
.

2. Assume that µ(s2) ≤ 0.7. For s′3, s
′
4 ∈ S′

, we have

∑

s∈S

µ(s)δ(s)(s′3) = µ(s3)
0.7 − µ(s2)

µ(s3)
= 0.7 − µ(s2),

∑

s∈S

µ(s)δ(s)(s′4) = µ(s3)

(
1 −

0.7 − µ(s2)

µ(s3)

)

= µ(s3) − 0.7 + µ(s2).

Using this observation, µ′ : S′ → [0, 1], given by s′1 7→ µ(s1), s
′
2 7→

µ(s2), s
′
3 7→ 0.7−µ(s2), s

′
4 7→ µ(s3)− 0.7 +µ(s2), and s

′
5 7→ µ(s4), is

a distribution on S′
, µ′ ∈ Sat(ϕy), and µ ⋐

δ
R µ

′
. The proof is similar

if µ(s2) > 0.7.
3. Pairs (s, s′) for whih δ(s)(s′) > 0 are related by R by onstrution.

For valuations in s1 and s′1, respetively, it holds that {{l}} ⊆ {{l}}.

• N3 6�S N4: Suppose that there exists a satisfation relation R′
, and let

δ′ be the orrespondene funtion witnessing relation of s1 and s′1. The

valuations require that δ′ must be of the same type as δ above with γ ≥ 0
(here γ is onstant). Consider the following two distributions over S, µ1

and µ2 given by

µ1 : s1 7→ 0, s2 7→ 0.6, s3 7→ 0.1, s4 7→ 0.3

µ2 : s1 7→ 0, s2 7→ 0.8, s3 7→ 0.1, s4 7→ 0.1.

The 2 following properties must hold: (1) ∃µ′
1 ∈ Dist(S′), ∀s′ ∈ S′ :∑

s∈S µ1(s)δ(s)(s
′) = µ′

1(s
′) and (2) ∃µ′

2 ∈ Dist(S′), ∀s′ ∈ S′ :∑
s∈S µ2(s)δ(s)(s

′) = µ′
2(s

′). However, (1) requires that γ = 1, and (2)

requires that γ = 0, whih shows that suh a strong re�nement relation

annot exist.

• �T 6=�W : Finally, we show that for the APAs N5 and N6, given in Fig. 10,

we have N5 �T N6, but N5 6�W N6.
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s2

{{m}}

{{l}}

s1

a, 1, ?

{{o}}{{n}}

b, x4, ?b, x3, ?

s4s3

ϕx ≡ (x3 = 1 ∧ x4 = 0)∨
(x3 = 0 ∧ x4 = 1)

(a) N5

s′1

{{l}}

{{m}}

b, 1, ?b, 1, ?

a, y3, ?a, y2, ?

{{m}}

{{n}} {{o}}

s′4 s′5

s′3s′2

ϕy ≡ (y2 = 1 ∧ y3 = 0)∨
(y2 = 0 ∧ y3 = 1)

(b) N6

Figure 10: APAs N5 and N6 suh that N5 �T N6, but not N5 �W N6.

• N5 �T N6: It is easy to see that any PA satisfying N5 will also satisfy N6.

• N5 6�W N6: Consider the pair (s2, s
′
2). Sat(ϕx) = {µ1, µ2} , where

µ1(s3) = 1 and µ2(s4) = 1. Let µ′
2 be the distribution over N6 assigning

probability 1 to s′4. A orrespondene funtion δ suh that µ2 ⋐
δ
R µ′

2

annot exist, sine suh a δ will satisfy that δ(s4)(s
′
4) = 1 and this pair

annot be related beause {{o}} 6⊆ {{n}}. The same applies for (s2, s
′
3).

This implies that N5 6�W N6.

We have just seen that, in general, thorough re�nement is stritly �ner than

any syntatial re�nement. In Setion 6.2, we will show that the thorough, weak

weak, weak, and strong re�nement oinide on the lass of deterministi APAs.

In the rest of this paper, eah time that we show that a re�nement relation

holds, we prove it for the strongest possible version of re�nement.

3.2. Bisimulation

In this setion, we �rst introdue the lassial notion of bisimulation for

PAs [21℄. Then, we show that the spei�ation theory we propose in this paper

is bakwards-ompatible, in the sense that bisimilar PAs satisfy the same spe-

i�ations. The setion is strutured as follows. First, we reap the de�nition of

bisimulation for PAs. Then, in Theorem 20, we propose a haraterization of

bisimulation based on the notion of satisfation. Finally, Theorem 22 presents

the main result of the setion, i.e. bisimilar APAs satisfy the same spei�ations.

Detailed proofs of the theorems are given in Appendix B.

The following de�nition presents the lassial notion of bisimulation proposed

in [21℄.

De�nition 18 (Bisimulation). Let P = (S,A, L,AP, V, s0) and P
′ = (S′, A, L′, AP, V ′, s′0)

be PAs with no unreahable states. We say that R ⊆ S × S′
is a bisimulation

relation i� whenever (s, s′) ∈ R, the following holds:
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• V (s) = V ′(s′), and

• ∀a ∈ A, ∃µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ if and only if there ex-

ists µ′ ∈ Dist(S′) suh that L′(s′, a, µ′) = ⊤ and, for eah equivalene

lass T ∈ (S ∪ S′)/R∗
, µ(T ) = µ′(T ), where R∗

denotes the re�exive,

symmetri, transitive losure of R on (S ∪ S′).

P and P ′
are bisimilar, written P ≃ P ′

, if and only if there exists a bisim-

ulation relation R suh that s0 R s′0.

Charaterization. We now propose a methodology that uses the satisfation

relation and a lifting algorithm from PAs to APAs in order to deide whether

two given PAs are bisimilar. This methodology and the subsequent theorem 20

will be of partiular interest for proving bakward ompatibility.

It turns out that bisimulation between two given PAs holds whenever, when

lifted to APAs, they admit the same implementations. In the following, we

�rst formally de�ne the lifting from PAs to APAs. We then propose a formal

syntatial haraterization of bisimilar PAs.

De�nition 19 (Lifting). Let P = (S,A, L,AP, V, s0) be a PA. We de�ne the

lifting of P , denoted P̃ = (S,A, L̃, AP, Ṽ , s0) as the APA where

• for all s ∈ S, a ∈ A, and ϕ ∈ C(S), L̃(s, a, ϕ) = ⊤ if and only if there

exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}, and

• for all s ∈ S, Ṽ (s) = {V (s)}.

Informally, the lifting P̃ of P extends state valuations to sets ontaining only

the original valuations, and ontains only single-solution onstraints based on

the original distributions of P .
We propose the following theorem:

Theorem 20. Let P and P ′
be PAs. We have that P ≃ P ′ ⇐⇒ P |= P̃ ′

.

Proof. We give a sketh of the proof, while a detailed version is given in Appendix B.1.

Let P = (S,A, L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0) be PAs, and let

P̃ ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the lifting of P ′
.

• P ≃ P ′ ⇒ P |= P̃ ′
: Assume that P ≃ P ′

with relation Rb. It happens

that Rb is a satisfation relation suh that P |= P̃ ′
.

• P ≃ P ′ ⇐ P |= P̃ ′
: Assume that P |= P̃ ′

with satisfation relation R. We

prove that P ≃ P ′
.

Let R∗
denote the re�exive, transitive, symmetri losure of the relation R

over S ∪ S′
, and let Rb ⊆ S × S′

be the relation suh that sRb s
′
i� sR∗ s′. It

follows that Rb is a bisimulation relation and that s0 Rb s
′
0. We thus onlude

that P ≃ P ′
.
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Bakward Compatibility. We now move to the main result of the setion:

bisimilar PAs satisfy the same APAs. We �rst relate lifting and re�nement.

Lemma 21. Let P be a PA and let N be an APA. The following holds:

P |= N ⇐⇒ P̃ � N.

Proof. • P |= N ⇒ P̃ � N : Let P = (S,A, L,AP, V, s0) be a PA and let

N = (S′, A, L′, AP, V ′, s′0) be an APA suh that P |= N with relation Rs. Let

P̃ = (S,A, L̃, AP, Ṽ , s0) be the lifting of P . It happens that Rs is also a weak

re�nement relation between P̃ and N . The proof is standard and reported

in Appendix B.2.

Sine R is a weak re�nement relation and, by onstrution, s0 R s′0, we

onlude that P̃ � N .

• P |= N ⇐ P̃ � N : Let P = (S,A, L,AP, V, s0) be a PA, let P̃ = (S,A, L̃, AP,
Ṽ , s0) be the lifting of P and let N = (S′, A, L′, AP, V ′, s′0) be an APA suh

that P̃ � N with relation Rr. Again, Rr is also a satisfation relation between

P and N . The proof is standard and given in Appendix B.2.

Sine R is a satisfation relation and, by onstrution, s0 R s′0, we onlude
that P |= N .

Observe that, by the two previous results, we obtain that the lifting of two

bisimilar PAs have equal sets of implementations:

P ≃ P ′ ⇐⇒ [[P̃ ]] = [[P̃ ′]].

We now present the main result of the setion, that is that bisimilar PAs

satisfy the same spei�ations.

Theorem 22. Let P and P ′
be PAs suh that P ≃ P ′

. For all APA N , it holds

that P |= N ⇐⇒ P ′ |= N .

Proof. Let P and P ′
be PAs suh that P ≃ P ′

, and let N be an APA suh that

P |= N . Consider the liftings P̃ and P̃ ′
of P and P ′

. By Lemma 21, we have

P̃ � N . Moreover, by Theorem 20, we have P ′ |= P̃ . Sine weak re�nement

implies implementation set inlusion, we thus have that P ′ |= N . By symmetry,

we thus have that for all APA N , P |= N ⇐⇒ P ′ |= N .

3.3. Abstration

We now propose two di�erent notions of abstration. The �rst notion, alled

state-based abstration amounts to grouping sets of states into single abstrat

states. The aim of state-based abstration is to redue the omplexity of APAs

by reduing their state spae. The seond notion, alled onstraint-based ab-

stration, amounts to abstrating omplex onstraints into the smallest interval

onstraints that enompass all their solutions. The aim of onstraint-based ab-

stration is to redue the omplexity of the onstraints. Indeed, as shown in [22℄,
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manipulating interval onstraints allows for less omplex algorithms in general.

Observe that both notions of abstration an be ombined.

State-based abstration. The aim of this abstration is to partition the state

spae, i.e., group (disjoint) sets of states into a single abstrat state. Let N and

M be APA with state spae S and S′
, respetively. An abstration funtion α :

S → S′
is a surjetion. The inverse of abstration funtion α is the onretization

funtion γ : S′ → 2S. The state α(s) denotes the abstrat ounterpart of state
s while γ(s′) represents the set of all (onrete) states that are represented

by the abstrat state s′. Abstration is lifted to distributions as follows. The

abstration of µ ∈ Dist(S), denoted α(µ) ∈ Dist(S′), is uniquely de�ned by

α(µ)(s′) = µ(γ(s′)) for all s′ ∈ S′
. Abstration is lifted to sets of states, or sets

of distributions in a pointwise manner. It follows that ϕ′ = α(ϕ) if and only

if Sat(ϕ′) = α(Sat(ϕ)). The artesian produt of two abstration funtions is

given as follows: (α1 ×α2)(s1, s2) = (α1(s1), α2(s2)). These ingredients provide
the basis to de�ne the state abstration of an APA.

De�nition 23 (State-based Abstration). Given APA N = (S,A, L,AP, V, s0),
the abstration funtion α : S → S′

indues the APA α(N) = (S′, A, L′, AP, V ′,
α(s0)), where for all a ∈ A, s′ ∈ S′

and ϕ′ ∈ C(S′):

L′(s′, a, ϕ′) =





⊤
if ∀s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) = ⊤, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ)=⊤
Sat(ϕ)) (a)

?
if ∃s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) ≥ ?, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ) 6=⊥
Sat(ϕ)) (b)

⊥ otherwise ()

and V ′(s′) =
⋃

∀s∈γ(s′)
V (s)

Item (a) asserts that if there are must transitions (s, a, ϕ) from all states

s ∈ γ(s′), then the must transition (s′, a, ϕ′) represents their total behavior.

Item (b) asserts that a may a-transition emanating from s′ represents the total
behaviour of all may and must transitions (s, a, ϕ) for all s ∈ γ(s′). Item ()

asserts that if no state in γ(s′) has an a-transition, then s′ also does not have

an a-transition.
The result of abstrating APA N is the APA α(N) that is able to mimi all

behaviours of N , but possibly exhibits more behaviour.

Example. Consider the APA N = (S,A, L,AP, V, s0) depited in Fig. 11a. Let

the abstration funtion α : S → S′
be given by α(s1) = s′1, α(s2) = α(s3) = s′23,

α(s4) = s′4, α(s5) = s′5, and α(s6) = s′6. The APA α(N) obtained following

De�nition 23 is depited in Figure 11b. State s′1 has a single outgoing must

a-transition, orresponding to the outgoing must a-transition of s1, where target
states are ollapsed and the onstraint is simpli�ed aordingly. State s′23 has

two outgoing transitions: (1) a must a-transition beause both s2 and s3 have
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s2

s1

s4 s5 s6

s3

{{l}}

a, 1,⊤

{{m}}

a, 1,?

{{n}} {{o}} {{o}}

a, x3,⊤

a, 1,⊤

{{m}} a, x2,⊤

ϕx ≡ x2 + x3 = 1

(a) N

s′5 s′6s′4
{{n}} {{o}} {{o}}

s′23

a, z6,⊤

{{m}}a, 1,⊤

a, y5,? a, y6,?

s′1

a, y4,? a, z5,⊤

{{l}}

ϕy ≡ y4 = 1 ∨ y5 = 1 ∨ y6 = 1
ϕz ≡ z5 = 1 ∨ z6 = 1

(b) α(N)

Figure 11: APA N and and its state abstration α(N)

must a-outgoing transitions (item (a) of De�nition 23), with a onstraint that

represents the union of the onstraints of the original must transitions; and (2) a

may a-transition beause s2 has a may a-transition (item (b) of De�nition 23),

with a onstraint that represents the union of the onstraints of all outgoing

a-transitions of s2 and s3.

Observe that the abstrat version of an APA is always weaker in term of

re�nement than the original APA.

Lemma 24. For all APA N and abstration funtion α, N �S α(N).

Proof. Let N = (S,A, L,AP, V, s0) be an APA and let α : S → S′
be an abstra-

tion funtion. Consider the state abstration α(N) = (S′, A, L′, AP, V ′, α(s0)).
Let R ⊆ S × S′

be the relation suh that sR s′ i� s′ = α(s). The proof that

R is a strong re�nement relation is standard. The key point of this proof is

to use the following orrespondene funtions: δ : S → (S′ → [0, 1]) suh that

δ(u)(v) = 1 if α(u) = v, and 0 otherwise. For the sake of ompleteness, the full

proof is reported in Appendix C.

Observe that by the ordering of re�nement relations given in Theorem 17,

it also holds that N � α(N), N �W α(N) and N �T α(N).

Constraint-based abstration. Given a onstraint ϕ ∈ C(S), we say that

ϕ is an interval onstraint if there exist losed intervals {Iϕs |s ∈ S} suh that

∀µ, µ ∈ Sat(ϕ) ⇐⇒
∧
s∈S(µ(s) ∈ Iϕs ). If, for all s ∈ S, a ∈ A, and ϕ ∈ C(S)

suh that L(s, a, ϕ) 6= ⊥, it holds that ϕ is an interval onstraint, then we all

N an Interval Probabilisti Automaton (IPA).

The following notion of abstration abstrats an APA with the smallest IPA

enompassing all its implementations.

De�nition 25 (Constraint-based Abstration). Let N = (S,A, L,AP, V, s0) be
an APA. The onstraint-abstrated APA χ(N) = (S,A, L′, AP, V, s0) is de�ned
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suh that for all states s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) suh that

L(s, a, ϕ) 6= ⊥, then L′(s, a, ϕ′) = L(s, a, ϕ) for ϕ′ ∈ C(S) de�ned as

Sat(ϕ′) =

{
µ′ ∈ Dist(S)

∣∣∣∣∣
∧

s′∈S

µ′(s′) ∈ Iϕs′

}
,

where {Iϕs′ |s
′ ∈ S} are the smallest losed intervals suh that ∀µ ∈ Sat(ϕ) :∧

s′∈S µ(s′) ∈ Iϕs′ .

As expeted, onstraint-based abstration is an abstration with respet to

strong re�nement.

Lemma 26. For any APA N , it holds that N �S χ(N).

Proof. Let N = (S,A, L,AP, V, s0) be an APA and let χ(N) = (S,A, L′, AP, V,
s0) be the onstraint-abstration of N . Let R = S × S be the identity rela-

tion. The proof that R is a strong re�nement relation is standard. The key

point of this proof is to use identity orrespondene funtions. For the sake of

ompleteness, the full proof is given in Appendix D.

We now show that ifN is a valuation-deterministi APA in SVNF, then χ(N)
is the smallest IPA in SVNF abstrating N with respet to weak re�nement.

However, when N and χ(N) are not in SVNF, it is possible to abstrat N in dif-

ferent ways by grouping states with di�erent valuations, leading to abstrations

that annot be ompared with χ(N) using the re�nement relations.

Theorem 27. For any valuation-deterministi APA N in SVNF and IPA N ′

in SVNF, N � N ′
implies χ(N) � N ′

.

Proof. Let N = (S,A, L,AP, V, s0) be a valuation-deterministi APA, and let

N ′ = (S′, A, L′, AP, V ′, s′0) be an IPA, both in SVNF, suh that N � N ′
with a

weak re�nement relation R. Let χ(N) = (S,A, L′′, AP, V, s0) be the onstraint
abstration of N . Let R′ := R. Although R and R′

are equal, we hose to use

two di�erent notations to stress the fat that the former is a weak re�nement

relation between N and N ′
while the latter is a relation between χ(N) and N ′

.

We prove that R′
is a weak re�nement relation suh that χ(N) � N ′

. Let s ∈ S
and s′ ∈ S′

suh that sR′ s′. We show that R′
satis�es the axioms of a weak

re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤. By R, there

exists ϕ ∈ C(S) suh that L(s, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ)∃µ′ ∈ Sat(ϕ′) :
µ ⋐R µ′

. By onstrution of χ(N), there exists ϕI ∈ C(S) (the onstraint-
abstration of ϕ) suh that L′′(s, a, ϕI) = ⊤ and Sat(ϕI) = {µ′′ ∈ Dist(S)|∧
s′′∈S µ

′′(s′′) ∈ Iϕs′′} with {Iϕs′′ |s
′′ ∈ S} the smallest losed intervals suh

that ∀µ ∈ Sat(ϕ) :
∧
s′′∈S µ(s′′) ∈ Iϕs′′ .

De�ne R′(s1) = {s′1 ∈ S′|s1 R
′ s′1} for all s1 ∈ S. Observe that for all

s1 6= s2, ϕ ∈ C(S), and a ∈ A suh that L(s, a, ϕ) 6= ⊥, if there ex-

ists µ1, µ2 ∈ Sat(ϕ) with µ1(s1) > 0 and µ2(s2) > 0, then, sine N is
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valuation-deterministi and N ′
is in SVNF, R′(s1)∩R′(s2) = ∅ (observa-

tion A).

Let {IϕI
s1

= [ls1 , us1 ]|s1 ∈ S} be the intervals assoiated with ϕI , and let

{Iϕ
′

s′1
= [l′s′1

, u′s′1
]|s′1 ∈ S} be the intervals assoiated with ϕ′

. Let a ∈ A

and ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥. Let s1 ∈ S. By minimality of the

interval onstraints in χ(N), there exists µ ∈ Sat(ϕ) suh that µ(s1) = ls1 .
Sine sR s′, there exists δ : S → Dist(S′) suh that

∀s′1 ∈ S′ :
∑

s2∈S

µ(s2)δ(s2)(s
′
1) = µ′(s′1),

for some µ′ ∈ Sat(ϕ′), where L′(s′, a, ϕ′) 6= ⊥.
For δ, we dedue that ∀s′1 6∈ R′(s1), δ(s1)(s

′
1) = 0 and ∀s2 6= s1, ∀s′1 ∈

R′(s2), δ(s2)(s
′
1) = 0. By the �rst dedution, ∀s′1 ∈ R′(s1), µ(s1)δ(s1)(s

′
1) ≥

l′s′1
and by the seond,

∑
s′1∈R′(s1) µ(s2)δ(s2)(s

′
1) = ls1 . As a onsequene,

ls1 ≥
∑
s′1∈R′(s1) l

′
s′1
, and similarly, we obtain us1 ≤

∑
s′1∈R′(s1) u

′
s′1
.

Let µI ∈ Sat(ϕI). We now prove that there exists µ′
I ∈ Sat(ϕ′) suh that

µI ⋐R′ µ′
I . For all s1 ∈ S, de�ne the orrespondene funtion δ′ : S →

Dist(S′) as follows: if µI(s1) = 0, then δ′(s1)(s
′
1) = 0 for all s′1 ∈ S′

and

otherwise,

δ′(s2)(s
′
1) =





1
µI(s2)

(
l′s′1

+
(u′

s′
1
−l′

s′
1
)(µI(s2)−

P

s′
2
∈R′(s2) l

′
s′
2
)

P

s′2∈R′(s2)(u
′
s′2

−l′
s′2

)

)
if s′1 ∈ R′(s2)

0 otherwise.

(1)

Let µ′
I ∈ Dist(S′) suh that µ′

I(s
′
1) =

∑
s2∈S

µI(s2)δ(s2)(s
′
1). We prove

that µI ⋐
δ′

R′ µ′
I .

(a) By onstrution, if µI(s1) > 0, then
∑
s′1∈S

′ δ′(s1)(s
′
1) = 1.

(b) Let s∗′ ∈ S′
. By observation A, there exists at most one s∗ ∈ S suh

that µI(s
∗) > 0 and s∗′ ∈ R′(s∗). There are two ases:

• If no suh s∗ exists, then l′s∗′ =
∑

s2∈S
µI(s2)δ

′(s2)(s
∗′) = 0 and

we have

l′s∗′ ≤ µ′
I(s

∗′) ≤ u′s∗′ .

• Otherwise, we have

∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) = µI(s
∗)δ′(s∗)(s∗′)

= l′s∗′ +
(u′s∗′ − l′s∗′)(µI(s

∗) −
∑

s′2∈R′(s∗) l
′
s′2

)
∑
s′2∈R′(s∗)(u

′
s′2

− l′
s′2

)
.

Sine

∑
s′2∈R′(s2) l

′
s′2

≤ ls∗ ≤ µI(s
∗), we have that

µ′
I(s

∗′) =
∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) ≥ l′s∗′ .
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Similarly,

µ′
I(s

∗′) =
∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) ≤ u′s∗′ .

We onlude that ∀s′1 ∈ S′, µ′
I(s

′
1) ∈ I ′s′1

. Thus µ′
I ∈ Sat(ϕ′).

() Assume that δ′(s1)(s
′
1) > 0. Then s′1 ∈ R′(s1), and s1 R

′ s′1.

We onlude that there exists µ′
I ∈ Sat(ϕ′) suh that µI ⋐R′ µ′

I .

2. Let a ∈ A and ϕI ∈ C(S) suh that L′′(s, a, ϕI) 6= ⊥. By onstrution,

there exists ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥. By re�nement, there

exists ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) 6= ⊥ and ∀µ ∈ Sat(ϕ)∃µ′ ∈
Sat(ϕ′) : µ ⋐R µ′

. Using the same reasoning as above, we an prove that

∀µI ∈ Sat(ϕI), there exists µ
′
I ∈ Sat(ϕ′) suh that µI ⋐R µ′

I .

3. Clearly, V (s) ⊆ V ′(s′), as valuations in N and χ(N) are equal.

This proves that R′
is a weak re�nement relation. As s0 R

′ s′0, we onlude
that χ(N) � N ′

.

Observe that the above theorem does not hold for strong re�nement: If N ′

is an IPA in SVNF suh that N �S N ′
, then we have χ(N) � N ′

but not

neessarily χ(N) �S N ′
.

Example. We show that Thm. 27 does not hold when the APA N is not

valuation-deterministi. Consider APA N and IPA N ′
given in Fig. 12a and 12

respetively. It is easy to see that N is not valuation-deterministi, and that

N � N ′
. Let χ(N) be the onstraint-based abstration of N , as given in Fig. 12b.

Consider PA P given in Fig. 12d. It is easy to see that P |= χ(N), but P 6|= N ′
.

Thus, by Theorem 17, χ(N) 6� N ′
.

Notie that Thm. 27 holds regardless whether N is ation-deterministi. It

turns out that if N is not ation-deterministi, then the theorem holds for weak

re�nement, but not for weak weak re�nement. Fig. 13 illustrates a ounter exam-

ple. This is not suprising as, beause of the swap of quanti�ers in its de�nition,

weak weak re�nement an take more advantage of ation non-determinism than

weak re�nement.

Although state-based abstration and onstraint-based abstration are both

abstrations, they annot be ompared in general in terms of re�nement. This

statement is illustrated in the following example.

Example. Consider APA N given in Fig. 14a. Fig. 14b illustrates the state-

based abstration of N where state s2 and s3 are grouped, and Fig. 14 illustrates
the onstraint-abstration of N . It is easy to see that α(N) 6� χ(N). Indeed,

state s′2 annot re�ne either state s′′2 or s′′3 , beause their valuations do not

oinide. Also χ(N) 6� α(N), beause their onstraints do not math.
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s2 s3 s4 s5

{{β}} {{β}} {{γ}} {{ǫ}}

{{θ}}

s1

a, x3,?a, x2,? a, x4,? a, x5,?

ϕx ≡ x2 + x3 = 1
2 ∧ x4 + x5 = 1

2

(a) A non valuation-deterministi

APA N

s2 s5

s1

s4s3

a, [0, 1
2
],?

{{ǫ}}

a, [0, 1
2
],? a, [0, 1

2
],? a, [0, 1

2
],?

{{γ}}{{β}} {{β}}

{{θ}}

(b) The onstraint abstration χ(N)
of APA N

s′4s′2 s′3

s′1

{{β}} {{γ}} {{ǫ}}

a, [ 1
2
, 1

2
],? a, [0, 1

2
],? a, [0, 1

2
],?

{{θ}}

() IPA N ′
suh that N � N ′

and

χ(N) 6� N ′

s′′2 s′′3 s′′4

s′′1

a, 1
3

a, 1
3

{γ} {ǫ}

a, 1
3

{β}

{θ}

(d) PA P suh that P |= χ(N) and

P 6|= N ′

Figure 12: Example that onstraint abstration does not preserve � for non

valuation-deterministi APAs

4. Consisteny, Pruning and Conjuntion

We now turn our attention to deiding whether there exist implementations

satisfying one or several spei�ations. When onsidering only one spei�ation,

this problem is alled onsisteny. In the following subsetion, we �rst formally

de�ne onsisteny and then propose an algorithm to deide if a given APA is

onsistent. We then move to the problem of deiding whether several APAs ad-

mit a ommon implementation. We propose an operation, alled onjuntion,

that ombines requirements of several APAs into a single APA whose imple-

mentations are exatly those implementations that satisfy all original APAs.

4.1. Consisteny and Pruning

De�nition 28 (Consisteny). An APA N is onsistent if and only if it admits

at least one implementation, i.e. [[N ]] 6= ∅.

We say that a state s is onsistent if V (s) 6= ∅ and L(s, a, ϕ) = ⊤ =⇒
Sat(ϕ) 6= ∅. An APA is loally onsistent if all its states are onsistent. It is

easy to see that a loally onsistent APA is onsistent. However, inonsisteny

of a state does not imply inonsisteny of the spei�ation. In order to deide

whether a spei�ation is onsistent, we proeed as usual and propagate inon-

sistent states with the help of a pruning operator β that �lters out distributions
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s1

s2 s3

a, 1,⊤

{{β}} {{γ}}

a, x2,⊤ a, x3,⊤

{{θ}}

ϕx ≡ x2 = 1 ∨ x3 = 1

(a) A non ation-deterministi APA N

s3s2

s1

{{γ}}{{β}}

a, 1,⊤ a, [0, 1],⊤a, [0, 1],⊤

{{θ}}

(b) The onstraint abstration χ(N) of

APA N

s′3s′2

s′1

{{β}} {{γ}}

a, 1,?a, 1,⊤

{{θ}}

() IPA N ′
suh that N �W N ′

and

χ(N) 6�W N ′

a, 1
2

a, 1

{β} {γ}

{θ}

a, 1
2

s′′2 s′′3

s′′1

(d) PA P suh that P |= χ(N) and P 6|= N ′

Figure 13: Example that Thm. 27 does not hold for weak weak re�nement with

a non ation-deterministi APA

s2 s3

s1

a, x2,⊤ a, x3,⊤

{{β}} {{γ}}

{{θ}}

a, x1,⊤

ϕx ≡ x1 = 1 ∨ x2 + x3 = 1

(a) An APA N

a, y2,⊤

{{θ}}

{{β}, {γ}}

a, y1,⊤
s′1

s′2

ϕy ≡ y1 = 1 ∨ y2 = 1

(b) α(N)

s′′2 s′′3

s′′1

a, [0, 1],⊤

a, [0, 1],⊤

{{θ}}

{{β}} {{γ}}

a, [0, 1],⊤

() χ(N)

Figure 14: α(N) and χ(N) annot be ompared in terms of re�nement

leading to inonsistent states. This operator is applied until a �xed point is

reahed, i.e., until the spei�ation does not ontain inonsistent states (it is

loally onsistent). We now formally de�ne the pruning operator.

De�nition 29 (Pruning). Let N = (S,A, L,AP, V, s0) be an APA with λ /∈ S
and let T ⊆ S be the set of inonsistent states in N . Let ν : S → {λ} ∪ S \ T
be de�ned by ν(s) = λ if s ∈ T , and ν(s) = s otherwise. Let β be a pruning

funtion de�ned by: If ν(s0) = λ, then β(N) is the empty APA. Otherwise,
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s1

s3

s′1

a, 1,?

{{θ}}

a, 1,⊤
s2

{{γ}}{{β}} ∅

a, 1,?
s′4

s4

λs′2
a, 1,⊤

(a) APA N

s′1

a, false,?

{{θ}}s′′1

s′4s′2
{{γ}}{{β}}

a, 1,⊤ a, 1,?
s′′2

a, false,⊤
λ

(b) APA β(N)

a, 1,⊤

s′′1

{{β}}

{{θ}}

s′′2

a, false,?

() APA β2(N) = β∗(N)

Figure 15: APAs N , β(N) and β2(N) = β∗(N)

β(N) = (S′, A, L′, AP, V ′, s0) with S′ = S \ T , and for all s ∈ S′
, a ∈ A,

p ∈ AP and ϕ ∈ C(S′),

L′(s, a, ϕ) =

{
⊥ if ϕs,a = ∅
⊔ϕ∈ϕs,aL(s, a, ϕ) otherwise

V ′(s) = V (s)

where ϕs,a is the set of onstraints on S, reahable from state s with label a,
that math ϕ when restrited to S′

. More formally,

ϕs,a = {ϕ ∈ C(S) | L(s, a, ϕ) 6= ⊥ and µ ∈ Sat(ϕ) i� ∃µ ∈ Sat(ϕ) s.t.
∀s ∈ S′, µ(s) = µ(s), and ∀t ∈ T, µ(t) = 0}.

All states in T are mapped onto λ and are removed from APA N . APA

β(N) obtained by pruning may still ontain inonsistent states. Therefore, we

repeat pruning until a �xpoint is reahed suh that βn(N) = βn+1(N), where n
represents the number of iterations. The existene of this �xpoint is guaranteed

as N is �nite. Some of the operations (onjuntion and omposition) may

introdue inonsistent states, and are sueeded by a pruning phase to remove

suh states.

Example. Consider APA N given in Fig. 15a. State s3 of N is inonsistent

beause of an empty valuation. The �rst round of pruning thus removes state

s3 and yields APA β(N) given in Fig. 15b. Sine state s3 has been removed,

transitions that used to lead to s3 now have the onstraint false, whih admits

no solution. The outgoing must transition of state s4 thus beomes inonsistent.

As a onsequene, the next round of pruning removes state s4 and yields APA

β2(N) given in Fig. 15. Sine there are no more inonsistenies, it follows that

β∗(N) = β2(N).

Pruning preserves the set of implementations, as formalized in the following

theorem.

Theorem 30. For any APA N , it holds that [[N ]] = [[β(N)]].
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Proof. Let N = (S,A, L,AP, V, s0) be an APA. Let T be the set of inonsistent

states of N and let β(N) be the orresponding APA using the pruning operator

of De�nition 29. The result is trivial if β(N) is empty. Otherwise, suppose that

β(N) = (S′, A, L′, AP, V ′, s0), and let P = (Q,A,LP , AP, VP , q0) be a PA. We

prove that P |= N ⇐⇒ P |= β(N).

• P |= N ⇒ P |= β(N): Suppose that P |= N , and let R ⊆ Q × S be the

orresponding satisfation relation. De�ne the relation R′ = R∩(Q× S′). The
proof that R′

is a satisfation relation is standard. The key argument relies

on the fat that all the states s ∈ S suh that there exists q ∈ Q with qR s
are onsistent, i.e. s /∈ T . Thus, onsidering the restrition of the relation R
to S \ T preserves implementations. For the sake of ompleteness, the detailed

proof is given in Appendix E.

• P |= N ⇐ P |= β(N): Suppose that P |= β(N), and let R′ ⊆ Q× S′
be the

orresponding satisfation relation. By onstrution, the extension R of R′
to

Q× S is a satisfation relation suh that q0 R s0. Thus P |= N .

Observe that the above theorem only holds for thorough re�nement. Indeed,

any syntati notion of re�nement between N and β(N) fails beause some

(potentially reahable) states of N are removed, and thus �nd no ounterpart

in β(N).

4.2. Conjuntion

Conjuntion, also alled logial omposition, allows ombining two spei�-

ations into a single spei�ation that has the onjuntive behavior of the two

operands. More preisely, a onjunted spei�ation admits the intersetion of

sets of implementations of its onstituents. The onjuntion operation is a mix

between the orresponding operations for modal automata [25℄ and CMCs [19℄.

The main lines of the general onjuntion operator that we de�ne hereafter are

as follows: (1) a must transition on one side that has no ounterpart on the other

side yields an inonsistent transition, (2) a may transition on one side that has

no ounterpart on the other side yields no transition, (3) the ombination of

two transitions (may or must) yields a may transition to a ombination of the

onstraints, and in addition, (4, 5) a must transition on one side yields a must

transition in the onjuntion to a onstraint ombining the onstraint assoiated

to the original must transition with a disjuntion of all admissible onstraints

on the other side. Notie that, although items (1,2,3) are very lose to the

de�nitions of onjuntion for modal automata and CMCs, items (4,5) are more

involved. Indeed, the general de�nition we present here needs to handle ation

non-determinism, whih is not taken are of in CMCs or modal automata. In

fat a simpler notion of onjuntion an be de�ned for deterministi APAs [1, 2℄.

Notie that onjuntion may introdue inonsistent transitions through (1)

and should thus be followed by applying the pruning operator β∗
.
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De�nition 31. Let N = (S,A, L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be

APAs sharing ation and proposition sets. Their onjuntion N∧N ′
is the APA

(S×S′, A, L̃, AP, Ṽ , (s0, s
′
0)) where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and

a ∈ (Must(s′)\May(s)) ∪ (Must(s)\May(s′))1

L̃((s, s′), a, false) = ⊤
, (1)

a ∈ (May(s)\May(s′)) ∪ (May(s′)\May(s))

L̃((s, s′), a, ϕ̃) = ⊥
, (2)

a∈May(s)∩May(s′) L(s, a, ϕ) 6=⊥ L′(s′, a, ϕ′) 6=⊥

L̃((s, s′), a, ϕ̃) = ?
, (3)

where ϕ̃ ∈ C(S × S′) suh that µ̃ ∈ Sat(ϕ̃) if and only if

distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ) and

distribution µ′ : t′ →
∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s) L(s, a, ϕ) = ⊤

L̃((s, s′), a, ϕ̃⊤) = ⊤
, (4)

where ϕ̃⊤ ∈ C(S × S′) suh that µ̃ ∈ Sat(ϕ̃⊤) if and only if both

the distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

there exists ϕ′ ∈ C(S′) with L′(s′, a, ϕ′) 6= ⊥ and the distribution µ′ : t′ →∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s′) L′(s′, a, ϕ′) = ⊤

L̃((s, s′), a, ϕ̃′⊤) = ⊤
, (5)

where ϕ̃′⊤ ∈ C(S × S′) is suh that µ̃′ ∈ Sat(ϕ̃′⊤) if and only if both

there exists ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥ and the distribution µ : t →∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

the distribution µ′ : t′ →
∑

t∈S µ̃
′((t, t′)) is in Sat(ϕ′).

Note that onjuntion ∧ is symmetri.

We onlude the setion by showing that onjuntion is the greatest lower

bound with respet to weak weak re�nement.

1

Reall that ∀s, Must(s) ⊆ May(s)
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Theorem 32. Let N1, N2, and N3 be onsistent APAs sharing ation and

atomi proposition sets. It holds that

• β∗(N1 ∧N2) �W N1.

• If N3�W N1 and N3�W N2, then N3�W β∗(N1 ∧N2).

Proof. Let N1 = (S1, A, L1, AP, V1, s
1
0) and N2 = (S2, A, L2, AP, V2, s

2
0) and

N3 = (S3, A, L3, AP, V3, s
3
0) be three APAs. LetN1∧N2 = (S1×S2, A, L̃, AP, Ṽ ,

(s10, s
2
0)) be the onjuntion of N1 and N2 de�ned as in De�nition 31. We prove

the laims separately.

• β∗(N1 ∧N2) �W N1: Obviously, if N1 ∧N2 is inonsistent, then β∗(N1 ∧N2)
is empty and re�nes N1 with the empty re�nement relation. Suppose now that

β∗(N1 ∧ N2) = (S∧, A, L∧, AP, V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2, not empty.

De�ne the relation R ⊆ S∧ × S1 suh that for all (s, s′) ∈ S∧
and t ∈ S1,

(s, s′)R t i� s = t. We prove that R is a weak weak re�nement relation. Let

(s, s′) ∈ S∧
suh that (s, s′)R s. We show that R satis�es the axioms of a weak

weak re�nement relation.

1. let a ∈ A and ϕ ∈ C(S1) suh that L1(s, a, ϕ) = ⊤. Sine (s, s′) ∈ S∧
, we

have that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) suh that µ̃ ∈ Sat(ϕ̃) i�

• the distribution µ : t→
∑
t′∈S2

µ̃((t, t′)) is in Sat(ϕ), and

• there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution µ′ : t′ →
∑

t∈S1
µ̃((t, t′)) is in Sat(ϕ′).

By de�nition of N1 ∧N2, we have that L̃((s, s′), a, ϕ̃) = ⊤. Consider now
ϕ∧ ∈ C(S∧) the onstraint suh that µ∧ ∈ Sat(ϕ∧) i� there exists µ̃ ∈
Sat(ϕ̃) suh that ∀r ∈ S∧, µ∧(r) = µ̃(r) and ∀r ∈ (S1×S2)\S∧, µ̃(r) = 0.
Aording De�nition 29, L∧((s, s′), a, ϕ∧) = ⊔

ψ∈ϕ∧(s,s′),a L̃((s, s′), a, ψ).

Sine ϕ̃ ∈ ϕ∧(s,s′),a
, it holds that L∧((s, s′), a, ϕ∧) = ⊤.

Thus there exists ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) = ⊤. Moreover,

de�ne the orrespondene funtion δ : S∧ → (S1 → [0, 1]) suh that

δ((r, r′))(r′′) = 1 i� r′′ = r. Let µ∧ ∈ Sat(ϕ∧), µ̃ the orresponding

distribution in Sat(ϕ̃), and µ the distribution suh that µ : r ∈ S1 7→∑
r′∈S2

µ̃((r, r′)). By de�nition, µ is in Sat(ϕ) and by onstrution, we

have µ∧
⋐
δ
R µ. For the sake of ompleteness, a detailed proof of this fat

is given in Appendix F.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) 6= ⊥. By de�nition

of L∧
, there exists ϕ̃ ∈ ϕ∧t,a

. Thus, L̃((s, s′), a, ϕ̃ 6= ⊥ in N1 ∧N2, and a

distribution µ∧
satis�es ϕ∧

i� there exists a distribution µ̃ ∈ Sat(ϕ̃) suh
that µ∧(r) = µ̃(r) for all r ∈ S∧

and µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
.

Sine S∧
ontains only onsistent states, there exists µ∧ ∈ Sat(ϕ∧). Let

µ̃ ∈ Sat(ϕ̃) be a orresponding distribution in ϕ̃. There are 3 ases.

• If a /∈ Must(s) and a /∈ Must(s′), then by De�nition 31, there ex-

ists ϕ ∈ C(S1) and ϕ′ ∈ C(S2) suh that L1(s, a, ϕ) 6= ⊥ and
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L2(s
′, a, ϕ′) 6= ⊥. Moreover, ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ :

r ∈ S1 7→
∑
r′∈S2

˜̺((r, r′)) and ̺′ : r′ ∈ S2 7→
∑

r∈S1
˜̺((r, r′)) are

respetively in Sat(ϕ) and in Sat(ϕ′). Sine µ̃ ∈ Sat(ϕ̃), let µ and

µ′
be the orresponding distributions in Sat(ϕ) and Sat(ϕ′). De-

�ne the orrespondene funtion δ : S∧ → (S1 → [0, 1]) suh that

δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we have µ∧
⋐
δ
R µ.

• Otherwise, if a ∈ Must(s) and there exists ϕ ∈ C(S1) suh that ϕ̃ is

suh that ˜̺∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
∑
r′∈S2

˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥

and the distribution ̺′ : r′ →
∑
r∈S1

˜̺((r, r′)) is in Sat(ϕ′).

Sine µ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the orresponding onstraint on
S2 suh that L2(s

′, a, ϕ′) 6= ⊥. Let µ and µ′
be the orresponding

distributions in Sat(ϕ) and Sat(ϕ′). De�ne the orrespondene fun-
tion δ : S∧ → (S1 → [0, 1]) suh that δ((r, r′))(r′′) = 1 i� r′′ = r. As
above, we have µ∧

⋐
δ
R µ. The same holds in the symmetri ase.

Finally, in any ase, there exists ϕ ∈ C(S1) suh that L1(s, a, ϕ) 6= ⊥ and

there exists µ ∈ Sat(ϕ) suh that µ∧
⋐R µ.

3. By de�nition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak re�nement relation, and we have β∗(N1∧N2) �W
N1.

• if N3 �W N1 and N3 �W N2, then N3 �W β∗(N1 ∧N2): Let R1 ⊆ S3 × S1

and R2 ⊆ S3 × S2 be the weak weak re�nement relations suh that N3 �W N1

and N3 �W N2. Obviously, if N1 ∧ N2 is fully inonsistent, then β∗(N1 ∧ N2)
is empty. In this ase, there are no onsistent APAs re�ning both N1 and N2.

As a onsequene, N3 is inonsistent, whih violates the hypothesis. Suppose

now that β∗(N1 ∧ N2) = (S∧, A, L∧, AP, V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2, is

not empty. De�ne the relation R∧ ⊆ S3 × S∧
suh that s′′ R∧(s, s′) ∈ S∧

i�

s′′ R s ∈ S1 and s′′ R′ s′ ∈ S2. We prove that R∧
is a weak weak re�nement

relation. Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 suh that s′′ R∧(s, s′). We show that

R∧
satis�es the axioms of a weak weak re�nement relation.

1. Let a ∈ A and ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) = ⊤. By de�nition,
we have L̃((s, s′), a, ϕ̃) = ⊤ with ϕ̃ ∈ C(S1 × S2) suh that µ∧ ∈ Sat(ϕ∧)
i� there exists µ̃ ∈ Sat(ϕ̃) suh that µ∧(r) = µ̃(r) for all r ∈ S∧

and

µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
. There are 2 ases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) suh that

L1(s, a, ϕ) = ⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : t→
∑

t′∈S2
˜̺((t, t′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥

and the distribution ̺′ : t′ →
∑

t∈S1
˜̺((t, t′)) is in Sat(ϕ′).
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Sine L1(s, a, ϕ) = ⊤ and s′′ R1 s, there exists ϕ′′ ∈ C(S3) suh

that L3(s
′′, a, ϕ′′) = ⊤ and ∀µ′′ ∈ Sat(ϕ′′), ∃µ ∈ Sat(ϕ), suh that

µ′′
⋐R1

µ (1).

Sine L3(s
′′, a, ϕ′′) = ⊤ and s′′ R2 s

′
, we have that ∀µ′′ ∈ Sat(ϕ′′),

there exist ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′)

suh that µ′′
⋐R2

̺′ (2).

Let µ′′ ∈ Sat(ϕ′′). By (1) and (2), there exists µ ∈ Sat(ϕ), ϕ′ ∈
C(S2) suh that L2(s

′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh that µ′′
⋐R1

µ and µ′′
⋐R2

µ′
. Sine (s, s′) and s′′ are onsistent, remark that for

all (r, r′) in S1×S2 \S∧
, we annot have s′′ R1 r and we annot have

s′′ R2 r
′
(3).

We now build µ∧ ∈ Sat(ϕ∧) suh that µ′′
⋐R∧ µ∧

.

Let δ and δ′ be the orrespondene funtions suh that µ′′
⋐
δ
R1

µ and

µ′′
⋐
δ′

R2
µ′
. De�ne the orrespondene funtion δ′′ : S3 → (S∧ →

[0, 1]) suh that for all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) =

δ(r′′)(r)δ′(r′′)(r′). We build µ∧
and prove that µ′′

⋐
δ′′

R∧ µ∧
.

� For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are dis-

tributions. By (3), we know that for all (r, r′) ∈ S1 × S2 \ S∧
,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a onsequene, δ′′(r′′) is a distri-

bution on S∧
.

� De�ne µ∧(r, r′) =
∑

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). It follows that

µ∧ ∈ Sat(ϕ∧). For the sake of ompleteness, a detailed proof of

this fat is given in Appendix F.

� If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and

δ′(r′′)(r′) > 0. As a onsequene, r′′ R1 r and r′′ R2 r
′
, thus

r′′ R∧(r, r′).

Finally, µ′′
⋐R∧ µ∧

and µ∧ ∈ Sat(ϕ∧). The same holds for the

symmetri ase.

2. Let a ∈ A and ϕ′′ ∈ C(S3) suh that L3(s
′′, a, ϕ′′) 6= ⊥. Let µ′′ ∈ Sat(ϕ′′).

Sine s′′ R1 s and s′′ R2 s
′
, there must exist ϕ ∈ C(S1), µ ∈ Sat(ϕ),

ϕ′ ∈ C(S2) and µ
′ ∈ Sat(ϕ′) suh that L1(s, a, ϕ) 6= ⊥, L2(s

′, a, ϕ′) 6= ⊥,
µ′′

⋐R1
µ and µ′′

⋐R2
µ′

. As a onsequene, L̃((s, s′), a, ϕ̃) 6= ⊥, with
ϕ̃ ∈ C(S1 × S2) suh that ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→∑

r′∈S2
˜̺((r, r′)) and ̺′ : r′ ∈ S2 7→

∑
r∈S1

˜̺((r, r′)) are respetively in

Sat(ϕ) and in Sat(ϕ′). Moreover, sine s′′ and (s, s′) are onsistent, there
exists ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) 6= ⊥ and ̺∧ ∈ Sat(ϕ∧) i�

there exists ˜̺ ∈ Sat(ϕ̃) suh that ̺∧(r, r′) = ˜̺(r, r′) for all (r, r′) ∈ S∧

and ˜̺(r, r′) = 0 for all (r, r′) ∈ S1 × S2 \ S∧
.

Let δ and δ′ the orrespondene funtions suh that µ′′
⋐
δ
R1

µ and µ′′
⋐
δ′

R2

µ′
. Sine s′′ and (s, s′) are onsistent, we know that (1) for all (r, r′) ∈

S1 × S2 \ S∧
, we have µ(r) = µ′(r′) = 0 and (2) for all r′′ ∈ S3 and

(r, r′) ∈ S1×S2 \S∧
, we annot have r′′ R1 r and we annot have r′′ R2 r

′
.
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De�ne the orrespondene funtion δ′′ : S3 → (S∧ → [0, 1]) suh that for

all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We now

build µ∧
suh that µ′′

⋐
δ′′

R∧ µ∧
and prove that µ∧ ∈ Sat(ϕ∧).

• For all r′′ ∈ S3, if µ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are dis-

tributions. By (2), we know that for all (r, r′) ∈ S1 × S2 \ S∧
,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a onsequene, δ′′(r′′) is a distribu-

tion on S∧
.

• De�ne µ∧(r, r′) =
∑

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). As above, we an

prove that µ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and δ′(r′′)(r′) >
0. As a onsequene, r′′ R1 r and r

′′ R2 r
′
, thus r′′ R∧(r, r′).

Finally, there exists ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) 6= ⊥ and

µ∧ ∈ Sat(ϕ∧) suh that µ′′
⋐R∧ µ∧

.

3. Sine s′′ R1 s and s
′′ R2 s

′
, we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Thus, R∧
is a weak weak re�nement relation between N3 and β∗(N1 ∧N2).

Moreover, we know that s30 R1 s
1
0, s

3
0 R2 s

2
0, and (s10, s

2
0) is onsistent. As a

onsequene s30 R
∧(s10, s

2
0) and N3 �W β∗(N1 ∧N2).

From the above theorem, we an easily dedue that the set of implementa-

tions of the onjuntion of two given APAs is exatly the intersetion of their

sets of implementations.

Corollary 33. For APAs N1 and N2, it holds that [[β∗(N1∧N2)]] = [[N1]]∩[[N2]].

Proof. Let N1 and N2 be APAs. We prove the result by double inlusion.

By Theorem 32, we have that β∗(N1∧N2) �W N1. By Theorem 17, we thus

have [[β∗(N1∧N2)]] ⊆ [[N1]]. By symmetry, we also obtain that [[β∗(N1∧N2)]] ⊆
[[N2]], and thus [[β∗(N1 ∧N2)]] ⊆ [[N1]] ∩ [[N2]].

Reall that every PA P an be seen as an APA in SVNF with no may

transitions and with only single point onstraints. Moreover, reall that all

notions of re�nement boil down to satisfation when the left operand is a PA,

i.e. for all PA P and for all APA N , we have P |= N ⇐⇒ P �W N ⇐⇒
P � N ⇐⇒ P �S N . Let P be a PA suh that P ∈ [[N1]] ∩ [[N2]]. By

de�nition, we have P |= N1 and P |= N2, and as a onsequene P �W N1

and P �W N2. By Theorem 32, we thus have P �W β∗(N1 ∧ N2) and as a

onsequene P |= β∗(N1∧N2). Therefore, we have [[N1]]∩[[N2]] ⊆ [[β∗(N1∧N2)]],
whih onludes the proof.

The above result is surprising. Indeed, in many theories for non-deterministi

systems suh as modal automata, there is no syntatial notion of onjuntion

that allows to ompute sets of implementation [26℄. Observe also that Theo-

rem 32 holds for weak-weak re�nement but neither for weak nor strong re�ne-

ments. Consider APAs N1 and N2, and their onjuntion β∗(N1 ∧ N2) given

in Fig. 16. It is easy to see that β∗(N1 ∧ N2) annot re�ne N2 with a weak
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1

a, x3,⊤a, x2,⊤

{{γ}}{{β}}

{{θ}}

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

2 3

(a) APA N1

{{θ}}

2 3

{{γ}}{{β}}

a, 1, ?a, 1, ?

1

(b) APA N2

ϕ∧
x ≡ (x(2,2) = 1) ∨ (x(3,3) = 1)

{{γ}}{{β}}

{{θ}}

1,1

a, x(3,3),⊤

2,2 3,3

a, 1,? a, x(2,2),⊤ a, 1,?

() APA β∗(N1 ∧ N2)

Figure 16: APAs N1, N2 and their onjuntion β∗(N1 ∧N2) suh that β∗(N1 ∧
N2) 6� N2.

re�nement relation. Indeed, the onstraint ϕ∧
x present in state (1, 1) annot

be redistributed to a given onstraint in N2 without knowing in advane whih

of its solutions is onsidered. This again illustrates the power of interleaving

onstraints and modalities through weak re�nement.

5. Compositional Reasoning

We now propose a omposition operation mixing the properties of the om-

position operation on modal transition systems and the omposition operation

on CMCs. We then show how omposition and abstration an ollaborate to

avoid state-spae explosion in a omponent-wise manner.

In our theory, the omposition operation is parametrized with a set of syn-

hronization ations like in CSP. This set allows to speify on whih ations

the two spei�ations should ollaborate and on whih ations they an be-

have individually. The intuition is as follows: synhronizing transitions have

the lowest modality of the original transitions, and lead to a onstraint whose

solutions are produt distributions of solutions of the original onstraints; and

non-synhronizing transitions keep their modality and impose that the other

omponent stays in its urrent state.

De�nition 34 (Parallel omposition of APAs). Let N = (S,A, L,AP, V, s0) and
N ′ = (S′, A′, L′, AP ′, V ′, s′0) be APAs and assume AP ∩AP ′ = ∅. The parallel

omposition of N and N ′
with respet to synhronization set A ⊆ A∩A′

, written

as N‖AN
′
, is given as N‖AN

′ = (S×S′, A∪A′, L̃, AP ∪AP ′, Ṽ , (s0, s
′
0)) where

• L̃ is de�ned as follows:

� For all (s, s′) ∈ S × S′
, a ∈ A, if there exists ϕ ∈ C(S) and

ϕ′ ∈ C(S′), suh that L(s, a, ϕ) 6= ⊥ and L′(s′, a, ϕ′) 6= ⊥, de�ne
L̃((s, s′), a, ϕ̃) = L(s, a, ϕ)⊓L′(s′, a, ϕ′) with ϕ̃ the new onstraint in

C(S×S′) suh that µ̃ ∈ Sat(ϕ̃) if and only if there exists µ ∈ Sat(ϕ)
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and µ′ ∈ Sat(ϕ′) suh that µ̃(u, v) = µ(u)µ′(v) for all u ∈ S and

v ∈ S′
.

If either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, or ∀ϕ′ ∈ C(S′), we
have L′(s′, a, ϕ′) = ⊥ then for all ϕ̃ ∈ C(S×S′), L̃((s, s′), a, ϕ̃) = ⊥.

� For all (s, s′) ∈ S × S′
, a ∈ A \ A, and for all ϕ ∈ C(S), de�ne

L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) with ϕ̃ the new onstraint in C(S × S′)
suh that µ̃ ∈ Sat(ϕ̃) if and only if for all u ∈ S and v 6= s′, µ̃(u, v) =
0 and the distribution µ : t 7→ µ̃(t, s′) is in Sat(ϕ).

� For all (s, s′) ∈ S × S′
, a ∈ A′ \ A, and for all ϕ′ ∈ C(S′), de�ne

L̃((s, s′), a, ϕ̃′) = L′(s′, a, ϕ′) with ϕ̃′
the new onstraint in C(S ×

S′) suh that µ̃′ ∈ Sat(ϕ̃′) if and only if for all u 6= s and v ∈
S′, µ̃′(u, v) = 0 and the distribution µ′ : t′ 7→ µ̃′(s, t′) is in Sat(ϕ′).

• Ṽ is de�ned as follows: for all (s, s′) ∈ S × S′
, Ṽ ((s, s′)) = {B̃ = B ∪

B′ | B ∈ V (s) and B′ ∈ V ′(s′)}.

Contrary to the onjuntion operation, omposition is de�ned for dissimilar

alphabets. Sine PAs are a restrition of APAs, their omposition is de�ned in

the same way. Remark that this boils down to the standard notion of parallel

omposition for PAs [5℄. By inspeting De�nition 34, one an see that the

omposition of two APAs whose onstraints are systems of linear inequalities (or

polynomial onstraints) may lead to an APA whose onstraints are polynomial.

One an also see that the onjuntion of two APAs with polynomial onstraints

is an APA with polynomial onstraints. The lass of polynomial onstraints

APAs is thus losed under all ompositional design operations.

The following theorem haraterizes the relation between parallel omposi-

tion and re�nement.

Theorem 35. Given a synhronization set A, all notions of re�nement are a

preongruene with respet to the parallel omposition operator ‖A de�ned above,

i.e. if N1⋉N ′
1 and N2⋉N ′

2, then N1‖AN2⋉N ′
1‖AN

′
2, for ⋉ ∈ {�T ,�W ,�,�S}.

Proof. We provide the proof for ⋉ =�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N

′
1 =

(S′
1, A1, L

′
1, AP1, V

′
1 , s

1
0
′
) and N ′

2 = (S′
2, A2, L

′
2, AP2, V

′
2 , s

2
0
′
) be APAs suh that

AP1 ∩ AP2 = ∅. Let A ⊆ A1 ∩ A2. Assume that N1 � N ′
1 and N2 � N ′

2

with weak re�nement relations R1 and R2, respetively. Let N1‖AN2 = (S1 ×
S2, A1∪A2, L,AP1∪AP2, V, (s

1
0, s

2
0)) and N

′
1‖AN

′
2 = (S′

1×S
′
2, A1∪A2, L

′, AP1∪

AP2, V
′, (s10

′
, s20

′
)).

Let R ⊆ (S1 × S2)× (S′
1 × S′

2) be the relation suh that (s1, s2)R(s′1, s
′
2) i�

s1 R1 s
′
1 and s2 R2 s

′
2. We now show that R is a weak re�nement relation suh

that N1‖AN2 � N ′
1‖AN

′
2.

Assume that (s1, s2)R(s′1, s
′
2). We show that R satis�es the axioms of a

weak re�nement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S′
1 × S′

2) suh that L′((s′1, s
′
2), a, ϕ

′) = ⊤.
There are three ases:
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• If a ∈ A, then there exists ϕ′
1 ∈ C(S′

1) and ϕ′
2 ∈ C(S′

2) suh that

L′
1(s

′
1, a, ϕ

′
1) = L′

2(s
′
2, a, ϕ

′
2) = ⊤ and µ′ ∈ Sat(ϕ′) i� there ex-

ists µ′
1 ∈ Sat(ϕ′

1) and µ′
2 ∈ Sat(ϕ′

2) suh that µ′ = µ′
1µ

′
2. Sine

s1 R1 s
′
1 and s2 R2 s

′
2, there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) with

L1(s1, a, ϕ1) = L2(s2, a, ϕ2) = ⊤ and ∀µ1 ∈ Sat(ϕ1), ∃µ
′
1 ∈ Sat(ϕ′

1) :
µ1 ⋐R1

µ′
1 and ∀µ2 ∈ Sat(ϕ2), ∃µ′

2 ∈ Sat(ϕ′
2) : µ2 ⋐R2

µ′
2.

De�ne ϕ ∈ C(S1 × S2) suh that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By

de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ).
Then there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh that µ = µ1µ2.

Sine s1 R1 s
′
1 and s2 R2 s

′
2, there exist µ

′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2)
and orrespondene funtions δ1 : S1 → (S′

1 → [0, 1]) and δ2 : S2 →
(S′

2 → [0, 1]), suh that µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) as δ(u, v)(u′, v′) = δ1(u)(u

′) · δ2(v)(v′). Consider the distri-

bution µ′
suh that µ′ = µ′

1µ
′
2. By onstrution, µ′ ∈ Sat(ϕ′) and

µ ⋐
δ
R µ′

. For the sake of ompleteness, a detailed proof of this fat

is given in Appendix G.

• If a ∈ A1 \A, then there exists ϕ′
1 ∈ C(S′

1) suh that L′
1(s

′
1, a, ϕ

′
1) =

⊤. Sine s1 R1 s
′
1, there exists ϕ1 ∈ C(S1) with L1(s1, a, ϕ1) = ⊤

and ∀µ1 ∈ Sat(ϕ1), ∃µ′
1 ∈ Sat(ϕ′

1) suh that µ1 ⋐R1
µ′

1.

De�ne ϕ ∈ C(S1 × S2) suh that µ ∈ Sat(ϕ) i� for all u ∈ S1

and v 6= s2, µ(u, v) = 0 and the distribution µ1 : t 7→ µ(t, s2) is in

Sat(ϕ1). By de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let
µ ∈ Sat(ϕ). Then there exists a µ1 ∈ Sat(ϕ1) suh that µ1 an be

written as t 7→ µ(t, s2) and furthermore there exists µ′
1 ∈ Sat(ϕ′

1)
and a orrespondene funtion δ1 : S1 → (S′

1 → [0, 1]) suh that

µ1 ⋐
δ1
R1

µ′
1.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) as δ(u, v)(u′, v′) = δ(u)(u′) if v = s2 and v′ = s′2, and 0
otherwise. Consider the distribution µ′

over S′
1 ×S′

2 suh that for all

u′ ∈ S′
1 and v′ 6= s′2, µ

′(u′, v′) = 0 and for all u′ ∈ S′
1 µ

′(u′, s′2) =
µ′

1(u
′). By onstrution, µ′ ∈ Sat(ϕ′) and µ ⋐

δ
R µ′

. For the sake of

ompleteness, a detailed proof of this fat is given in Appendix G.

• If a ∈ A2 \A, the proof is similar.

2. Let a ∈ A1∪A2 and ϕ ∈ C(S1×S2) suh that L((s1, s2), a, ϕ) 6= ⊥. There
are three ases:

• If a ∈ A, then there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) suh that

L1(s1, a, ϕ1) 6= ⊥, L2(s2, a, ϕ2) 6= ⊥, and µ ∈ Sat(ϕ) i� there ex-

ist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh that µ = µ1µ2. Sine

s1 R1 s
′
1 and s2 R2 s

′
2, there exists ϕ

′
1 ∈ C(S′

1) and ϕ
′
2 ∈ C(S′

2) with
L′

1(s
′
1, a, ϕ

′
1) 6= ⊥, L′

2(s
′
2, a, ϕ

′
2) 6= ⊥, and ∀µ1 ∈ Sat(ϕ1), ∃µ′

1 ∈
Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1 and ∀µ2 ∈ Sat(ϕ2), ∃µ

′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.
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De�ne ϕ′ ∈ C(S′
1×S

′
2) suh that Sat(ϕ′) = Sat(ϕ′

1)Sat(ϕ
′
2). By def-

inition of N ′
1‖AN

′
2, we have L′((s′1, s

′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ).
By de�nition of ϕ, there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh
that µ = µ1µ2. Furthermore, sine s1 R1 s

′
1 and s2 R2 s

′
2, there ex-

ist µ′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2) and two orrespondene funtions

δ1 : S1 → (S′
1 → [0, 1]) and δ2 : S2 → (S′

2 → [0, 1]) suh that

µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) suh that, for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′)·δ2(v)(v′).
By the same alulations as above, we know that the distribution µ′

over S′
1 × S′

2 onstruted as µ′ = µ′
1µ

′
2 is in Sat(ϕ′) and gives that

µ ⋐
δ
R µ′

.

• If a ∈ A1 \A, then there exists ϕ1 ∈ C(S1) suh that L1(s1, a, ϕ1) 6=
⊥. Sine s1 R1 s

′
1, there exists ϕ′

1 ∈ C(S′
1) with L′

1(s
′
1, a, ϕ

′
1) 6= ⊥

and ∀µ1 ∈ Sat(ϕ1), ∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1.

De�ne ϕ′ ∈ C(S′
1 × S′

2) suh that µ′ ∈ Sat(ϕ′) i� for all u′ ∈ S′
1

and v′ 6= s′2, µ(u′, v′) = 0 and the distribution µ′
1 : t 7→ µ(t, s′2) is in

Sat(ϕ′
1). By de�nition of N ′

1‖AN
′
2, we have L′((s′1, s

′
2), a, ϕ

′) 6= ⊥.
Let µ ∈ Sat(ϕ). Let µ1 be the distribution on S1 suh that for all

t ∈ S1, µ1(t) = µ(t, s2). By de�nition, µ1 ∈ Sat(ϕ1). Let µ′
1 ∈

Sat(ϕ′
1) and a orrespondene funtion δ1 : S1 → (S′

1 → [0, 1]) suh
that µ1 ⋐

δ1
R1

µ′
1.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) suh that for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′) if v = s2
and v′ = s′2, and 0 otherwise. By the same alulations as above, we

know that the distribution µ′ ∈ Sat(ϕ′) suh that for all u′ ∈ S′
1 and

v′ 6= s′2, µ
′(u′, v′) = 0 and for all u′ ∈ S′

1, µ
′
1 = µ′(u′, s′2), gives that

µ ⋐
δ
R µ′

.

• If a ∈ A2 \A, the proof is similar.

3. For atomi propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and

V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s′1) and B2 ∈ V ′
2(s′2)}. Sine

s1 R1 s
′
1 and s2 R2 s

′
2, we know by de�nition that V1(s1) ∈ V ′

1(s′1) and

V2(s2) ∈ V ′
2(s′2). Considering B1 = V1(s1) and B2 = V2(s2), we thus have

that V ((s1, s2)) ∈ V ′((s′1, s
′
2)).

By observing that (s10, s
2
0)R(s10

′
, s20

′
), sine s10 R1 s

1
0
′
and s20 R2 s

2
0
′
, we onlude

that R is a weak re�nement relation.

The fats that abstration preserves strong re�nement (f. Lemma 24), and

that strong re�nement is a preongruene with respet to parallel omposition,

enable us to apply abstration in a omponent-wise manner. That is to say,

rather than �rst generating (the typially large PA) M‖AN , and then apply-

ing abstration, it allows for �rst applying abstration, yielding α1(M) and

α2(N), respetively, and then onstruting α1(M)‖Aα2(N). Possibly a further

abstration of α1(M)‖Aα2(N) an be employed. The next theorem shows that
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omponent-wise abstration is as powerful as applying the ombination of the

�loal� abstrations to the entire model.

Theorem 36. Let M and N be APAs, A a synhronization set, and α1, α2 be

abstration funtions. The following holds:

α1(M) ‖A α2(N) = (α1 × α2)(M ‖AN) up to isomorphism.

Proof. LetM = (S,A, L,AP, V, s0) andN = (S′′, A′′, L′′, AP ′′, V ′′, s′′0) be APAs
and let A ⊆ A∩A′′

be a synhronization set suh that the parallel omposition

of M and N is given as M‖AN = (S × S′′, A ∪A′′, L̃, AP ∪AP ′′, Ṽ , (s0, s
′′
0)).

Let α1 : S → S′
and α2 : S′′ → S′′′

. Let α1(M) = (S′, A, L′, AP, V ′, α1(s0)),
α2(N) = (S′′′, A′′, L′′′, AP ′′, V ′′′, α2(s

′′
0 )) and (α1×α2)(M‖AN) = (S′×S′′′, A∪

A′′, L̃′, AP ∪ AP ′′, Ṽ ′, (α1(s0), α2(s
′′
0))) be the indued APA. Let

α1(M)‖Aα2(N) = (S′ × S′′′, A ∪A′′, L̃′′, AP ∪AP ′′, Ṽ ′′, (α1(s0), α2(s
′′
0))).

Notie that the signatures of α1(M)‖Aα2(N) and (α1 × α2)(M‖AN) only

di�er on onstraint funtions and valuation funtions. We establish the result by

proving the following: for all (s′, s′′′) ∈ S′×S′′′
, a ∈ A∪A′′

, and ϕ̃ ∈ C(S′×S′′′),
we have Ṽ ′((s′, s′′′)) = Ṽ ′′((s′, s′′′)) and L̃′((s′, s′′′), a, ϕ̃) = L̃′′((s′, s′′′), a, ϕ̃).

Let (s′, s′′′) ∈ S′ × S′′′
.

• The valuation of (s′, s′′′) in α1(M)‖Aα2(N) is

Ṽ ′′((s′, s′′′)) = {B ∪B′|B ∈ V ′(s′) ∧B′ ∈ V ′′′(s′′′)}

=
⋃

(s,s′′)∈(γ1×γ2)(s′,s′′′)

{B ∪B′|B ∈ V (s) ∧B′ ∈ V ′′(s′′)}

=
⋃

(s,s′′)∈(γ1×γ2)(s′,s′′′)

Ṽ ((s, s′′))

= Ṽ ′((s′, s′′′)).

• For onstraint funtions we have the following:

� Let a ∈ A and ϕ̃′ ∈ C(S′ × S′′′) suh that L̃′((s′, s′′′), a, ϕ̃′) = ⊤:
then for all (s, s′′) ∈ (γ1 × γ2)(s

′, s′′′), we have that there exists

ϕM‖N ∈ C(S × S′′) yielding L̃((s, s′′), a, ϕM‖N ) = ⊤ and

Sat(ϕ̃′) = (α1×α2)




⋃

((s,s′′),ϕM‖N )∈(γ1×γ2)(s′,s′′′)×C(S×S′′):

L((s,s′′),a,ϕM‖N)=⊤

Sat(ϕM‖N )


 .

(6)

For eah of these ϕM‖N , we have, by the de�nition of parallel om-

position, that there exists ϕM ∈ C(S) and ϕN ∈ C(S′′) suh that

L(s, a, ϕM ) = ⊤ and L′′(s′′, a, ϕN ) = ⊤ and µM‖N ∈ Sat(ϕM‖N ) i�
there exists µM ∈ Sat(ϕM ) and µN ∈ Sat(ϕN ) st. µM‖N (u, v) =
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µM (u)µN (v) for all (u, v) ∈ S × S′′
. De�ne ϕα1(M) ∈ C(S′), suh

that Sat(ϕα1(M)) is the abstration of the union of satisfation sets of
suh ϕM . Similarly, de�ne ϕα2(N) ∈ C(S′′′), suh that Sat(ϕα2(N))
is the abstration of the union of satisfation sets of suh ϕN . That
is,

Sat(ϕα1(M)) = α1(
⋃

(s,ϕM)∈γ1(s′)×C(S):L(s,a,ϕM)=⊤
Sat(ϕM )) (7)

Sat(ϕα2(N)) = α2(
⋃

(s′′,ϕN )∈γ2(s′′′)×C(S):L(s′′,a,ϕN)=⊤
Sat(ϕN ))

We will now have that L′(s′, a, ϕα1(M)) = ⊤ and L′′′(s′′′, a, ϕα2(N)) =

⊤. The de�nition of parallel omposition implies that L̃′′((s′, s′′′), a,
ϕ̃′′) = ⊤ and µα1(M)‖α2(N) ∈ Sat(ϕ̃′′) i� there exists µα1(M) ∈
Sat(ϕα1(M)) and µα2(N) ∈ Sat(ϕα2(N)) st. µα1(M)‖α2(N)(u, v) =
µα1(M)(u)µα2(N)(v) for all (u, v) ∈ S×S′′

. It is lear that Sat(ϕ̃′) =
Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′), a, ϕ̃′) =?.

� Let a /∈ A (or wlog. a ∈ A \ A) and ϕ̃′ ∈ C(S′ × C′′′) suh that

L̃′((s′, s′′′), a, ϕ̃′) = ⊤: then for all (s, s′′) ∈ (γ1×γ2)(s
′, s′′′), we have

that there exists ϕM‖N ∈ C(S × S′′) yielding L̃((s, s′′), a, ϕM‖N ) =
⊤ and ϕ̃′

is de�ned as in Equation 6. For eah of these ϕM‖N ,

we have, by the de�nition of parallel omposition, that there exists

ϕM ∈ C(S) suh that L(s, a, ϕM ) = ⊤ and µM‖N ∈ Sat(ϕM‖N ) i�

for all u ∈ S and v 6= s′′, µM‖N (u, v) = 0 and µM‖N (u, s′′) = ϕM (u).
De�ne ϕα1(M) ∈ C(S′), suh that Sat(ϕα1(M)) is the abstration of

the union of satisfation sets of suh ϕM i.e. as in Equation 7. We

will now have that L′(s′, a, ϕα1(M)) = ⊤. The de�nition of parallel

omposition implies that L̃′′((s′, s′′′), a, ϕ̃′′) = ⊤ and µα1(M)‖α2(N) ∈
Sat(ϕ̃′′) i� there exists µα1M ∈ Sat(ϕα1M ) st. for all u ∈ S′

and v 6=
s′′′, µα1(M)‖α2(N)(u, v) = 0 and µα1(M)‖α2(N)(u, s

′′′) = µα1(M)(u). It
is lear that Sat(ϕ̃′) = Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′), a, ϕ̃′) =?.

The above theorem helps avoiding state-spae explosion when ombining

systems by allowing for abstration as soon as possible.

This result annot be transferred to the notion of onstraint-abstration.

Indeed, as shown for Interval Markov Chains [22℄, the parallel omposition of two

IPAs is not an IPA. However, we an prove the following proposition, relating

omposition, onstraint-abstration and re�nement.

Proposition 37. Let N = (S,A, L,AP, V, s0) and N
′ = (S′, A′, L′, AP ′, V ′, s′0)

be APAs with AP ∩AP ′ = ∅. For A ⊆ A ∩A′
, χ(N)‖Aχ(N ′) �S χ(N‖AN

′).
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Proof. Let N‖AN
′ = (S × S′, A∪A′, L‖, AP ∪AP ′, V‖, (s0, s

′
0)), χ(N) = (S,A,

LχN , AP, V
χ
N , s0), χ(N ′) = (S′, A′, LχN ′ , AP ′, V χN ′ , s′0), χ(N)‖Aχ(N ′) = (S ×

S′, A∪A′, L
‖
χ, AP∪AP ′, V

‖
χ , (s0, s

′
0)), and χ(N‖AN

′) = (S×S′, A∪A′, Lχ‖ , AP ∪

AP ′, V χ‖ , (s0, s
′
0)). As χ(N)‖Aχ(N ′) and χ(N‖AN

′) have similar state spae,

struture, valuations, and initial states, we onsider the identity relation R =
IdS×S′

and show that it is a strong re�nement relation. Let s1 ∈ S and s′1 ∈ S′

suh that (s1, s
′
1)R(s1, s

′
1). We show that R satis�es the axioms of a strong re-

�nement relation. All the orrespondene funtions we onsider are the identity

funtions.

1. Let a ∈ A ∪ A′
, ϕχ‖ ∈ C(S × S′) suh that Lχ‖ ((s1, s

′
1), a, ϕ

χ

‖ ) = ⊤. Then

by onstrution of χ(N‖AN
′), there exists ϕ‖ ∈ C(S × S′) suh that

L‖((s1, s
′
1), a, ϕ‖) = ⊤.

• If a ∈ A, then there exists ϕ ∈ C(S) and ϕ′ ∈ C(S′) suh that

L(s1, a, ϕ) = ⊤ and L′(s′1, a, ϕ
′) = ⊤ and µ‖ ∈ Sat(ϕ‖) i� there

exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) suh that µ‖(u, v) = µ(u)µ′(v)
for all u ∈ S and v ∈ S′

. By onstrution of χ(N) and χ(N ′), there
exists ϕχN ∈ C(S) and ϕχN ′ ∈ C(S′) suh that LχN (s1, a, ϕ

χ
N ) = ⊤

and LχN ′(s′1, a, ϕ
χ
N ′) = ⊤. This means that there exists ϕ

‖
χ ∈ C(S ×

S′) suh that L
‖
χ((s1, s

′
1), a, ϕ

‖
χ) = ⊤, where µ

‖
χ ∈ Sat(ϕ

‖
χ) i� there

exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) suh that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. We now show that ∀µ

‖
χ ∈

Sat(ϕ
‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ by showing that µ

‖
χ ∈ Sat(ϕχ‖ )

(and indeed µ
‖
χ ⋐R µ

‖
χ). Assume that µ

‖
χ 6∈ Sat(ϕχ‖ ). By de�nition,

there exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) suh that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. Let (INu )u∈S , (IN

′

v )v∈S′
, and

I
‖
(u,v) = [m

‖
(u,v),M

‖
(u,v)])(u,v)∈S′

be the intervals assoiated with ϕχN ,

ϕχN ′ , and ϕ
‖
χ, respetively.

If µ
‖
χ 6∈ Sat(ϕχ‖ ), there must exists u′ ∈ S and v′ ∈ S′

suh that

µχN (u′)µχN ′(v′) 6∈ I
‖
(u′,v′), that is, µχN (u′)µχN ′(v′) < m

‖
(u′,v′) or

µχN (u′)µχN ′(v′) > M
‖
(u′,v′); assume the latter. By onvexity and

minimality of INu′ and IN
′

v′ , for all onstants ǫ > 0, there must ex-

ist µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) suh that µχN (u′) − µ(u′) < ǫ

and µχN ′(v′) − µ′(v′) < ǫ. For ǫ =
µ

χ
N

(u′)µχ

N′(v
′)−M

‖

(u′,v′)

2 , we have

that µ(u′)µ′(v′) > M
‖
(u′,v′). However, the distribution µ‖ de�ned as

µ‖(u, v) = µ(u)µ′(v) for all u ∈ S and v ∈ S′
, will satisfy ϕ‖, whih

ontradits the de�nition of I
‖
(u′,v′). As a onsequene, µ

‖
χ ∈ Sat(ϕχ‖ ).

• If a 6∈ A, then assume that a ∈ A. Then there exists ϕ ∈ C(S) suh
that L(s1, a, ϕ) = ⊤ and µ‖ ∈ Sat(ϕ‖) i� for all u ∈ S, u 6= s1,
and v ∈ S′

, µ‖(u, v) = 0 and there exists µ ∈ Sat(ϕ) suh that
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µ(v) = µ‖(s1, v) for all v ∈ S′
. By onstrution of χ(N), there

exists ϕχN ∈ C(S) suh that LχN (s1, a, ϕ
χ
N ) = ⊤. This means that

there exists ϕ
‖
χ ∈ C(S × S′) suh that L

‖
χ((s1, s

′
1), a, ϕ

‖
χ) = ⊤, where

µ
‖
χ ∈ Sat(ϕ

‖
χ) i� for all u ∈ S, u 6= s1, and v ∈ S′

, µ
‖
χ(u, v) = 0 and

there exists µχN ∈ Sat(ϕχN ) suh that µχN (v) = µ
‖
χ(s1, v) for all v ∈ S′

.

As above, it holds that ∀µ
‖
χ ∈ Sat(ϕ

‖
χ), ∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ .

2. Let a ∈ A ∪A′
, ϕ

‖
χ ∈ C(S × S′) suh that L

‖
χ((s1, s

′
1), a, ϕ

‖
χ) 6= ⊥.

• If a ∈ A, then there exists ϕχN ∈ C(S) and ϕχN ′ ∈ C(S′) suh that

LχN(s1, a, ϕ
χ
N ) 6= ⊥ and LχN ′(s′1, a, ϕ

χ
N ′) 6= ⊥ and µ

‖
χ ∈ Sat(ϕ

‖
χ) i�

there exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) suh that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. By onstrution of χ(N) and

χ(N ′), there exists ϕ ∈ C(S) and ϕ′ ∈ C(S′) suh that L(s1, a, ϕ) =
LχN(s1, a, ϕ

χ
N ) and L′(s′1, a, ϕ

′) = LχN ′(s′1, a, ϕ
χ
N ′). This gives rise to

the existene of ϕ‖ ∈ C(S × S′) suh that L‖((s1, s
′
1), a, ϕ‖) 6= ⊥

and µ‖ ∈ Sat(ϕ‖) i� there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′)
suh that µ‖(u, v) = µ(u)µ′(v) for all u ∈ S and v ∈ S′

. By

onstrution of χ(N‖AN
′), there exists ϕχ‖ ∈ C(S × S′) suh that

Lχ‖ ((s1, s
′
1), a, ϕ

χ

‖ ) 6= ⊥. As above, ∀µ
‖
χ ∈ Sat(ϕ

‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) :

µ
‖
χ ⋐R µχ‖ .

• If a 6∈ A, then assume that a ∈ A. Again, we an show existene

of ϕχ‖ ∈ C(S × S′) suh that Lχ‖ ((s1, s
′
1), a, ϕ

χ

‖ ) 6= ⊥ and ∀µ
‖
χ ∈

Sat(ϕ
‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ .

We onlude that χ(N)‖Aχ(N ′) �S χ(N‖AN
′).

6. Deterministi APAs

In this setion, we fous on the lass of deterministi APAs. Like in any

spei�ation theory, deterministi spei�ations form a lass with interesting

properties. First, notie that ation-deterministi APAs allow for more onve-

nient de�nitions for re�nement and onjuntion, as explained in [2, 1℄. In the

following, we �rst propose an algorithm that an be applied to any APA N
and provides a deterministi APA ̺(N) that abstrats N . Then, we study the

strong link between CMCs and APAs and prove that, like for CMCs [18, 19℄, all

the notions of re�nement oinide for deterministi spei�ations.

6.1. Determinisation

As explained in [2℄, the use of non-determinism hanges expressiveness of

APAs with respet to the known onjuntion operator. In fat, non-deterministi

APAs are generally more expressive than deterministi ones. Fig. 17 presents

a non-deterministi APA, whose set of implementations annot be spei�ed by

a single deterministi APA. States 2 and 3 have overlapping labels (so state 1
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a, 1,⊤

a, 1,⊤

1

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

a, x2,⊤

3

2 4

{{θ, β}}

{{θ, γ}, {θ, β, γ}}

{{θ, γ}{β, γ}}

a, x3,⊤

{{θ}}

a, 1,⊤

Figure 17: A (valuation) non-deterministi APA whose set of implementations

annot be obtained with a deterministi APA.

has non-deterministi behaviour). We annot put these states on two separate

a-transitions as this introdues ation non-determinism. We annot merge them

either, as their subsequent evolutions are di�erent (and for the same reason we

annot fator {θ, γ} to a separate state).

Nevertheless, the use of deterministi abstrations of non-deterministi be-

haviours is an interesting alternative to relying on more omplex re�nements

and more omplex operators. Below, we present a determinisation algorithm

that an be applied to any APA N , produing a deterministi APA ̺(N), suh
that N �S ̺(N).

Our algorithm is based on subset onstrution and resembles the determin-

isation proedure for modal transition systems desribed in [27℄.

Let N = (S,A, L,AP, V, s0) be a (onsistent) APA in SVNF. Given a set of

states Q ⊆ S, an ation a ∈ A and a valuation θ ⊆ AP we de�ne Reach(Q, a, θ)
to be the maximal set of states with valuation θ that an be reahed with a

non-zero probability using a distribution µ satisfying a onstraint ϕ suh that

L(q, a, ϕ) 6= ⊥ for some q ∈ Q. Formally, Reach : 2S ×A× 2AP → 2S is de�ned

by:

Reach(Q, a, θ) =
⋃

{s ∈ S | V (s) = {θ} and ∃q ∈ Q,

∃ϕ ∈ C(S), ∃µ ∈ Sat(ϕ), L(q, a, ϕ) 6= ⊥ and µ(s) > 0}

We lift this de�nition to all possible labellings as follows:

Reach(Q, a) = {Reach(Q, a, θ) | θ ∈ 2AP}

We also extend the de�nition to sets of ations as follows: let B ⊆ A,

Reach(Q,B) =
⋃

a∈B

Reach(Q, a)

Now let n > 1 and de�ne the n-step reahability as

Reachn(Q,B) = Reachn−1(Q,B) ∪
⋃

Q′∈Reachn−1(Q,B)

Reach(Q′, B)
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where Reach1(Q,B) = Reach(Q,B).
We denote the �xpoint of Reach as follows:

Reach∗(Q,B) =

∞⋃

n=1

Reachn(Q,B).

Now, by onstrution, the following properties hold:

• For all Q⊆ S and a ∈ A, for all Q′, Q′′ ∈ Reach(Q, a), if Q′ 6= Q′′
then

Q′ ∩Q′′ = ∅, and

• For all Q ⊆ S, B ⊆ A and Q′ ∈Reach
∗(Q,B), there exists θ ∈ 2AP suh

that ∀q′ ∈ Q′
, we have V (q′) = {θ}.

We will now use the notion of reahability in our determinisation onstru-

tion. Remark that the determinisation algorithm highly relies on the single

valuation normal form of the APA. In order to use it on any APA (with sin-

gle valuation in the initial state), it is thus neessary to use the normalization

algorithm �rst, as de�ned in De�nition 11.

De�nition 38 (Determinisation). Let N = (S,A, L,AP, V, s0) be a onsistent

APA in SVNF. A deterministi APA for N is the APA ̺(N)=(S′, A, L′, AP, V ′, {s0})
suh that

• S′ = {s0} ∪ Reach∗({s0}, A)

• V ′
is suh that V ′(Q) = {θ} if and only if ∀q ∈ Q. V (q) = {θ}. There

always exists exatly one suh θ by onstrution

• L′
is de�ned as follows: Let Q ∈ S′

and a ∈ A.

� If, for all q ∈ Q, we have that ∀ϕ ∈ C(S), L(q, a, ϕ) = ⊥, then de�ne

L′(Q, a, ϕ′) = ⊥ for all ϕ′ ∈ C(S′).

� Otherwise, de�ne ϕ′ ∈ C(S′) suh that µ′ ∈ Sat(ϕ′) if and only if (1)

∀Q′ /∈
Reach(Q, a), we have µ′(Q′) = 0, and (2) there exists q ∈ Q, ϕ ∈
C(S) and µ ∈ Sat(ϕ) suh that L(q, a, ϕ) 6= ⊥ and ∀Q′ ∈ Reach(Q, a),
µ′(Q′) =

∑
q′∈Q′ µ(q′). Then de�ne

L′(Q, a, ϕ′) =





⊤ if

∀q ∈ Q, ∃ϕ ∈ C(S) :
L(q, a, ϕ) = ⊤

? otherwise

Example. Consider the non-deterministi APA N (N) given in Figure 7. Using

De�nition 38, we obtain the APA ̺(N (N)) given in Figure 18.
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{{l}}

{s′′1}

{{n}}

a, x3,5,⊤

{{m}}

a, x2,6,⊤

{{o}}

a, x4,⊤

{s′′3, s
′′
5}{s′′2, s

′′
6} {s′′4}

ϕx ≡ x2,6 + x3,5 + x4 = 1

Figure 18: Determinisation ̺(N (N)) of the APA N (N) given in Figure 7.

By onstrution, ̺(N) is ation- and valuation-deterministi. As expeted,

determinisation is an abstration, but more than that it is also the smallest

deterministi abstration of N . This is formalized in the following theorem.

Theorem 39. Let N be an APA in SVNF. The following statements hold:

1. N �S ̺(N), and

2. for all deterministi APA N ′
in SVNF, if N � N ′

, then ̺(N) � N ′
.

Proof. Let N = (S,A, L,AP, V, s0) be a (onsistent) APA in SVNF. Let ̺(N) =
(S′, A, L′, AP, V ′, {s0}) be the determinisation of N de�ned as in De�nition 38.

We prove the two statements separately.

1. We prove that N �S ̺(N) by providing the following strong re�nement

relation. Let R ⊆ S × S′
be the relation suh that sRQ ⇐⇒ s ∈ Q for all

Q ∈ S′
. The proof that R is a strong re�nement relation is standard. For the

sake of ompleteness, a detailed proof is given in Appendix H.

2. Let N ′ = (T,A, LT , AP, V T , t0) be a deterministi APA in SVNF. Assume

that N � N ′
with weak re�nement relation R ⊆ S × T (notie that sine N ′

is deterministi, weak re�nement oinides with weak weak re�nement). Let

R′ ⊆ S′ × T be the relation suh that QR′ t if and only if qR t for all q ∈ Q.
We prove that R′

is a weak re�nement relation. Let (Q, t) ∈ R′
.

1. Let a ∈ A and ϕt ∈ C(T ) be suh that LT (t, a, ϕt) = ⊤. By de�nition of

R′
, for all s ∈ Q, we have (s, t) ∈ R. Thus, by de�nition ofR, for all s ∈ Q,

there exists ϕs ∈ C(S) suh that L(s, a, ϕs) = ⊤ and for all µs ∈ Sat(ϕs),
there exists µts ∈ Sat(ϕt) suh that µs ⋐R µts. As a onsequene, by

de�nition of ̺(N), there exists ϕ′ ∈ C(S′) suh that L(Q, a, ϕ′) = ⊤.
Let µ′ ∈ Sat(ϕ′). By onstrution of ϕ′

, there exists s ∈ Q,ϕs ∈ C(S)
and µ ∈ Sat(ϕs) suh that L(s, a, ϕs) 6= ⊥ and for all Q′ ∈ Reach(Q, a),
µ′(Q′) =

∑
s′∈Q′ µ(s′). Sine (Q, t) ∈ R′

, we have (s, t) ∈ R and therefore

there exists ϕ′t ∈ C(T ) suh that LT (t, a, ϕ′t) 6= ⊥. By determinism of N ′
,

we have ϕ′t = ϕt. Moreover, there must exist a orrespondene funtion

δs and µt ∈ Sat(ϕt) suh that µ ⋐
δs

R µt. Let δ : S′ → (T → [0, 1]) be

suh that δ(Q′)(t) =
∑

s′∈Q′
µ(s′)δs(s′)(t)

µ′(Q′) if µ′(Q′) > 0 and 0 otherwise.

We now show that δ is a orrespondene funtion and that µ′
⋐
δ
R′ µt.
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• Let Q′ ∈ S′
be suh that µ′(Q′) > 0. As a onsequene, for all

s′ ∈ Q suh that µ(s′) > 0, δs(s′) ∈ Dist(T ). As a onsequene,∑
s′∈Q′

µ(s′)δs(s′)(t)
µ(Q′) is also a distribution on T and δ(Q′) ∈ Dist(T ).

• Let t′ ∈ T , we have

∑

Q′∈S′

µ′(Q′)δ(Q′)(t′) =
∑

Q′∈S′ | µ′(Q′)>0

µ′(Q′)
∑

s′∈Q′

µ(s′)δs(s′)(t)

µ′(Q′)

=
∑

Q′∈S′ | µ′(Q′)>0

∑

s′∈Q′

µ(s′)δs(s′)(t)

=
∑

s′∈S

µ(s′)δs(s′)(t)

= µt(t)

• Let (Q′, t′) ∈ S′ × T be suh that δ(Q′)(t′) > 0. Sine Q′ ∈
Reach(Q, a) by onstrution, we have that for all s′ ∈ Q′

, there exists

sr ∈ Q, ϕr ∈ C(S) and µr ∈ Sat(ϕr) suh that L(s, a, ϕr) 6= ⊥ and

µr(s′) > 0. Sine (s, t) ∈ R and by determinism of N ′
, we an show

that (s′, t′) ∈ R. Therefore we have that (s′, t′) ∈ R for all s′ ∈ Q′

and onsequently (Q′, t′) ∈ R′
.

As a onsequene, µ′
⋐
δ
R′ µt.

2. Let a ∈ A and ϕ′ ∈ C(S′) be suh that L′(Q, a, ϕ′) 6= ⊥. By onstrution,

there must thus exist s ∈ Q and ϕs ∈ C(S) suh that L(s, a, ϕs) 6=
⊥. Therefore, sine (s, t) ∈ R, there must exist ϕt ∈ C(T ) suh that

LT (t, a, ϕt) 6= ⊥. Then, by the same reasoning as above, we an show

that for all µ′ ∈ Sat(ϕ′), there exists µt ∈ Sat(ϕt) suh that µ′
⋐R′ µt.

3. Reall that there exists θ ∈ 2AP suh that V (s) = θ for all s ∈ Q. Sine
(s, t) ∈ R for all s ∈ Q, we have θ ⊆ V T (t) and therefore V ′(Q) ⊆ V T (t).

Finally, R′
is a weak re�nement relation. Moreover, ({s0}, t0) ∈ R′

by

onstrution, and thus ̺(N) � N ′
.

6.2. Completeness and Relation with CMCs

In this setion, we show that thorough and strong re�nements oinide for

deterministi APAs. For doing so, we will ompare the expressive power of

APAs and CMCs, showing that APAs an at as a spei�ation theory for MCs.

Remark that single valuation normal form of CMCs is de�ned similarly as for

APAs. The satisfation relation between MCs and CMCs as well as the notions

of weak and strong re�nements are also de�ned similarly as for APAs.

On the relation between CMCs and APAs. We now show that APAs an

at as a spei�ation theory for MCs. For doing so, we propose a satisfation

relation between MCs and APAs. Our de�nition is in two steps. First we show

how to use PAs as a spei�ation theory for MCs. Then, we use the existing

satisfation relation between PAs and APAs to onlude.
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Sine MCs do not diretly allow hoies between ations, we use bipartite

MCs in the following. Their state spae is partitioned into ation-states (QD in

the de�nition below) and distribution-states (QN in the de�nition below), and an

exeution of a bipartite MC is a suession of alternations between ation-states

and distribution-states.

De�nition 40 (MC-PA Satisfation). Let P = (S,A, L,AP, V, s0) be a PA
1

. Let

M = (Q, π,AM , VM , q0) be a bipartite Markov hain suh that (1) Q = QN∪QD,
with QN ∩ QD = ∅, for all q, q′ ∈ QN , π(q)(q′) = 0 and for all q, q′ ∈ QD,
π(q)(q′) = 0, (2) q0 ∈ QD, and (3) AM = A ∪ AP . Let R ⊆ QD × S. R is a

satisfation relation if and only if whenever qR s, we have

1. VM (q) = V (s).

2. For a ∈ A and µ ∈ Dist(S) suh that L(s, a, µ) = ⊤, there exists q′ ∈ QN
suh that VM (q′) = V (s) ∪ {a}, π(q)(q′) > 0, and π(q′) ⋐R µ.

3. For all q′ ∈ QN suh that π(q)(q′) > 0, there exists a ∈ A and µ ∈ Dist(S)
suh that VM (q′) = V (s) ∪ {a}, L(s, a, µ) = ⊤, and π(q′) ⋐R µ.

We say that M satis�es P if and only if there exists a satisfation relation

R suh that q0 R s0.

The satisfation relation between MCs and APAs follows diretly. We say

that a MC M satis�es an APA N , whih we write M |=MC N , if and only

if there exists a PA P suh that M satis�es P and P satis�es N . The set of

MC-implementation of APA N is denoted [[N ]]MC .

Expressivity Completeness. In the previous paragraph, we have proposed

a satisfation relation for MCs with respet to APAs. We now propose a trans-

formation that assoiates to every deterministi APA in SVNF a deterministi

CMC in SVNF representing the same set of MC-implementations. The pur-

pose of this transformation is to show that deterministi APAs do not allow for

desribing a larger lass of Markov Chains than deterministi CMCs.

De�nition 41 (Transformation ̂ ). Let N = (S,A, L,AP, V, s0) be a deter-

ministi APA. Let ǫ be a fresh variable. The CMC orresponding to N is

N̂ = (Q̂, ψ, Â, V̂ , q̂0), with

• Q̂ = S × (A ∪ {ǫ}),

• q̂0 = (s0, ǫ),

• Â = AP ∪A,

• V̂ ((s, ǫ)) = V (s) for all s,

• V̂ ((s, a)) = {B ∪ {a} | B ∈ V (s)} for all s and a ∈ A, and

1

Reall that we assume Act ∩ AP = ∅ for all PAs/APAs
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s4s3

{{θ}}

s1

a, x3,?a, x2,? b, y3,⊤ b, y4,⊤

{{η}}{{γ}}{{β}}

s2

{{γ}}

ϕx ≡ x2 > 0 ∧ x3 > 0 ∧ x2 + x3 = 1
ϕy ≡ y3 ≥ .5 ∧ y4 ≤ .5 ∧ y3 + y4 = 1

(a) N

{{η}, {b}}{{β}, {a}}

(s1, ǫ)

(s1, a) (s1, b)

(s3, ǫ) (s4, ǫ)(s2, ǫ)

{{θ}}

z(s1,b)z(s1,a)

{{η}}{{γ}}{{β}}

u(s3,ǫ) u(s4,ǫ)w(s3,ǫ)w(s2,ǫ)

ϕ′(s1, ǫ)(z) ≡ z(s1,b) > 0

ϕ′(s1, a)(w) ≡ w(s2,ǫ) > 0 ∧ w(s3,ǫ) > 0

ϕ′(s1, b)(u) ≡ u(s3,ǫ) ≥ .5 ∧ u(s4,ǫ) ≤ .5

(b)

bN

Figure 19: APA N and CMC N̂

• ψ is suh that

� For all (s, ǫ) ∈ Q̂, ψ((s, ǫ))(π) = 1 if and only if





π((s, ǫ)) = 0
∀s′ 6= s, b ∈ A ∪ {ǫ}, π((s′, b)) = 0

∀a ∈ Must(s), π(s, a) > 0
∀a /∈ May(s), π(s, a) = 0

� For all a ∈ A and (s, a) ∈ Q̂, ψ((s, a))(π) = 1 if and only if (1) for

all s′ ∈ S and b ∈ A, we have π((s′, b)) = 0 and (2) the distribution

π′ : s′ 7→ π((s′, ǫ)) is suh that there exists ϕ ∈ C(S) suh that

L(s, a, ϕ) 6= ⊥ and π′ ∈ Sat(ϕ).

Informally, this transformation builds a CMC with a bipartite state spae.

The non-determinism inherent to APAs in the hoie of ations is simulated by

new states of the form (s, a) for eah ation a that an be taken from state

s. The probability of reahing state (s, a) emulates the modality of taking the

orresponding a-transition, and the onstraint assoiated to state (s, a) mathes

the onstraint assoiated to the orresponding a-transition.

Example. Consider the APA N given in Figure 19a. Applying the transfor-

mation given in De�nition 41 to N yields the CMC N̂ given in Figure 19b.

By onstrution, the CMC N̂ is deterministi and in single valuation normal

form. As expeted, this transformation yields a CMC that admits the same set

of MC-implementations as the original APA. This is formalized in the following

theorem.

Theorem 42. For all deterministi APA N in SVNF, the CMC N̂ is suh that

[[N ]]MC = [[N̂ ]].
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Proof. We prove the two diretions separately.

• M |=
MC

N ⇒M |=
CMC

N̂ : Let M = (Q, π,AM , VM , q0) be a Markov Chain.

We �rst prove that if M |=
MC

N , then M |=
CMC

N̂ . Suppose that there exists

a PA P = (SP , A, LP , AP, VP , s
P
0 ) suh that M satis�es P and P |= N . Let

N̂ = (Q̂, ψ, Â, V̂ , q̂0) be the transformation of N following De�nition 41. By

the satisfation relation between M and P , we obtain that AM = A ∪ AP and

Q = QN ∪ QD. Let RMC ⊆ QD × SP be the satisfation relation witnessing

that M satis�es P . Let RPA ⊆ SP × S be the satisfation relation witnessing

P |= N . Consider the relation R ⊆ Q× Q̂ suh that

• qR(s, ǫ) i� there exists p ∈ Sp suh that qRMC p and pRPA s, and

• for all a ∈ A, qR(s, a) i� there exists q′ ∈ Q suh that

� π(q′)(q) > 0,

� VM (q) = VM (q′) ∪ {a}, and

� q′ R(s, ǫ).

The proof that R is a satisfation relation for CMCs is standard. For the

sake of ompleteness, the full proof is given in Appendix I.

Moreover, we have that q0 R(s0, ǫ), whih gives that M |=
CMC

N̂ .

• M |=
MC

N ⇐M |=
CMC

N̂ : Let M = (Q, π,AM , VM , q0) be a Markov Chain.

We prove that if M |=
CMC

N̂ , then M |=
MC

N , i.e. there exists a PA P suh

that M satis�es P and P |= N . Let N̂ = (Q̂, ψ, Â, V̂ , q̂0) be the transformation

of N following De�nition 41.

Let R be the satisfation relation for CMCs witnessing that M |=
CMC

N̂ . First

observe that, by R, the Markov hain M satis�es the following properties: Let

QD = {q ∈ Q | ∃s ∈ S, qR(s, ǫ)} and QN = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s, a)},
we have

• QD ∩QN = ∅ beause of their valuations and R,

• ∀q, q′ ∈ QD, π(q)(q′) = 0 and ∀q, q′ ∈ QN , π(q)(q′) = 0,

• q0 ∈ QD, and

• AM = A ∪AP .

De�ne the PA P = (SP , A, LP , AP, VP , s
P
0 ) suh that SP = QD, with s

P
0 = q0,

VP is suh that for all q ∈ QD, VP (q) = VM (q), and LP is suh that for all

s ∈ SP , a ∈ A and for all distribution ̺ over SP , L(s, a, ̺) = ⊤ i� there exists

q′ ∈ QN suh that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).
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By onstrution,M satis�es P using the identity relation on QD. We now prove

that P |= N . Let RPA ⊆ SP × S the relation suh that pRPA s i� pR(s, ǫ).
The proof that RPA

is a satisfation relation for APA is standard and given

in Appendix I. By onstrution, we have that sP0 RPA s0, thus P |= N . As

a onsequene, we have that there exists a PA P suh that M satis�es P and

P |= N . Thus M |=
MC

N .

We have just shown that for all APA N , there exists a CMC N̂ suh that

[[N ]]
MC

= [[N̂ ]]
CMC

. The reverse of the theorem also holds up to a syntatial

transformation that preserves sets of implementations. Sine CMCs are not

equipped with ations, this transformation adds a single ation to all valua-

tions of the original CMC in order to provide ations for the transitions of the

equivalent APA. Additionally, it dupliates the state-spae in order to obtain a

bipartite CMC with bipartite MCs as implementations.

Consider a MC M = (Q, π,A, V, q0) and a fresh variable for ations θ /∈ A.
Let M̌ = (QN ∪QP , π̌, A ∪ {θ}, V̌ , qD0 ) be the MC suh that

• QD = {qD | q ∈ Q},

• QN = {qN | q ∈ Q},

• V̌ is suh that V̌ (q) = V (q) if q ∈ QD and V̌ (q) = V (q) ∪ {θ} if q ∈ QN ,
and

• π̌ is suh that

� for all qD ∈ QD, π̌(qD)(qN ) = 1, and

� for all qN ∈ QN , π̌(qN )(q′) = π(q)(q′) if q′ ∈ QD and 0 otherwise.

This transformation naturally extends to CMCs. Obviously, it follows that

for all MC M and CMC C, we have M |=
CMC

C ⇐⇒ M̌ |=
CMC

Č. The

transformation from CMC M̌ to an APA is then obvious, and preserves the set

of implementations.

This result together with Theorems 27 and 29 of [28℄ leads to the following

important result.

Theorem 43. For deterministi APAs with single valuations in the initial state,

strong re�nement oinides with thorough, weak-weak and weak re�nement.

Proof. Let N = (S,A, L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be two

pruned deterministi APA in single valuation normal form. From Theorem 17,

we know that strong re�nement implies thorough re�nement. We now prove

that the reverse also holds.

Suppose that [[N ]] ⊆ [[N ′]]. We prove that N �S N
′
.

Let N̂ = (Q̂, ψ, Â, V̂ , q̂0) and N̂ ′ = (Q̂′, ψ′, Â, V̂ ′, q̂′0) be the CMCs equivalent

to N and N ′
(up to MC satisfation) obtained by the transformation proposed

in De�nition 41. By De�nition of [[·]]
MC

, we have that [[N ]]
MC

⊆ [[N ′]]
MC

. As

a onsequene, by Theorem 42, we have that [[N̂ ]]
CMC

⊆ [[N̂ ′]]
CMC

. Sine N̂
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and N̂ ′
are deterministi CMCs in single valuation normal form, we have, by

Theorem 18 of [18℄, that N̂ �CMC N̂ ′
with a strong re�nement relation between

CMCs.

Let R̂ be the strong re�nement relation between CMCs suh that N̂ �CMC N̂ ′
.

De�ne the relation R ⊆ S × S′
suh that sR s′ i� (s, ǫ)R̂(s′, ǫ). We prove that

R is indeed a strong re�nement relation on APAs. Let s ∈ S and t ∈ S′
suh

that sR t. We show that R satis�es the axioms of a strong re�nement relation

for APAs.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(t, a, ϕ′) = ⊤. By onstrution,

we have (s, ǫ)R̂(t, ǫ), thus there exists a orrespondene funtion δ̂ suh

that for all distribution π satisfying ψ((s, ǫ)) we have that π′ = πδ̂ sat-

is�es ψ′((t, ǫ)). By onstrution, of ψ′
, we thus have that π′((s, a)) > 0.

As a onsequene, there exists (s′, b) ∈ Q̂ suh that π((s′, b)) > 0 and

δ̂((s′, b)(t, a)) > 0. By de�nition of δ̂ and ψ, we have that s′ = s and

b = a. Thus π((s, a)) > 0. Sine this holds for all π ∈ Sat(ψ), we have

a ∈ Must(s). Thus there exists ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊤.

Moreover, we have that (s, a)R̂(t, a). Let δ̂′ be the assoiated orrespon-

dene funtion. Let µ ∈ Sat(ϕ) and let µ′ ∈ Dist(Q̂) suh that for all

s′ ∈ S and b ∈ A, µ′((s′, ǫ)) = µ(s′) and µ′((s′, b)) = 0. By de�ni-

tion, we have that µ′
satis�es ψ((s, a)). Thus, we have that ̺′ = µ′δ̂′

satis�es ψ′((t, a)). As a onsequene, the distribution ̺ ∈ Dist(S′) suh

that ̺(t′) = ̺′((t′, ǫ)) for all t′ is suh that there exists ϕ′′
suh that

L′(t, a, ϕ′′) 6= ⊥ and ̺ ∈ Sat(ϕ′′). By ation-determinism of N ′
, we have

that ϕ′′ = ϕ′
.

Let δ be the orrespondene funtion suh that δ(s′)(t′) = δ̂′((s′, ǫ))((t′, ǫ)).
We prove that µ ⋐

δ
R ̺.

(a) Let s′ ∈ S suh that µ(s′) > 0. As a onsequene, µ′((s′, ǫ)) > 0.

As a onsequene, by de�nition of δ̂′, we have that δ̂′((s′, ǫ)) is a

distribution over Q̂′
. Moreover, sine ̺′ = µ′δ̂′ satis�es ψ′((t, a)), we

have that for all t′ ∈ T and b ∈ A, ̺′((t′, b)) = 0. As a onsequene,

we have that for all t′ ∈ T and b ∈ A, δ̂′((s′, ǫ))((t′, b)) = 0. Thus

δ(s′) is a orret distribution over Q′
.

(b) By de�nition, we have ̺′ = µ′δ̂′. Sine µ((s′, b)) = 0 for all b ∈ A,

and sine δ̂′((s′, ǫ))((t′, b)) = 0 for all s′ ∈ S, t′ ∈ S′
and b ∈ A, we

have that ̺ = µδ. As a onsequene, we have that for all t′ ∈ S′
,

∑

s′∈S

µ(s′)δ(s′)(t′) = ̺(t′).

() Let s′ ∈ S and t′ ∈ T suh that δ(s′)(t′) > 0. By de�nition of δ,

we have δ′((s′, ǫ))((t′, ǫ)) > 0. Thus (s′, ǫ)R̂(t′, ǫ), and onsequently

s′ R t′.

Therefore, we have that µ ⋐
δ
R ̺.
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2. Let a ∈ A and ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥. By onstrution,

we have (s, ǫ)R̂(t, ǫ), thus there exists a orrespondene funtion δ̂ suh

that for all distribution π satisfying ψ((s, ǫ)) we have that π′ = πδ̂ satis�es
ψ′((t, ǫ)). By onstrution of ψ, and beause N is pruned, there must exist

π ∈ Dist(Q̂) satisfying ψ((s, ǫ)), with π((s, a)) > 0. As a onsequene,

δ̂ de�nes a distribution on Q̂′
, thus there exists (t′, b) ∈ Q̂′

suh that

δ̂((s, a))((t′, b)) > 0. By the reursion axiom, we have b = a. Let π′ = πδ̂,
we have π′((t′, a)) > 0. Sine π′

satis�es ψ′((t, ǫ)), we have that neessarily
t′ = t. As a onsequene, by de�nition of ψ′

, there must exist ϕ′ ∈ C(S′)
suh that L′(t, a, ϕ′) 6= ⊥. As above, we an prove that there exists δ suh
that for all µ ∈ Sat(ϕ), there exists ̺ ∈ Sat(ϕ′) suh that µ ⋐

δ
R ̺.

3. Sine (s, ǫ)R̂(t, ǫ), we have that V (s) ⊆ V ′(s′).

Finally, R is a strong re�nement relation. Moreover, we have by onstrution

that s0 R t0, thus N �S N ′
.

By the ordering of the re�nement relations presented in Theorem 17, it follows

that R is also a weak and a weak-weak re�nement relation.

7. Extensions of Alphabets (Dissimilar Alphabets)

So far, the spei�ation theory of APAs has required that all spei�ations

share same alphabets of ations and atomi propositions. We are now going to

lift this restrition by introduing the alphabet extension mehanism. As for the

extension of modal transition systems [16℄, there exist two ways of extending

alphabets [29℄: it is neessary to hoose the modality of transitions for new

ations introdued depending on the operation being applied to the result.

The weak extension is used when onjoining spei�ations with di�erent

alphabets. This extension adds may loop transitions for all new ations and

extends the sets of atomi propositions in a lassial way:

De�nition 44 (Weak extension). Let N = (S,A, L,AP, V, s0) be an APA, and

let A′
and AP ′

be sets of ations and atomi propositions suh that A⊆A′
and

AP ⊆AP ′
. Let the weak extension of N to (A′, AP ′) be the APA N⇑(A′, AP ′) =

(S,A′, L′, AP ′, V ′, s0) suh that for all states s ∈ S:

• L′(s, a, ϕ) = L(s, a, ϕ) if a ∈ A,

• L′(s, a, ϕ)= ? if a ∈ A′\A and ϕ only admits a single point distribution µ
suh that µ(s) = 1.

• V ′(s) = {B ⊆ AP ′ | B ∩AP ∈ V (s)}.

A di�erent extension, the strong one, is used in parallel omposition. This

extension adds must self-loops for all new ations and extends the sets of atomi

propositions in a lassial way.
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De�nition 45 (Strong extension). Let N = (S,A, L,AP, V, s0) be an APA,

and let A′
and AP ′

be sets of ations and atomi propositions suh that A ⊆ A′

and AP ⊆ AP ′
. De�ne the extension for omposition of N to A′, AP ′

, written

N ↑A
′,AP ′

to be the APA N ↑A
′,AP ′

= (S,A′, L′, AP ′, V ′, s0) suh that

• for all s ∈ S, a ∈ A and ϕ ∈ C(S), L′(s, a, ϕ) = L(s, a, ϕ),

• for all s ∈ S and a ∈ A′ \ A, de�ne L(s, a, ϕ) = ⊤, with ϕ suh that

µ ∈ Sat(ϕ) if and only if µ(s) = 1, and

• for all s ∈ S, V ′(s) = {B ⊆ AP ′ | B ∩AP ∈ V (s)}.

These di�erent notions of extension give rise to di�erent notions of satisfa-

tion and re�nement between strutures with dissimilar sets of ations. Satisfa-

tion (or re�nement) between strutures with di�erent sets of ations is de�ned as

the satisfation (respetively re�nement) between the strutures after extension

to a union of their alphabets.

By onstrution, all the results presented in the paper for onjuntion and

omposition of PAs / APAs sharing alphabets of ations and atomi propositions

safely extend to the setting of PAs / APAs with dissimilar alphabets, provided

that the right extension is applied �rst.

8. Conlusion

This paper presents Abstrat Probabilisti Automata, a new abstration

theory for Probabilisti Automata. The main ontributions of the paper are:

• A new abstration theory for Probabilisti Automata through APAs.

• A new spei�ation theory for PAs using APAs as a spei�ation language.

Our theory is equipped with a parallel omposition and onjuntion oper-

ators, and satisfation and re�nement relations.

• A omplete haraterization of semanti and syntati notions of re�ne-

ment, and the haraterization of a lass of APAs on whih they oinide.

• A ompositional abstration tehnique for APAs whih an be used to

ombate the state-spae explosion problem.

• A proof that the proposed formalism is bakward ompatible with lassial

notions of probabilisti bisimulation / parallel omposition of Probabilisti

Automata.

There are various diretions for future researh. The �rst of them is to

implement and evaluate our results. This would require to design e�ient algo-

rithms for the ompositional design operators. Also, it would be of interest to

embed our abstration proedure in a CEGAR model heking algorithm. An-

other interesting diretion would be to design an algorithm to deide thorough
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re�nement and haraterize the omplexity of this operation. Finally, one ould

also onsider a ontinuous-timed extension of our model inspired by [30℄.
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Appendix A. Details of the proof of Theorem 17

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S): By a swap of quanti�ers in the de�nitions, it is obvious
that strong re�nement implies weak re�nement, and that weak re�nement implies weak

weak re�nement. We prove that weak weak re�nement implies thorough re�nement.

Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′, AP,
V ′, s′0) be APAs suh thatN �W N ′

with a weak weak re�nement relation R′ ⊆ S×S′
.

If [[N ]] = ∅, we have [[N ]] ⊆ [[N ′]]. Otherwise, let P = (SP , A, LP , AP, VP , s
P
0 ) be a PA

suh that P |= N . Then there exists a satisfation relation R′′ ⊆ SP × S suh that

sP0 R′′ s0.
Let R ⊆ SP ×S′

be the relation suh that uRw i� there exists v ∈ S suh that uR′′ v
and vR′ w. We prove that R is a satisfation relation.

Let u ∈ SP and w ∈ S′
suh that uRw, and let v ∈ S suh that uR′′ v and vR′ w.

We show that R satis�es the axioms of a satisfation relation.

1. Let a ∈ A′
and ϕ′ ∈ C(S′) suh that L′(w, a, ϕ′) = ⊤. By R′

, there exists ϕ ∈
C(S) suh that L(v, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ),∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R′

µ′
. Moreover, by R′′

, there exists µP ∈ Dist(SP ) suh that LP (u, a, µP ) = ⊤
and ∃µS ∈ Sat(ϕ) : µP ⋐R′′ µS .
Take µS ∈ Dist(S) suh that µP ⋐R′′ µS and hoose µ′ ∈ Dist(S′) suh that

µS ⋐R′ µ′
. Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the

orrespondene funtions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
, respetively.

Let δ : SP → (S′ → [0, 1]) suh that δ(s)(t) =
P

r∈S δ
′′(s)(r)δ′(r)(t). We prove

that µP ⋐
δ
R µ′

:

(a) Let s ∈ SP suh that µP (s) > 0. We have

X

t∈S′

δ(s)(t) =
X

t∈S′

X

r∈S

δ′′(s)(r)δ′(r)(t)

=

 

X

r∈S

δ′′(s)(r)

! 

X

t∈S′

δ′(r)(t)

!

= 1.

Thus δ(s) de�nes a distribution on S′
.

(b) Let t ∈ S′
. We have

X

s∈SP

µP (s)δ(s)(t) =
X

s∈SP

µP (s)
X

r∈S

δ′′(s)(r)δ′(r)(t)

=
X

r∈S

δ′(r)(t)
X

s∈SP

µP (s)δ′′(s)(r)

=
X

r∈S

δ′(r)(t)µS(r) = µ′(t).

() Let s ∈ SP and t ∈ S′
suh that δ(s)(t) > 0. By de�nition of δ, there

exists r ∈ S suh that δ′′(s)(r) > 0 and δ′(r)(t) > 0. By de�nition of δ′

and δ′′, we thus have sR′′ r and rR′ t. By de�nition of R, we thus have

sR t.

Thus there exists µP ∈ Dist(SP ) suh that LP (u, a, µP ) = ⊤ and there exists

µ′ ∈ Sat(ϕ′) suh that µP ⋐R µ′
.
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2. Let a ∈ A and µP ∈ Dist(SP ) suh that LP (u, a, µ) 6= ⊥. By R′′
, there exists

ϕ ∈ C(S) suh that L(v, a, ϕ) 6= ⊥ and ∃µS ∈ Sat(ϕ) suh that µP ⋐R′′ µS .
Moreover, by R′

, we have that for all µ ∈ Sat(ϕ), there exists ϕ′ ∈ C(S′) suh
that L′(w, a, ϕ′) 6= ⊥ and ∃µ′ ∈ Sat(ϕ′) suh that µ ⋐R′ µ′

.

Choose µS ∈ Dist(S) suh that µP ⋐R′′ µS and hoose ϕ′ ∈ Dist(S′) suh

that L′(w, a,ϕ′) ≥? and there exists µ′ ∈ Sat(ϕ′) with µS ⋐R′ µ′
. Let δ′′ :

SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the orrespondene funtions

witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
respetively. Let δ : SP → (S′ → [0, 1])

suh that δ(s)(t) =
P

r∈S δ
′′(s)(r)δ′(r)(t). Using the same reasoning as above,

we dedue that µP ⋐
δ
R µ′

.

3. Sine uR′′ v, we have that VP (u) ∈ V (v). Moreover, sine vR′ w, we have that
V (v) ⊆ V ′(w). As a onsequene, VP (u) ∈ V ′(w).

Sine sP0 R′′ s0 and s0 R
′ s′0, we have that sP0 R s′0, and we onlude that R is a

satisfation relation. Therefore P ∈ [[N ′]], and N �T N
′
.

Appendix B. Details for Setion 3.2

We �rst give an equivalent and onstrutive version of the de�nition for probabilis-

ti bisimulation. In order to produe onstrutive results, we will use this de�nition

throughout the setion instead of De�nition 18.

De�nition 46 (Probabilisti Bisimulation). Let P = (S,A,L, AP, V, s0) and P ′ =
(S′, A, L′, AP, V ′, s′0) be PAs with no unreahable states. We say that R ⊆ S × S′

is a

probabilisti bisimulation relation if and only if the following onditions hold:

• There exists n ∈ IN and partitions (S1, . . . , Sn) and (S′
1, . . . , S

′
n) of S and S′

,

respetively, suh that

� for all i ∈ {1, . . . , n}, and for all s1 ∈ Si and s2 ∈ S′
i, it holds that

(s1, s2) ∈ R, and

� for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} suh that i 6= j and for all

s1 ∈ Si and s2 ∈ S′
j it holds that (s1, s2) 6∈ R.

• Whenever (s, s′) ∈ R,

� V (s) = V ′(s′), and

� for all a ∈ A, there exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ if and

only if there exists µ′ ∈ Dist(S′) suh that L′(s′, a, µ′) = ⊤ suh that

∀i ∈ {1, . . . , n},
P

s1∈Si
µ(s1) =

P

s2∈S
′
i
µ′(s2).

P and P ′
are probabilistially bisimilar, written P ≃ P ′

, if and only if there exists

a probabilisti bisimulation relation suh that s0 R s′0.

As expeted, the lifting

eP of P yields a spei�ation that P satis�es. This is

formalized in the following lemma.

Lemma 47. Given a PA P , it holds that P |= eP .

Proof. Let P = (S,A,L,AP, V, s0) be a PA and let

eP = (S,A, L̃, AP, Ṽ , s0) be its

lifting. Let R ⊆ S×S be the identity relation on S. We prove that R is a satisfation

relation suh that P |= eP . Let s ∈ S. We show that R satis�es the axioms of a

satisfation relation.
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• Let a ∈ A and ϕ ∈ C(S) suh that

eL(s, a, ϕ) = ⊤. By onstrution of

eP , there
exists µ ∈ Dist(S) suh that Sat(ϕ) = {µ} and L(s, a, µ) = ⊤. By onstrution,
we thus have µ ⋐R µ.

• Let a ∈ A and µ ∈ Dist(S) suh that L(s, a, µ) = ⊤. By onstrution of

eP ,

there exists ϕ ∈ C(S) suh that

eL(s, a, ϕ) = ⊤, with Sat(ϕ) = {µ}. Again, by
onstrution, we have µ ⋐R µ.

• By onstrution V (s) ∈ {V (s)} = eV (s).

Sine s0 R s0, we onlude that P |= eP .

Appendix B.1. Detailed proof for Theorem 20

The proof of the theorem is preeded by the following lemma.

Lemma 48. Let P = (S,A,L, AP, V, s0) and P ′ = (S′, A,L′, AP, V ′, s′0) be PAs with

no unreahable states suh that P |= fP ′
with a satisfation relation R. There exists n >

0 and partitions S1, . . . Sn of S and S′
1, . . . , S

′
n of S′

suh that, for all i ∈ {1, . . . , n},
s ∈ Si and s

′ ∈ S′
i, either

• sR s′ or

• there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i suh that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

Let P = (S,A,L, AP, V, s0) and P ′ = (S′, A,L′, AP, V ′, s′0) be PAs with no un-

reahable states suh that P |= fP ′
by a satisfation relation R. We prove that there

exists n > 0 and partitions S1, . . . Sn of S and S′
1, . . . , S

′
n of S′

suh that, for all

i ∈ {1, . . . , n}, s ∈ Si and s
′ ∈ S′

i, either

• sR s′ or

• there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i suh that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

Proof. Let P = (S,A,L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0) be PAs with no

unreahable states suh that P |= fP ′
by satisfation relation R.

We �rst propose the following proedure in order to build the partitions of S and

S′
, and then prove the lemma by indution on this proedure.

Let S be partitioned into singleton sets T1 = {s1}, . . . , T|S| = {s|S|} and let

U1, · · · , U|S| be the partition of S′
suh that ∀1 ≤ i ≤ |S| : Ui = {s′ ∈ S′|siR s′}.

Sine there are no unreahable states in P and P ′
, it is obvious that U = U1∪. . .∪U|S|.

The proedure is as follows:

• Let i be the smallest integer suh that there exists j > i suh that Ui ∩ Uj 6= ∅,
if it exists.
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For all l < i and i < l < j, let U ′
l = Ul and T

′
l = Tl;

Let U ′
i = Ui ∪ Uj and T

′
i = Ti ∪ Tj ;

For all l ≥ j, let U ′
l = Ul+1 and T ′

l = Tl+1;

Repeat.

• If there is no suh i, then stop.

Let (S1, . . . , Sn) and (S′
1, . . . , S

′
n) denote the partitions of S and S′

upon termina-

tion.

Remark that, at all iterations of the above proedure, it trivially holds that

∀l, Ul =
[

s∈Tl

{s′ ∈ S′ | sR s′}.

We now prove the lemma using indution on the number of steps performed using

the above proedure.

• Let U
(0)
1 , . . . , U

(0)
k and T

(0)
1 , . . . , T

(0)
k be the partitions in the initial state. By

onstrution, for all i ∈ {1, . . . , k}, if s ∈ U
(0)
i and s′ ∈ T

(0)
i , then sR s′.

• Let U
(k)
1 , . . . , U

(k)
l and T

(k)
1 , . . . , T

(k)
l be the sets obtained after step k of the pro-

edure and assume that the onlusion of the lemma holds after this step. Let i
and j be the indexes used in step k+1 of the proedure. Let U

(k+1)
1 , . . . , U

(k+1)
m

and T
(k+1)
1 , . . . , T

(k+1)
m be the partitions obtained after step k + 1 of the proe-

dure. Let q ∈ {1, . . . ,m} and let s ∈ T k+1
q and s′ ∈ Uk+1

q . If q 6= i then the

onlusions obviously hold.

If q = i, then there are 3 ases

1. If s ∈ T ki and s′ ∈ Uki or s ∈ T kj and s′ ∈ Ukj , then the onlusions hold by

indution.

2. If s ∈ T ki and s′ ∈ Ukj , then by onstrution of i and j, we have that

Uki ∩Ukj 6= ∅. Thus, there must exist s∗′ ∈ Uki ∩Ukj and s∗1 ∈ T kj suh that

s∗1 R s∗′. By the indution hypothesis, there exists r, t ∈ IN, si1, . . . , s
i
r ∈

T ki , s
j
1, . . . , s

j
t ∈ T kj , s

i
1
′
, . . . , sir

′
∈ Uki and sj1

′
, . . . , sjt

′
∈ Ukj , suh that

sR si1
′

si1 R si1
′

∧
. . .

sir = R s∗′ ∧

s∗1 R s∗′ sj1 R s∗′ ∧
. . .

sjt R s′

Sine Uk+1
i = Uki ∪ Ukj and T k+1

i = T ki ∪ T kj , the above onstrution gives

that the lemma holds after step k + 1 of the proedure.

3. If s ∈ T kj and s′ ∈ Uki , a symmetri reasoning applies.

We onlude that the lemma holds for the partition obtained upon termination of the

proedure.

We now give the detailed proof of Theorem 20. Let P and P ′
be PAs. We prove

that P ≃ P ′ ⇐⇒ P |= fP ′
.
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Proof. We prove the two diretions separately.

• P ≃ P ′ ⇒ P |= fP ′
: Let P = (S,A,L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0)

be PAs suh that P ≃ P ′
with relation Rb. Let

fP ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the

lifting of P ′
. Let S1, . . . , Sn and S′

1, . . . , S
′
n be the partitions of S and S′

respetively,

aording to Rb. Let R ⊆ S × S′
be the relation suh that sR s′ i� sRb s

′
. We prove

that R is a satisfation relation suh that P |= fP ′
.

Let s ∈ S and s′ ∈ S′
suh that sR s′. We show that R satis�es the axioms of a

satisfation relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that

eL′(s′, a, ϕ′) = ⊤. By onstrution of

fP ′
, there exists µ′ ∈ Dist(S′) suh that L′(s′, a, µ′) = ⊤ and Sat(ϕ′) = {µ′}.

Hene, by Rb, there exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ and for all

1 ≤ i ≤ n, µ(Si) = µ′(Si). We now prove that µ ⋐R µ′
.

Let δ : S → (S′ → [0, 1]) be a funtion de�ned as follows: Let s1 ∈ S and

1 ≤ i ≤ n suh that s1 ∈ Si. Then for all s′1 ∈ S′
, let δ(s1)(s

′
1) = 0 if

s′1 /∈ S′
i or µ(s1) = 0. Otherwise, let δ(s1)(s

′
1) =

µ′(s′1)

µ′(S′
i
)
(by Rb, we know that

µ′(S′
i) = µ(Si) > 0).

(a) Let s1 ∈ S and 1 ≤ i ≤ n suh that s1 ∈ Si and µ(s1) > 0. By onstrution,
we have the following:

X

s′1∈S
′

δ(s1)(s
′
1) =

X

s′1∈S
′
i

δ(s1)(s
′
1)

=
X

s′1∈S
′
i

µ′(s′1)

µ′(S′
i)

= 1.

(b) Let s′1 ∈ S′
and 1 ≤ i ≤ n suh that s′1 ∈ S′

i. If µ′(S′
i) = 0, then

µ(Si) = 0 by Rb and by onstrution,

P

s1∈S
µ(s1)δ(s1)(s

′
1) = 0 = µ′(s′1).

Otherwise, we have the following:

X

s1∈S

µ(s1)δ(s1)(s
′
1) =

X

s1∈Si

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Si

µ(s1)
µ′(s′1)

µ′(S′
i)

=
µ′(s′1)

µ′(S′
i)

X

s1∈Si

µ(s1)

= µ′(s′1)
µ(Si)

µ′(S′
i)

= µ′(s′1).

() Let s1 ∈ S and s′1 ∈ S′
suh that δ(s1)(s

′
1) > 0. Then by onstrution

there exists 1 ≤ i ≤ n suh that s1 ∈ Si and s
′
1 ∈ S′

i. Hene s1 Rb s
′
1, and

thus s1 R s′1.
Consequently, we have µ ⋐R µ′

.

2. Let a ∈ A and µ ∈ Dist(S) suh that L(s, a, µ) = ⊤. Then, by Rb, there exists

µ′ ∈ Dist(S′) suh that L′(s′, a, µ′) = ⊤. By onstrution of

fP ′
, there exists

ϕ′ ∈ C(S) suh that

eL′(s′, a, ϕ′) = ⊤ and Sat(ϕ′) = {µ′}.
We now show that µ ⋐R µ

′
. De�ne the orrespondene funtion δ : S → (S′ →

[0, 1]) as follows: let s1 ∈ S and let 1 ≤ i ≤ n suh that s1 ∈ Si. De�ne

δ(s1)(s
′
1) =

µ′(s′1)
P

s′∈S′
i
µ′(s′)

, if s′1 ∈ S′
i, and 0 otherwise.
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(a) Let s1 ∈ S and assume that s1 ∈ Si for some i ∈ {1, . . . , n}.

X

s′1∈S
′

δ(s1)(s
′
1) =

X

s′1∈S
′
i

δ(s1)(s
′
1)

=
X

s′1∈S
′
i

µ′(s′1)
P

s′∈S′
i
µ′(s′)

= 1.

(b) Let s′1 ∈ S′
and assume that s′1 ∈ S′

i for some i ∈ {1, . . . , n}.

X

s1∈S

µ(s1)δ(s1)(s
′
1) =

X

s1∈Si

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Si

µ(s1)
µ′(s′1)

P

s′∈S′
i
µ′(s′)

=
µ′(s′1)

P

s′∈S′
i
µ′(s′)

X

s1∈Si

µ(s1)

= µ′(s′1),

sine by probabilisti bisimulation

P

s1∈Si
µ(s1) =

P

s′∈S′
i
µ′(s′).

() Assume that δ(s1)(s
′
1) > 0. Then s1 ∈ Si and s′1 ∈ S′

i for some i ∈
{1, . . . , n}, and hene s1 Rb s

′
1. Then s1 R s′1.

3. By Rb, we have V (s) = V ′(s′), and therefore V (s) ∈ {V ′(s′)} = fV ′(s′).

Finally, R is a satisfation relation suh that s0 R s′0, thus P |= fP ′
.

• P ≃ P ′ ⇐ P |= fP ′
: Let P = (S,A,L,AP, V, s0) and P

′ = (S′, A,L′, AP, V ′, s′0) be

PAs and let

fP ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the lifting of P
′
. Suppose that P |= fP ′

. We

prove that P ≃ P ′
.

Let (S1, . . . , Sn) and (S′
1, . . . , S

′
n) be the partitions of S and S′

given by Lemma 48.

Let Rb ⊆ S × S′
be the relation suh that sRb s

′
if and only if ∃i ∈ {1, . . . , n} : s ∈

Si ∧ s
′ ∈ S′

i. We prove that Rb is a probabilisti bisimulation relation. Consider the

partitions above. It holds by onstrution that

• for all i ∈ {1, . . . , n}, and for all s1 ∈ Si and s2 ∈ S′
i, it holds that (s1, s2) ∈ R,

and

• for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} suh that i 6= j and for all s1 ∈ Si
and s2 ∈ S′

j it holds that (s1, s2) 6∈ R.

Let s ∈ S and s′ ∈ S′
suh that sRb s

′
. Remark that, by Lemma 48, either sR s′

or there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i suh that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

• By Lemma 48 and R, we have V (s) = V (s′).

• Let a ∈ A and µ ∈ Dist(S) suh that L(s, a, µ) = ⊤.
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� If (s, s′) ∈ R, then by R there exists ϕ′ ∈ C(S′) suh that

eL′(s′, a, ϕ′)
= ⊤ and ∃µ′ ∈ Sat(ϕ′) : µ ⋐R µ′

; let δ be the witnessing orrespon-

dene funtion. By onstrution of

fP ′
, we have that Sat(ϕ′) = {µ′} and

L′(s′, a, µ′) = ⊤. By onstrution of the partitions it holds, for all j ∈
{1, . . . , n} and all s1 ∈ Sj , that δ(s1)(s

′
1) = 0 if s′1 6∈ S′

j . As a onsequene,

if s1 ∈ Sj and µ(s1) > 0, then it holds by R that

P

s′1∈S
′
j
δ(s1)(s

′
1) = 1.

Let j ∈ {1, . . . , n}.

X

s′1∈S
′
j

µ′(s′1) =
X

s′1∈S
′
j

X

s1∈S

µ(s1)δ(s1)(s
′
1)

=
X

s′1∈S
′
j

X

s1∈Sj

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Sj

µ(s1)
X

s′1∈S
′
j

δ(s1)(s
′
1)

=
X

s1∈Sj

µ(s1).

We onlude that s and s′ are indeed probabilistially bisimilar.

� If (s, s′) 6∈ R, then there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i

suh that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

As above, for states v ∈ Si and v′ ∈ S′
i suh that vR v′ we have that,

for all µv ∈ Dist(S) suh that L(v, a, µv) = ⊤, there exists µ′
v ∈ Dist(S′)

suh that L′(v′, a, µ′
v) = ⊤ and all for all j ∈ {1, . . . , n},

P

s1∈Sj
µv(s1) =

P

s′1∈S
′
j
µ′
v(s

′
1).

Moreover, for all µ′
v ∈ Dist(S′) suh that L′(s′, a, µ′

v) = ⊤, we have that
eL′(v′, a, ϕ′

v) = ⊤ with Sat(ϕ′
v) = {µ′}. Thus, by R, there exists µv ∈

Dist(S) suh that L(v, a, µv) = ⊤ and µv ⋐ µ′
v. As above, we obtain that

for all j ∈ {1, . . . , n},
P

s1∈Sj
µv(s1) =

P

s′1∈S
′
j
µ′
v(s

′
1).

By transitivity, we onlude that there exists µ′ ∈ Dist(S′) suh that

L′(s′, a, µ′) = ⊤ and all for all j ∈ {1, . . . , n},
P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

• Let a ∈ A and µ′ ∈ Dist(S′) suh that L′(s′, a, µ′) = ⊤. Then, by onstrution

of

fP ′
, we have that

eL′(s′, a, ϕ′) = ⊤ with Sat(ϕ′) = {µ′}.

� If (s, s′) ∈ R, then by R there exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤
and µ ⋐R µ′

. As above, we an onlude that for all j ∈ {1, . . . , n}, we
have

P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

� If (s, s′) 6∈ R, there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i suh
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that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

As above, by transitivity, we prove that there exists µ ∈ Dist(S) suh

that L(s, a, µ) = ⊤ and for all j ∈ {1, . . . , n}, we have

P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

We onlude that Rb is a probabilisti bisimulation relation, thus P ≃ P ′
.

Appendix B.2. Detailed proof for Lemma 21

Let P be a PA and let N be an APA. We prove the following: P |= N ⇐⇒ eP � N .

Proof. We prove the two diretions separately.

• P |= N ⇒ eP � N : Let P = (S,A,L, AP, V, s0) be a PA and let N = (S′, A, L′, AP,

V ′, s′0) be an APA suh that P |= N with relation Rs. Let
eP = (S,A, L̃, AP, Ṽ , s0) be

the lifting of P . Let R ⊆ S × S′
be the relation suh that sR s′ i� sRs s

′
. We prove

that R is a re�nement relation suh that

eP � N .

Let s ∈ S and s′ ∈ S′
suh that sR s′. We show that R satis�es the axioms of a

weak re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤. By Rs, there exists

µ ∈ Dist(S) and µ′ ∈ Sat(ϕ′) suh that L(s, a, µ) = ⊤ and µ ⋐Rs µ′
. By

onstrution of

eP , there exists ϕ ∈ C(S) suh that

eL(s, a, ϕ) = ⊤ and Sat(ϕ) =
{µ}. Let δs be the orrespondene funtion witnessing µ ⋐

δs
Rs

µ′
. Sine R = Rs,

it also holds that µ ⋐
δs
R µ′

. Thus there exists ϕ ∈ C(S) suh that L(s, a, ϕ = ⊤)
and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ′

.

2. Let a ∈ A and ϕ ∈ C(S) suh that

eL(s, a, ϕ) 6= ⊥. By onstrution of

eP ,
there exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}. By Rs,

there exists ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh that

µ ⋐Rs µ
′
. As above, it also holds that µ ⋐R µ′

. Thus there exists ϕ′ ∈ C(S′)
suh that L′(s′, a, ϕ′) ≥? and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) suh
that µ ⋐R µ′

.

3. Sine

eV (s) = {V (s)} and V (s) ∈ V ′(s′) by Rs, it holds that
eV (s) ⊆ V ′(s′).

Thus R is a weak re�nement relation. Moreover, by onstrution, s0 R s′0. Thus we

onlude that

eP � N .

• P |= N ⇐ eP � N : Let P = (S,A,L,AP, V, s0) be a PA, let

eP = (S,A, L̃, AP,
Ṽ , s0) be the lifting of P and let N = (S′, A, L′, AP, V ′, s′0) be an APA suh that

eP � N with relation Rr. Let R ⊆ S × S′
be the relation suh that sR s′ i� sRr s

′
.

We prove that R is a satisfation relation suh that P |= N .

Let s ∈ S and s′ ∈ S′
suh that sR s′. We show that R satis�es the axioms of a

satisfation relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤. By Rr, there exists ϕ ∈

C(S) suh that

eL(s, a, ϕ) = ⊤ and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′)

suh that µ ⋐Rr µ
′
. By onstrution of

eP , there exists µ ∈ Dist(S) suh that
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L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}. Consider the distribution µ′ ∈ Sat(ϕ′) suh
that µ ⋐Rr µ

′
given by Rr. Sine Rr = R, it also holds that µ ⋐R µ′

. Thus

there exists µ ∈ Dist(S) suh that L(s, a, µ) = ⊤ and there exists µ′ ∈ Sat(ϕ′)
suh that µ ⋐R µ′

.

2. Let a ∈ A and µ ∈ Dist(S) suh that L(s, a, µ) = ⊤. By onstrution of

eP ,

there exists ϕ ∈ C(S) suh that

eL(s, a, ϕ) = ⊤ and Sat(ϕ) = {µ}. Thus, by

Rr, there exists ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh

that µ ⋐Rr µ
′
. Sine Rr = R, it also holds that µ ⋐R µ′

. Thus there exists

ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) ≥? and µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ′
.

3. Sine

eV (s) = {V (s)} and

eV (s) ⊆ V ′(s′), it holds that V (s) ∈ V ′(s′).

Thus R is a satisfation relation. Moreover, by onstrution, s0 R s′0. As a onse-

quene, we onlude that P |= N .

Appendix C. Detailed proof for Lemma 24

We prove that, for any APA N and abstration funtion α, it holds that N �S
α(N).

Proof. Let N = (S,A,L, AP, V, s0) be an APA and let α : S → S′
be an abstration

funtion. Consider the state abstration α(N) = (S′, A,L′, AP, V ′, α(s0)). Let R ⊆
S × S′

be the relation suh that sR s′ i� s′ = α(s). We prove that R is a strong

re�nement relation.

Let s ∈ S and s′ ∈ S′
suh that sR s′. By onstrution, we thus have s ∈ γ(s′).

We show that R satis�es the axioms of a strong re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤. This implies, by de�nition

of abstration, that there exists ϕ ∈ C(S), suh that L(s, a, ϕ) = ⊤ and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗)=⊤

Sat(ϕ∗)

1

A

De�ne δ : S → (S′ → [0, 1]) suh that δ(u)(v) = 1 if α(u) = v, and 0 otherwise.

We now show that for all distribution µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) suh
that µ ⋐

δ
R µ′

.

Let µ ∈ Sat(ϕ) and let µ′ ∈ Dist(S′) suh that µ′(s′′) = α(µ)(s′′) for all s′′ ∈ S′
.

Clearly, µ′ ∈ Sat(ϕ′).

(a) Let u ∈ S suh that µ(u) > 0. By onstrution, δ(u) is a distribution on

S′
.

(b) Let v ∈ S′
.

X

u∈S

µ(u)δ(u)(v) =
X

u st. α(u)=v

µ(u)

=
X

u∈γ(v)

µ(u) = α(µ)(v) = µ′(v),

() Let u ∈ S and v ∈ S′
suh that δ(u)(v) > 0. By onstrution, we thus

have α(u) = v, and �nally uR v.
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2. Let a ∈ A and ϕ ∈ C(S) suh that L(s, a,ϕ) 6= ⊥. By onstrution of α(N), then
there are two ases. Either (1) there exists ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) =?
and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗) 6=⊥

Sat(ϕ∗)

1

A

or (2) there is no onstraint ϕ′′
suh that L′(s′, a, ϕ′′) =?, whih means that

L(s, a, ϕ) = ⊤ and there exists ϕ′ ∈ C(S′) suh that L′(s′, a, ϕ′) = ⊤ and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗)=⊤

Sat(ϕ∗)

1

A

Let δ : S → (S′ → [0, 1]) be the orrespondene funtion de�ned as above.

Let µ ∈ Sat(ϕ) and onsider µ′ ∈ Dist(S′) suh that µ′(s′′) = α(µ)(s′′) for all
s′′ ∈ S′

. Clearly, in both ases, we have µ′ ∈ Sat(ϕ′). De�ne δ : S → (S′ →
[0, 1]) as δ(u)(v) = 1, if α(u) = v, and 0 otherwise. We now show that µ ⋐

δ
R µ′

.

(a) Let u ∈ S suh that µ(u) > 0. Clearly, δ(u) is a distribution on S′
.

(b) Let v ∈ S′
.

X

u∈S

µ(u)δ(u)(v) =
X

u st. α(u)=v

µ(u)

=
X

u∈γ(v)

µ(u) = µ′(v),

by de�nition of an abstration of a distribution.

() Assume that δ(u)(v) > 0. Then α(u) = v, and uR v.

3. By De�nition 23, it is easy to see that V (s) ⊆ V ′(s′).

By onstrution, we have s0 Rα(s0), so we onlude that R is a strong re�nement

relation and N �S α(N).

Appendix D. Detailed proof for Lemma 26

We prove that, for any APA N , it holds that N �S χ(N).

Proof. Let N = (S,A,L, AP, V, s0) be an APA and let χ(N) = (S,A,L′, AP, V,
s0) be the onstraint-abstration of N . Let R = S × S be the identity relation.

We prove that R is a strong re�nement relation.

Let s, s′ ∈ S suh that sR s′. Notie that this is implies that s = s′. We show

that R satis�es the axioms of a strong re�nement relation.

1. Let a ∈ A and ϕI ∈ C(S) suh that L′(s′, a, ϕI) = ⊤. This implies, by De�-

nition 25, that there exists ϕ ∈ C(S), suh that L(s, a, ϕ) = ⊤ and Sat(ϕI) =
{µ′ ∈ Dist(S)|

V

s′∈S µ
′(s′) ∈ Iϕ

s′
} with {Iϕ

s′
|s′ ∈ S} the smallest losed intervals

suh that ∀µ ∈ Sat(ϕ) :
V

s′∈S µ(s′) ∈ Iϕ
s′
.

Let δ be the identity orrespondene funtion.

Let µ ∈ Sat(ϕ). By de�nition of ϕI , it is trivial that µ ∈ Sat(ϕI) and µ ⋐
δ
R µ.
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2. Let a ∈ A and ϕ ∈ C(S) suh that L(s, a, ϕ) ≥?. This implies, by De�nition 25,

that there exists ϕI ∈ C(S), suh that L(s′, a, ϕI) = L(s, a, ϕ) and Sat(ϕI) =
{µ′ ∈ Dist(S)|

V

s′∈S µ
′(s′) ∈ Iϕ

s′
} with {Iϕ

s′
|s′ ∈ S} the smallest losed intervals

suh that ∀µ ∈ Sat(ϕ) :
V

s′∈S µ(s′) ∈ Iϕ
s′
.

Let δ be the identity orrespondene funtion.

Let µ ∈ Sat(ϕ). Again, it is trivial that µ ∈ Sat(ϕI) and µ ⋐
δ
R µ.

3. By De�nition 25, sine s = s′, we have V (s) ⊆ V (s′).

By onstrution, as the initial states are equal, we have s0 R s0, so we onlude

that R is a strong re�nement relation and N �S χ(N).

Appendix E. Detailed proof for Theorem 30

We prove that for or any APA N , it holds that [[N ]] = [[β(N)]], and [[N ]] = [[β∗(N)]].

Proof. Let N = (S,A,L,AP, V, s0) be an APA. Let T be the set of inonsistent

states of N and let β(N) be the orresponding APA using the pruning operator

of De�nition 29. The result is trivial if β(N) is empty. Otherwise, suppose that

β(N) = (S′, A, L′, AP, V ′, s0), and let P = (Q,A,LP , AP, VP , q0) be a PA. We prove

that P |= N ⇐⇒ P |= β(N). If this holds, then, by applying β until a �xpoint is

reahed, it holds that [[N ]] = [[β∗(N)]].

• P |= N ⇒ P |= β(N): Suppose that P |= N , and letR ⊆ Q×S be the orresponding

satisfation relation. De�ne the relation R′ ⊆ Q × S′
suh that for all s ∈ S′

, qR′ s
i� qR s. We prove that R′

is a satisfation relation. Let q ∈ Q and s ∈ S′
suh that

qR′ s. We show that R′
satis�es the axioms of a satisfation relation.

1. Let a ∈ A and ϕ ∈ C(S′) suh that L′(s, a,ϕ) = ⊤. By de�nition of L′
, we

have that ϕs,a 6= ∅ and ⊔ϕ∈ϕs,aL(s, a, ϕ) = ⊤. As a onsequene, there exists

ϕ ∈ C(S) suh that L(s, a, ϕ) = T and µ ∈ Sat(ϕ) i� there exists µ ∈ Sat(ϕ)
suh that µ(s′) = µ(s′) for all s′ ∈ S′

and µ(t) = 0 for all t ∈ T .
By R, there exists ̺ ∈ Dist(Q) suh that LP (q, a, ̺) = ⊤ and there exists

µ ∈ Sat(ϕ) suh that ̺ ⋐R µ. Let s′ ∈ S and suppose that µ(s′) > 0. Let δ be
the orrespondene funtion suh that ̺ ⋐

δ
R µ. By de�nition, there must exist

q′ ∈ Q suh that ̺(q′) > 0 and δ(q′)(s′) > 0. By the de�nition of R, this means

that s′ is not inonsistent. As a onsequene, for all t ∈ T , we have µ(t) = 0 (1).

Moreover, δ(q′)(s′) > 0 also implies that s′ is onsistent. Thus, for all q′ ∈ Q
and t ∈ T , we have that δ(q′)(t) = 0 (2).

Let µ ∈ Dist(S′) suh that for all s′ ∈ S′
, µ(s′) = µ(s′). By (1), µ is indeed a

distribution. Moreover, we have by onstrution that µ ∈ Sat(ϕ). Let δ′ : Q→
(S′ → [0, 1]) suh that for all q′ ∈ Q and s′ ∈ S, δ′(q′)(s′) = δ(q′)(s′). By (2),

we have that δ′ is a orrespondene funtion, and

(a) For all q′ ∈ Q, if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S. Thus,
by (2), δ′ is a distribution on S′

.

(b) For all s′ ∈ S′
,

X

q′∈Q

̺(q′)δ′(q′)(s′) =
X

q′∈Q

̺(q′)δ(q′)(s′)

= µ(s′) = µ(s′).
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() Whenever δ′(s′)(q′) > 0, we have by de�nition δ(q′)(s′) > 0. Thus, by R,

q′ R s′, and �nally q′ R′ s′.

Finally, we have that ̺ ⋐
δ′

R′ µ.

2. Let a ∈ A and ̺ ∈ Dist(Q) suh that LP (q, a, ̺) = ⊤. By R, there exists

ϕ ∈ C(S) and µ ∈ Sat(ϕ) suh that L(s, a, ϕ) 6= ⊥ and ̺ ⋐R µ. Let ϕ ∈ C(S′)
be the onstraint suh that µ∗ ∈ Sat(ϕ) i� there exists µ∗′ ∈ Sat(ϕ) suh that,

for all s′ ∈ S′
, µ∗(s′) = µ∗(s′) and for all t ∈ T , µ∗(t) = 0.

Let δ be the assoiated orrespondene funtion. Let s′ ∈ S and suppose that

µ(s′) > 0. By de�nition, there must exist q′ ∈ Q suh that ̺(q′) > 0 and

δ(q′)(s′) > 0. By the de�nition of R, this means that s′ is not inonsistent.

As a onsequene, for all t ∈ T , we have µ(t) = 0 (1). Moreover, δ(q′)(s′) > 0
also implies that s′ is onsistent. Thus, for all q′ ∈ Q and t ∈ T , we have that
δ(q′)(t) = 0 (2).

Let ϕ ∈ C(S′) suh that µ ∈ Sat(ϕ) i� there exists µ′ ∈ Sat(ϕ) suh that, for

all s′ ∈ S′
, µ(s′) = µ′(s′) and for all t ∈ T , µ′(t) = 0. By onstrution, we have

ϕ ∈ ϕs,a. Thus, L′(s, a, ϕ) 6= ⊥.
Moreover, let µ ∈ Dist(S′) be the distribution suh that for all s′ ∈ S′

, µ(s′) =
µ(s′). By (1), µ is indeed a distribution. By onstrution, we have that µ ∈
Sat(ϕ). Let δ′ : Q → (S′ → [0, 1]) suh that for all q′ ∈ Q and s′ ∈ S,
δ′(q′)(s′) = δ(q′)(s′). By (2), we have that δ′ is a orrespondene funtion, and

(a) For all q′ ∈ Q, if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S. Thus,
by (2), δ′ is a distribution on S′

.

(b) For all s′ ∈ S′
,

X

q′∈Q

̺(q′)δ′(q′)(s′) =
X

q′∈Q

̺(q′)δ(q′)(s′)

= µ(s′) = µ(s′).

() Whenever δ′(s′)(q′) > 0, we have by de�nition δ(q′)(s′) > 0. Thus, by R,

q′ R s′, and �nally q′ R′ s′.

Finally, we have that ̺ ⋐
δ′

R′ µ.

3. By R, we have that V (q) ∈ V (s′) = V ′(s′).

Finally, R′
is a satisfation relation. Moreover, we have by de�nition that q0 R

′ s0,
thus P |= β(N).

• P |= N ⇐ P |= β(N): Suppose that P |= β(N), and let R′ ⊆ Q × S′
be the

orresponding satisfation relation. De�ne R ⊆ Q × S suh that for all q ∈ Q and

s ∈ S, qR s i� s ∈ S′
and qR′ s′. By onstrution, R is a satisfation relation and

q0 R s0. Thus P |= N .

Appendix F. Detailed proof for Theorem 32

Let N1, N2, and N3 be onsistent APAs sharing ation and atomi proposition

sets. We prove that

• β∗(N1 ∧N2) �W N1 and β∗(N1 ∧N2) �W N2.

• If N3�W N1 and N3�W N2, then N3�W β∗(N1 ∧N2).
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Proof. Let N1 = (S1, A, L1, AP, V1, s0) and N2 = (S2, A, L2, AP, V2, s
2
0) and N3 =

(S3, A, L3, AP, V3, s
3
0) be three APAs. Let N1 ∧ N2 = (S1 × S2, A, L̃, AP, Ṽ ,

(s0, s
2
0)) be the onjuntion of N1 and N2 de�ned as in De�nition 31. We prove

the laims separately.

• β∗(N1∧N2) �W N1: Obviously, if N1 ∧N2 is fully inonsistent, then β∗(N1∧N2) is
empty and re�nes N1 with the empty re�nement relation. Suppose now that β∗(N1 ∧
N2) = (S∧, A, L∧, AP, V ∧, (s0, s

2
0)), with S

∧ ⊆ S1×S2, not empty. De�ne the relation

R ⊆ S∧ × S1 suh that for all (s, s′) ∈ S∧
and t ∈ S1, (s, s′)R t i� s = t. We prove

that R is a weak weak re�nement relation. Let (s, s′) ∈ S∧
suh that (s, s′)R s. We

show that R satis�es the axioms of a weak weak re�nement relation.

1. let a ∈ A and ϕ ∈ C(S1) suh that L1(s, a,ϕ) = ⊤. Sine (s, s′) ∈ S∧
, we have

that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) suh that µ̃ ∈ Sat(ϕ̃) i�

• the distribution µ : r →
P

r′∈S2
µ̃((r, r′)) is in Sat(ϕ), and

• there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and the

distribution µ′ : r′ →
P

r∈S1
µ̃((r, r′)) is in Sat(ϕ′).

By de�nition of N1 ∧N2, we have that L̃((s, s′), a, ϕ̃) = ⊤. Consider now ϕ∧ ∈
C(S∧) the onstraint suh that µ∧ ∈ Sat(ϕ∧) i� there exists µ̃ ∈ Sat(ϕ̃) suh
that ∀r ∈ S∧, µ∧(r) = µ̃(r) and ∀r ∈ S1×S2\S

∧, µ̃(r) = 0. Aording to the def-
inition of pruning, we know that L∧((s, s′), a, ϕ∧) = ⊔

ψ∈ϕ∧(s,s′),a L̃((s, s′), a, ψ).

Sine ϕ̃ ∈ ϕ∧(s,s′),a
, it holds that L∧((s, s′), a,

ϕ∧) = ⊤.
Thus there exists ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) = ⊤. Moreover, de�ne

the orrespondene funtion δ : S∧ → (S1 → [0, 1]) suh that δ((r, r′))(r′′) = 1
i� r′′ = r. Let µ∧ ∈ Sat(ϕ∧), µ̃ the orresponding distribution in Sat(ϕ̃), and
µ the distribution suh that µ : r ∈ S1 7→

P

r′∈S2
µ̃((r, r′)). By de�nition, µ is

in Sat(ϕ). We now prove that µ∧
⋐
δ
R µ.

• For all (r, r′) ∈ S∧
, δ((r, r′)) is a distribution on S1 by de�nition.

• Let r ∈ S1.

X

(r,r′′)∈S∧

µ∧((r′, r′′))δ((r′, r′′))(r) =
X

r′∈S2 | (r,r′)∈S∧

µ∧((r, r′))

=
X

r′∈S2 | (r,r′)∈S∧

µ̃((r, r′))

=
X

r′∈S2

µ̃((r, r′))

= µ(r)

• Finally, if δ((r, r′))(r′′) > 0, then r = r′′ and (r, r′)R r by de�nition.

Thus µ∧
⋐
δ
R µ.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) 6= ⊥. By de�nition of L∧
,

there exists ϕ̃ ∈ ϕ∧t,a
. Thus, L̃((s, s′), a, ϕ̃ 6= ⊥ in N1 ∧N2, and a distribution

µ∧
satis�es ϕ∧

i� there exists a distribution µ̃ ∈ Sat(ϕ̃) suh that µ∧(r) = µ̃(r)
for all r ∈ S∧

and µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
. Sine S∧

ontains only

onsistent states, there exists µ∧ ∈ Sat(ϕ∧). Let µ̃ ∈ Sat(ϕ̃) be a orresponding
distribution in ϕ̃. There are 3 ases.
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• If a /∈ Must(s) and a /∈ Must(s′), then by de�nition of L̃, there must exist

ϕ ∈ C(S1) and ϕ
′ ∈ C(S2) suh that L1(s, a, ϕ) 6= ⊥ and L2(s

′, a, ϕ′) 6= ⊥.
Moreover, ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→

P

r′∈S2
˜̺((r, r′))

and ̺′ : r′ ∈ S2 7→
P

r∈S1
˜̺((r, r′)) are respetively in Sat(ϕ) and in

Sat(ϕ′).

Sine µ̃ ∈ Sat(ϕ̃), let µ and µ′
be the orresponding distributions in Sat(ϕ)

and Sat(ϕ′). De�ne the orrespondene funtion δ : S∧ → (S1 → [0, 1])
suh that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we an prove that

µ∧
⋐
δ
R µ.

• Otherwise, suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) suh that

ϕ̃ is suh that ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sine µ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the orresponding onstraint on S2

suh that L2(s
′, a, ϕ′) 6= ⊥. Let µ and µ′

be the orresponding distributions

in Sat(ϕ) and Sat(ϕ′). De�ne the orrespondene funtion δ : S∧ → (S1 →
[0, 1]) suh that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we an prove that

µ∧
⋐
δ
R µ.

• Finally, suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) suh that

ϕ̃ is suh that ˜̺ ∈ Sat(ϕ̃) i�

� there exists a distribution ϕ ∈ C(S1) suh that L1(s, a, ϕ) 6= ⊥ and

the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sine µ̃ ∈ Sat(ϕ̃), let ϕ ∈ C(S1) be the orresponding onstraint on S1

suh that L1(s, a, ϕ) 6= ⊥. Let µ and µ′
be the orresponding distributions

in Sat(ϕ) and Sat(ϕ′). De�ne the orrespondene funtion δ : S∧ →
(S1 → [0, 1]) suh that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we an

prove that µ∧
⋐
δ
R µ.

Finally, in any ase, there exists ϕ ∈ C(S1) suh that L1(s, a, ϕ) 6= ⊥ and there

exists µ ∈ Sat(ϕ) suh that µ∧
⋐R µ.

3. By de�nition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak re�nement relation, and we have β∗(N1 ∧N2) �W N1.

• β∗(N1 ∧N2) �W N2: This result is obtained using a similar proof as above.

• if N3 �W N1 and N3 �W N2, then N3 �W β∗(N1 ∧ N2): Let R1 ⊆ S3 × S1

and R2 ⊆ S3 × S2 be the weak weak re�nement relations suh that N3 � N1 and

N3 � N2. Obviously, if N1 ∧ N2 is fully inonsistent, then β∗(N1 ∧ N2) is empty. In

this ase, there are no onsistent APAs re�ning both N1 and N2. As a onsequene,

N3 is inonsistent, whih violates the hypothesis. Suppose now that β∗(N1 ∧ N2) =
(S∧, A,L∧, AP, V ∧, (s0, s

2
0)), with S∧ ⊆ S1 × S2, is not empty. De�ne the relation

R∧ ⊆ S3 ×S∧
suh that s′′ R∧(s, s′) ∈ S∧

i� s′′ R s ∈ S1 and s′′ R′ s′ ∈ S2. We prove

that R∧
is a weak weak re�nement relation.

Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 suh that s′′ R∧(s, s′). We show that R∧

satis�es

the axioms of a weak weak re�nement relation.

72



1. Let a ∈ A and ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) = ⊤. By de�nition, we

have L̃((s, s′), a, ϕ̃) = ⊤ with ϕ̃ ∈ C(S1 × S2) suh that µ∧ ∈ Sat(ϕ∧) i� there

exists µ̃ ∈ Sat(ϕ̃) suh that µ∧(r) = µ̃(r) for all r ∈ S∧
and µ̃(r) = 0 for all

r ∈ S1 × S2 \ S∧
. There are 2 ases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) suh that L1(s, a, ϕ) =
⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sine L1(s, a, ϕ) = ⊤ and s′′ R1 s, there exist ϕ′′ ∈ C(S3) suh that

L3(s
′′, a, ϕ′′) = ⊤ and ∀µ′′ ∈ Sat(ϕ′′),∃µ ∈ Sat(ϕ), suh that µ′′

⋐R1 µ
(1).

Sine L3(s
′′, a, ϕ′′) = ⊤ and s′′ R2 s

′
, we have that ∀µ′′ ∈ Sat(ϕ′′), there

exist ϕ′ ∈ C(S2) suh that L2(s
′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh that

µ′′
⋐R2 ̺

′
(2).

Let µ′′ ∈ Sat(ϕ′′). By (1) and (2), there exists µ ∈ Sat(ϕ), ϕ′ ∈ C(S2)
suh that L2(s

′, aϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) suh that µ′′
⋐R1 µ and

µ′′
⋐R2 µ

′
. Sine (s, s′) and s′′ are onsistent, remark that for all (r, r′)

in S1 × S2 \ S
∧
, we annot have s′′ R1 r and we annot have s′′ R2 r

′
(3).

We now build µ∧ ∈ Sat(ϕ∧) suh that µ′′
⋐R∧ µ∧

.

Let δ and δ′ be the orrespondene funtions suh that µ′′
⋐
δ
R1

µ and

µ′′
⋐
δ′

R2
µ′
. De�ne the orrespondene funtion δ′′ : S3 → (S∧ → [0, 1])

suh that for all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′).

We build µ∧
and prove that µ′′

⋐
δ′′

R∧ µ∧
.

� For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distribu-

tions. By (3), we know that for all (r, r′) ∈ S1 × S2 \ S∧
, δ(r′′)(r) =

δ′(r′′)(r′) = 0. As a onsequene, δ′′(r′′) is a distribution on S∧
.

� De�ne µ∧(r, r′) =
P

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). We prove that µ∧ ∈

Sat(ϕ∧),

∗ Let r′ ∈ S2, we have

X

r∈S1 | (r,r′)∈S∧

µ∧(r, r′)

=
X

r∈S1 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ′′(r′′)((r, r′))

=
X

r∈S1 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ(r′′)(r)δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ′(r′′)(r′)
X

r∈S1 | (r,r′)∈S∧

δ(r′′)(r)

=
X

r′′∈S3

µ′′(r′′)δ′(r′′)(r′)

= µ′(r′) by de�nition.
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∗ Let r ∈ S1, we have

X

r′∈S2 | (r,r′)∈S∧

µ∧(r, r′)

=
X

r′∈S2 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ′′(r′′)((r, r′))

=
X

r′∈S2 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ(r′′)(r)δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ(r′′)(r)
X

r′∈S2 | (r,r′)∈S∧

δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ(r′′)(r)

= µ(r) by de�nition.

Thus we have that

· the distribution ̺ : r →
P

r′∈S2
µ∧((r, r′)) is in Sat(ϕ), and

· the distribution ̺′ : r′ →
P

r∈S1
µ∧((r, r′)) is in Sat(ϕ′).

As a onsequene, µ∧ ∈ Sat(ϕ∧) by de�nition of ϕ∧
.

� If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and

δ′(r′′)(r′) > 0. As a onsequene, r′′ R1 r and r
′′ R2 r

′
, thus r′′ R∧(r, r′).

Finally, µ′′
⋐R∧ µ∧

and µ∧ ∈ Sat(ϕ∧).

• Suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) suh that L2(s
′, a,

ϕ′) = ⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� there exists a distribution ϕ ∈ C(S1) suh that L1(s, a, ϕ) 6= ⊥ and

the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

This ase is stritly symmetri to the one presented above, so there also

exists ϕ′′ ∈ C(S3) suh that L3(s
′′, a, ϕ′′) = ⊤ and for all µ′′ ∈ Sat(ϕ′′),

there exists µ∧ ∈ Sat(ϕ∧) suh that µ′′
⋐R∧ µ∧

.

2. Let a ∈ A and ϕ′′ ∈ C(S3) suh that L3(s
′′, a, ϕ′′) 6= ⊥. Let µ′′ ∈ Sat(ϕ′′).

Sine s′′ R1 s and s′′ R2 s
′
, there must exist ϕ ∈ C(S1), µ ∈ Sat(ϕ), ϕ′ ∈

C(S2) and µ
′ ∈ Sat(ϕ′) suh that L1(s, a, ϕ) 6= ⊥, L2(s

′, a, ϕ′) 6= ⊥, µ′′
⋐R1 µ

and µ′′
⋐R2 µ′

. As a onsequene, L̃((s, s′), a, ϕ̃) 6= ⊥, with ϕ̃ ∈ C(S1 ×
S2) suh that ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→

P

r′∈S2
˜̺((r, r′))

and ̺′ : r′ ∈ S2 7→
P

r∈S1
˜̺((r, r′)) are respetively in Sat(ϕ) and in Sat(ϕ′).

Moreover, sine s′′ and (s, s′) are onsistent, there exists ϕ∧ ∈ C(S∧) suh that

L∧((s, s′), a, ϕ∧) 6= ⊥ and ̺∧ ∈ Sat(ϕ∧) i� there exists ˜̺ ∈ Sat(ϕ̃) suh that

̺∧(r, r′) = ˜̺(r, r′) for all (r, r′) ∈ S∧
and ˜̺(r, r′) = 0 for all (r, r′) ∈ S1×S2\S

∧
.

Let δ and δ′ the orrespondene funtions suh that µ′′
⋐
δ
R1

µ and µ′′
⋐
δ′

R2
µ′
.

Sine s′′ and (s, s′) are onsistent, we know that (1) for all (r, r′) ∈ S1×S2 \S
∧
,

we have µ(r) = µ′(r′) = 0 and (2) for all r′′ ∈ S3 and (r, r′) ∈ S1 × S2 \ S∧
, we

annot have r′′ R1 r and we annot have r′′ R2 r
′
.

De�ne the orrespondene funtion δ′′ : S3 → (S∧ → [0, 1]) suh that for all

r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We now build µ∧

suh that µ′′
⋐
δ′′

R∧ µ∧
and prove that µ∧ ∈ Sat(ϕ∧).
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• For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By

(2), we know that for all (r, r′) ∈ S1 × S2 \ S∧
, δ(r′′)(r) = δ′(r′′)(r′) = 0.

As a onsequene, δ′′(r′′) is a distribution on S∧
.

• De�ne µ∧(r, r′) =
P

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). As above, we an prove

that µ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0.
As a onsequene, r′′ R1 r and r

′′ R2 r
′
, thus r′′ R∧(r, r′).

Finally, there exists ϕ∧ ∈ C(S∧) suh that L∧((s, s′), a, ϕ∧) 6= ⊥ and µ∧ ∈
Sat(ϕ∧) suh that µ′′

⋐R∧ µ∧
.

3. Sine s′′ R1 s and s
′′ R2 s

′
, we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Finally, R∧
is a weak weak re�nement relation between N3 and β∗(N1 ∧ N2).

Moreover, we know that s30 R1 s0, s
3
0 R2 s

2
0, and (s0, s

2
0) is onsistent. As a

onsequene s30 R
∧(s0, s

2
0) and N3 � β∗(N1 ∧N2).

Appendix G. Detailed proof for Theorem 35

Given a synhronization set A, we prove that all notions of re�nement are a pre-

ongruene with respet to the parallel omposition operator ‖A de�ned above, i.e. if

N1 ⋉ N ′
1 and N2 ⋉ N ′

2, then N1‖AN2 ⋉N ′
1‖AN

′
2, for ⋉ ∈ {�T ,�W ,�,�S}.

Proof. We provide the proof for ⋉ =�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N

′
1 = (S′

1, A1,
L′

1, AP1, V
′
1 , s

1
0
′
) and N ′

2 = (S′
2, A2, L

′
2, AP2, V

′
2 , s

2
0
′
) be APAs suh that AP1∩AP2 = ∅.

Let A ⊆ A1 ∩A2. Assume that N1 � N ′
1 and N2 � N ′

2 with weak re�nement relations

R1 and R2, respetively. Let N1‖AN2 = (S1 × S2, A1 ∪ A2, L, AP1 ∪ AP2, V, (s
1
0, s

2
0))

and N ′
1‖AN

′
2 = (S′

1 × S′
2, A1 ∪A2, L

′, AP1 ∪AP2, V, (s
1
0
′
, s20

′
)).

Let R ⊆ (S1 × S2) × (S′
1 × S′

2) be the relation suh that (s1, s2)R(s′1, s
′
2) i�

s1 R1 s
′
1 and s2 R2 s

′
2. We now show that R is a weak re�nement relation suh that

N1‖AN2 � N ′
1‖AN

′
2.

Assume that (s1, s2)R(s′1, s
′
2). We show that R satis�es the axioms of a weak

re�nement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S′
1 × S′

2) suh that L′((s′1, s
′
2), a, ϕ

′) = ⊤. There

are three ases:

• If a ∈ A, then there exists ϕ′
1 ∈ C(S′

1) and ϕ′
2 ∈ C(S′

2) suh that

L′
1(s

′
1, a, ϕ

′
1) = L′

2(s
′
2, a, ϕ

′
2) = ⊤ and µ′ ∈ Sat(ϕ′) i� there exists µ′

1 ∈
Sat(ϕ′

1) and µ′
2 ∈ Sat(ϕ′

2) suh that µ′ = µ′
1µ

′
2. Sine s1 R1 s

′
1 and

s2 R2 s
′
2, there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) with L1(s1, a, ϕ1) =

L2(s2, a, ϕ2) = ⊤ and ∀µ1 ∈ Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ′
1 and

∀µ2 ∈ Sat(ϕ2),∃µ
′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.

De�ne ϕ ∈ C(S1 × S2) suh that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By de�nition

of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ). Then there

exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh that µ = µ1µ2. Sine s1 R1 s
′
1

and s2 R2 s
′
2, there exist µ

′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2) and orrespondene

funtions δ1 : S1 → (S′
1 → [0, 1]) and δ2 : S2 → (S′

2 → [0, 1]), suh that

µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.
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De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1]) as
δ(u, v)(u′, v′) = δ1(u)(u

′)δ2(v)(v
′). Consider the distribution µ′

suh that

µ′ = µ′
1µ

′
2. By onstrution, µ′ ∈ Sat(ϕ′). We now prove that µ ⋐

δ
R µ′

:

(a) Assume that for (u, v) ∈ S1 × S2, µ(u, v) > 0. Then we have

X

(u′,v′)∈S′
1×S

′
2

δ(u, v)(u′, v′) =
X

u′∈S′
1

X

v′∈S′
2

δ1(u)(u
′)δ2(v)(v

′)

=

0

@

X

u′∈S′
1

δ1(u)(u
′)

1

A

0

@

X

v′∈S′
2

δ2(v)(v
′)

1

A

= 1.

Thus δ(u, v) is a distribution on S′
1 × S′

2.

(b) Let (u′, v′) ∈ S′
1 × S′

2.

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, v′) =
X

u∈S1

X

v∈S2

µ1(u)µ2(v)

δ1(u, u
′)δ2(v, v

′)

=

 

X

u∈S1

µ1(u)δ1(u)(u
′)

!

 

X

v∈S2

µ2(v)δ2(v)(v
′)

!

= µ′
1(u

′)µ′
2(v

′) = µ′(u′, v′).

() Assume that δ(u, v)(u′, v′) > 0. Then δ1(u)(u
′) > 0 and

δ2(v)(v
′) > 0, and sine N1 � N ′

1 and N2 � N ′
2, uR1 u

′
and vR2 v

′
.

Thus, by de�nition of R, we have (u, v)R(u′, v′).

• If a ∈ A1 \ A, then there exists ϕ′
1 ∈ C(S′

1) suh that L′
1(s

′
1, a, ϕ

′
1) = ⊤.

Sine s1 R1 s
′
1, there exists ϕ1 ∈ C(S1) with L1(s1, a, ϕ1) = ⊤ and ∀µ1 ∈

Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) suh that µ1 ⋐R1 µ
′
1.

De�ne ϕ ∈ C(S1 × S2) suh that µ ∈ Sat(ϕ) i� for all u ∈ S1 and v 6=
s2, µ(u, v) = 0 and the distribution µ1 : t 7→ µ(t, s2) is in Sat(ϕ1). By

de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ). Then
there exists a µ1 ∈ Sat(ϕ1) suh that µ1 an be written as t 7→ µ(t, s2)
and furthermore there exists µ′

1 ∈ Sat(ϕ′
1) and a orrespondene funtion

δ1 : S1 → (S′
1 → [0, 1]) suh that µ1 ⋐

δ1
R1

µ′
1.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1]) as
δ(u, v)(u′, v′) = δ(u)(u′) if v = s2 and v′ = s′2, and 0 otherwise. Consider

the distribution µ′
over S′

1 × S′
2 suh that for all u′ ∈ S′

1 and v′ 6= s′2,
µ′(u′, v′) = 0 and for all u′ ∈ S′

1 µ′(u′, s′2) = µ′
1(u

′). By onstrution,

µ′ ∈ Sat(ϕ′). We now prove that µ ⋐
δ
R µ′

:

(a) Assume that for (u, v) ∈ S1 × S2, µ(u, v) > 0. Then we have

X

(u′,v′)∈S′
1×S

′
2

δ(u, v)(u′, v′) =
X

u′∈S′
1

X

v′∈S′
2

δ1(u)(u
′)

=
X

u′∈S′
1

δ1(u)(u
′) = 1.
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Thus δ(u, v) is a distribution on S′
1 × S′

2.

(b) Let (u′, v′) ∈ S′
1 × S′

2, with v
′ 6= s′2.

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, v′) =
X

u∈S1

X

v∈S2

µ(u, v)0

= 0

= µ′(u′, v′),

Let u′ ∈ S′
1, we have

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, s′2) =
X

u∈S1

X

v=s2

µ(u, v)δ(u, v)(u′, s′2)

=
X

u∈S1

µ1(u)δ1(u, u
′)

= µ′(u′, v′).

() Assume that δ(u, v)(u′, v′) > 0. By de�nition of δ, we have δ1(u)(u
′) >

0 and v = s2, v
′ = s′2. By de�nition of δ1, we thus have uR1 u

′
. Sine

s2 R2 s
′
2 by assumption, we �nally have (u, v)R(u′, v′).

• If a ∈ A2 \ A, the proof is similar.

2. Let a ∈ A1 ∪ A2 and ϕ ∈ C(S1 × S2) suh that L((s1, s2), a, ϕ) 6= ⊥. There are
three ases:

• If a ∈ A, then there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) suh that

L1(s1, a, ϕ1) 6= ⊥, L2(s2, a, ϕ2) 6= ⊥, and µ ∈ Sat(ϕ) i� there exist

µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh that µ = µ1µ2. Sine s1 R1 s
′
1 and

s2 R2 s
′
2, there exists ϕ

′
1 ∈ C(S′

1) and ϕ
′
2 ∈ C(S′

2) with L
′
1(s

′
1, a, ϕ

′
1) 6= ⊥,

L′
2(s

′
2, a, ϕ

′
2) 6= ⊥, and ∀µ1 ∈ Sat(ϕ1),∃µ

′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ′
1 and

∀µ2 ∈ Sat(ϕ2),∃µ
′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.

De�ne ϕ′ ∈ C(S′
1×S

′
2) suh that Sat(ϕ′) = Sat(ϕ′

1)Sat(ϕ
′
2). By de�nition

of N ′
1‖AN

′
2, we have L

′((s′1, s
′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ). By de�nition

of ϕ, there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) suh that µ = µ1µ2.

Furthermore, sine s1 R1 s
′
1 and s2 R2 s

′
2, there exist µ′

1 ∈ Sat(ϕ′
1), µ

′
2 ∈

Sat(ϕ′
2) and two orrespondene funtions δ1 : S1 → (S′

1 → [0, 1]) and

δ2 : S2 → (S′
2 → [0, 1]) suh that µ1 ⋐

δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1])
suh that, for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′)δ2(v)(v
′). By the

same alulations as above, we know that the distribution µ′
over S′

1 × S′
2

onstruted as µ′ = µ′
1µ

′
2 is in Sat(ϕ′) and gives that µ ⋐

δ
R µ′

.

• If a ∈ A1 \ A, then there exists ϕ1 ∈ C(S1) suh that L1(s1, a, ϕ1) 6= ⊥.
Sine s1 R1 s

′
1, there exists ϕ

′
1 ∈ C(S′

1) with L
′
1(s

′
1, a, ϕ

′
1) 6= ⊥ and ∀µ1 ∈

Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1.

De�ne ϕ′ ∈ C(S′
1 × S′

2) suh that µ′ ∈ Sat(ϕ′) i� for all u′ ∈ S′
1 and

v′ 6= s′2, µ(u′, v′) = 0 and the distribution µ′
1 : t 7→ µ(t, s′2) is in Sat(ϕ′

1).
By de�nition of N ′

1‖AN
′
2, we have L

′((s′1, s
′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ).
Let µ1 be the distribution on S1 suh that for all t ∈ S1, µ1(t) = µ(t, s2).
By de�nition, µ1 ∈ Sat(ϕ1). Let µ′

1 ∈ Sat(ϕ′
1) and a orrespondene

funtion δ1 : S1 → (S′
1 → [0, 1]) suh that µ1 ⋐

δ1
R1

µ′
1.
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De�ne the orrespondene funtion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1])
suh that for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′) if v = s2 and v
′ = s′2,

and 0 otherwise. By the same alulations as above, we know that the

distribution µ′ ∈ Sat(ϕ′) suh that for all u′ ∈ S′
1 and v′ 6= s′2, µ

′(u′, v′) =
0 and for all u′ ∈ S′

1, µ
′
1 = µ′(u′, s′2), gives that µ ⋐

δ
R µ′

.

• If a ∈ A2 \ A, the proof is similar.

3. For atomi propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and

V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s′1) and B2 ∈ V ′
2(s′2)}. Sine S1 R1 s

′
1

and s2 R2 s
′
2, we know by de�nition that V1(s1) ∈ V ′

1(s′1) and V2(s2) ∈ V ′
2 (s′2).

Considering B1 = V1(s1) and B2 = V2(s2), we thus have that V ((s1, s2)) ∈
V ′((s′1, s

′
2)).

By observing that (s10, s
2
0)R(s10

′
, s20

′
), sine s10 R1 s

1
0
′
and s20 R2 s

2
0
′
, we onlude that

R is a weak re�nement relation.

Appendix H. Detailed proof for Theorem 39

Let N be an APA in single valuation normal form. We prove that N �S ̺(N).

Proof. Let N = (S,A,L, AP, V, s0) be a (onsistent) APA in single valuation normal

form. Let ̺(N) = (S′, A, L′, AP, V ′, {s0}) be the determinisation of N de�ned as in

De�nition 38. We prove that N �S ̺(N).
Let R ⊆ S × S′

be the relation suh that sRQ ⇐⇒ s ∈ Q. We prove that R is

a strong re�nement relation. Let s,Q suh that sRQ. We show that R satis�es the

axioms of a strong re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) suh that L′(Q,a, ϕ′) = ⊤. By onstrution of ϕ′
, we

have that ∀q ∈ Q,∃ϕq ∈ C(S) suh that L(q, a, ϕq) = ⊤.
Sine s ∈ Q, there exists ϕs suh that L(s, a, ϕs) = ⊤.
De�ne the orrespondene funtion δ : S → (S′ → [0, 1]) suh that δ(s′)(Q′) = 1
if Q′ ∈ Reach(Q, a) and s′ ∈ Q′

. Otherwise, δ(s′)(Q′) = 0.
We now prove that for all µ ∈ Sat(ϕs), there exists µ′ ∈ Sat(ϕ′) suh that

µ ⋐
δ
R µ′

. Let µ ∈ Sat(ϕs).

• Let s′ ∈ S suh that µ(s′) > 0. As a onsequene, by de�nition of Reach,

there exists a single Q′ ∈ S′
suh that s′ ∈ Q′

. Thus δ(s′)(Q′) = 1 and for

all Q′′ 6= Q′
, we have δ(s′)(Q′′) = 0. Thus δ de�nes a distribution on S′

.

• De�ne µ′ : S′ → [0, 1] suh that µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). By def

of δ, we have that (1) for all Q′ /∈ Reach(Q,a), µ′(Q′) = 0; (2) there

exists q ∈ Q, ϕ ∈ C(S) and µ ∈ Sat(ϕ) (namely s, ϕs and µ) suh that

L(q, a, ϕ) 6= ⊥ and for all Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µ(q′). Thus

µ′ ∈ Sat(ϕ′) by onstrution.

• Let s′, Q′
suh that δ(s′)(Q′) > 0. By onstrution of δ, we have s′ ∈ Q′

,

thus s′ RQ′
.

As a onsequene, there exists µ′ ∈ Sat(ϕ′) suh that µ ⋐
δ
R µ′

.

2. Let a ∈ A and ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥. By onstrution of ̺(N),
there exists ϕ′ ∈ C(S′) suh that L′(Q, a,ϕ′) 6= ⊥. ϕ′

is de�ned as follows:

µ′ ∈ Sat(ϕ′) i� (1) ∀Q′ /∈ Reach(Q,a), we have µ′(Q′) = 0, and (2) there

exists q ∈ Q, ϕq ∈ C(S) and µq ∈ Sat(ϕq) suh that L(q, a, ϕq) 6= ⊥ and

∀Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µq(q
′).
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De�ne the orrespondene funtion δ : S → S′ → [0, 1]) suh that δ(s′)(Q′) = 1
if Q′ ∈ Reach(Q, a) and s′ ∈ Q′

. Otherwise, δ(s′)(Q′) = 0.
We now prove that for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) suh that

µ ⋐
δ
R µ′

. Let µ ∈ Sat(ϕ). and let µ′ : S′ → [0, 1] be the distribution suh that

µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). We prove that µ ⋐
δ
R µ′

and µ′ ∈ Sat(ϕ′).

• Let s′ ∈ S suh that µ(s′) > 0. As a onsequene, by de�nition of Reach,

there exists a single Q′ ∈ S′
suh that s′ ∈ Q′

. Thus δ(s′)(Q′) = 1 and for

all Q′′ 6= Q′
, we have δ(s′)(Q′′) = 0. Thus δ de�nes a distribution on S′

.

• De�ne µ′ : S′ → [0, 1] suh that µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). By def

of δ, we have that (1) for all Q′ /∈ Reach(Q,a), µ′(Q′) = 0; (2) there

exists q ∈ Q, ϕq ∈ C(S) and µq ∈ Sat(ϕq) (namely s, ϕ and µ) suh

that L(q, a, ϕq) 6= ⊥ and for all Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µq(q
′).

Thus µ′ ∈ Sat(ϕ′) by onstrution.

• Let s′, Q′
suh that δ(s′)(Q′) > 0. By onstrution of δ, we have s′ ∈ Q′

,

thus s′ RQ′
.

As a onsequene, there exists µ′ ∈ Sat(ϕ′) suh that µ ⋐R µ′
.

3. By onstrution of ̺(N), we have that V (s) = V ′(Q).

Finally, R is a strong re�nement relation. Moreover, we have that s0 ∈ {s0}, thus
s0 R{s0} and N �S ̺(N).

Appendix I. Detailed proof for Theorem 42

Let N = (S,A,L, AP, V, s0) be a deterministi APA in single valuation normal

form and suh that AP ∩ A = ∅. We prove that the CMC

bN is suh that, for all MC

M , M |=
MC

N ⇐⇒ M |= bN .

Proof. We prove the two diretions separately.

• M |=
MC

N ⇒ M |=
CMC

bN : Let M = (Q,π,AM , VM , q0) be a Markov Chain. We

�rst prove that if M |=
MC

N , then M |=
CMC

bN . Suppose that there exists a PA

P = (SP , A, LP , AP, VP , s
P
0 ) suh that M satis�es P and P |= N . Let

bN = ( bQ,ψ,
bA, bV , bq0) be the transformation of N following De�nition 41.

By the satisfation relation between M and P , we obtain that AM = A ∪AP and

Q = QN ∪ QD. Let RMC ⊆ QD × SP be the satisfation relation witnessing that

M satis�es P . Let RPA ⊆ SP × S be the satisfation relation witnessing P |= N .

Consider the relation R ⊆ Q× bQ suh that

• qR(s, ǫ) i� there exists p ∈ Sp suh that qRMC p and pRPA s, and

• for all a ∈ A, qR(s, a) i� there exists q′ ∈ Q suh that

� π(q′)(q) > 0,

� VM (q) = VM (q′) ∪ {a}, and

� q′ R(s, ǫ).

We now prove that R is a satisfation relation for CMCs.

First onsider q ∈ Q and s ∈ S suh that qR(s, ǫ). By de�nition, there exists

p ∈ SP suh that qRMC p and pRPA s. We show that, in this ase, R satis�es the

axioms of a satisfation relation for CMCs.
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1. By RMC
, we have that VM (q) = VP (p). By RPA

, we know that VP (p) ∈ V (s).

Sine

bV ((s, ǫ)) = V (s), we have, VM (q) ∈ bV ((s, ǫ)).

2. Let δ be a orrespondene funtion suh that, for all q′ ∈ Q, s′ ∈ S and a ∈ A,
δ(q′)((s′, a)) = 1 if s′ = s, π(q)(q′) > 0 and VM (q′) = VM (q) ∪ {a} and 0
otherwise.

• Let q′ ∈ Q suh that π(q)(q′) > 0. By RMC
, there exists a ∈ A and a

distribution ̺ over SP suh that VM (q′) = V (p)∪{a}, LP (p, a, ̺) = ⊤ and

π(q′) ⋐RMC ̺. Thus, we have π(q)(q′) > 0 and VM (q′) = VM (q)∪{a}. As a
onsequene, δ(q′)((s, a)) = 1, and for all (s′, b) 6= (s, a), δ(q′)((s′, b)) = 0.

Finally, δ(q′) de�nes a distribution on

bQ.

• Let γ = π(q)δ. We prove that γ satis�es ψ((s, ǫ)):

� By de�nition of δ, for all q′ ∈ Q, we have δ(q′)((s, ǫ)) = 0. As a

onsequene,

γ((s, ǫ)) =
X

q′∈Q

π(q)(q′)δ(q′)((s, ǫ)) = 0.

� By de�nition of δ, we also have that for all q′ ∈ Q, s′ ∈ S with s′ 6= s
and b ∈ A ∪ {ǫ}, δ(q′)((s′, b)) = 0. As a onsequene,

∀s′ 6= s, b ∈ A ∪ {ǫ}, γ((s′, b)) =
X

q′∈Q

π(q)(q′)δ(q′)((s′, b)) = 0.

� Let a ∈ Must(s), and ϕ ∈ C(S) suh that L(s, a,ϕ) = ⊤. By RAP
, we

have that there exists a distribution ̺ over SP suh that LP (p, a, ̺) =
⊤ and there exists µ ∈ Sat(ϕ) suh that ̺ ⋐RAP µ. Thus, by RMC

,

we have that there exists q′ ∈ Q suh that VM (q′) = VP (p) ∪ {a} =
VM (q) ∪ {a}, π(q)(q′) > 0 and π(q′) ⋐RMC ̺. By de�nition of δ, we
have that δ(q′)((s, a)) > 0. As a onsequene,

γ((s, a)) =
X

q′′∈Q

π(q)(q′′)δ(q′′)((s, a)) > 0.

� Let a /∈ May(s), i.e. suh that for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥.
Suppose that γ((s, a)) > 0. By de�nition of γ, there must exist q′ ∈ Q
suh that π(q)(q′) > 0 and δ(q′)((s, a)) > 0. By de�nition of δ, we thus
have VM (q′) = VM (q)∪ {a} = VP (p)∪{a}. Moreover, by RMC

, there

exists a distribution ̺ suh that LP (p, a, ̺) = ⊤ and π(q′) ⋐RMC ̺.
Thus, by RPA

, there must exist ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥,
whih is a ontradition. As a onsequene, we have

γ((s, a)) = 0.

Finally, we have that γ satis�es ψ((s, ǫ)).

• Let q′ ∈ Q and (s′, a) ∈ bQ suh that δ(q′)((s′, a)) > 0. By de�nition of δ,
we have that π(q)(q′) > 0, a 6= ǫ, VM (q′) = VM (q) ∪ {a} and s′ = s. Sine
qR(s, ǫ), we have, by de�nition of R, that q′ R(s, a).

Let q ∈ Q, s ∈ S and a ∈ A suh that qR(s, a). By de�nition, there exists q′ ∈ Q
suh that π(q′)(q) > 0, VM (q) = VM (q′) ∪ {a} and q′ R(s, ǫ). We show that, also in

this ase, R satis�es the axioms of a satisfation relation for CMCs.
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1. Sine q′ R(s, ǫ), we know that there exists p ∈ SP suh that q′ RMC p and

pRPA s. Thus, we have VM (q′) = VP (p) ∈ V (s). Moreover, by de�nition of

bN ,

we have that

bV ((s, a)) = {B ∪ {a} | B ∈ V (s)}. Sine VM (q) = VM (q′) ∪ {a}

and VM (q′) ∈ V (s), we have that VM (q) ∈ bV ((s, a)).

2. Sine q′ RMC p and π(q′)(q) > 0, there exists a distribution ̺ over SP suh

that LP (p, a, ̺) = ⊤ and there exists a orrespondene funtion δMC
suh

that π(q) ⋐
δMC

RMC ̺. Moreover, sine pRPA s, there exists ϕ ∈ C(S) suh that

L(s, a, ϕ) 6= ⊥, and there exist µ ∈ Sat(ϕ) and a orrespondene funtion δPA

suh that ̺ ⋐
δPA

RPA µ.

De�ne the orrespondene funtion δ : Q→ ( bQ→ [0, 1]) suh that for all q′′ ∈ Q
and s′′ ∈ S,

∀b ∈ A, δ(q′′)((s′′, b)) = 0, and

δ(q′′)((s′′, ǫ)) =
X

p′′∈P

δMC(q′′)(p′′)δPA(p′′)(s′′).

• Let q′′ ∈ Q suh that π(q)(q′′) > 0. By RMC
, we know that δMC(q′′)

is a distribution over SP . Let now p′′ ∈ SP suh that δMC(q′′)(p′′) > 0.
By RMC

, we know that ̺(p′′) =
P

u∈Q π(q, u)δMC(u)(p′′) > 0. As a

onsequene, by RPA

, we know that δPA(p′′) is a distribution over S. As

a onsequene, we have that δ(q′′) is a distribution over

bQ.

• Let γ = π(q)δ. We prove that γ satis�es ψ((s, a)).

� By de�nition of δ, we have that for all s′′ ∈ S and b ∈ A,

γ((s′′, b)) =
X

q′′∈Q

π(q)(q′′)δ(q′′)((s′′, b)) = 0.

� Let γ′ : s′′ 7→ γ((s′′, ǫ)). Let s′′ ∈ S. By de�nition, we have

γ′(s′′) = γ((s′′, ǫ))

=
X

q′′∈Q

π(q)(q′′)δ(q′′)((s′′, ǫ))

=
X

q′′∈Q

π(q)(q′′)
X

p′′∈SP

δMC(q′′)(p′′)δPA(p′′)(s′′)

=
X

p′′∈SP

0

@

X

q′′∈Q

π(q)(q′′)δMC(q′′)(p′′)

1

A δPA(p′′)(s′′)

=
X

p′′∈SP

̺(p′′)δPA(p′′)(s′′) By de�nition of δMC

= µ(s′′) By de�nition of δPA

Finally, we have γ′ = µ. Sine, by de�nition, µ ∈ Sat(ϕ), we have

that there exists ϕ ∈ C(S) suh that L(s, a, ϕ) 6= ⊥ and γ′ ∈ Sat(ϕ).
Thus γ satis�es ψ((s, a)).

� Let q′′ ∈ Q and (s′′, b) ∈ bQ suh that δ(q′′)((s′′, b)) > 0. By de�nition

of δ, b = ǫ and there must exist p′′ ∈ SP suh that (1) δMC(q′′)(p′′) > 0
and (2) δPA(p′′)(s′′) > 0. By (1), we have q′′ RMC p′′ and by (2),
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we have p′′ RPA s′′. As a onsequene, by de�nition of R, we have

q′′ R(s′′, ǫ).

Thus R is a satisfation relation for CMCs. Moreover, we have that q0 R(s0, ǫ),

whih gives that M |=
CMC

bN .

• M |=
MC

N ⇐ M |=
CMC

bN : Let M = (Q,π,AM , VM , q0) be a Markov Chain. We

prove that if M |=
CMC

bN , then M |=
MC

N , i.e. there exists a PA P suh that M

satis�es P and P |= N . Let

bN = ( bQ,ψ, bA, bV , bq0) be the transformation of N following

De�nition 41.

LetR be the satisfation relation for CMCs witnessing thatM |=
CMC

bN . First observe

that, by R, the Markov hain M satis�es the following properties: Let QD = {q ∈
Q | ∃s ∈ S, qR(s, ǫ)} and QN = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s, a)}, we have

• QD ∩QN = ∅ beause of their valuations and R,

• ∀q, q′ ∈ QD, π(q)(q′) = 0 and ∀q, q′ ∈ QN , π(q)(q′) = 0,

• q0 ∈ QD, and

• AM = A ∪ AP .

De�ne the PA P = (SP , A,LP , AP, VP , s
P
0 ) suh that SP = QD, with s

P
0 = q0, VP is

suh that for all q ∈ QD, VP (q) = VM (q), and LP is suh that for all s ∈ SP , a ∈ A
and for all distribution ̺ over SP , L(s, a, ̺) = ⊤ i� there exists q′ ∈ QN suh that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).

By onstrution, it is trivial that M satis�es P using the identity relation on QD.
We now prove that P |= N . Let RPA ⊆ SP × S the relation suh that pRPA s i�

pR(s, ǫ). We now prove that RPA

is a satisfation relation for APA.

Let q ∈ SP and s ∈ S suh that qRPA s. We show that RPA

satis�es the axioms

of a satisfation relation for APAs.

1. Let a ∈ A and ϕ ∈ C(S) suh that L(s, a, ϕ) = ⊤. By onstrution, we have

that a distribution γ over

bQ satis�es ψ((s, ǫ)) if γ((s, a)) > 0.
Sine qR(s, ǫ), we have that there exists a orrespondene funtion δ : Q →

( bN → [0, 1]) suh that π(q)δ satis�es ψ((s, ǫ)). As a onsequene, there must

exist q′ ∈ Q suh that π(q)(q′) > 0 and δ(q′)((s, a)) > 0. By R again, we have

that VM (q′) = VM (q) ∪ {a} = VM (s) ∪ {a}.
As a onsequene, in P , we have that LP (q, a, ̺) = ⊤ with ̺ = π(q′). Moreover,

sine δ(q′)((s, a)) > 0, we have that q′ R(s, a). Thus, there exists a orrespon-

dene funtion δ′ : Q→ ( bQ→ [0, 1]) suh that π(q′)δ′ satis�es ψ((s, a)), i.e. the
distribution γ′ : s′ ∈ S 7→ [π(q′)δ′](s′, ǫ) is suh that there exists ϕ′

suh that

L(s, a, ϕ′) 6= ⊥ and γ′ ∈ Sat(ϕ′). By determinism of N , we have ϕ = ϕ′
. Let

δPA be the orrespondene funtion between P and S suh that for all p′ ∈ SP
and s′ ∈ S, δPA(p′)(s′) = δ′(p′)((s′, ǫ)). By onstrution of ψ((s, a)), we have

that for all p′ ∈ SP , b ∈ A and s′ ∈ S, δ′(p′)((s′, b)) = 0. Thus, δPA is a orret

orrespondene funtion by onstrution.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ suh that δPA(p′)(s′) >
0, we have that δ′(p′)((s′, ǫ)) > 0. So, by R, we have p′ R(s′, ǫ), and thus

p′ RPA s′.
Finally, we have that there exists ̺ suh that LP (q, a, ̺) = ⊤, and there exists

γ′ = ̺δPA ∈ Sat(ϕ) suh that ̺ ⋐
δPA

RPA γ
′
.
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2. Let a ∈ A and ̺ ∈ Dist(SP ) suh that LP (q, a, ̺) = ⊤. By onstrution, there

exists q′ ∈ QN suh that π(q)(q′) > 0, VM (q′) = VM (q) ∪ {a} and ̺ = π(q′).
Sine qR(s, ǫ), we have that there exists δ suh that π(q)δ satis�es ψ((s, ǫ)).

Sine π(q)(q′) > 0, delta(q′) de�nes a distribution over

bQ. As a onsequene,

there exists (s′, b) ∈ bQ suh that δ(q′)((s′, b)) > 0. Sine π(q)δ satis�es ψ((s, ǫ)),
we have that (s′, b) = (s, a).
Thus δ(q′)((s, a)) > 0, and, by de�nition of δ, we have that q′ R(s, a). As a

onsequene, there exists a orrespondene funtion δ′ suh that π(q′)δ′ satis-
�es ψ((s, a)), i.e. the distribution γ′ : s′ ∈ S 7→ [π(q′)δ′](s′, ǫ) is suh that

there exists ϕ suh that L(s, a, ϕ) 6= ⊥ and γ′ ∈ Sat(ϕ). Let δPA be the or-

respondene funtion between P and S suh that for all p′ ∈ SP and s′ ∈ S,
δPA(p′)(s′) = δ′(p′)((s′, ǫ)). By onstrution of ψ((s, a)), we have that for all

p′ ∈ SP , b ∈ A and s′ ∈ S, δ′(p′)((s′, b)) = 0. Thus, δPA is a orret orrespon-

dene funtion by onstrution.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ suh that δPA(p′)(s′) >
0, we have that δ′(p′)((s′, ǫ)) > 0. So, by R, we have p′ R(s′, ǫ), and thus

p′ RPA s′.
Finally, there exists ϕ ∈ C(S) suh that L(s, a,ϕ) 6= ⊥ and there exists γ′ =

̺δPA in Sat(ϕ) suh that ̺ ⋐
δPA

RPA γ
′
.

3. By onstrution, we have VP (q) = VM (q). By R, we have VM (q) ∈ bV ((s, ǫ)) =
V (s). Thus VP (q) ∈ V (s).

Finally, RPA

is indeed a satisfation relation.

By onstrution, we have that sP0 RPA s0, thus P |= N . As a onsequene, we have

that there exists a PA P suh that M satis�es P and P |= N . Thus M |=
MC

N .
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