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Abstra
t

Probabilisti
 Automata (PAs) are a widely-re
ognized mathemati
al framework

for the spe
i�
ation and analysis of systems with non-deterministi
 and sto
has-

ti
 behaviors. This paper proposes Abstra
t Probabilisti
 Automata (APAs),

that is a novel abstra
tion model for PAs. In APAs un
ertainty of the non-

deterministi
 
hoi
es is modeled by may/must modalities on transitions while

un
ertainty of the sto
hasti
 behaviour is expressed by (underspe
i�ed) sto
has-

ti
 
onstraints. We have developed a 
omplete abstra
tion theory for PAs, and

also propose the �rst spe
i�
ation theory for them. Our theory supports both

satisfa
tion and re�nement operators, together with 
lassi
al stepwise design

operators. In addition, we study the link between spe
i�
ation theories and

abstra
tion in avoiding the state-spa
e explosion problem.
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1. Introdu
tion

One of the main resear
h areas in 
omputer s
ien
e 
onsists in studying new

spe
i�
ation formalisms for reasoning on system's behaviors. Among existing

su
h formalisms one �nds the one of Transition Systems (TS). In TS, the be-

havior of the system is represented by states modeling the 
urrent values of

the variables, and a relation between states, 
alled transitions, representing the

evolution of the system, i.e., update of variables. Transitions are often labeled

with a
tions representing the possibly non-deterministi
 de
isions taken at a

✩
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given moment of time to govern this evolution. TSs are a
knowledged to be a

simple but elegant formalism powerful enough to 
apture the 
ontrol-�ow of pro-

gramming languages; the formalism is used in most of existing formal validation

te
hniques proposed in the literature [3℄.

As systems be
ome more and more 
omplex, it is ne
essary to add new

features to TSs. Su
h features 
an be used either to 
apture new phenomena

su
h as 
ontinuous evolution, or to reason on new properties of the system

su
h as energy 
onsumption. Parti
ularly, as soon as systems in
lude random-

ized algorithms, probabilisti
 proto
ols, or intera
t with physi
al environment,

probabilisti
 models are required to reason about them. This is exa
erbated by

requirements for fault toleran
e, when systems need to be analyzed quantita-

tively for the amount of failure they 
an tolerate, or for the delays that may

appear. As Henzinger and Sifakis [4℄ point out, introdu
ing probabilities into

design theories allows assessing dependability of IT systems in the same manner

as 
ommonly pra
ti
ed in other engineering dis
iplines.

Probabilisti
 Automata (PAs) 
onstitute a mathemati
al framework for the

spe
i�
ation and analysis of non-deterministi
 probabilisti
 systems. PAs are

TSs whose evolution depends not only on non-deterministi
 a
tions but also

on a probability distribution that, together with the a
tion, drives the 
hoi
e

of the su

essor state. PAs have been developed by Segala [5℄ to model and

analyze asyn
hronous, 
on
urrent systems with dis
rete probabilisti
 
hoi
es in

a formal and pre
ise way. PAs are akin to Markov de
ision pro
esses (MDPs).

A detailed 
omparison with models su
h as MDPs, as well as generative and

rea
tive probabilisti
 transition systems is given in [6℄. PAs are re
ognized as

an adequate formalism for randomized distributed algorithms and fault tolerant

systems. They are used as semanti
s model for formalisms su
h as probabilisti


pro
ess algebra [7℄ and a probabilisti
 variant of Harel's state
harts [8℄. An

input-output version of PAs is the basis of PIOA and variants thereof [9, 10℄.

PAs have been enri
hed with notions su
h as weak and strong (bi)simulations [5℄,

de
ision algorithms for these notions [11℄ and a statisti
al testing theory [12℄.

This paper brings two new 
ontributions to the �eld of probabilisti
 automata:

the theories of abstra
tion and of spe
i�
ation.

As a �rst main 
ontribution, we propose several abstra
tion te
hniques for

PAs. Abstra
tion is pivotal to 
ombating the state spa
e explosion problem in

the modeling and veri�
ation of realisti
 systems su
h as randomized distributed

algorithms. It aims at model redu
tion by 
ollapsing sets of 
on
rete states

to abstra
t states, e.g., by partitioning the 
on
rete state spa
e. This paper

presents a three-valued abstra
tion of PAs. The main design prin
iple of our

model, named Abstra
t Probabilisti
 Automata (APAs), is to abstra
t sets of

distributions by 
onstraint fun
tions. This generalizes earlier work on interval-

based abstra
tion of probabilisti
 systems [13, 14, 15℄. To abstra
t from a
tion

transitions, we introdu
e may (?) and must (⊤) modalities in the spirit of modal

transition systems [16℄. If all states in a partition p have a must-transition on

a
tion a to some state in partition p′, the abstra
tion yields a must-transition

between p and p′. If some of the p-states have no su
h transition while others

do, it gives rise to a may-transition between p and p′. Our model 
an be viewed
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ϕb(µ) = 1 ⇐⇒ (µ(B) ∈ [0, 0.5]) ∧ (µ(C) ∈ [0.5, 1])

(d) Example of an Abstra
t Probabilisti


Automata N ′′
abstra
ting N

Figure 1: Examples of PA, APA and abstra
tion

as a 
ombination of both Modal Automata [17℄ and Constraint Markov Chains

(CMC) [18, 19℄ that are abstra
tions for transition systems and Markov Chains,

respe
tively. APAs 
an further be abstra
ted by merging their states or by

simplifying their 
orresponding 
onstraints. We shall see that those abstra
tions

introdu
e new behaviors in the 
orresponding PAs, but that their pre
ision 
an

be 
ontrolled. Con
retely, the PA of Figure 1a gives the 
hoi
e between two non-

deterministi
 a
tions a and b, both of them indu
ing a probability distribution on

the set of su

essor states. In addition, all states are equipped with sets of atomi


propositions. Assuming that both state 1 and 2 belong to the same partition

B and that states 0 and 3 are mapped to partitions A and C, respe
tively, we
obtain the APA given in Figure 1b. Noti
e that, in order to merge states 1 and

2 into a single state B, one has to 
onsider sets of sets of atomi
 propositions.

There one 
an see that there is a must transition from A to B as any state in

A goes to a state in B with a
tion a. However, the transition from B to A is

a may transition as there are states in B (here state 2) for whi
h a
tion a does

not lead to a state in A. The 
ase of a
tion b illustrates the use of 
onstraints
to mat
h the original distributions starting from states in B.

As a se
ond major 
ontribution, we also propose a new spe
i�
ation the-

ory for PAs. Our study is motivated by the observation that several industrial

se
tors involving 
omplex embedded systems have re
ently experien
ed deep
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hanges in their organization, aerospa
e and automotive being the most promi-

nent examples. In the past, they were organized around verti
ally integrated


ompanies, supporting in-house design a
tivities from spe
i�
ation to imple-

mentation. Nowadays, systems are tremendously big and 
omplex, and it is

almost impossible for one single team to have the 
omplete 
ontrol of the entire


hain of design from the spe
i�
ation to the implementation. In fa
t, 
omplex

systems now result from the assembling of several 
omponents. These many


omponents are in general designed by teams, working independently but with

a 
ommon agreement on what the interfa
e of ea
h 
omponent should be. Su
h

an interfa
e spe
i�es the behaviors expe
ted from the 
omponent as well as the

environment in whi
h it 
an be used. The main advantage is that it does not

impose any 
onstraint on the way the 
omponent is implemented, hen
e allow-

ing for independent implementation. A

ording to state of pra
ti
e, interfa
es

are typi
ally des
ribed using Word/Ex
el text do
uments or modeling languages

su
h as UML/XML. We instead re
ommend to follow a more mathemati
al ap-

proa
h relying most possibly on mathemati
ally sound formalisms, thus best

redu
ing ambiguities. Our new theory is equipped with all essential ingredi-

ents of a 
ompositional design methodology: a satisfa
tion relation (to de
ide

whether a PA is an implementation of an APA), a 
onsisten
y 
he
k (to de
ide

whether the spe
i�
ation admits an implementation), a re�nement (to 
ompare

spe
i�
ations in terms of in
lusion of sets of implementations), logi
al 
ompo-

sition (to 
ompute the interse
tion of sets of implementations), and stru
tural


omposition (to 
ombine spe
i�
ations). Our framework also supports in
re-

mental design [20℄. To the best of our knowledge, the theory of APAs is the �rst

spe
i�
ation theory for PAs where both logi
al and stru
tural 
ompositions 
an

be 
omputed within the same framework.

Our notions of re�nement and satisfa
tion are, as usual, 
hara
terized in

terms of in
lusion of sets of implementations. Our notion of satisfa
tion is a


ompatible extension of the 
lassi
al notion of probabilisti
 bisimulation [5, 21℄.

More pre
isely, one 
an show that two PAs that are probabilisti
 bisimilar satisfy

exa
tly the same APAs. One of our other important theorems shows that for

the 
lass of deterministi
 APAs, re�nement 
oin
ides with in
lusion of sets of

implementations. This latter result is obtained by a redu
tion from APAs to

CMCs, for whi
h a similar result holds. Hen
e, APAs 
an also be viewed as a

spe
i�
ation theory for Markov Chains (MCs). The model is as expressive as

CMCs, and hen
e more expressive than other theories for sto
hasti
 systems

su
h as Interval Markov Chains [13, 22, 14℄.

Our last 
ontribution is to propose several abstra
tion-based methodologies

that allow to simplify the behavior of APAs with respe
t to the re�nement rela-

tion � as we pointed above, abstra
tion is 
ru
ial to avoid state-spa
e explosion.

We show that our abstra
tion preserves re�nement, and that re�nement is a

pre-
ongruen
e with respe
t to parallel 
omposition. These results provide the

key ingredients to allow 
ompositional abstra
tion of PAs. Consider again the

APA N of Figure 1b. This APA 
an be further abstra
ted by merging partitions

B and C, whi
h leads to the APA N ′
given in Figure 1
. Sin
e there must be an

a transition from A to B in N , there is a must a transition from A to (B,C) in

4



N ′
. Inversely, sin
e only one state out of two in (B,C) requires a b transition to

B or C, the abstra
ted state (B,C) will allow but not require this b transition.
The 
onsequen
e of this abstra
tion is not only the redu
tion of the state spa
e,

but also a simpli�
ation of the 
onstraint asso
iated to a
tion b in state (B,C).
Another way of abstra
ting the APA of Figure 1b is to simplify the 
onstraints

by approximating them with intervals, as illustrated in Figure 1d.

Organisation of the paper. In Se
tion 2, we introdu
e the 
on
epts of PAs

and APAs as well as several of their properties. Se
tion 3 is 
on
erned with

several notions of re�nements and abstra
tions as well as the relation between

satisfa
tion and probabilisti
 bisimulation. Se
tion 4 introdu
es the notion of


onsisten
y and stru
tural 
omposition (aka 
onjun
tion), while Se
tion 5 pro-

poses a 
ompositional reasoning theory based on APAs. Se
tion 6 studies the

strong link between APAs and CMCs and proposes results for the 
lass of deter-

ministi
 APAs. Sin
e all the previous results are obtained for APAs with equal

sets of a
tions and atomi
 propositions, Se
tion 7 presents a methodology for

extending sets of a
tions and atomi
 propositions, showing that all our results


arry over to APAs with dissimilar alphabets. Finally, Se
tion 8 
on
ludes the

paper. For 
larity of the presentation, some repetitive proofs have been lifted

to an appendix.

2. Spe
i�
ations and Implementations

In this se
tion, we present the basi
 notions used in our formalism. We

�rst introdu
e the de�nitions of Labeled Transition Systems (LTS) and Markov

Chains (MC), whi
h are 
lassi
al notions of implementations, and then present

Probabilisti
 Automata (PA), that unify LTSs and MCs. We then introdu
e

Modal Transition Systems and Constraint Markov Chains, two 
lassi
al notions

of spe
i�
ation theories for LTS and MC respe
tively. Finally, we present a new

notion of Abstra
t Probabilisti
 Automata (APA), a �nite representation for a

possibly in�nite set of PAs. APAs will a
t as a spe
i�
ation theory for PAs. Let

Act be a universe of a
tions.

Implementations. Labeled transition systems are usually used to represent

non-sto
hasti
 systems. We �rst introdu
e their de�nition.

De�nition 1 (Labeled Transition System). A Labeled Transition System is

a tuple (S,A, L,AP, V, s0), where S is a �nite set of states with initial state

s0 ∈ S, A ⊆ Act is a �nite set of a
tions, L: S × A × S → B2 is a two-valued

transition fun
tion, AP is a �nite set of atomi
 propositions, and V : S → 2AP

is a state-labeling fun
tion.

The set B2 = {⊥,⊤} denotes a latti
e with the ordering ⊥ < ⊤ and meet (⊓)
and join (⊔) operators. The transition fun
tion L identi�es the transitions of

the automaton: L asso
iates (1) the value ⊤ to a triple (s, a, s′) whenever there
is a transition from state s to state s′ labeled with a
tion a, and (2) ⊥ otherwise.

5
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Figure 2: Examples of LTS and MC

s1

s3s2 s4

{m} {n} {o}

a, 0.3 a, 0.2 a, 0.5

{l}

Figure 3: A PA with a single transition to a distribution [0, 0.3, 0.2, 0.5]

An example of a LTS T is given in Figure 2a, where transitions with value ⊥
are left out of the pi
ture.

When moving to the sto
hasti
 setting, the simplest notion of implementa-

tion is the one of Markov Chain.

De�nition 2 (Markov Chain). A Markov Chain is a tuple (S, π,AP, V, s0),
where S is a �nite set of states with initial state s0 ∈ S, π : S → Dist(S) is a

probability transition fun
tion:

∑
s′∈S π(s)(s′)=1 for all s ∈ S, AP is a �nite

set of atomi
 propositions, and V : S → 2AP is a state-labeling fun
tion.

We use Dist(S) to denote a set of probability distributions on the �nite set S.
An example of a MCM is given in Figure 2b, where transitions with probability

0 are left out of the pi
ture.

A PA [5℄ resembles a LTS, but its transitions target probability distributions

over states instead of single states. Hen
e, PAs 
an be seen as a 
ombination of

MCs and LTSs.

De�nition 3 (Probabilisti
 Automata). A probabilisti
 automaton (PA) is a

tuple (S,A, L,AP, V, s0), where S is a �nite set of states with initial state s0 ∈ S,
A ⊆ Act is a �nite set of a
tions, L: S × A × Dist(S) → B2 is a two-valued

transition fun
tion, AP is a �nite set of atomi
 propositions, and V : S → 2AP

is a state-labeling fun
tion.

We write s
a
→ µ meaning L(s, a, µ) = ⊤. In the rest of the paper, we assume

that PAs are �nitely bran
hing, i.e., for any state s, the number of pairs (a, µ)

6



su
h that s
a
→ µ is �nite. The labeling fun
tion V indi
ates the propositions

(or properties) that are valid in a state. Hen
e a Markov Chain, as de�ned

previously, is a PA with a single a
tion and a single outgoing transition from

ea
h state, i.e. for ea
h s ∈ S there exists exa
tly one triple (s, a, µ) su
h that

L(s, a, µ) = ⊤. Without loss of generality, we assume in the rest of the paper

that Act ∩AP = ∅ for all PAs.

Example. Figure 3 presents a PA with L(s1, a, µ) = ⊤, where µ(s2) = 0.3,
µ(s3) = 0.2, and µ(s4) = 0.5. We adopt a notational 
onvention that represents

L(s1, a, µ) = ⊤ by a set of arrows with tails lo
ated 
lose to ea
h other on the

boundary of s1, and heads targeting the states in the support of µ.

Spe
i�
ations. We now introdu
e Abstra
t Probabilisti
 Automata, that is a

spe
i�
ation formalism for PAs. APAs are the 
ombinations of Modal Transition

Systems and Constraint Markov Chains�spe
i�
ation formalisms for labeled

transition systems and Markov Chains, respe
tively. We �rst brie�y introdu
e

Modal Transition Systems and Constraint Markov Chains, and then move to

APAs.

A Modal Transition System (MTS) [23, 16℄ is an automaton whose transi-

tions are typed with may and must modalities. Informally, a must transition

is available in every model of the spe
i�
ation, while a may transition may be

absent in some design.

De�nition 4 (Modal Transition System). AModal Transition System is a tuple

(S,A, L,AP, V, s0), where S is a �nite set of states with initial state s0 ∈ S,
A ⊆ Act is a �nite set of a
tions, L: S × A × S → B3 = {⊥, ?,⊤} is a three-

valued transition fun
tion, AP is a �nite set of atomi
 propositions, and V :
S → 2AP is a state-labeling fun
tion. Transitions (s, a, s′) with L(s, a, s′) =?
are 
alled may transitions, and transitions (s, a, s′) with L(s, a, s′) = ⊤ are


alled must transitions.

Here, B3 = {⊥, ?,⊤} denotes a latti
e with the ordering⊥ < ? < ⊤ and meet

(⊓) and join (⊔) operators. An example of an MTS N is given in Figure 4a.

There, and throughout the paper, may transitions are represented by dashed

arrows and must transitions by plain ones. One 
an easily see that LTS T given

in Figure 2a is an implementation of N . Indeed, the must transition from state

0 to state 1 with a
tion a in N is present in T , while the transition from state 0
to state 3 with a
tion c in T 
orresponds to a may transition in N and all state

labels are mat
hing.

A Constraint Markov Chain (CMC) [18, 19℄ is a MC equipped with a 
on-

straint on the next-state probabilities from any state. Roughly speaking, an

implementation of a CMC is a MC, whose next-state probability distributions

satisfy the 
onstraint asso
iated with ea
h state. A 
onstraint fun
tion ϕ :
Dist(S) → {0, 1} represents a set of distributions on S. Let Sat(ϕ) denote the
set of distributions µ that satisfy 
onstraint fun
tion ϕ (i.e. su
h that ϕ(µ) = 1),
and C(S) the set of 
onstraint fun
tions de�ned on state spa
e S.

7
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21 3

ϕ
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(b) Example of a CMC C

Figure 4: Examples of MTS and CMC

De�nition 5 (Constraint Markov Chain). A Constraint Markov Chain is a

tuple C = (S, ψ,AP, V, s0) where S is a �nite set of states with initial state

s0 ∈ S, ψ : S → C(S) is a state-
onstraint fun
tion, AP is a set of atomi


propositions, and V : S → 22AP

is a state labeling fun
tion.

For ea
h state s ∈ S, the state-
onstraint fun
tion ψ is su
h that, for all

distributions π on S, ψ(s) is a 
onstraint fun
tion as de�ned above. Intuitively,

ψ(s)(π) = 1 i� distribution π is allowed in state s. The fun
tion V labels ea
h

state with a subset of the powerset of AP, whi
h models a disjun
tive 
hoi
e

of possible 
ombinations of atomi
 propositions, thus allowing a higher level of

abstra
tion w.r.t. implementations.

An example of a CMC C is given in Figure 4b. Remark that the MCM given

in Figure 2b is an implementation of C. Indeed, the distribution µ outgoing from

state 0 in M agrees with the 
onstraint ϕ spe
i�ed in C and the sets of atomi


propositions in M are in
luded in the labels spe
i�ed in C.
A CMC whose 
onstraints are of the form l ≤ µ ≤ r, where l, r are 
onstant

ve
tors and µ is a probability distribution over the state spa
e is 
alled an

Interval Markov Chain (IMC) [13℄.

We now present the 
entral de�nition of the paper:

De�nition 6 (Abstra
t Probabilisti
 Automata). An Abstra
t Probabilisti


Automaton (APA) is a tuple (S,A, L,AP, V, s0) where S, A, AP are �nite sets

of states, a
tions, and atomi
 propositions respe
tively, s0 ∈ S is the initial

state, L : S ×A× C(S) −→ B3 is a three-valued state-
onstraint fun
tion, and

V : S −→ 22AP

maps a state onto a set of admissible valuations.

A CMC is thus an APA, where for ea
h s ∈ S, there exists exa
tly one triple
(s, a, ϕ) su
h that L(s, a, ϕ) = ⊤. The labeling L(s, a, ϕ) identi�es the �type�

of the 
onstraint fun
tion ϕ ∈ C(S): ⊤, ? and ⊥ indi
ate a must, a may and

the absen
e (forbidden) of a 
onstraint fun
tion, respe
tively. Without loss of

generality, we assume in the rest of the paper that Act ∩AP = ∅ for all APAs.

In pra
ti
e, as will be seen in later de�nitions, a la
k of value for given

argument is equivalent to the ⊥ value, so we will sometimes avoid de�ning

8
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s′1

s′2

{{l}}
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a, z4,⊤ a, z5,⊤a, y2,? a, y3,?

ϕy ≡ y2 + y3 = 1
ϕz ≡ z4 + z5 = 1

Figure 5: An APA N with two transitions: may to 
onstraintϕy and must toϕz

⊥-value rules in 
onstru
tions to avoid 
lutter, and o

asionally will say that

something applies if L takes the value of ⊥, meaning that it is either taking this

value or it is unde�ned.

We o

asionally write Must(s) for the set of a
tions a su
h that there ex-

ists ϕ, so that L(s, a, ϕ) = ⊤, and write May(s) for the set of a
tions b su
h
that there exists ϕ, so that L(s, b, ϕ) 6= ⊥. Remark that in our formalism,

Must(s) ⊆ May(s). This implies that we do not allow in
onsisten
ies at the

level of modalities, i.e. required but not allowed transitions.

We 
ould have limited ourselves to 
onstraints denoting unions of inter-

vals. However, as for CMCs, polynomial 
onstraints are needed to support both


onjun
tion and parallel 
omposition [19℄. Later, we shall see that almost all

APAs whose states are labelled with a set of subsets of atomi
 propositions


an be turned into an equivalent (in the sense of implementations set) APA

whose states are labeled with a set that 
ontains only a single subset of atomi


propositions.

Finally, observe that a PA is an APA in whi
h every transition (s, a, ϕ) is a
must-transition with |Sat(ϕ)| = 1, and ea
h state-label 
onsists of a single set

of propositions.

Example. Consider the APA N given in Fig. 5. State s′1 has two outgoing

transitions: a may a-transition (s′1, a, ϕy) and a must a-transition (s′1, a, ϕz).
The ϕy and ϕz 
onstraints are shown under the automaton in the �gure.

The 
onstraints allow that ea
h of the automaton's two transitions 
an 
over

multiple transitions in a 
on
rete implementation PA. As an example, the a-
transition (s1, a, (0, 0.3, 0.2, 0.5)) of the PA given in Fig. 3 mat
hes the must

a-transition (s′1, a, ϕz): if we write z4 = 0.2 + 0.5 the sum of all probabilities

going to states whose valuations are in the set spe
i�ed in s′4, and z5 = 0.3 the

sum of all probabilities going to states whose valuations are in the set spe
i�ed

in s′5, then we 
an verify that z′4 + z′5 = 1, hen
e satisfying ϕz. In order to

avoid 
lutter, the transitions that do not admit any positive probabilities are not

represented in the �gures.

In the rest of the paper we distinguish the 
lass of deterministi
 APAs.

The distin
tion will be of parti
ular importan
e when 
omparing APAs in Se
-

tion 3.1. We �rst present the de�nition of determinism for CMCs and MTS, as

9



introdu
ed in [18, 19℄. We say that a CMC C = (S, ψ,AP, V, s0) is deterministi


if and only if for all states s, s′, s′′ ∈ S, if there exists π′ ∈ Dist(S) su
h that

(ψ(s)(π′)∧ (π′(s′) 6= 0)) and π′′ ∈ Dist(S) su
h that (ψ(s)(π′′)∧ (π′′(s′′) 6= 0)),
then we have that V (s′) ∩ V (s′′) = ∅.

We say that a MTS N = (S,A, L,AP, V, s0) is deterministi
 if and only

if there is at most one outgoing transition for ea
h a
tion in all states, i.e.

∀s ∈ S, ∀a ∈ A, |{s′ | L(s, a, s′) 6= ⊥}| ≤ 1.
In APAs, the non-determinism 
an arise due to sets of valuations in states,

like for CMCs, or due to a
tions that label transitions, like for MTS. Informally,

an APA is (1) a
tion-deterministi
 if there is at most one outgoing transition

for ea
h a
tion in all states; and (2) valuation-deterministi
 if two states with

overlapping atomi
 propositions 
an never be rea
hed with the same transition.

Remark that the de�nition for valuation-determinism is similar to the notion of

determinism for CMCs presented above.

De�nition 7 (Determinism). An APA N = (S,A, L,AP, V, s0) is

• a
tion-deterministi
 if ∀s∈S, ∀a∈A, |{ϕ ∈ C(S) | L(s, a, ϕ) 6= ⊥}| ≤ 1.

• valuation-deterministi
 if ∀s∈S, ∀a∈A, ∀ϕ∈C(S) with L(s, a, ϕ) 6= ⊥:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S, (µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅) .

An APA N is deterministi
 if and only if it is a
tion-deterministi
 and

valuation-deterministi
.

Satisfa
tion. We relate APA spe
i�
ations to PAs implementing them by

extending the de�nitions of satisfa
tion for probabilisti
 systems introdu
ed in

[13℄. In this se
tion, we only 
onsider PAs / APAs with equal sets of a
tions and

equal sets of atomi
 propositions. The 
ase of dissimilar alphabets is treated in

Se
tion 7.

The following notion of simulation 
hara
terizes equivalent distributions a
-


ording to a given relation on sets of states. This de�nition is similar to the one

given in [13℄. In Se
tion 3.2, we show how this notion of simulation and the sub-

sequent notion of satisfa
tion are related to the 
lassi
al notion of probabilisti


bisimulation for probabilisti
 automata [5℄.

De�nition 8 (Simulation). Let S and S′
be non-empty �nite sets of states.

Given µ ∈ Dist(S), µ′ ∈ Dist(S′), a fun
tion δ : S → (S′ → [0, 1]), and

a binary relation R ⊆ S × S′
, µ is simulated by µ′

with respe
t to R and δ,
denoted µ ⋐

δ
R µ

′
, if and only if

1. for all s ∈ S, if µ(s) > 0, then δ(s) ∈ Dist(S′),

2. for all s′ ∈ S′
,

∑
s∈S µ(s)δ(s)(s′) = µ′(s′), and

3. for all s, s′ ∈ S, if δ(s)(s′) > 0, then (s, s′) ∈ R.

In the rest of the paper, we write µ ⋐R µ′
whenever there exists a fun
tion δ

su
h that µ ⋐
δ
R µ

′
. Su
h δ is 
alled a 
orresponden
e fun
tion.

10
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Figure 6: A simulation between distributions µ1 and µ2 with respe
t to relation

R = {(1, A), (2, B), (3, B), (3, C), (4, C)} and a 
orresponden
e fun
tion δ.

Example. Simulation is illustrated in Fig. 6, where distribution µ1 is simulated

by distribution µ2 with respe
t to the relation R = {(1, A), (2, B), (3, B), (3, C),
(4, C)}. In the pi
ture, the 
orresponden
e fun
tion δ is represented by the

labeled dashed arrows.

We now de�ne a satisfa
tion relation between PAs and APAs. Remark that

this de�nition is a mix between the notion of satisfa
tion for MTS [23, 16℄ and

the notion of satisfa
tion for CMCs [18, 19℄.

De�nition 9 (Satisfa
tion Relation). Let P = (S,A, L,AP, V, s0) be a PA and

N = (S′, A, L′, AP, V ′, s′0) be an APA. R ⊆ S × S′
is a satisfa
tion relation if

and only if, for any (s, s′) ∈ R, the following 
onditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃µ ∈ Dist(S) : L(s, a, µ) =
⊤ and ∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ

′
,

2. ∀a ∈ A, ∀µ ∈ Dist(S), if L(s, a, µ) = ⊤, then ∃ϕ′ ∈ C(S′) : L′(s′, a, ϕ′) 6=
⊥ and ∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ

′
, and

3. V (s) ∈ V ′(s′).

P satis�es N , denoted P |= N , if and only if there exists a satisfa
tion relation

relating s0 and s′0. If P |= N , P is 
alled an implementation of N .

Thus, a PA P is an implementation of an APA N if and only if any must-

transition of N is mat
hed by a must-transition of P that is simulated by one

of the probability distributions spe
i�ed by the 
onstraint, and reversely, P
does not 
ontain must-transitions that do not have a 
orresponding (may- or

must-) transition in N . The set of implementations of N is denoted by [[N ]] =
{P | P |= N}.

Example. The relation R = {(s1, s′1), (s2, s
′
5), (s3, s

′
4), (s4, s

′
4)} is a satisfa
tion

relation between the PA P (Fig. 3) and the APA N (Fig. 5). Indeed, all pairs

(s, s′) ∈ R have mat
hing valuations, and the outgoing must transition from s′1
is mat
hed by the outgoing transition from s1 (see previous example).

11



s′′5 s′′6s′′3

s′′1

s′′2
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{{m}}

s′′4
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a, y3, ? a,w4,⊤ a,w5,⊤

{{l}}

ϕy ≡ y2 + y3 = 1
ϕw ≡ w4 + w5 + w6 = 1.

Figure 7: Normalization N (N) of the APA N presented in Fig. 5

Single valuation normal form. As for CMCs [18, 19℄, a large 
lass of APAs

whose states are labeled with a set of subsets of atomi
 propositions 
an be

turned into an equivalent APA (in terms of sets of implementations) whose

states are labeled with sets that 
ontain a single subset of atomi
 propositions.

The latter are 
alled APAs in single valuation normal form. Single valuation

normal form makes the manipulation of satisfa
tion/re�nement relations easier.

However, as we shall see, building the single valuation normal form of a given

APA may lead to an exponential blowup in the number of states.

De�nition 10 (Single Valuation Normal Form). An APA N = (S,A, L,AP, V, s0)
is in single valuation normal form (SVNF) i� all its admissible valuations sets

are singletons, i.e. ∀s ∈ S, |V (s)| = 1.

It turns out that any APA with a single valuation in the initial state 
an be

turned into an APA in single valuation normal form that admits the same set

of implementations. This transformation is 
alled normalization.

We introdu
e it with an example, �rst. Consider the APA N in Fig. 5. Sin
e

the valuation of state s′4 is not a singleton, N is not in SVNF. In the normal-

ization pro
ess we translate ea
h state of the original APA into a 
olle
tion

of states�one per ea
h valuation. This mapping is 
aptured by a normaliza-

tion fun
tion; the following fun
tion N is the normalization fun
tion for our

example. Note that the only interesting 
ase is for state s′4:

s′1 7→ {s′′1}, s
′
2 7→ {s′′2}, s

′
3 7→ {s′′3}, s

′
4 7→ {s′′4 , s

′′
5}, s

′
5 7→ {s′′6}.

Subsequently, ea
h probability distribution 
onstraint targeting a split state,

needs to be rewritten, so that the sum of the split probabilities, substituted for

the original value, still satis�es the 
onstraint. Applying the normalization to

N results in the APA N (N) given in Fig. 7. State s′4 of N is split into states s′′4
and s′′5 in N (N). The 
ombined probability of rea
hing these states in N (N),
namely w4 +w5, is substituted for z4 in ϕz�the original probability of rea
hing

s′4 in N .

De�nition 11 (Normalization). Let N = (S,A, L,AP, V, s0) be an APA. Let

S′
be a set of states and let N : S → 2S

′

be a fun
tion su
h that

12



1. S′ =
⋃
s∈S N (s),

2. For all s1, s2 ∈ S su
h that s1 6= s2, N (s1) ∩ N (s2) = ∅,

3. for all s ∈ S, |N (s)| = |V (s)|.

If |V (s0)| = 1, then the normalization of N , denoted N (N), is the APA N (N) =
(S′, A, L′, AP, V ′,N (s0)) su
h that

1. For all s′ ∈ S′
, |V ′(s′)| = 1,

2. For all s ∈ S, V (s) =
⋃
s′∈N (s) V

′(s′),

3. For all s ∈ S, for s′1, s
′
2 ∈ N (s), s′1 6= s′2 ⇐⇒ V ′(s′1) 6= V ′(s′2), and

4. for all s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥,
then for all s′ ∈ N (s), L′(s′, a, ϕ′) = L(s, a, ϕ) for ϕ′ ∈ C(S′) su
h that

Sat(ϕ′) = {µ′ ∈ Dist(S′)|µ : s 7→
∑

u∈N (s) µ
′(u) ∈ Sat(ϕ)}.

Remark 1. In the above de�nition, a set S′
and a fun
tion N always exist.

However, when |V (s0)| 6= 1, any normalization of N would need to have several

initial states, whi
h we do not 
onsider here.

Clearly, N (N) is an APA in single valuation normal form.

The following theorem asserts that normalization preserves implementations.

Theorem 12. For any APA N = (S,A, L,AP, V, s0) with |V (s0)| = 1, [[N ]] =
[[N (N)]].

Proof. Let N = (S,A, L,AP, V, s0) be an APA su
h that |V (s0)| = 1, and let

N (N) = (S′, A, L′, AP, V ′,N (s0)) be the normalization of N , given the fun
tion

N : S → 2S
′

. We prove the two dire
tions separately.

• [[N ]] ⊆ [[N (N)]]: Let P = (SP , A, LP , AP, VP , s
P
0 ) be any PA su
h that P ∈

[[N ]] with satisfa
tion relationR ⊆ SP×S. We show that P ∈ [[N (N)]]. LetR′ ⊆
SP × S′

be the relation su
h that pR′ s′ i� (VP (p) ∈ V ′(s′) and (pRN−1(s′),
where N−1(s′) is the unique state s su
h that s′ ∈ N (s). We prove that R′

is

a satisfa
tion relation relating sP0 and N (s0).
Let p ∈ SP and s′ ∈ S′

be su
h that pR′ s′, and let s = N−1(s′). We show that

R′
satis�es the axioms of a satisfa
tion relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤. By de�nition of

N (N), there must exist a 
onstraint ϕ ∈ C(S) su
h that L(s, a, ϕ) = ⊤
and for all µ′ ∈ Sat(ϕ′), the distribution µ : t 7→

∑
u∈N (t) µ

′(u) is in

Sat(ϕ).
Sin
e P |= N , there exists µP ∈ Dist(SP ) su
h that LP (p, a, µP ) = ⊤ and

∃µ ∈ Sat(ϕ) su
h that µP ⋐R µ. We will now show that ∃µ′ ∈ Sat(ϕ′)
su
h that µP ⋐R′ µ′

.

Let δ : SP → (S → [0, 1]) be the 
orresponden
e fun
tion witnessing

µP ⋐R µ. Let δ′ : SP → (S′ → [0, 1]) be su
h that δ′(q)(t) = δ(q)(N−1(t))
if VP (q) ∈ V ′(t), and 0 otherwise.

Let µ′
be the distribution on S′

su
h that µ′(t) =
∑

q∈SP
µP (q)δ′(q)(t).

The following holds:

13



(a) Let q ∈ SP su
h that µP (q) > 0. By R, we have that δ(q) is a

distribution on S. Let r ∈ S su
h that δ(q)(r) > 0. By 
onstru
tion

of N (N), there exists a single t ∈ S′
su
h that t ∈ N (r) and V (q) ∈

V (t). As a 
onsequen
e, for all r ∈ S,
∑
t∈N (r) δ

′(q)(t) = δ(q)(r).

Thus, we have

∑
t∈S′ δ′(q)(t) =

∑
r∈S δ(q)(r). Finally δ

′(q) is also a

distribution on S′
.

(b) By 
onstru
tion, we have that for all t ∈ S′
,

µ′(t) =
∑

q∈SP

µP (q)δ′(q)(t).

(
) Let q ∈ SP and t ∈ S′
su
h that δ′(q)(t) > 0. By 
onstru
tion of δ′,

we have that (1) δ(q)(N−1(t)) > 0 and (2) V (q) ∈ V (t). By (1), we

have that qRN−1(t). As a 
onsequen
e, by de�nition of R′
and (2),

we have qR′ t.

Thus µP ⋐R′ µ′
. We now prove that µ′ ∈ Sat(ϕ′). Let µ0(r) =∑

t∈N (r) µ
′(t). By de�nition of µ′

, we have

µ0(r) =
∑

t∈N (r)

µ′(t) =
∑

t∈N (r)

∑

q∈SP

µP (q)δ′(q)(t)

=
∑

q∈SP

µP (q)
∑

t∈N (r)

δ′(q)(t)

=
∑

q∈SP

µP (q)δ(q)(r) = µ(r)

Thus µ0 = µ ∈ Sat(ϕ) and by de�nition of ϕ′
, we have µ′ ∈ Sat(ϕ′).

Finally, there exists µP ∈ Dist(SP ) su
h that LP (p, a, µP ) = ⊤ and there

exists µ′ ∈ Sat(ϕ′) su
h that µP ⋐R′ µ′
.

2. Let a ∈ A and µP ∈ Dist(SP ), su
h that LP (p, a, µP ) = ⊤. By a similar

argument, there exists ϕ′ ∈ C(S′) su
h that L′(s, a, ϕ′) 6= ⊥ and there

exists µ′ ∈ Sat(ϕ′) su
h that µP ⋐R′ µ′
.

3. By 
onstru
tion of R′
, we know that VP (p) ∈ V ′(s′).

We 
on
lude that sP0 R′ N (s0), sin
e VP (sP0 ) ∈ V (s0) = V ′(N (s0)) and s
R
0 R

N−1(N (s0))) whi
h is equivalent to saying that sP0 R s0.

• [[N ]] ⊇ [[N (N)]]: Let P = (SP , A, LP , AP, VP , s
P
0 ) be any PA su
h that P ∈

[[N (N)]] with satisfa
tion relation R′ ⊆ SP × S′
with sP0 R s0. We show that

P ∈ [[N ]]. Let R ⊆ SP × S be the relation su
h that pR s i� there exists

s′ ∈ N (s) su
h that pR′ s′. By a similar reasoning as in the previous 
ase, R is

a satisfa
tion relation and sP0 R s0, thus P |= N .

In the rest of the paper, we sometimes require that APAs are in single valu-

ation normal form in order to make the manipulation of satisfa
tion/re�nement

relations easier. By the above theorem, there is no loss of generality in making

this assumption when the initial state is already in single valuation normal form.

When it is not, it is equivalent to 
onsider a set of APAs with inital states in

single valuation normal form, one for ea
h valuation of the original initial state.
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3. Re�nement, Bisimulation and Abstra
tion

Being able to 
ompare spe
i�
ations is 
entral to stepwise design. Systemati



omparison enables simpli�
ation of spe
i�
ations (abstra
tion) and adding de-

tails to spe
i�
ations (elaboration). Usually, spe
i�
ations are 
ompared using

a re�nement relation. In this se
tion, we �rst introdu
e several notions of re-

�nement for APAs and study their ordering. Then we show that our formalism

is ba
kward-
ompatible with the 
lassi
al notion of bisimulation for PA [5, 21℄.

Finally, we propose two notions of abstra
tion for APAs.

3.1. Re�nement

A re�nement 
ompares APAs with respe
t to their sets of implementations.

More pre
isely, if APA N re�nes APA N ′
, then the set of implementations of N

should be in
luded in the one of N ′
. The ultimate re�nement relation that 
an

be de�ned between APAs is thus Thorough Re�nement that exa
tly 
orresponds

to in
lusion of sets of implementations.

De�nition 13 (Thorough Re�nement). Let N = (S,A, L,AP, V, s0) and N
′ =

(S′, A, L′, AP, V ′, s′0) be APAs. N thoroughly re�nes N ′
, denoted N �T N ′

, i�

[[N ]] ⊆ [[N ′]].

For most spe
i�
ation theories, it is known that de
iding thorough re�ne-

ment is 
omputationally intensive (see for example [24℄). For many models su
h

as Modal automata or CMCs, one 
an partially avoid the problem by work-

ing with a synta
ti
al notion of re�nement. This de�nition, whi
h is typi
ally

stri
tly stronger than thorough re�nement, is easier to 
he
k. The di�eren
e

between synta
ti
 and semanti
 re�nements resembles the di�eren
e between

simulations and tra
e in
lusion for transition systems.

We 
onsider three synta
ti
 re�nements. These relations extend two well

known re�nement relations for CMCs and IMCs by 
ombining them with the

re�nement de�ned on modal automata. By tweaking the alternation of quan-

ti�ers in the asso
iated formulas, one 
an de�ne several synta
ti
al notions of

re�nements with di�erent expressivity. For the sake of 
ompleteness, we de-

�ne all three notions and 
ompare their granularity. We start with the strong

re�nement.

De�nition 14 (Strong Re�nement). Let N = (S,A, L,AP, V, s0) and N ′ =
(S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S × S′

is a strong re�nement relation if

and only if, for all (s, s′) ∈ R, the following 
onditions hold:

1. ∀a ∈A, ∀ϕ′ ∈C(S′), if L′(s′, a, ϕ′) =⊤, then ∃ϕ ∈C(S) : L(s, a, ϕ) = ⊤
and there exists a 
orresponden
e fun
tion δ : S → (S′ → [0, 1]) su
h that

∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) with µ ⋐
δ
R µ

′
,

2. ∀a∈A, ∀ϕ∈C(S), if L(s, a, ϕ) 6= ⊥, then ∃ϕ′ ∈C(S′) : L′(s′, a, ϕ′) 6= ⊥
and there exists a 
orresponden
e fun
tion δ : S → (S′ → [0, 1]) su
h that

∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) with µ ⋐
δ
R µ

′
, and

3. V (s) ⊆ V ′(s′).
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We say that N strongly re�nes N ′
, denoted N �S N ′

, if and only if there exists

a strong re�nement relation relating s0 and s′0.

Observe that strong re�nement imposes a ��xed-in-advan
e� 
orresponden
e

fun
tion δ in the simulation relation between distributions. In this way, it

strongly resembles the notion of satisfa
tion presented in De�nition 9. This

assumption is lifted with the de�nition of weak re�nement:

De�nition 15 (Weak Re�nement). Let N = (S,A, L,AP, V, s0) and N ′ =
(S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S×S′

is a weak re�nement relation if and

only if, for all (s, s′) ∈ R, the following 
onditions hold:

1. ∀a∈A, ∀ϕ′ ∈C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃ϕ∈C(S) : L(s, a, ϕ) = ⊤
and ∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) su
h that µ ⋐R µ

′
,

2. ∀a∈A, ∀ϕ∈C(S), if L(s, a, ϕ) 6= ⊥, then ∃ϕ′ ∈C(S′) : L′(s′, a, ϕ′) 6= ⊥
and ∀µ∈Sat(ϕ), ∃µ′∈Sat(ϕ′) su
h that µ ⋐R µ

′
, and

3. V (s) ⊆ V ′(s′).

We say that N weakly re�nes N ′
, denoted N � N ′

, if and only if there exists a

weak re�nement relation relating s0 and s′0.

Weak weak re�nement weakens the assumption even more by allowing to


hoose, for ea
h solution of the left 
onstraint, both a di�erent 
orresponden
e

fun
tion and a di�erent 
onstraint (transition) to whi
h it will be linked:

De�nition 16 (Weak Weak Re�nement). Let N = (S,A, L,AP, V, s0) and

N ′ = (S′, A, L′, AP, V ′, s′0) be APAs. R ⊆ S × S′
is a weak weak re�nement

relation if and only if, for all (s, s′) ∈ R, the following 
onditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S′), if L′(s′, a, ϕ′) = ⊤, then ∃ϕ ∈ C(S) : L(s, a, ϕ) = ⊤
and ∀µ ∈ Sat(ϕ), ∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ

′
,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s, a, ϕ) 6= ⊥, then ∀µ ∈ Sat(ϕ), ∃ϕ′ ∈ C(S′) :
L′(s′, a, ϕ′) 6= ⊥ and ∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ

′
, and

3. V (s) ⊆ V ′(s′).

We say that N weakly weakly re�nes N ′
, denoted N �W N ′

, if and only if

there exists a weak weak re�nement relation relating s0 and s′0.

It is easy to see that the above de�nitions are 
ombinations of the de�nitions

of strong and weak re�nement of CMCs with the modal re�nement of Modal

Automata. Hen
e algorithms for 
he
king weak weak, weak, and strong re�ne-

ments for APAs 
an be obtained by 
ombining existing �xed-point algorithms

for CMCs [19℄ and Modal Automata [17℄. For the 
lass of polynomial-
onstraint

APAs, the upper bound for de
iding weak/strong re�nement is thus exponential

in the number of states and doubly-exponential in the size of the 
onstraints [19℄.

Noti
e that all three re�nement relations are preorders on the set of APAs.

Weak weak, weak, and strong re�nement all imply in
lusion of sets of imple-

mentations. However, the 
onverse is not true. The following theorem 
lassi�es

the re�nement relations.
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s5s2 s3 s4

s1

a, x3, ?a, x2, ? a, x4, ? a, x5, ?

{{o}} {{p}}{{n}}{{m}}

{{l}}

ϕx ≡ (x2 + x3 = 1)∨ (x4 + x5 = 1)

(a) N1

a, z5, ?a, z4, ?a, y3, ?a, y2, ?

{{m}} {{n}} {{o}} {{p}}

{{l}}

s′4s′3 s′5s′2

s′1

ϕy ≡ y2 + y3 = 1
ϕz ≡ z4 + z5 = 1.

(b) N2

Figure 8: APAs N1 and N2 su
h that N1 �W N2, but not N1 � N2.

Theorem 17. Thorough re�nement is stri
tly �ner than weak weak re�nement,

weak weak re�nement is stri
tly �ner than weak re�nement, and weak re�nement

is stri
tly �ner than strong re�nement. That is,

(�T ) ) (�W ) ) (�) ) (�S).

Proof. We �rst prove the in
lusions, and then show that all of them are stri
t.

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S): By a swap of quanti�ers in the de�nitions, it is

obvious that strong re�nement implies weak re�nement, and that weak re�ne-

ment implies weak weak re�nement. We prove that weak weak re�nement im-

plies thorough re�nement. Let N = (S,A, L,AP, V, s0) and N
′ = (S′, A, L′, AP,

V ′, s′0) be APAs su
h that N �W N ′
with a weak weak re�nement relation

R′ ⊆ S × S′
.

If [[N ]] = ∅, we have [[N ]] ⊆ [[N ′]]. Otherwise, let P = (SP , A, LP , AP, VP , s
P
0 ) be

a PA su
h that P |= N . Then there exists a satisfa
tion relation R′′ ⊆ SP × S
su
h that sP0 R′′ s0.
Let R ⊆ SP ×S′

be the relation su
h that uRw i� there exists v ∈ S su
h that

uR′′ v and vR′ w. The proof that R is a satisfa
tion relation is standard and

follows the same lines as the proof of Theorem 12. We give the key arguments

of this proof and report the details to Appendix A.

Let u ∈ SP and w ∈ S′
be su
h that uRw, and let v ∈ S be su
h that

uR′′ v and vR′ w.

• Let a ∈ A′
and ϕ′ ∈ C(S′) be su
h that L′(w, a, ϕ′) = ⊤. By R′

, there

exists ϕ ∈ C(S) su
h that L(v, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ), ∃µ′ ∈ Sat(ϕ′)
su
h that µ ⋐R′ µ′

. Moreover, by R′′
, there exists µP ∈ Dist(SP ) su
h

that LP (u, a, µP ) = ⊤ and µS ∈ Sat(ϕ) su
h that µP ⋐R′′ µS .

Let µS ∈ Dist(S) and µ′ ∈ Dist(S′) be su
h that µP ⋐R′′ µS and

µS ⋐R′ µ′
. Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be

the 
orresponden
e fun
tions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
re-

spe
tively. The 
orresponden
e fun
tion for R is δ : SP → (S′ → [0, 1])
su
h that δ(s)(t) =

∑
r∈S δ

′′(s)(r)δ′(r)(t). It follows that µP ⋐
δ
R µ′

.
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• Let a ∈ A and µP ∈ Dist(SP ) be su
h that LP (u, a, µ) 6= ⊥. By R′′
,

there exists ϕ ∈ C(S) su
h that L(v, a, ϕ) 6= ⊥ and ∃µS ∈ Sat(ϕ) su
h

that µP ⋐R′′ µS . Moreover, by R′
, we have that for all µ ∈ Sat(ϕ), there

exists ϕ′ ∈ C(S′) su
h that L′(w, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h that

µ ⋐R′ µ′
.

Let µS ∈ Dist(S) be su
h that µP ⋐R′′ µS . Let ϕ′ ∈ Dist(S′) be

su
h that L′(w, a, ϕ′) ≥? and let µ′ ∈ Sat(ϕ′) su
h that µS ⋐R′ µ′
.

Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the 
orre-

sponden
e fun
tions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
respe
tively.

The 
orresponden
e fun
tion for R is δ : SP → (S′ → [0, 1]) su
h that

δ(s)(t) =
∑

r∈S δ
′′(s)(r)δ′(r)(t). It follows that µP ⋐

δ
R µ′

.

Thus R is a satisfa
tion relation. Moreover, sin
e sP0 R′′ s0 and s0 R
′ s′0, we

have that sP0 R s′0, and we 
on
lude that P ∈ [[N ′]], therefore N �T N ′
.

• �W 6=�: We show that for APAs N1 and N2, given in Fig. 8, we have

N1 �W N2, but N1 6� N2.

• N1 �W N2: We show that R = {(s1, s′1), (s2, s
′
2), (s3, s

′
3), (s4, s

′
4), (s5, s

′
5)}

is a weak weak re�nement relation. By 
onstru
tion, the pairs (s2, s
′
2),

(s3, s
′
3), (s4, s

′
4) and (s5, s

′
5) satisfy the axioms of a weak weak re�nement

relation. We now show that the pair of initial state (s1, s
′
1) also satis�es the

axioms of a weak weak re�nement relation. For distributions µ ∈ Sat(ϕx)
su
h that µ(s2) > 0 or µ(s3) > 0 we 
hoose the 
onstraint ϕy, and for

other distributions we 
hoose ϕz . It is then 
lear that

∀µ ∈ Sat(ϕx), ∃ϕ
′ ∈ {ϕy, ϕz}, ∃µ

′ ∈ Sat(ϕ′) : µ ⋐R µ
′.

• N1 6� N2: There exists no 
onstraint ϕ′ ∈ C(S′) su
h that L′(s′1, a, ϕ
′) 6=

⊥ and ∀µ ∈ Sat(ϕx), ∃µ′ ∈ Sat(ϕ′) : µ ⋐R µ
′
.

• �6=�S: We now show that for the APAs N3 and N4, given in Fig. 9, we

have N3 � N4, but N3 6�S N4.

• N3 � N4: We show that R = {(s1, s′1), (s2, s
′
2), (s3, s

′
3), (s3, s

′
4), (s4, s

′
5)} is

a weak re�nement relation. Again, the pairs (s2, s
′
2), (s3, s

′
3), (s3, s

′
4) and

(s4, s
′
5) all satisfy the axioms of a weak re�nement relation by 
onstru
tion.

We now show that the pair of initial states (s1, s
′
1) also satis�es the axioms

of a weak re�nement relation.

There is a 
onstraint fun
tion ϕx ∈ C(S) su
h that L(s1, a, ϕx) =? and a


onstraint fun
tion ϕy ∈ C(S′) su
h that L(s′1, a, ϕy) =?. We now show

that ∀µ ∈ Sat(ϕx), ∃µ′ ∈ Sat(ϕy) : µ ⋐R µ′
. Let µ ∈ Sat(ϕx) and let

δ : S → (S′ → [0, 1]) be given as

(s1, s
′
1) 7→ 1, (s2, s

′
2) 7→ 1, (s3, s

′
3) 7→ γ, (s3, s

′
4) 7→ 1 − γ, (s4, s

′
5) 7→ 1,

where γ = 0.7−µ(s2)
µ(s3) , if µ(s2) ≤ 0.7, and γ = 0.8−µ(s2)

µ(s3) otherwise.
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s2 s3 s4

s1

a, x4, ?a, x3, ?a, x2, ?

{{l}}

{{m}} {{n}} {{o}}

ϕx ≡ (x2 + x3 ≥ 0.7)∧
(x3 + x4 ≥ 0.2) ∧ (x2 + x3 + x4 = 1)

(a) N3

s′2 s′3 s′5s′4

s′1

a, y5, ?a, y2, ?

{{l}}

{{o}}{{n}}{{n}}{{m}}

a, y4, ?a, y3, ?

ϕy ≡ (y2 + y3 ≥ 0.7)∧
(y4 + y5 ≥ 0.2) ∧ (y2 + y3 + y4 + y5 = 1)

(b) N4

Figure 9: APAs N3 and N4 su
h that N3 � N4, but not N3 �S N4.

1. By de�nition of δ, for ea
h s ∈ S, δ(s) is a distribution on S′
.

2. Assume that µ(s2) ≤ 0.7. For s′3, s
′
4 ∈ S′

, we have

∑

s∈S

µ(s)δ(s)(s′3) = µ(s3)
0.7 − µ(s2)

µ(s3)
= 0.7 − µ(s2),

∑

s∈S

µ(s)δ(s)(s′4) = µ(s3)

(
1 −

0.7 − µ(s2)

µ(s3)

)

= µ(s3) − 0.7 + µ(s2).

Using this observation, µ′ : S′ → [0, 1], given by s′1 7→ µ(s1), s
′
2 7→

µ(s2), s
′
3 7→ 0.7−µ(s2), s

′
4 7→ µ(s3)− 0.7 +µ(s2), and s

′
5 7→ µ(s4), is

a distribution on S′
, µ′ ∈ Sat(ϕy), and µ ⋐

δ
R µ

′
. The proof is similar

if µ(s2) > 0.7.
3. Pairs (s, s′) for whi
h δ(s)(s′) > 0 are related by R by 
onstru
tion.

For valuations in s1 and s′1, respe
tively, it holds that {{l}} ⊆ {{l}}.

• N3 6�S N4: Suppose that there exists a satisfa
tion relation R′
, and let

δ′ be the 
orresponden
e fun
tion witnessing relation of s1 and s′1. The

valuations require that δ′ must be of the same type as δ above with γ ≥ 0
(here γ is 
onstant). Consider the following two distributions over S, µ1

and µ2 given by

µ1 : s1 7→ 0, s2 7→ 0.6, s3 7→ 0.1, s4 7→ 0.3

µ2 : s1 7→ 0, s2 7→ 0.8, s3 7→ 0.1, s4 7→ 0.1.

The 2 following properties must hold: (1) ∃µ′
1 ∈ Dist(S′), ∀s′ ∈ S′ :∑

s∈S µ1(s)δ(s)(s
′) = µ′

1(s
′) and (2) ∃µ′

2 ∈ Dist(S′), ∀s′ ∈ S′ :∑
s∈S µ2(s)δ(s)(s

′) = µ′
2(s

′). However, (1) requires that γ = 1, and (2)

requires that γ = 0, whi
h shows that su
h a strong re�nement relation


annot exist.

• �T 6=�W : Finally, we show that for the APAs N5 and N6, given in Fig. 10,

we have N5 �T N6, but N5 6�W N6.
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s2

{{m}}

{{l}}

s1

a, 1, ?

{{o}}{{n}}

b, x4, ?b, x3, ?

s4s3

ϕx ≡ (x3 = 1 ∧ x4 = 0)∨
(x3 = 0 ∧ x4 = 1)

(a) N5

s′1

{{l}}

{{m}}

b, 1, ?b, 1, ?

a, y3, ?a, y2, ?

{{m}}

{{n}} {{o}}

s′4 s′5

s′3s′2

ϕy ≡ (y2 = 1 ∧ y3 = 0)∨
(y2 = 0 ∧ y3 = 1)

(b) N6

Figure 10: APAs N5 and N6 su
h that N5 �T N6, but not N5 �W N6.

• N5 �T N6: It is easy to see that any PA satisfying N5 will also satisfy N6.

• N5 6�W N6: Consider the pair (s2, s
′
2). Sat(ϕx) = {µ1, µ2} , where

µ1(s3) = 1 and µ2(s4) = 1. Let µ′
2 be the distribution over N6 assigning

probability 1 to s′4. A 
orresponden
e fun
tion δ su
h that µ2 ⋐
δ
R µ′

2


annot exist, sin
e su
h a δ will satisfy that δ(s4)(s
′
4) = 1 and this pair


annot be related be
ause {{o}} 6⊆ {{n}}. The same applies for (s2, s
′
3).

This implies that N5 6�W N6.

We have just seen that, in general, thorough re�nement is stri
tly �ner than

any synta
ti
al re�nement. In Se
tion 6.2, we will show that the thorough, weak

weak, weak, and strong re�nement 
oin
ide on the 
lass of deterministi
 APAs.

In the rest of this paper, ea
h time that we show that a re�nement relation

holds, we prove it for the strongest possible version of re�nement.

3.2. Bisimulation

In this se
tion, we �rst introdu
e the 
lassi
al notion of bisimulation for

PAs [21℄. Then, we show that the spe
i�
ation theory we propose in this paper

is ba
kwards-
ompatible, in the sense that bisimilar PAs satisfy the same spe
-

i�
ations. The se
tion is stru
tured as follows. First, we re
ap the de�nition of

bisimulation for PAs. Then, in Theorem 20, we propose a 
hara
terization of

bisimulation based on the notion of satisfa
tion. Finally, Theorem 22 presents

the main result of the se
tion, i.e. bisimilar APAs satisfy the same spe
i�
ations.

Detailed proofs of the theorems are given in Appendix B.

The following de�nition presents the 
lassi
al notion of bisimulation proposed

in [21℄.

De�nition 18 (Bisimulation). Let P = (S,A, L,AP, V, s0) and P
′ = (S′, A, L′, AP, V ′, s′0)

be PAs with no unrea
hable states. We say that R ⊆ S × S′
is a bisimulation

relation i� whenever (s, s′) ∈ R, the following holds:
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• V (s) = V ′(s′), and

• ∀a ∈ A, ∃µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ if and only if there ex-

ists µ′ ∈ Dist(S′) su
h that L′(s′, a, µ′) = ⊤ and, for ea
h equivalen
e


lass T ∈ (S ∪ S′)/R∗
, µ(T ) = µ′(T ), where R∗

denotes the re�exive,

symmetri
, transitive 
losure of R on (S ∪ S′).

P and P ′
are bisimilar, written P ≃ P ′

, if and only if there exists a bisim-

ulation relation R su
h that s0 R s′0.

Chara
terization. We now propose a methodology that uses the satisfa
tion

relation and a lifting algorithm from PAs to APAs in order to de
ide whether

two given PAs are bisimilar. This methodology and the subsequent theorem 20

will be of parti
ular interest for proving ba
kward 
ompatibility.

It turns out that bisimulation between two given PAs holds whenever, when

lifted to APAs, they admit the same implementations. In the following, we

�rst formally de�ne the lifting from PAs to APAs. We then propose a formal

synta
ti
al 
hara
terization of bisimilar PAs.

De�nition 19 (Lifting). Let P = (S,A, L,AP, V, s0) be a PA. We de�ne the

lifting of P , denoted P̃ = (S,A, L̃, AP, Ṽ , s0) as the APA where

• for all s ∈ S, a ∈ A, and ϕ ∈ C(S), L̃(s, a, ϕ) = ⊤ if and only if there

exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}, and

• for all s ∈ S, Ṽ (s) = {V (s)}.

Informally, the lifting P̃ of P extends state valuations to sets 
ontaining only

the original valuations, and 
ontains only single-solution 
onstraints based on

the original distributions of P .
We propose the following theorem:

Theorem 20. Let P and P ′
be PAs. We have that P ≃ P ′ ⇐⇒ P |= P̃ ′

.

Proof. We give a sket
h of the proof, while a detailed version is given in Appendix B.1.

Let P = (S,A, L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0) be PAs, and let

P̃ ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the lifting of P ′
.

• P ≃ P ′ ⇒ P |= P̃ ′
: Assume that P ≃ P ′

with relation Rb. It happens

that Rb is a satisfa
tion relation su
h that P |= P̃ ′
.

• P ≃ P ′ ⇐ P |= P̃ ′
: Assume that P |= P̃ ′

with satisfa
tion relation R. We

prove that P ≃ P ′
.

Let R∗
denote the re�exive, transitive, symmetri
 
losure of the relation R

over S ∪ S′
, and let Rb ⊆ S × S′

be the relation su
h that sRb s
′
i� sR∗ s′. It

follows that Rb is a bisimulation relation and that s0 Rb s
′
0. We thus 
on
lude

that P ≃ P ′
.
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Ba
kward Compatibility. We now move to the main result of the se
tion:

bisimilar PAs satisfy the same APAs. We �rst relate lifting and re�nement.

Lemma 21. Let P be a PA and let N be an APA. The following holds:

P |= N ⇐⇒ P̃ � N.

Proof. • P |= N ⇒ P̃ � N : Let P = (S,A, L,AP, V, s0) be a PA and let

N = (S′, A, L′, AP, V ′, s′0) be an APA su
h that P |= N with relation Rs. Let

P̃ = (S,A, L̃, AP, Ṽ , s0) be the lifting of P . It happens that Rs is also a weak

re�nement relation between P̃ and N . The proof is standard and reported

in Appendix B.2.

Sin
e R is a weak re�nement relation and, by 
onstru
tion, s0 R s′0, we


on
lude that P̃ � N .

• P |= N ⇐ P̃ � N : Let P = (S,A, L,AP, V, s0) be a PA, let P̃ = (S,A, L̃, AP,
Ṽ , s0) be the lifting of P and let N = (S′, A, L′, AP, V ′, s′0) be an APA su
h

that P̃ � N with relation Rr. Again, Rr is also a satisfa
tion relation between

P and N . The proof is standard and given in Appendix B.2.

Sin
e R is a satisfa
tion relation and, by 
onstru
tion, s0 R s′0, we 
on
lude
that P |= N .

Observe that, by the two previous results, we obtain that the lifting of two

bisimilar PAs have equal sets of implementations:

P ≃ P ′ ⇐⇒ [[P̃ ]] = [[P̃ ′]].

We now present the main result of the se
tion, that is that bisimilar PAs

satisfy the same spe
i�
ations.

Theorem 22. Let P and P ′
be PAs su
h that P ≃ P ′

. For all APA N , it holds

that P |= N ⇐⇒ P ′ |= N .

Proof. Let P and P ′
be PAs su
h that P ≃ P ′

, and let N be an APA su
h that

P |= N . Consider the liftings P̃ and P̃ ′
of P and P ′

. By Lemma 21, we have

P̃ � N . Moreover, by Theorem 20, we have P ′ |= P̃ . Sin
e weak re�nement

implies implementation set in
lusion, we thus have that P ′ |= N . By symmetry,

we thus have that for all APA N , P |= N ⇐⇒ P ′ |= N .

3.3. Abstra
tion

We now propose two di�erent notions of abstra
tion. The �rst notion, 
alled

state-based abstra
tion amounts to grouping sets of states into single abstra
t

states. The aim of state-based abstra
tion is to redu
e the 
omplexity of APAs

by redu
ing their state spa
e. The se
ond notion, 
alled 
onstraint-based ab-

stra
tion, amounts to abstra
ting 
omplex 
onstraints into the smallest interval


onstraints that en
ompass all their solutions. The aim of 
onstraint-based ab-

stra
tion is to redu
e the 
omplexity of the 
onstraints. Indeed, as shown in [22℄,
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manipulating interval 
onstraints allows for less 
omplex algorithms in general.

Observe that both notions of abstra
tion 
an be 
ombined.

State-based abstra
tion. The aim of this abstra
tion is to partition the state

spa
e, i.e., group (disjoint) sets of states into a single abstra
t state. Let N and

M be APA with state spa
e S and S′
, respe
tively. An abstra
tion fun
tion α :

S → S′
is a surje
tion. The inverse of abstra
tion fun
tion α is the 
on
retization

fun
tion γ : S′ → 2S. The state α(s) denotes the abstra
t 
ounterpart of state
s while γ(s′) represents the set of all (
on
rete) states that are represented

by the abstra
t state s′. Abstra
tion is lifted to distributions as follows. The

abstra
tion of µ ∈ Dist(S), denoted α(µ) ∈ Dist(S′), is uniquely de�ned by

α(µ)(s′) = µ(γ(s′)) for all s′ ∈ S′
. Abstra
tion is lifted to sets of states, or sets

of distributions in a pointwise manner. It follows that ϕ′ = α(ϕ) if and only

if Sat(ϕ′) = α(Sat(ϕ)). The 
artesian produ
t of two abstra
tion fun
tions is

given as follows: (α1 ×α2)(s1, s2) = (α1(s1), α2(s2)). These ingredients provide
the basis to de�ne the state abstra
tion of an APA.

De�nition 23 (State-based Abstra
tion). Given APA N = (S,A, L,AP, V, s0),
the abstra
tion fun
tion α : S → S′

indu
es the APA α(N) = (S′, A, L′, AP, V ′,
α(s0)), where for all a ∈ A, s′ ∈ S′

and ϕ′ ∈ C(S′):

L′(s′, a, ϕ′) =





⊤
if ∀s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) = ⊤, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ)=⊤
Sat(ϕ)) (a)

?
if ∃s ∈ γ(s′) : ∃ϕ ∈ C(S) : L(s, a, ϕ) ≥ ?, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ(s′)×C(S):L(s,a,ϕ) 6=⊥
Sat(ϕ)) (b)

⊥ otherwise (
)

and V ′(s′) =
⋃

∀s∈γ(s′)
V (s)

Item (a) asserts that if there are must transitions (s, a, ϕ) from all states

s ∈ γ(s′), then the must transition (s′, a, ϕ′) represents their total behavior.

Item (b) asserts that a may a-transition emanating from s′ represents the total
behaviour of all may and must transitions (s, a, ϕ) for all s ∈ γ(s′). Item (
)

asserts that if no state in γ(s′) has an a-transition, then s′ also does not have

an a-transition.
The result of abstra
ting APA N is the APA α(N) that is able to mimi
 all

behaviours of N , but possibly exhibits more behaviour.

Example. Consider the APA N = (S,A, L,AP, V, s0) depi
ted in Fig. 11a. Let

the abstra
tion fun
tion α : S → S′
be given by α(s1) = s′1, α(s2) = α(s3) = s′23,

α(s4) = s′4, α(s5) = s′5, and α(s6) = s′6. The APA α(N) obtained following

De�nition 23 is depi
ted in Figure 11b. State s′1 has a single outgoing must

a-transition, 
orresponding to the outgoing must a-transition of s1, where target
states are 
ollapsed and the 
onstraint is simpli�ed a

ordingly. State s′23 has

two outgoing transitions: (1) a must a-transition be
ause both s2 and s3 have

23



s2

s1

s4 s5 s6

s3

{{l}}
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a, 1,⊤
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s′5 s′6s′4
{{n}} {{o}} {{o}}

s′23

a, z6,⊤

{{m}}a, 1,⊤

a, y5,? a, y6,?

s′1

a, y4,? a, z5,⊤

{{l}}

ϕy ≡ y4 = 1 ∨ y5 = 1 ∨ y6 = 1
ϕz ≡ z5 = 1 ∨ z6 = 1

(b) α(N)

Figure 11: APA N and and its state abstra
tion α(N)

must a-outgoing transitions (item (a) of De�nition 23), with a 
onstraint that

represents the union of the 
onstraints of the original must transitions; and (2) a

may a-transition be
ause s2 has a may a-transition (item (b) of De�nition 23),

with a 
onstraint that represents the union of the 
onstraints of all outgoing

a-transitions of s2 and s3.

Observe that the abstra
t version of an APA is always weaker in term of

re�nement than the original APA.

Lemma 24. For all APA N and abstra
tion fun
tion α, N �S α(N).

Proof. Let N = (S,A, L,AP, V, s0) be an APA and let α : S → S′
be an abstra
-

tion fun
tion. Consider the state abstra
tion α(N) = (S′, A, L′, AP, V ′, α(s0)).
Let R ⊆ S × S′

be the relation su
h that sR s′ i� s′ = α(s). The proof that

R is a strong re�nement relation is standard. The key point of this proof is

to use the following 
orresponden
e fun
tions: δ : S → (S′ → [0, 1]) su
h that

δ(u)(v) = 1 if α(u) = v, and 0 otherwise. For the sake of 
ompleteness, the full

proof is reported in Appendix C.

Observe that by the ordering of re�nement relations given in Theorem 17,

it also holds that N � α(N), N �W α(N) and N �T α(N).

Constraint-based abstra
tion. Given a 
onstraint ϕ ∈ C(S), we say that

ϕ is an interval 
onstraint if there exist 
losed intervals {Iϕs |s ∈ S} su
h that

∀µ, µ ∈ Sat(ϕ) ⇐⇒
∧
s∈S(µ(s) ∈ Iϕs ). If, for all s ∈ S, a ∈ A, and ϕ ∈ C(S)

su
h that L(s, a, ϕ) 6= ⊥, it holds that ϕ is an interval 
onstraint, then we 
all

N an Interval Probabilisti
 Automaton (IPA).

The following notion of abstra
tion abstra
ts an APA with the smallest IPA

en
ompassing all its implementations.

De�nition 25 (Constraint-based Abstra
tion). Let N = (S,A, L,AP, V, s0) be
an APA. The 
onstraint-abstra
ted APA χ(N) = (S,A, L′, AP, V, s0) is de�ned
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su
h that for all states s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) su
h that

L(s, a, ϕ) 6= ⊥, then L′(s, a, ϕ′) = L(s, a, ϕ) for ϕ′ ∈ C(S) de�ned as

Sat(ϕ′) =

{
µ′ ∈ Dist(S)

∣∣∣∣∣
∧

s′∈S

µ′(s′) ∈ Iϕs′

}
,

where {Iϕs′ |s
′ ∈ S} are the smallest 
losed intervals su
h that ∀µ ∈ Sat(ϕ) :∧

s′∈S µ(s′) ∈ Iϕs′ .

As expe
ted, 
onstraint-based abstra
tion is an abstra
tion with respe
t to

strong re�nement.

Lemma 26. For any APA N , it holds that N �S χ(N).

Proof. Let N = (S,A, L,AP, V, s0) be an APA and let χ(N) = (S,A, L′, AP, V,
s0) be the 
onstraint-abstra
tion of N . Let R = S × S be the identity rela-

tion. The proof that R is a strong re�nement relation is standard. The key

point of this proof is to use identity 
orresponden
e fun
tions. For the sake of


ompleteness, the full proof is given in Appendix D.

We now show that ifN is a valuation-deterministi
 APA in SVNF, then χ(N)
is the smallest IPA in SVNF abstra
ting N with respe
t to weak re�nement.

However, when N and χ(N) are not in SVNF, it is possible to abstra
t N in dif-

ferent ways by grouping states with di�erent valuations, leading to abstra
tions

that 
annot be 
ompared with χ(N) using the re�nement relations.

Theorem 27. For any valuation-deterministi
 APA N in SVNF and IPA N ′

in SVNF, N � N ′
implies χ(N) � N ′

.

Proof. Let N = (S,A, L,AP, V, s0) be a valuation-deterministi
 APA, and let

N ′ = (S′, A, L′, AP, V ′, s′0) be an IPA, both in SVNF, su
h that N � N ′
with a

weak re�nement relation R. Let χ(N) = (S,A, L′′, AP, V, s0) be the 
onstraint
abstra
tion of N . Let R′ := R. Although R and R′

are equal, we 
hose to use

two di�erent notations to stress the fa
t that the former is a weak re�nement

relation between N and N ′
while the latter is a relation between χ(N) and N ′

.

We prove that R′
is a weak re�nement relation su
h that χ(N) � N ′

. Let s ∈ S
and s′ ∈ S′

su
h that sR′ s′. We show that R′
satis�es the axioms of a weak

re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤. By R, there

exists ϕ ∈ C(S) su
h that L(s, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ)∃µ′ ∈ Sat(ϕ′) :
µ ⋐R µ′

. By 
onstru
tion of χ(N), there exists ϕI ∈ C(S) (the 
onstraint-
abstra
tion of ϕ) su
h that L′′(s, a, ϕI) = ⊤ and Sat(ϕI) = {µ′′ ∈ Dist(S)|∧
s′′∈S µ

′′(s′′) ∈ Iϕs′′} with {Iϕs′′ |s
′′ ∈ S} the smallest 
losed intervals su
h

that ∀µ ∈ Sat(ϕ) :
∧
s′′∈S µ(s′′) ∈ Iϕs′′ .

De�ne R′(s1) = {s′1 ∈ S′|s1 R
′ s′1} for all s1 ∈ S. Observe that for all

s1 6= s2, ϕ ∈ C(S), and a ∈ A su
h that L(s, a, ϕ) 6= ⊥, if there ex-

ists µ1, µ2 ∈ Sat(ϕ) with µ1(s1) > 0 and µ2(s2) > 0, then, sin
e N is
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valuation-deterministi
 and N ′
is in SVNF, R′(s1)∩R′(s2) = ∅ (observa-

tion A).

Let {IϕI
s1

= [ls1 , us1 ]|s1 ∈ S} be the intervals asso
iated with ϕI , and let

{Iϕ
′

s′1
= [l′s′1

, u′s′1
]|s′1 ∈ S} be the intervals asso
iated with ϕ′

. Let a ∈ A

and ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥. Let s1 ∈ S. By minimality of the

interval 
onstraints in χ(N), there exists µ ∈ Sat(ϕ) su
h that µ(s1) = ls1 .
Sin
e sR s′, there exists δ : S → Dist(S′) su
h that

∀s′1 ∈ S′ :
∑

s2∈S

µ(s2)δ(s2)(s
′
1) = µ′(s′1),

for some µ′ ∈ Sat(ϕ′), where L′(s′, a, ϕ′) 6= ⊥.
For δ, we dedu
e that ∀s′1 6∈ R′(s1), δ(s1)(s

′
1) = 0 and ∀s2 6= s1, ∀s′1 ∈

R′(s2), δ(s2)(s
′
1) = 0. By the �rst dedu
tion, ∀s′1 ∈ R′(s1), µ(s1)δ(s1)(s

′
1) ≥

l′s′1
and by the se
ond,

∑
s′1∈R′(s1) µ(s2)δ(s2)(s

′
1) = ls1 . As a 
onsequen
e,

ls1 ≥
∑
s′1∈R′(s1) l

′
s′1
, and similarly, we obtain us1 ≤

∑
s′1∈R′(s1) u

′
s′1
.

Let µI ∈ Sat(ϕI). We now prove that there exists µ′
I ∈ Sat(ϕ′) su
h that

µI ⋐R′ µ′
I . For all s1 ∈ S, de�ne the 
orresponden
e fun
tion δ′ : S →

Dist(S′) as follows: if µI(s1) = 0, then δ′(s1)(s
′
1) = 0 for all s′1 ∈ S′

and

otherwise,

δ′(s2)(s
′
1) =





1
µI(s2)

(
l′s′1

+
(u′

s′
1
−l′

s′
1
)(µI(s2)−

P

s′
2
∈R′(s2) l

′
s′
2
)

P

s′2∈R′(s2)(u
′
s′2

−l′
s′2

)

)
if s′1 ∈ R′(s2)

0 otherwise.

(1)

Let µ′
I ∈ Dist(S′) su
h that µ′

I(s
′
1) =

∑
s2∈S

µI(s2)δ(s2)(s
′
1). We prove

that µI ⋐
δ′

R′ µ′
I .

(a) By 
onstru
tion, if µI(s1) > 0, then
∑
s′1∈S

′ δ′(s1)(s
′
1) = 1.

(b) Let s∗′ ∈ S′
. By observation A, there exists at most one s∗ ∈ S su
h

that µI(s
∗) > 0 and s∗′ ∈ R′(s∗). There are two 
ases:

• If no su
h s∗ exists, then l′s∗′ =
∑

s2∈S
µI(s2)δ

′(s2)(s
∗′) = 0 and

we have

l′s∗′ ≤ µ′
I(s

∗′) ≤ u′s∗′ .

• Otherwise, we have

∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) = µI(s
∗)δ′(s∗)(s∗′)

= l′s∗′ +
(u′s∗′ − l′s∗′)(µI(s

∗) −
∑

s′2∈R′(s∗) l
′
s′2

)
∑
s′2∈R′(s∗)(u

′
s′2

− l′
s′2

)
.

Sin
e

∑
s′2∈R′(s2) l

′
s′2

≤ ls∗ ≤ µI(s
∗), we have that

µ′
I(s

∗′) =
∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) ≥ l′s∗′ .
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Similarly,

µ′
I(s

∗′) =
∑

s2∈S

µI(s2)δ
′(s2)(s

∗′) ≤ u′s∗′ .

We 
on
lude that ∀s′1 ∈ S′, µ′
I(s

′
1) ∈ I ′s′1

. Thus µ′
I ∈ Sat(ϕ′).

(
) Assume that δ′(s1)(s
′
1) > 0. Then s′1 ∈ R′(s1), and s1 R

′ s′1.

We 
on
lude that there exists µ′
I ∈ Sat(ϕ′) su
h that µI ⋐R′ µ′

I .

2. Let a ∈ A and ϕI ∈ C(S) su
h that L′′(s, a, ϕI) 6= ⊥. By 
onstru
tion,

there exists ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥. By re�nement, there

exists ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) 6= ⊥ and ∀µ ∈ Sat(ϕ)∃µ′ ∈
Sat(ϕ′) : µ ⋐R µ′

. Using the same reasoning as above, we 
an prove that

∀µI ∈ Sat(ϕI), there exists µ
′
I ∈ Sat(ϕ′) su
h that µI ⋐R µ′

I .

3. Clearly, V (s) ⊆ V ′(s′), as valuations in N and χ(N) are equal.

This proves that R′
is a weak re�nement relation. As s0 R

′ s′0, we 
on
lude
that χ(N) � N ′

.

Observe that the above theorem does not hold for strong re�nement: If N ′

is an IPA in SVNF su
h that N �S N ′
, then we have χ(N) � N ′

but not

ne
essarily χ(N) �S N ′
.

Example. We show that Thm. 27 does not hold when the APA N is not

valuation-deterministi
. Consider APA N and IPA N ′
given in Fig. 12a and 12


respe
tively. It is easy to see that N is not valuation-deterministi
, and that

N � N ′
. Let χ(N) be the 
onstraint-based abstra
tion of N , as given in Fig. 12b.

Consider PA P given in Fig. 12d. It is easy to see that P |= χ(N), but P 6|= N ′
.

Thus, by Theorem 17, χ(N) 6� N ′
.

Noti
e that Thm. 27 holds regardless whether N is a
tion-deterministi
. It

turns out that if N is not a
tion-deterministi
, then the theorem holds for weak

re�nement, but not for weak weak re�nement. Fig. 13 illustrates a 
ounter exam-

ple. This is not suprising as, be
ause of the swap of quanti�ers in its de�nition,

weak weak re�nement 
an take more advantage of a
tion non-determinism than

weak re�nement.

Although state-based abstra
tion and 
onstraint-based abstra
tion are both

abstra
tions, they 
annot be 
ompared in general in terms of re�nement. This

statement is illustrated in the following example.

Example. Consider APA N given in Fig. 14a. Fig. 14b illustrates the state-

based abstra
tion of N where state s2 and s3 are grouped, and Fig. 14
 illustrates
the 
onstraint-abstra
tion of N . It is easy to see that α(N) 6� χ(N). Indeed,

state s′2 
annot re�ne either state s′′2 or s′′3 , be
ause their valuations do not


oin
ide. Also χ(N) 6� α(N), be
ause their 
onstraints do not mat
h.
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(d) PA P su
h that P |= χ(N) and

P 6|= N ′

Figure 12: Example that 
onstraint abstra
tion does not preserve � for non

valuation-deterministi
 APAs

4. Consisten
y, Pruning and Conjun
tion

We now turn our attention to de
iding whether there exist implementations

satisfying one or several spe
i�
ations. When 
onsidering only one spe
i�
ation,

this problem is 
alled 
onsisten
y. In the following subse
tion, we �rst formally

de�ne 
onsisten
y and then propose an algorithm to de
ide if a given APA is


onsistent. We then move to the problem of de
iding whether several APAs ad-

mit a 
ommon implementation. We propose an operation, 
alled 
onjun
tion,

that 
ombines requirements of several APAs into a single APA whose imple-

mentations are exa
tly those implementations that satisfy all original APAs.

4.1. Consisten
y and Pruning

De�nition 28 (Consisten
y). An APA N is 
onsistent if and only if it admits

at least one implementation, i.e. [[N ]] 6= ∅.

We say that a state s is 
onsistent if V (s) 6= ∅ and L(s, a, ϕ) = ⊤ =⇒
Sat(ϕ) 6= ∅. An APA is lo
ally 
onsistent if all its states are 
onsistent. It is

easy to see that a lo
ally 
onsistent APA is 
onsistent. However, in
onsisten
y

of a state does not imply in
onsisten
y of the spe
i�
ation. In order to de
ide

whether a spe
i�
ation is 
onsistent, we pro
eed as usual and propagate in
on-

sistent states with the help of a pruning operator β that �lters out distributions
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Figure 13: Example that Thm. 27 does not hold for weak weak re�nement with

a non a
tion-deterministi
 APA

s2 s3
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a, x2,⊤ a, x3,⊤
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a, x1,⊤

ϕx ≡ x1 = 1 ∨ x2 + x3 = 1

(a) An APA N
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a, [0, 1],⊤

(
) χ(N)

Figure 14: α(N) and χ(N) 
annot be 
ompared in terms of re�nement

leading to in
onsistent states. This operator is applied until a �xed point is

rea
hed, i.e., until the spe
i�
ation does not 
ontain in
onsistent states (it is

lo
ally 
onsistent). We now formally de�ne the pruning operator.

De�nition 29 (Pruning). Let N = (S,A, L,AP, V, s0) be an APA with λ /∈ S
and let T ⊆ S be the set of in
onsistent states in N . Let ν : S → {λ} ∪ S \ T
be de�ned by ν(s) = λ if s ∈ T , and ν(s) = s otherwise. Let β be a pruning

fun
tion de�ned by: If ν(s0) = λ, then β(N) is the empty APA. Otherwise,
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(
) APA β2(N) = β∗(N)

Figure 15: APAs N , β(N) and β2(N) = β∗(N)

β(N) = (S′, A, L′, AP, V ′, s0) with S′ = S \ T , and for all s ∈ S′
, a ∈ A,

p ∈ AP and ϕ ∈ C(S′),

L′(s, a, ϕ) =

{
⊥ if ϕs,a = ∅
⊔ϕ∈ϕs,aL(s, a, ϕ) otherwise

V ′(s) = V (s)

where ϕs,a is the set of 
onstraints on S, rea
hable from state s with label a,
that mat
h ϕ when restri
ted to S′

. More formally,

ϕs,a = {ϕ ∈ C(S) | L(s, a, ϕ) 6= ⊥ and µ ∈ Sat(ϕ) i� ∃µ ∈ Sat(ϕ) s.t.
∀s ∈ S′, µ(s) = µ(s), and ∀t ∈ T, µ(t) = 0}.

All states in T are mapped onto λ and are removed from APA N . APA

β(N) obtained by pruning may still 
ontain in
onsistent states. Therefore, we

repeat pruning until a �xpoint is rea
hed su
h that βn(N) = βn+1(N), where n
represents the number of iterations. The existen
e of this �xpoint is guaranteed

as N is �nite. Some of the operations (
onjun
tion and 
omposition) may

introdu
e in
onsistent states, and are su

eeded by a pruning phase to remove

su
h states.

Example. Consider APA N given in Fig. 15a. State s3 of N is in
onsistent

be
ause of an empty valuation. The �rst round of pruning thus removes state

s3 and yields APA β(N) given in Fig. 15b. Sin
e state s3 has been removed,

transitions that used to lead to s3 now have the 
onstraint false, whi
h admits

no solution. The outgoing must transition of state s4 thus be
omes in
onsistent.

As a 
onsequen
e, the next round of pruning removes state s4 and yields APA

β2(N) given in Fig. 15
. Sin
e there are no more in
onsisten
ies, it follows that

β∗(N) = β2(N).

Pruning preserves the set of implementations, as formalized in the following

theorem.

Theorem 30. For any APA N , it holds that [[N ]] = [[β(N)]].
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Proof. Let N = (S,A, L,AP, V, s0) be an APA. Let T be the set of in
onsistent

states of N and let β(N) be the 
orresponding APA using the pruning operator

of De�nition 29. The result is trivial if β(N) is empty. Otherwise, suppose that

β(N) = (S′, A, L′, AP, V ′, s0), and let P = (Q,A,LP , AP, VP , q0) be a PA. We

prove that P |= N ⇐⇒ P |= β(N).

• P |= N ⇒ P |= β(N): Suppose that P |= N , and let R ⊆ Q × S be the


orresponding satisfa
tion relation. De�ne the relation R′ = R∩(Q× S′). The
proof that R′

is a satisfa
tion relation is standard. The key argument relies

on the fa
t that all the states s ∈ S su
h that there exists q ∈ Q with qR s
are 
onsistent, i.e. s /∈ T . Thus, 
onsidering the restri
tion of the relation R
to S \ T preserves implementations. For the sake of 
ompleteness, the detailed

proof is given in Appendix E.

• P |= N ⇐ P |= β(N): Suppose that P |= β(N), and let R′ ⊆ Q× S′
be the


orresponding satisfa
tion relation. By 
onstru
tion, the extension R of R′
to

Q× S is a satisfa
tion relation su
h that q0 R s0. Thus P |= N .

Observe that the above theorem only holds for thorough re�nement. Indeed,

any synta
ti
 notion of re�nement between N and β(N) fails be
ause some

(potentially rea
hable) states of N are removed, and thus �nd no 
ounterpart

in β(N).

4.2. Conjun
tion

Conjun
tion, also 
alled logi
al 
omposition, allows 
ombining two spe
i�-


ations into a single spe
i�
ation that has the 
onjun
tive behavior of the two

operands. More pre
isely, a 
onjun
ted spe
i�
ation admits the interse
tion of

sets of implementations of its 
onstituents. The 
onjun
tion operation is a mix

between the 
orresponding operations for modal automata [25℄ and CMCs [19℄.

The main lines of the general 
onjun
tion operator that we de�ne hereafter are

as follows: (1) a must transition on one side that has no 
ounterpart on the other

side yields an in
onsistent transition, (2) a may transition on one side that has

no 
ounterpart on the other side yields no transition, (3) the 
ombination of

two transitions (may or must) yields a may transition to a 
ombination of the


onstraints, and in addition, (4, 5) a must transition on one side yields a must

transition in the 
onjun
tion to a 
onstraint 
ombining the 
onstraint asso
iated

to the original must transition with a disjun
tion of all admissible 
onstraints

on the other side. Noti
e that, although items (1,2,3) are very 
lose to the

de�nitions of 
onjun
tion for modal automata and CMCs, items (4,5) are more

involved. Indeed, the general de�nition we present here needs to handle a
tion

non-determinism, whi
h is not taken 
are of in CMCs or modal automata. In

fa
t a simpler notion of 
onjun
tion 
an be de�ned for deterministi
 APAs [1, 2℄.

Noti
e that 
onjun
tion may introdu
e in
onsistent transitions through (1)

and should thus be followed by applying the pruning operator β∗
.
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De�nition 31. Let N = (S,A, L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be

APAs sharing a
tion and proposition sets. Their 
onjun
tion N∧N ′
is the APA

(S×S′, A, L̃, AP, Ṽ , (s0, s
′
0)) where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and

a ∈ (Must(s′)\May(s)) ∪ (Must(s)\May(s′))1

L̃((s, s′), a, false) = ⊤
, (1)

a ∈ (May(s)\May(s′)) ∪ (May(s′)\May(s))

L̃((s, s′), a, ϕ̃) = ⊥
, (2)

a∈May(s)∩May(s′) L(s, a, ϕ) 6=⊥ L′(s′, a, ϕ′) 6=⊥

L̃((s, s′), a, ϕ̃) = ?
, (3)

where ϕ̃ ∈ C(S × S′) su
h that µ̃ ∈ Sat(ϕ̃) if and only if

distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ) and

distribution µ′ : t′ →
∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s) L(s, a, ϕ) = ⊤

L̃((s, s′), a, ϕ̃⊤) = ⊤
, (4)

where ϕ̃⊤ ∈ C(S × S′) su
h that µ̃ ∈ Sat(ϕ̃⊤) if and only if both

the distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

there exists ϕ′ ∈ C(S′) with L′(s′, a, ϕ′) 6= ⊥ and the distribution µ′ : t′ →∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s′) L′(s′, a, ϕ′) = ⊤

L̃((s, s′), a, ϕ̃′⊤) = ⊤
, (5)

where ϕ̃′⊤ ∈ C(S × S′) is su
h that µ̃′ ∈ Sat(ϕ̃′⊤) if and only if both

there exists ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥ and the distribution µ : t →∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

the distribution µ′ : t′ →
∑

t∈S µ̃
′((t, t′)) is in Sat(ϕ′).

Note that 
onjun
tion ∧ is symmetri
.

We 
on
lude the se
tion by showing that 
onjun
tion is the greatest lower

bound with respe
t to weak weak re�nement.

1

Re
all that ∀s, Must(s) ⊆ May(s)
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Theorem 32. Let N1, N2, and N3 be 
onsistent APAs sharing a
tion and

atomi
 proposition sets. It holds that

• β∗(N1 ∧N2) �W N1.

• If N3�W N1 and N3�W N2, then N3�W β∗(N1 ∧N2).

Proof. Let N1 = (S1, A, L1, AP, V1, s
1
0) and N2 = (S2, A, L2, AP, V2, s

2
0) and

N3 = (S3, A, L3, AP, V3, s
3
0) be three APAs. LetN1∧N2 = (S1×S2, A, L̃, AP, Ṽ ,

(s10, s
2
0)) be the 
onjun
tion of N1 and N2 de�ned as in De�nition 31. We prove

the 
laims separately.

• β∗(N1 ∧N2) �W N1: Obviously, if N1 ∧N2 is in
onsistent, then β∗(N1 ∧N2)
is empty and re�nes N1 with the empty re�nement relation. Suppose now that

β∗(N1 ∧ N2) = (S∧, A, L∧, AP, V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2, not empty.

De�ne the relation R ⊆ S∧ × S1 su
h that for all (s, s′) ∈ S∧
and t ∈ S1,

(s, s′)R t i� s = t. We prove that R is a weak weak re�nement relation. Let

(s, s′) ∈ S∧
su
h that (s, s′)R s. We show that R satis�es the axioms of a weak

weak re�nement relation.

1. let a ∈ A and ϕ ∈ C(S1) su
h that L1(s, a, ϕ) = ⊤. Sin
e (s, s′) ∈ S∧
, we

have that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) su
h that µ̃ ∈ Sat(ϕ̃) i�

• the distribution µ : t→
∑
t′∈S2

µ̃((t, t′)) is in Sat(ϕ), and

• there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution µ′ : t′ →
∑

t∈S1
µ̃((t, t′)) is in Sat(ϕ′).

By de�nition of N1 ∧N2, we have that L̃((s, s′), a, ϕ̃) = ⊤. Consider now
ϕ∧ ∈ C(S∧) the 
onstraint su
h that µ∧ ∈ Sat(ϕ∧) i� there exists µ̃ ∈
Sat(ϕ̃) su
h that ∀r ∈ S∧, µ∧(r) = µ̃(r) and ∀r ∈ (S1×S2)\S∧, µ̃(r) = 0.
A

ording De�nition 29, L∧((s, s′), a, ϕ∧) = ⊔

ψ∈ϕ∧(s,s′),a L̃((s, s′), a, ψ).

Sin
e ϕ̃ ∈ ϕ∧(s,s′),a
, it holds that L∧((s, s′), a, ϕ∧) = ⊤.

Thus there exists ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) = ⊤. Moreover,

de�ne the 
orresponden
e fun
tion δ : S∧ → (S1 → [0, 1]) su
h that

δ((r, r′))(r′′) = 1 i� r′′ = r. Let µ∧ ∈ Sat(ϕ∧), µ̃ the 
orresponding

distribution in Sat(ϕ̃), and µ the distribution su
h that µ : r ∈ S1 7→∑
r′∈S2

µ̃((r, r′)). By de�nition, µ is in Sat(ϕ) and by 
onstru
tion, we

have µ∧
⋐
δ
R µ. For the sake of 
ompleteness, a detailed proof of this fa
t

is given in Appendix F.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) 6= ⊥. By de�nition

of L∧
, there exists ϕ̃ ∈ ϕ∧t,a

. Thus, L̃((s, s′), a, ϕ̃ 6= ⊥ in N1 ∧N2, and a

distribution µ∧
satis�es ϕ∧

i� there exists a distribution µ̃ ∈ Sat(ϕ̃) su
h
that µ∧(r) = µ̃(r) for all r ∈ S∧

and µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
.

Sin
e S∧

ontains only 
onsistent states, there exists µ∧ ∈ Sat(ϕ∧). Let

µ̃ ∈ Sat(ϕ̃) be a 
orresponding distribution in ϕ̃. There are 3 
ases.

• If a /∈ Must(s) and a /∈ Must(s′), then by De�nition 31, there ex-

ists ϕ ∈ C(S1) and ϕ′ ∈ C(S2) su
h that L1(s, a, ϕ) 6= ⊥ and
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L2(s
′, a, ϕ′) 6= ⊥. Moreover, ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ :

r ∈ S1 7→
∑
r′∈S2

˜̺((r, r′)) and ̺′ : r′ ∈ S2 7→
∑

r∈S1
˜̺((r, r′)) are

respe
tively in Sat(ϕ) and in Sat(ϕ′). Sin
e µ̃ ∈ Sat(ϕ̃), let µ and

µ′
be the 
orresponding distributions in Sat(ϕ) and Sat(ϕ′). De-

�ne the 
orresponden
e fun
tion δ : S∧ → (S1 → [0, 1]) su
h that

δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we have µ∧
⋐
δ
R µ.

• Otherwise, if a ∈ Must(s) and there exists ϕ ∈ C(S1) su
h that ϕ̃ is

su
h that ˜̺∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
∑
r′∈S2

˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥

and the distribution ̺′ : r′ →
∑
r∈S1

˜̺((r, r′)) is in Sat(ϕ′).

Sin
e µ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the 
orresponding 
onstraint on
S2 su
h that L2(s

′, a, ϕ′) 6= ⊥. Let µ and µ′
be the 
orresponding

distributions in Sat(ϕ) and Sat(ϕ′). De�ne the 
orresponden
e fun
-
tion δ : S∧ → (S1 → [0, 1]) su
h that δ((r, r′))(r′′) = 1 i� r′′ = r. As
above, we have µ∧

⋐
δ
R µ. The same holds in the symmetri
 
ase.

Finally, in any 
ase, there exists ϕ ∈ C(S1) su
h that L1(s, a, ϕ) 6= ⊥ and

there exists µ ∈ Sat(ϕ) su
h that µ∧
⋐R µ.

3. By de�nition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak re�nement relation, and we have β∗(N1∧N2) �W
N1.

• if N3 �W N1 and N3 �W N2, then N3 �W β∗(N1 ∧N2): Let R1 ⊆ S3 × S1

and R2 ⊆ S3 × S2 be the weak weak re�nement relations su
h that N3 �W N1

and N3 �W N2. Obviously, if N1 ∧ N2 is fully in
onsistent, then β∗(N1 ∧ N2)
is empty. In this 
ase, there are no 
onsistent APAs re�ning both N1 and N2.

As a 
onsequen
e, N3 is in
onsistent, whi
h violates the hypothesis. Suppose

now that β∗(N1 ∧ N2) = (S∧, A, L∧, AP, V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2, is

not empty. De�ne the relation R∧ ⊆ S3 × S∧
su
h that s′′ R∧(s, s′) ∈ S∧

i�

s′′ R s ∈ S1 and s′′ R′ s′ ∈ S2. We prove that R∧
is a weak weak re�nement

relation. Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 su
h that s′′ R∧(s, s′). We show that

R∧
satis�es the axioms of a weak weak re�nement relation.

1. Let a ∈ A and ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) = ⊤. By de�nition,
we have L̃((s, s′), a, ϕ̃) = ⊤ with ϕ̃ ∈ C(S1 × S2) su
h that µ∧ ∈ Sat(ϕ∧)
i� there exists µ̃ ∈ Sat(ϕ̃) su
h that µ∧(r) = µ̃(r) for all r ∈ S∧

and

µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
. There are 2 
ases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) su
h that

L1(s, a, ϕ) = ⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : t→
∑

t′∈S2
˜̺((t, t′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥

and the distribution ̺′ : t′ →
∑

t∈S1
˜̺((t, t′)) is in Sat(ϕ′).
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Sin
e L1(s, a, ϕ) = ⊤ and s′′ R1 s, there exists ϕ′′ ∈ C(S3) su
h

that L3(s
′′, a, ϕ′′) = ⊤ and ∀µ′′ ∈ Sat(ϕ′′), ∃µ ∈ Sat(ϕ), su
h that

µ′′
⋐R1

µ (1).

Sin
e L3(s
′′, a, ϕ′′) = ⊤ and s′′ R2 s

′
, we have that ∀µ′′ ∈ Sat(ϕ′′),

there exist ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′)

su
h that µ′′
⋐R2

̺′ (2).

Let µ′′ ∈ Sat(ϕ′′). By (1) and (2), there exists µ ∈ Sat(ϕ), ϕ′ ∈
C(S2) su
h that L2(s

′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h that µ′′
⋐R1

µ and µ′′
⋐R2

µ′
. Sin
e (s, s′) and s′′ are 
onsistent, remark that for

all (r, r′) in S1×S2 \S∧
, we 
annot have s′′ R1 r and we 
annot have

s′′ R2 r
′
(3).

We now build µ∧ ∈ Sat(ϕ∧) su
h that µ′′
⋐R∧ µ∧

.

Let δ and δ′ be the 
orresponden
e fun
tions su
h that µ′′
⋐
δ
R1

µ and

µ′′
⋐
δ′

R2
µ′
. De�ne the 
orresponden
e fun
tion δ′′ : S3 → (S∧ →

[0, 1]) su
h that for all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) =

δ(r′′)(r)δ′(r′′)(r′). We build µ∧
and prove that µ′′

⋐
δ′′

R∧ µ∧
.

� For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are dis-

tributions. By (3), we know that for all (r, r′) ∈ S1 × S2 \ S∧
,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a 
onsequen
e, δ′′(r′′) is a distri-

bution on S∧
.

� De�ne µ∧(r, r′) =
∑

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). It follows that

µ∧ ∈ Sat(ϕ∧). For the sake of 
ompleteness, a detailed proof of

this fa
t is given in Appendix F.

� If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and

δ′(r′′)(r′) > 0. As a 
onsequen
e, r′′ R1 r and r′′ R2 r
′
, thus

r′′ R∧(r, r′).

Finally, µ′′
⋐R∧ µ∧

and µ∧ ∈ Sat(ϕ∧). The same holds for the

symmetri
 
ase.

2. Let a ∈ A and ϕ′′ ∈ C(S3) su
h that L3(s
′′, a, ϕ′′) 6= ⊥. Let µ′′ ∈ Sat(ϕ′′).

Sin
e s′′ R1 s and s′′ R2 s
′
, there must exist ϕ ∈ C(S1), µ ∈ Sat(ϕ),

ϕ′ ∈ C(S2) and µ
′ ∈ Sat(ϕ′) su
h that L1(s, a, ϕ) 6= ⊥, L2(s

′, a, ϕ′) 6= ⊥,
µ′′

⋐R1
µ and µ′′

⋐R2
µ′

. As a 
onsequen
e, L̃((s, s′), a, ϕ̃) 6= ⊥, with
ϕ̃ ∈ C(S1 × S2) su
h that ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→∑

r′∈S2
˜̺((r, r′)) and ̺′ : r′ ∈ S2 7→

∑
r∈S1

˜̺((r, r′)) are respe
tively in

Sat(ϕ) and in Sat(ϕ′). Moreover, sin
e s′′ and (s, s′) are 
onsistent, there
exists ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) 6= ⊥ and ̺∧ ∈ Sat(ϕ∧) i�

there exists ˜̺ ∈ Sat(ϕ̃) su
h that ̺∧(r, r′) = ˜̺(r, r′) for all (r, r′) ∈ S∧

and ˜̺(r, r′) = 0 for all (r, r′) ∈ S1 × S2 \ S∧
.

Let δ and δ′ the 
orresponden
e fun
tions su
h that µ′′
⋐
δ
R1

µ and µ′′
⋐
δ′

R2

µ′
. Sin
e s′′ and (s, s′) are 
onsistent, we know that (1) for all (r, r′) ∈

S1 × S2 \ S∧
, we have µ(r) = µ′(r′) = 0 and (2) for all r′′ ∈ S3 and

(r, r′) ∈ S1×S2 \S∧
, we 
annot have r′′ R1 r and we 
annot have r′′ R2 r

′
.
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De�ne the 
orresponden
e fun
tion δ′′ : S3 → (S∧ → [0, 1]) su
h that for

all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We now

build µ∧
su
h that µ′′

⋐
δ′′

R∧ µ∧
and prove that µ∧ ∈ Sat(ϕ∧).

• For all r′′ ∈ S3, if µ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are dis-

tributions. By (2), we know that for all (r, r′) ∈ S1 × S2 \ S∧
,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a 
onsequen
e, δ′′(r′′) is a distribu-

tion on S∧
.

• De�ne µ∧(r, r′) =
∑

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). As above, we 
an

prove that µ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and δ′(r′′)(r′) >
0. As a 
onsequen
e, r′′ R1 r and r

′′ R2 r
′
, thus r′′ R∧(r, r′).

Finally, there exists ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) 6= ⊥ and

µ∧ ∈ Sat(ϕ∧) su
h that µ′′
⋐R∧ µ∧

.

3. Sin
e s′′ R1 s and s
′′ R2 s

′
, we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Thus, R∧
is a weak weak re�nement relation between N3 and β∗(N1 ∧N2).

Moreover, we know that s30 R1 s
1
0, s

3
0 R2 s

2
0, and (s10, s

2
0) is 
onsistent. As a


onsequen
e s30 R
∧(s10, s

2
0) and N3 �W β∗(N1 ∧N2).

From the above theorem, we 
an easily dedu
e that the set of implementa-

tions of the 
onjun
tion of two given APAs is exa
tly the interse
tion of their

sets of implementations.

Corollary 33. For APAs N1 and N2, it holds that [[β∗(N1∧N2)]] = [[N1]]∩[[N2]].

Proof. Let N1 and N2 be APAs. We prove the result by double in
lusion.

By Theorem 32, we have that β∗(N1∧N2) �W N1. By Theorem 17, we thus

have [[β∗(N1∧N2)]] ⊆ [[N1]]. By symmetry, we also obtain that [[β∗(N1∧N2)]] ⊆
[[N2]], and thus [[β∗(N1 ∧N2)]] ⊆ [[N1]] ∩ [[N2]].

Re
all that every PA P 
an be seen as an APA in SVNF with no may

transitions and with only single point 
onstraints. Moreover, re
all that all

notions of re�nement boil down to satisfa
tion when the left operand is a PA,

i.e. for all PA P and for all APA N , we have P |= N ⇐⇒ P �W N ⇐⇒
P � N ⇐⇒ P �S N . Let P be a PA su
h that P ∈ [[N1]] ∩ [[N2]]. By

de�nition, we have P |= N1 and P |= N2, and as a 
onsequen
e P �W N1

and P �W N2. By Theorem 32, we thus have P �W β∗(N1 ∧ N2) and as a


onsequen
e P |= β∗(N1∧N2). Therefore, we have [[N1]]∩[[N2]] ⊆ [[β∗(N1∧N2)]],
whi
h 
on
ludes the proof.

The above result is surprising. Indeed, in many theories for non-deterministi


systems su
h as modal automata, there is no synta
ti
al notion of 
onjun
tion

that allows to 
ompute sets of implementation [26℄. Observe also that Theo-

rem 32 holds for weak-weak re�nement but neither for weak nor strong re�ne-

ments. Consider APAs N1 and N2, and their 
onjun
tion β∗(N1 ∧ N2) given

in Fig. 16. It is easy to see that β∗(N1 ∧ N2) 
annot re�ne N2 with a weak
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1

a, x3,⊤a, x2,⊤

{{γ}}{{β}}

{{θ}}

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

2 3

(a) APA N1

{{θ}}

2 3

{{γ}}{{β}}

a, 1, ?a, 1, ?

1

(b) APA N2

ϕ∧
x ≡ (x(2,2) = 1) ∨ (x(3,3) = 1)

{{γ}}{{β}}

{{θ}}

1,1

a, x(3,3),⊤

2,2 3,3

a, 1,? a, x(2,2),⊤ a, 1,?

(
) APA β∗(N1 ∧ N2)

Figure 16: APAs N1, N2 and their 
onjun
tion β∗(N1 ∧N2) su
h that β∗(N1 ∧
N2) 6� N2.

re�nement relation. Indeed, the 
onstraint ϕ∧
x present in state (1, 1) 
annot

be redistributed to a given 
onstraint in N2 without knowing in advan
e whi
h

of its solutions is 
onsidered. This again illustrates the power of interleaving


onstraints and modalities through weak re�nement.

5. Compositional Reasoning

We now propose a 
omposition operation mixing the properties of the 
om-

position operation on modal transition systems and the 
omposition operation

on CMCs. We then show how 
omposition and abstra
tion 
an 
ollaborate to

avoid state-spa
e explosion in a 
omponent-wise manner.

In our theory, the 
omposition operation is parametrized with a set of syn-


hronization a
tions like in CSP. This set allows to spe
ify on whi
h a
tions

the two spe
i�
ations should 
ollaborate and on whi
h a
tions they 
an be-

have individually. The intuition is as follows: syn
hronizing transitions have

the lowest modality of the original transitions, and lead to a 
onstraint whose

solutions are produ
t distributions of solutions of the original 
onstraints; and

non-syn
hronizing transitions keep their modality and impose that the other


omponent stays in its 
urrent state.

De�nition 34 (Parallel 
omposition of APAs). Let N = (S,A, L,AP, V, s0) and
N ′ = (S′, A′, L′, AP ′, V ′, s′0) be APAs and assume AP ∩AP ′ = ∅. The parallel


omposition of N and N ′
with respe
t to syn
hronization set A ⊆ A∩A′

, written

as N‖AN
′
, is given as N‖AN

′ = (S×S′, A∪A′, L̃, AP ∪AP ′, Ṽ , (s0, s
′
0)) where

• L̃ is de�ned as follows:

� For all (s, s′) ∈ S × S′
, a ∈ A, if there exists ϕ ∈ C(S) and

ϕ′ ∈ C(S′), su
h that L(s, a, ϕ) 6= ⊥ and L′(s′, a, ϕ′) 6= ⊥, de�ne
L̃((s, s′), a, ϕ̃) = L(s, a, ϕ)⊓L′(s′, a, ϕ′) with ϕ̃ the new 
onstraint in

C(S×S′) su
h that µ̃ ∈ Sat(ϕ̃) if and only if there exists µ ∈ Sat(ϕ)
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and µ′ ∈ Sat(ϕ′) su
h that µ̃(u, v) = µ(u)µ′(v) for all u ∈ S and

v ∈ S′
.

If either for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥, or ∀ϕ′ ∈ C(S′), we
have L′(s′, a, ϕ′) = ⊥ then for all ϕ̃ ∈ C(S×S′), L̃((s, s′), a, ϕ̃) = ⊥.

� For all (s, s′) ∈ S × S′
, a ∈ A \ A, and for all ϕ ∈ C(S), de�ne

L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) with ϕ̃ the new 
onstraint in C(S × S′)
su
h that µ̃ ∈ Sat(ϕ̃) if and only if for all u ∈ S and v 6= s′, µ̃(u, v) =
0 and the distribution µ : t 7→ µ̃(t, s′) is in Sat(ϕ).

� For all (s, s′) ∈ S × S′
, a ∈ A′ \ A, and for all ϕ′ ∈ C(S′), de�ne

L̃((s, s′), a, ϕ̃′) = L′(s′, a, ϕ′) with ϕ̃′
the new 
onstraint in C(S ×

S′) su
h that µ̃′ ∈ Sat(ϕ̃′) if and only if for all u 6= s and v ∈
S′, µ̃′(u, v) = 0 and the distribution µ′ : t′ 7→ µ̃′(s, t′) is in Sat(ϕ′).

• Ṽ is de�ned as follows: for all (s, s′) ∈ S × S′
, Ṽ ((s, s′)) = {B̃ = B ∪

B′ | B ∈ V (s) and B′ ∈ V ′(s′)}.

Contrary to the 
onjun
tion operation, 
omposition is de�ned for dissimilar

alphabets. Sin
e PAs are a restri
tion of APAs, their 
omposition is de�ned in

the same way. Remark that this boils down to the standard notion of parallel


omposition for PAs [5℄. By inspe
ting De�nition 34, one 
an see that the


omposition of two APAs whose 
onstraints are systems of linear inequalities (or

polynomial 
onstraints) may lead to an APA whose 
onstraints are polynomial.

One 
an also see that the 
onjun
tion of two APAs with polynomial 
onstraints

is an APA with polynomial 
onstraints. The 
lass of polynomial 
onstraints

APAs is thus 
losed under all 
ompositional design operations.

The following theorem 
hara
terizes the relation between parallel 
omposi-

tion and re�nement.

Theorem 35. Given a syn
hronization set A, all notions of re�nement are a

pre
ongruen
e with respe
t to the parallel 
omposition operator ‖A de�ned above,

i.e. if N1⋉N ′
1 and N2⋉N ′

2, then N1‖AN2⋉N ′
1‖AN

′
2, for ⋉ ∈ {�T ,�W ,�,�S}.

Proof. We provide the proof for ⋉ =�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N

′
1 =

(S′
1, A1, L

′
1, AP1, V

′
1 , s

1
0
′
) and N ′

2 = (S′
2, A2, L

′
2, AP2, V

′
2 , s

2
0
′
) be APAs su
h that

AP1 ∩ AP2 = ∅. Let A ⊆ A1 ∩ A2. Assume that N1 � N ′
1 and N2 � N ′

2

with weak re�nement relations R1 and R2, respe
tively. Let N1‖AN2 = (S1 ×
S2, A1∪A2, L,AP1∪AP2, V, (s

1
0, s

2
0)) and N

′
1‖AN

′
2 = (S′

1×S
′
2, A1∪A2, L

′, AP1∪

AP2, V
′, (s10

′
, s20

′
)).

Let R ⊆ (S1 × S2)× (S′
1 × S′

2) be the relation su
h that (s1, s2)R(s′1, s
′
2) i�

s1 R1 s
′
1 and s2 R2 s

′
2. We now show that R is a weak re�nement relation su
h

that N1‖AN2 � N ′
1‖AN

′
2.

Assume that (s1, s2)R(s′1, s
′
2). We show that R satis�es the axioms of a

weak re�nement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S′
1 × S′

2) su
h that L′((s′1, s
′
2), a, ϕ

′) = ⊤.
There are three 
ases:
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• If a ∈ A, then there exists ϕ′
1 ∈ C(S′

1) and ϕ′
2 ∈ C(S′

2) su
h that

L′
1(s

′
1, a, ϕ

′
1) = L′

2(s
′
2, a, ϕ

′
2) = ⊤ and µ′ ∈ Sat(ϕ′) i� there ex-

ists µ′
1 ∈ Sat(ϕ′

1) and µ′
2 ∈ Sat(ϕ′

2) su
h that µ′ = µ′
1µ

′
2. Sin
e

s1 R1 s
′
1 and s2 R2 s

′
2, there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) with

L1(s1, a, ϕ1) = L2(s2, a, ϕ2) = ⊤ and ∀µ1 ∈ Sat(ϕ1), ∃µ
′
1 ∈ Sat(ϕ′

1) :
µ1 ⋐R1

µ′
1 and ∀µ2 ∈ Sat(ϕ2), ∃µ′

2 ∈ Sat(ϕ′
2) : µ2 ⋐R2

µ′
2.

De�ne ϕ ∈ C(S1 × S2) su
h that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By

de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ).
Then there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h that µ = µ1µ2.

Sin
e s1 R1 s
′
1 and s2 R2 s

′
2, there exist µ

′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2)
and 
orresponden
e fun
tions δ1 : S1 → (S′

1 → [0, 1]) and δ2 : S2 →
(S′

2 → [0, 1]), su
h that µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) as δ(u, v)(u′, v′) = δ1(u)(u

′) · δ2(v)(v′). Consider the distri-

bution µ′
su
h that µ′ = µ′

1µ
′
2. By 
onstru
tion, µ′ ∈ Sat(ϕ′) and

µ ⋐
δ
R µ′

. For the sake of 
ompleteness, a detailed proof of this fa
t

is given in Appendix G.

• If a ∈ A1 \A, then there exists ϕ′
1 ∈ C(S′

1) su
h that L′
1(s

′
1, a, ϕ

′
1) =

⊤. Sin
e s1 R1 s
′
1, there exists ϕ1 ∈ C(S1) with L1(s1, a, ϕ1) = ⊤

and ∀µ1 ∈ Sat(ϕ1), ∃µ′
1 ∈ Sat(ϕ′

1) su
h that µ1 ⋐R1
µ′

1.

De�ne ϕ ∈ C(S1 × S2) su
h that µ ∈ Sat(ϕ) i� for all u ∈ S1

and v 6= s2, µ(u, v) = 0 and the distribution µ1 : t 7→ µ(t, s2) is in

Sat(ϕ1). By de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let
µ ∈ Sat(ϕ). Then there exists a µ1 ∈ Sat(ϕ1) su
h that µ1 
an be

written as t 7→ µ(t, s2) and furthermore there exists µ′
1 ∈ Sat(ϕ′

1)
and a 
orresponden
e fun
tion δ1 : S1 → (S′

1 → [0, 1]) su
h that

µ1 ⋐
δ1
R1

µ′
1.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) as δ(u, v)(u′, v′) = δ(u)(u′) if v = s2 and v′ = s′2, and 0
otherwise. Consider the distribution µ′

over S′
1 ×S′

2 su
h that for all

u′ ∈ S′
1 and v′ 6= s′2, µ

′(u′, v′) = 0 and for all u′ ∈ S′
1 µ

′(u′, s′2) =
µ′

1(u
′). By 
onstru
tion, µ′ ∈ Sat(ϕ′) and µ ⋐

δ
R µ′

. For the sake of


ompleteness, a detailed proof of this fa
t is given in Appendix G.

• If a ∈ A2 \A, the proof is similar.

2. Let a ∈ A1∪A2 and ϕ ∈ C(S1×S2) su
h that L((s1, s2), a, ϕ) 6= ⊥. There
are three 
ases:

• If a ∈ A, then there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) su
h that

L1(s1, a, ϕ1) 6= ⊥, L2(s2, a, ϕ2) 6= ⊥, and µ ∈ Sat(ϕ) i� there ex-

ist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h that µ = µ1µ2. Sin
e

s1 R1 s
′
1 and s2 R2 s

′
2, there exists ϕ

′
1 ∈ C(S′

1) and ϕ
′
2 ∈ C(S′

2) with
L′

1(s
′
1, a, ϕ

′
1) 6= ⊥, L′

2(s
′
2, a, ϕ

′
2) 6= ⊥, and ∀µ1 ∈ Sat(ϕ1), ∃µ′

1 ∈
Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1 and ∀µ2 ∈ Sat(ϕ2), ∃µ

′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.
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De�ne ϕ′ ∈ C(S′
1×S

′
2) su
h that Sat(ϕ′) = Sat(ϕ′

1)Sat(ϕ
′
2). By def-

inition of N ′
1‖AN

′
2, we have L′((s′1, s

′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ).
By de�nition of ϕ, there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h
that µ = µ1µ2. Furthermore, sin
e s1 R1 s

′
1 and s2 R2 s

′
2, there ex-

ist µ′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2) and two 
orresponden
e fun
tions

δ1 : S1 → (S′
1 → [0, 1]) and δ2 : S2 → (S′

2 → [0, 1]) su
h that

µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) su
h that, for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′)·δ2(v)(v′).
By the same 
al
ulations as above, we know that the distribution µ′

over S′
1 × S′

2 
onstru
ted as µ′ = µ′
1µ

′
2 is in Sat(ϕ′) and gives that

µ ⋐
δ
R µ′

.

• If a ∈ A1 \A, then there exists ϕ1 ∈ C(S1) su
h that L1(s1, a, ϕ1) 6=
⊥. Sin
e s1 R1 s

′
1, there exists ϕ′

1 ∈ C(S′
1) with L′

1(s
′
1, a, ϕ

′
1) 6= ⊥

and ∀µ1 ∈ Sat(ϕ1), ∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1.

De�ne ϕ′ ∈ C(S′
1 × S′

2) su
h that µ′ ∈ Sat(ϕ′) i� for all u′ ∈ S′
1

and v′ 6= s′2, µ(u′, v′) = 0 and the distribution µ′
1 : t 7→ µ(t, s′2) is in

Sat(ϕ′
1). By de�nition of N ′

1‖AN
′
2, we have L′((s′1, s

′
2), a, ϕ

′) 6= ⊥.
Let µ ∈ Sat(ϕ). Let µ1 be the distribution on S1 su
h that for all

t ∈ S1, µ1(t) = µ(t, s2). By de�nition, µ1 ∈ Sat(ϕ1). Let µ′
1 ∈

Sat(ϕ′
1) and a 
orresponden
e fun
tion δ1 : S1 → (S′

1 → [0, 1]) su
h
that µ1 ⋐

δ1
R1

µ′
1.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) →
[0, 1]) su
h that for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′) if v = s2
and v′ = s′2, and 0 otherwise. By the same 
al
ulations as above, we

know that the distribution µ′ ∈ Sat(ϕ′) su
h that for all u′ ∈ S′
1 and

v′ 6= s′2, µ
′(u′, v′) = 0 and for all u′ ∈ S′

1, µ
′
1 = µ′(u′, s′2), gives that

µ ⋐
δ
R µ′

.

• If a ∈ A2 \A, the proof is similar.

3. For atomi
 propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and

V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s′1) and B2 ∈ V ′
2(s′2)}. Sin
e

s1 R1 s
′
1 and s2 R2 s

′
2, we know by de�nition that V1(s1) ∈ V ′

1(s′1) and

V2(s2) ∈ V ′
2(s′2). Considering B1 = V1(s1) and B2 = V2(s2), we thus have

that V ((s1, s2)) ∈ V ′((s′1, s
′
2)).

By observing that (s10, s
2
0)R(s10

′
, s20

′
), sin
e s10 R1 s

1
0
′
and s20 R2 s

2
0
′
, we 
on
lude

that R is a weak re�nement relation.

The fa
ts that abstra
tion preserves strong re�nement (
f. Lemma 24), and

that strong re�nement is a pre
ongruen
e with respe
t to parallel 
omposition,

enable us to apply abstra
tion in a 
omponent-wise manner. That is to say,

rather than �rst generating (the typi
ally large PA) M‖AN , and then apply-

ing abstra
tion, it allows for �rst applying abstra
tion, yielding α1(M) and

α2(N), respe
tively, and then 
onstru
ting α1(M)‖Aα2(N). Possibly a further

abstra
tion of α1(M)‖Aα2(N) 
an be employed. The next theorem shows that
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omponent-wise abstra
tion is as powerful as applying the 
ombination of the

�lo
al� abstra
tions to the entire model.

Theorem 36. Let M and N be APAs, A a syn
hronization set, and α1, α2 be

abstra
tion fun
tions. The following holds:

α1(M) ‖A α2(N) = (α1 × α2)(M ‖AN) up to isomorphism.

Proof. LetM = (S,A, L,AP, V, s0) andN = (S′′, A′′, L′′, AP ′′, V ′′, s′′0) be APAs
and let A ⊆ A∩A′′

be a syn
hronization set su
h that the parallel 
omposition

of M and N is given as M‖AN = (S × S′′, A ∪A′′, L̃, AP ∪AP ′′, Ṽ , (s0, s
′′
0)).

Let α1 : S → S′
and α2 : S′′ → S′′′

. Let α1(M) = (S′, A, L′, AP, V ′, α1(s0)),
α2(N) = (S′′′, A′′, L′′′, AP ′′, V ′′′, α2(s

′′
0 )) and (α1×α2)(M‖AN) = (S′×S′′′, A∪

A′′, L̃′, AP ∪ AP ′′, Ṽ ′, (α1(s0), α2(s
′′
0))) be the indu
ed APA. Let

α1(M)‖Aα2(N) = (S′ × S′′′, A ∪A′′, L̃′′, AP ∪AP ′′, Ṽ ′′, (α1(s0), α2(s
′′
0))).

Noti
e that the signatures of α1(M)‖Aα2(N) and (α1 × α2)(M‖AN) only

di�er on 
onstraint fun
tions and valuation fun
tions. We establish the result by

proving the following: for all (s′, s′′′) ∈ S′×S′′′
, a ∈ A∪A′′

, and ϕ̃ ∈ C(S′×S′′′),
we have Ṽ ′((s′, s′′′)) = Ṽ ′′((s′, s′′′)) and L̃′((s′, s′′′), a, ϕ̃) = L̃′′((s′, s′′′), a, ϕ̃).

Let (s′, s′′′) ∈ S′ × S′′′
.

• The valuation of (s′, s′′′) in α1(M)‖Aα2(N) is

Ṽ ′′((s′, s′′′)) = {B ∪B′|B ∈ V ′(s′) ∧B′ ∈ V ′′′(s′′′)}

=
⋃

(s,s′′)∈(γ1×γ2)(s′,s′′′)

{B ∪B′|B ∈ V (s) ∧B′ ∈ V ′′(s′′)}

=
⋃

(s,s′′)∈(γ1×γ2)(s′,s′′′)

Ṽ ((s, s′′))

= Ṽ ′((s′, s′′′)).

• For 
onstraint fun
tions we have the following:

� Let a ∈ A and ϕ̃′ ∈ C(S′ × S′′′) su
h that L̃′((s′, s′′′), a, ϕ̃′) = ⊤:
then for all (s, s′′) ∈ (γ1 × γ2)(s

′, s′′′), we have that there exists

ϕM‖N ∈ C(S × S′′) yielding L̃((s, s′′), a, ϕM‖N ) = ⊤ and

Sat(ϕ̃′) = (α1×α2)




⋃

((s,s′′),ϕM‖N )∈(γ1×γ2)(s′,s′′′)×C(S×S′′):

L((s,s′′),a,ϕM‖N)=⊤

Sat(ϕM‖N )


 .

(6)

For ea
h of these ϕM‖N , we have, by the de�nition of parallel 
om-

position, that there exists ϕM ∈ C(S) and ϕN ∈ C(S′′) su
h that

L(s, a, ϕM ) = ⊤ and L′′(s′′, a, ϕN ) = ⊤ and µM‖N ∈ Sat(ϕM‖N ) i�
there exists µM ∈ Sat(ϕM ) and µN ∈ Sat(ϕN ) st. µM‖N (u, v) =
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µM (u)µN (v) for all (u, v) ∈ S × S′′
. De�ne ϕα1(M) ∈ C(S′), su
h

that Sat(ϕα1(M)) is the abstra
tion of the union of satisfa
tion sets of
su
h ϕM . Similarly, de�ne ϕα2(N) ∈ C(S′′′), su
h that Sat(ϕα2(N))
is the abstra
tion of the union of satisfa
tion sets of su
h ϕN . That
is,

Sat(ϕα1(M)) = α1(
⋃

(s,ϕM)∈γ1(s′)×C(S):L(s,a,ϕM)=⊤
Sat(ϕM )) (7)

Sat(ϕα2(N)) = α2(
⋃

(s′′,ϕN )∈γ2(s′′′)×C(S):L(s′′,a,ϕN)=⊤
Sat(ϕN ))

We will now have that L′(s′, a, ϕα1(M)) = ⊤ and L′′′(s′′′, a, ϕα2(N)) =

⊤. The de�nition of parallel 
omposition implies that L̃′′((s′, s′′′), a,
ϕ̃′′) = ⊤ and µα1(M)‖α2(N) ∈ Sat(ϕ̃′′) i� there exists µα1(M) ∈
Sat(ϕα1(M)) and µα2(N) ∈ Sat(ϕα2(N)) st. µα1(M)‖α2(N)(u, v) =
µα1(M)(u)µα2(N)(v) for all (u, v) ∈ S×S′′

. It is 
lear that Sat(ϕ̃′) =
Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′), a, ϕ̃′) =?.

� Let a /∈ A (or wlog. a ∈ A \ A) and ϕ̃′ ∈ C(S′ × C′′′) su
h that

L̃′((s′, s′′′), a, ϕ̃′) = ⊤: then for all (s, s′′) ∈ (γ1×γ2)(s
′, s′′′), we have

that there exists ϕM‖N ∈ C(S × S′′) yielding L̃((s, s′′), a, ϕM‖N ) =
⊤ and ϕ̃′

is de�ned as in Equation 6. For ea
h of these ϕM‖N ,

we have, by the de�nition of parallel 
omposition, that there exists

ϕM ∈ C(S) su
h that L(s, a, ϕM ) = ⊤ and µM‖N ∈ Sat(ϕM‖N ) i�

for all u ∈ S and v 6= s′′, µM‖N (u, v) = 0 and µM‖N (u, s′′) = ϕM (u).
De�ne ϕα1(M) ∈ C(S′), su
h that Sat(ϕα1(M)) is the abstra
tion of

the union of satisfa
tion sets of su
h ϕM i.e. as in Equation 7. We

will now have that L′(s′, a, ϕα1(M)) = ⊤. The de�nition of parallel


omposition implies that L̃′′((s′, s′′′), a, ϕ̃′′) = ⊤ and µα1(M)‖α2(N) ∈
Sat(ϕ̃′′) i� there exists µα1M ∈ Sat(ϕα1M ) st. for all u ∈ S′

and v 6=
s′′′, µα1(M)‖α2(N)(u, v) = 0 and µα1(M)‖α2(N)(u, s

′′′) = µα1(M)(u). It
is 
lear that Sat(ϕ̃′) = Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′), a, ϕ̃′) =?.

The above theorem helps avoiding state-spa
e explosion when 
ombining

systems by allowing for abstra
tion as soon as possible.

This result 
annot be transferred to the notion of 
onstraint-abstra
tion.

Indeed, as shown for Interval Markov Chains [22℄, the parallel 
omposition of two

IPAs is not an IPA. However, we 
an prove the following proposition, relating


omposition, 
onstraint-abstra
tion and re�nement.

Proposition 37. Let N = (S,A, L,AP, V, s0) and N
′ = (S′, A′, L′, AP ′, V ′, s′0)

be APAs with AP ∩AP ′ = ∅. For A ⊆ A ∩A′
, χ(N)‖Aχ(N ′) �S χ(N‖AN

′).
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Proof. Let N‖AN
′ = (S × S′, A∪A′, L‖, AP ∪AP ′, V‖, (s0, s

′
0)), χ(N) = (S,A,

LχN , AP, V
χ
N , s0), χ(N ′) = (S′, A′, LχN ′ , AP ′, V χN ′ , s′0), χ(N)‖Aχ(N ′) = (S ×

S′, A∪A′, L
‖
χ, AP∪AP ′, V

‖
χ , (s0, s

′
0)), and χ(N‖AN

′) = (S×S′, A∪A′, Lχ‖ , AP ∪

AP ′, V χ‖ , (s0, s
′
0)). As χ(N)‖Aχ(N ′) and χ(N‖AN

′) have similar state spa
e,

stru
ture, valuations, and initial states, we 
onsider the identity relation R =
IdS×S′

and show that it is a strong re�nement relation. Let s1 ∈ S and s′1 ∈ S′

su
h that (s1, s
′
1)R(s1, s

′
1). We show that R satis�es the axioms of a strong re-

�nement relation. All the 
orresponden
e fun
tions we 
onsider are the identity

fun
tions.

1. Let a ∈ A ∪ A′
, ϕχ‖ ∈ C(S × S′) su
h that Lχ‖ ((s1, s

′
1), a, ϕ

χ

‖ ) = ⊤. Then

by 
onstru
tion of χ(N‖AN
′), there exists ϕ‖ ∈ C(S × S′) su
h that

L‖((s1, s
′
1), a, ϕ‖) = ⊤.

• If a ∈ A, then there exists ϕ ∈ C(S) and ϕ′ ∈ C(S′) su
h that

L(s1, a, ϕ) = ⊤ and L′(s′1, a, ϕ
′) = ⊤ and µ‖ ∈ Sat(ϕ‖) i� there

exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) su
h that µ‖(u, v) = µ(u)µ′(v)
for all u ∈ S and v ∈ S′

. By 
onstru
tion of χ(N) and χ(N ′), there
exists ϕχN ∈ C(S) and ϕχN ′ ∈ C(S′) su
h that LχN (s1, a, ϕ

χ
N ) = ⊤

and LχN ′(s′1, a, ϕ
χ
N ′) = ⊤. This means that there exists ϕ

‖
χ ∈ C(S ×

S′) su
h that L
‖
χ((s1, s

′
1), a, ϕ

‖
χ) = ⊤, where µ

‖
χ ∈ Sat(ϕ

‖
χ) i� there

exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) su
h that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. We now show that ∀µ

‖
χ ∈

Sat(ϕ
‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ by showing that µ

‖
χ ∈ Sat(ϕχ‖ )

(and indeed µ
‖
χ ⋐R µ

‖
χ). Assume that µ

‖
χ 6∈ Sat(ϕχ‖ ). By de�nition,

there exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) su
h that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. Let (INu )u∈S , (IN

′

v )v∈S′
, and

I
‖
(u,v) = [m

‖
(u,v),M

‖
(u,v)])(u,v)∈S′

be the intervals asso
iated with ϕχN ,

ϕχN ′ , and ϕ
‖
χ, respe
tively.

If µ
‖
χ 6∈ Sat(ϕχ‖ ), there must exists u′ ∈ S and v′ ∈ S′

su
h that

µχN (u′)µχN ′(v′) 6∈ I
‖
(u′,v′), that is, µχN (u′)µχN ′(v′) < m

‖
(u′,v′) or

µχN (u′)µχN ′(v′) > M
‖
(u′,v′); assume the latter. By 
onvexity and

minimality of INu′ and IN
′

v′ , for all 
onstants ǫ > 0, there must ex-

ist µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) su
h that µχN (u′) − µ(u′) < ǫ

and µχN ′(v′) − µ′(v′) < ǫ. For ǫ =
µ

χ
N

(u′)µχ

N′(v
′)−M

‖

(u′,v′)

2 , we have

that µ(u′)µ′(v′) > M
‖
(u′,v′). However, the distribution µ‖ de�ned as

µ‖(u, v) = µ(u)µ′(v) for all u ∈ S and v ∈ S′
, will satisfy ϕ‖, whi
h


ontradi
ts the de�nition of I
‖
(u′,v′). As a 
onsequen
e, µ

‖
χ ∈ Sat(ϕχ‖ ).

• If a 6∈ A, then assume that a ∈ A. Then there exists ϕ ∈ C(S) su
h
that L(s1, a, ϕ) = ⊤ and µ‖ ∈ Sat(ϕ‖) i� for all u ∈ S, u 6= s1,
and v ∈ S′

, µ‖(u, v) = 0 and there exists µ ∈ Sat(ϕ) su
h that
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µ(v) = µ‖(s1, v) for all v ∈ S′
. By 
onstru
tion of χ(N), there

exists ϕχN ∈ C(S) su
h that LχN (s1, a, ϕ
χ
N ) = ⊤. This means that

there exists ϕ
‖
χ ∈ C(S × S′) su
h that L

‖
χ((s1, s

′
1), a, ϕ

‖
χ) = ⊤, where

µ
‖
χ ∈ Sat(ϕ

‖
χ) i� for all u ∈ S, u 6= s1, and v ∈ S′

, µ
‖
χ(u, v) = 0 and

there exists µχN ∈ Sat(ϕχN ) su
h that µχN (v) = µ
‖
χ(s1, v) for all v ∈ S′

.

As above, it holds that ∀µ
‖
χ ∈ Sat(ϕ

‖
χ), ∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ .

2. Let a ∈ A ∪A′
, ϕ

‖
χ ∈ C(S × S′) su
h that L

‖
χ((s1, s

′
1), a, ϕ

‖
χ) 6= ⊥.

• If a ∈ A, then there exists ϕχN ∈ C(S) and ϕχN ′ ∈ C(S′) su
h that

LχN(s1, a, ϕ
χ
N ) 6= ⊥ and LχN ′(s′1, a, ϕ

χ
N ′) 6= ⊥ and µ

‖
χ ∈ Sat(ϕ

‖
χ) i�

there exists µχN ∈ Sat(ϕχN ) and µχN ′ ∈ Sat(ϕχN ′) su
h that µ
‖
χ(u, v) =

µχN (u)µχN ′(v) for all u ∈ S and v ∈ S′
. By 
onstru
tion of χ(N) and

χ(N ′), there exists ϕ ∈ C(S) and ϕ′ ∈ C(S′) su
h that L(s1, a, ϕ) =
LχN(s1, a, ϕ

χ
N ) and L′(s′1, a, ϕ

′) = LχN ′(s′1, a, ϕ
χ
N ′). This gives rise to

the existen
e of ϕ‖ ∈ C(S × S′) su
h that L‖((s1, s
′
1), a, ϕ‖) 6= ⊥

and µ‖ ∈ Sat(ϕ‖) i� there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′)
su
h that µ‖(u, v) = µ(u)µ′(v) for all u ∈ S and v ∈ S′

. By


onstru
tion of χ(N‖AN
′), there exists ϕχ‖ ∈ C(S × S′) su
h that

Lχ‖ ((s1, s
′
1), a, ϕ

χ

‖ ) 6= ⊥. As above, ∀µ
‖
χ ∈ Sat(ϕ

‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) :

µ
‖
χ ⋐R µχ‖ .

• If a 6∈ A, then assume that a ∈ A. Again, we 
an show existen
e

of ϕχ‖ ∈ C(S × S′) su
h that Lχ‖ ((s1, s
′
1), a, ϕ

χ

‖ ) 6= ⊥ and ∀µ
‖
χ ∈

Sat(ϕ
‖
χ)∃µχ‖ ∈ Sat(ϕχ‖ ) : µ

‖
χ ⋐R µχ‖ .

We 
on
lude that χ(N)‖Aχ(N ′) �S χ(N‖AN
′).

6. Deterministi
 APAs

In this se
tion, we fo
us on the 
lass of deterministi
 APAs. Like in any

spe
i�
ation theory, deterministi
 spe
i�
ations form a 
lass with interesting

properties. First, noti
e that a
tion-deterministi
 APAs allow for more 
onve-

nient de�nitions for re�nement and 
onjun
tion, as explained in [2, 1℄. In the

following, we �rst propose an algorithm that 
an be applied to any APA N
and provides a deterministi
 APA ̺(N) that abstra
ts N . Then, we study the

strong link between CMCs and APAs and prove that, like for CMCs [18, 19℄, all

the notions of re�nement 
oin
ide for deterministi
 spe
i�
ations.

6.1. Determinisation

As explained in [2℄, the use of non-determinism 
hanges expressiveness of

APAs with respe
t to the known 
onjun
tion operator. In fa
t, non-deterministi


APAs are generally more expressive than deterministi
 ones. Fig. 17 presents

a non-deterministi
 APA, whose set of implementations 
annot be spe
i�ed by

a single deterministi
 APA. States 2 and 3 have overlapping labels (so state 1
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a, 1,⊤

a, 1,⊤

1

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

a, x2,⊤

3

2 4

{{θ, β}}

{{θ, γ}, {θ, β, γ}}

{{θ, γ}{β, γ}}

a, x3,⊤

{{θ}}

a, 1,⊤

Figure 17: A (valuation) non-deterministi
 APA whose set of implementations


annot be obtained with a deterministi
 APA.

has non-deterministi
 behaviour). We 
annot put these states on two separate

a-transitions as this introdu
es a
tion non-determinism. We 
annot merge them

either, as their subsequent evolutions are di�erent (and for the same reason we


annot fa
tor {θ, γ} to a separate state).

Nevertheless, the use of deterministi
 abstra
tions of non-deterministi
 be-

haviours is an interesting alternative to relying on more 
omplex re�nements

and more 
omplex operators. Below, we present a determinisation algorithm

that 
an be applied to any APA N , produ
ing a deterministi
 APA ̺(N), su
h
that N �S ̺(N).

Our algorithm is based on subset 
onstru
tion and resembles the determin-

isation pro
edure for modal transition systems des
ribed in [27℄.

Let N = (S,A, L,AP, V, s0) be a (
onsistent) APA in SVNF. Given a set of

states Q ⊆ S, an a
tion a ∈ A and a valuation θ ⊆ AP we de�ne Reach(Q, a, θ)
to be the maximal set of states with valuation θ that 
an be rea
hed with a

non-zero probability using a distribution µ satisfying a 
onstraint ϕ su
h that

L(q, a, ϕ) 6= ⊥ for some q ∈ Q. Formally, Reach : 2S ×A× 2AP → 2S is de�ned

by:

Reach(Q, a, θ) =
⋃

{s ∈ S | V (s) = {θ} and ∃q ∈ Q,

∃ϕ ∈ C(S), ∃µ ∈ Sat(ϕ), L(q, a, ϕ) 6= ⊥ and µ(s) > 0}

We lift this de�nition to all possible labellings as follows:

Reach(Q, a) = {Reach(Q, a, θ) | θ ∈ 2AP}

We also extend the de�nition to sets of a
tions as follows: let B ⊆ A,

Reach(Q,B) =
⋃

a∈B

Reach(Q, a)

Now let n > 1 and de�ne the n-step rea
hability as

Reachn(Q,B) = Reachn−1(Q,B) ∪
⋃

Q′∈Reachn−1(Q,B)

Reach(Q′, B)
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where Reach1(Q,B) = Reach(Q,B).
We denote the �xpoint of Reach as follows:

Reach∗(Q,B) =

∞⋃

n=1

Reachn(Q,B).

Now, by 
onstru
tion, the following properties hold:

• For all Q⊆ S and a ∈ A, for all Q′, Q′′ ∈ Reach(Q, a), if Q′ 6= Q′′
then

Q′ ∩Q′′ = ∅, and

• For all Q ⊆ S, B ⊆ A and Q′ ∈Reach
∗(Q,B), there exists θ ∈ 2AP su
h

that ∀q′ ∈ Q′
, we have V (q′) = {θ}.

We will now use the notion of rea
hability in our determinisation 
onstru
-

tion. Remark that the determinisation algorithm highly relies on the single

valuation normal form of the APA. In order to use it on any APA (with sin-

gle valuation in the initial state), it is thus ne
essary to use the normalization

algorithm �rst, as de�ned in De�nition 11.

De�nition 38 (Determinisation). Let N = (S,A, L,AP, V, s0) be a 
onsistent

APA in SVNF. A deterministi
 APA for N is the APA ̺(N)=(S′, A, L′, AP, V ′, {s0})
su
h that

• S′ = {s0} ∪ Reach∗({s0}, A)

• V ′
is su
h that V ′(Q) = {θ} if and only if ∀q ∈ Q. V (q) = {θ}. There

always exists exa
tly one su
h θ by 
onstru
tion

• L′
is de�ned as follows: Let Q ∈ S′

and a ∈ A.

� If, for all q ∈ Q, we have that ∀ϕ ∈ C(S), L(q, a, ϕ) = ⊥, then de�ne

L′(Q, a, ϕ′) = ⊥ for all ϕ′ ∈ C(S′).

� Otherwise, de�ne ϕ′ ∈ C(S′) su
h that µ′ ∈ Sat(ϕ′) if and only if (1)

∀Q′ /∈
Reach(Q, a), we have µ′(Q′) = 0, and (2) there exists q ∈ Q, ϕ ∈
C(S) and µ ∈ Sat(ϕ) su
h that L(q, a, ϕ) 6= ⊥ and ∀Q′ ∈ Reach(Q, a),
µ′(Q′) =

∑
q′∈Q′ µ(q′). Then de�ne

L′(Q, a, ϕ′) =





⊤ if

∀q ∈ Q, ∃ϕ ∈ C(S) :
L(q, a, ϕ) = ⊤

? otherwise

Example. Consider the non-deterministi
 APA N (N) given in Figure 7. Using

De�nition 38, we obtain the APA ̺(N (N)) given in Figure 18.
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{{l}}

{s′′1}

{{n}}

a, x3,5,⊤

{{m}}

a, x2,6,⊤

{{o}}

a, x4,⊤

{s′′3, s
′′
5}{s′′2, s

′′
6} {s′′4}

ϕx ≡ x2,6 + x3,5 + x4 = 1

Figure 18: Determinisation ̺(N (N)) of the APA N (N) given in Figure 7.

By 
onstru
tion, ̺(N) is a
tion- and valuation-deterministi
. As expe
ted,

determinisation is an abstra
tion, but more than that it is also the smallest

deterministi
 abstra
tion of N . This is formalized in the following theorem.

Theorem 39. Let N be an APA in SVNF. The following statements hold:

1. N �S ̺(N), and

2. for all deterministi
 APA N ′
in SVNF, if N � N ′

, then ̺(N) � N ′
.

Proof. Let N = (S,A, L,AP, V, s0) be a (
onsistent) APA in SVNF. Let ̺(N) =
(S′, A, L′, AP, V ′, {s0}) be the determinisation of N de�ned as in De�nition 38.

We prove the two statements separately.

1. We prove that N �S ̺(N) by providing the following strong re�nement

relation. Let R ⊆ S × S′
be the relation su
h that sRQ ⇐⇒ s ∈ Q for all

Q ∈ S′
. The proof that R is a strong re�nement relation is standard. For the

sake of 
ompleteness, a detailed proof is given in Appendix H.

2. Let N ′ = (T,A, LT , AP, V T , t0) be a deterministi
 APA in SVNF. Assume

that N � N ′
with weak re�nement relation R ⊆ S × T (noti
e that sin
e N ′

is deterministi
, weak re�nement 
oin
ides with weak weak re�nement). Let

R′ ⊆ S′ × T be the relation su
h that QR′ t if and only if qR t for all q ∈ Q.
We prove that R′

is a weak re�nement relation. Let (Q, t) ∈ R′
.

1. Let a ∈ A and ϕt ∈ C(T ) be su
h that LT (t, a, ϕt) = ⊤. By de�nition of

R′
, for all s ∈ Q, we have (s, t) ∈ R. Thus, by de�nition ofR, for all s ∈ Q,

there exists ϕs ∈ C(S) su
h that L(s, a, ϕs) = ⊤ and for all µs ∈ Sat(ϕs),
there exists µts ∈ Sat(ϕt) su
h that µs ⋐R µts. As a 
onsequen
e, by

de�nition of ̺(N), there exists ϕ′ ∈ C(S′) su
h that L(Q, a, ϕ′) = ⊤.
Let µ′ ∈ Sat(ϕ′). By 
onstru
tion of ϕ′

, there exists s ∈ Q,ϕs ∈ C(S)
and µ ∈ Sat(ϕs) su
h that L(s, a, ϕs) 6= ⊥ and for all Q′ ∈ Reach(Q, a),
µ′(Q′) =

∑
s′∈Q′ µ(s′). Sin
e (Q, t) ∈ R′

, we have (s, t) ∈ R and therefore

there exists ϕ′t ∈ C(T ) su
h that LT (t, a, ϕ′t) 6= ⊥. By determinism of N ′
,

we have ϕ′t = ϕt. Moreover, there must exist a 
orresponden
e fun
tion

δs and µt ∈ Sat(ϕt) su
h that µ ⋐
δs

R µt. Let δ : S′ → (T → [0, 1]) be

su
h that δ(Q′)(t) =
∑

s′∈Q′
µ(s′)δs(s′)(t)

µ′(Q′) if µ′(Q′) > 0 and 0 otherwise.

We now show that δ is a 
orresponden
e fun
tion and that µ′
⋐
δ
R′ µt.
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• Let Q′ ∈ S′
be su
h that µ′(Q′) > 0. As a 
onsequen
e, for all

s′ ∈ Q su
h that µ(s′) > 0, δs(s′) ∈ Dist(T ). As a 
onsequen
e,∑
s′∈Q′

µ(s′)δs(s′)(t)
µ(Q′) is also a distribution on T and δ(Q′) ∈ Dist(T ).

• Let t′ ∈ T , we have

∑

Q′∈S′

µ′(Q′)δ(Q′)(t′) =
∑

Q′∈S′ | µ′(Q′)>0

µ′(Q′)
∑

s′∈Q′

µ(s′)δs(s′)(t)

µ′(Q′)

=
∑

Q′∈S′ | µ′(Q′)>0

∑

s′∈Q′

µ(s′)δs(s′)(t)

=
∑

s′∈S

µ(s′)δs(s′)(t)

= µt(t)

• Let (Q′, t′) ∈ S′ × T be su
h that δ(Q′)(t′) > 0. Sin
e Q′ ∈
Reach(Q, a) by 
onstru
tion, we have that for all s′ ∈ Q′

, there exists

sr ∈ Q, ϕr ∈ C(S) and µr ∈ Sat(ϕr) su
h that L(s, a, ϕr) 6= ⊥ and

µr(s′) > 0. Sin
e (s, t) ∈ R and by determinism of N ′
, we 
an show

that (s′, t′) ∈ R. Therefore we have that (s′, t′) ∈ R for all s′ ∈ Q′

and 
onsequently (Q′, t′) ∈ R′
.

As a 
onsequen
e, µ′
⋐
δ
R′ µt.

2. Let a ∈ A and ϕ′ ∈ C(S′) be su
h that L′(Q, a, ϕ′) 6= ⊥. By 
onstru
tion,

there must thus exist s ∈ Q and ϕs ∈ C(S) su
h that L(s, a, ϕs) 6=
⊥. Therefore, sin
e (s, t) ∈ R, there must exist ϕt ∈ C(T ) su
h that

LT (t, a, ϕt) 6= ⊥. Then, by the same reasoning as above, we 
an show

that for all µ′ ∈ Sat(ϕ′), there exists µt ∈ Sat(ϕt) su
h that µ′
⋐R′ µt.

3. Re
all that there exists θ ∈ 2AP su
h that V (s) = θ for all s ∈ Q. Sin
e
(s, t) ∈ R for all s ∈ Q, we have θ ⊆ V T (t) and therefore V ′(Q) ⊆ V T (t).

Finally, R′
is a weak re�nement relation. Moreover, ({s0}, t0) ∈ R′

by


onstru
tion, and thus ̺(N) � N ′
.

6.2. Completeness and Relation with CMCs

In this se
tion, we show that thorough and strong re�nements 
oin
ide for

deterministi
 APAs. For doing so, we will 
ompare the expressive power of

APAs and CMCs, showing that APAs 
an a
t as a spe
i�
ation theory for MCs.

Remark that single valuation normal form of CMCs is de�ned similarly as for

APAs. The satisfa
tion relation between MCs and CMCs as well as the notions

of weak and strong re�nements are also de�ned similarly as for APAs.

On the relation between CMCs and APAs. We now show that APAs 
an

a
t as a spe
i�
ation theory for MCs. For doing so, we propose a satisfa
tion

relation between MCs and APAs. Our de�nition is in two steps. First we show

how to use PAs as a spe
i�
ation theory for MCs. Then, we use the existing

satisfa
tion relation between PAs and APAs to 
on
lude.
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Sin
e MCs do not dire
tly allow 
hoi
es between a
tions, we use bipartite

MCs in the following. Their state spa
e is partitioned into a
tion-states (QD in

the de�nition below) and distribution-states (QN in the de�nition below), and an

exe
ution of a bipartite MC is a su

ession of alternations between a
tion-states

and distribution-states.

De�nition 40 (MC-PA Satisfa
tion). Let P = (S,A, L,AP, V, s0) be a PA
1

. Let

M = (Q, π,AM , VM , q0) be a bipartite Markov 
hain su
h that (1) Q = QN∪QD,
with QN ∩ QD = ∅, for all q, q′ ∈ QN , π(q)(q′) = 0 and for all q, q′ ∈ QD,
π(q)(q′) = 0, (2) q0 ∈ QD, and (3) AM = A ∪ AP . Let R ⊆ QD × S. R is a

satisfa
tion relation if and only if whenever qR s, we have

1. VM (q) = V (s).

2. For a ∈ A and µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤, there exists q′ ∈ QN
su
h that VM (q′) = V (s) ∪ {a}, π(q)(q′) > 0, and π(q′) ⋐R µ.

3. For all q′ ∈ QN su
h that π(q)(q′) > 0, there exists a ∈ A and µ ∈ Dist(S)
su
h that VM (q′) = V (s) ∪ {a}, L(s, a, µ) = ⊤, and π(q′) ⋐R µ.

We say that M satis�es P if and only if there exists a satisfa
tion relation

R su
h that q0 R s0.

The satisfa
tion relation between MCs and APAs follows dire
tly. We say

that a MC M satis�es an APA N , whi
h we write M |=MC N , if and only

if there exists a PA P su
h that M satis�es P and P satis�es N . The set of

MC-implementation of APA N is denoted [[N ]]MC .

Expressivity Completeness. In the previous paragraph, we have proposed

a satisfa
tion relation for MCs with respe
t to APAs. We now propose a trans-

formation that asso
iates to every deterministi
 APA in SVNF a deterministi


CMC in SVNF representing the same set of MC-implementations. The pur-

pose of this transformation is to show that deterministi
 APAs do not allow for

des
ribing a larger 
lass of Markov Chains than deterministi
 CMCs.

De�nition 41 (Transformation ̂ ). Let N = (S,A, L,AP, V, s0) be a deter-

ministi
 APA. Let ǫ be a fresh variable. The CMC 
orresponding to N is

N̂ = (Q̂, ψ, Â, V̂ , q̂0), with

• Q̂ = S × (A ∪ {ǫ}),

• q̂0 = (s0, ǫ),

• Â = AP ∪A,

• V̂ ((s, ǫ)) = V (s) for all s,

• V̂ ((s, a)) = {B ∪ {a} | B ∈ V (s)} for all s and a ∈ A, and

1

Re
all that we assume Act ∩ AP = ∅ for all PAs/APAs
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{{θ}}

s1
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ϕy ≡ y3 ≥ .5 ∧ y4 ≤ .5 ∧ y3 + y4 = 1

(a) N

{{η}, {b}}{{β}, {a}}

(s1, ǫ)

(s1, a) (s1, b)

(s3, ǫ) (s4, ǫ)(s2, ǫ)

{{θ}}

z(s1,b)z(s1,a)

{{η}}{{γ}}{{β}}

u(s3,ǫ) u(s4,ǫ)w(s3,ǫ)w(s2,ǫ)

ϕ′(s1, ǫ)(z) ≡ z(s1,b) > 0

ϕ′(s1, a)(w) ≡ w(s2,ǫ) > 0 ∧ w(s3,ǫ) > 0

ϕ′(s1, b)(u) ≡ u(s3,ǫ) ≥ .5 ∧ u(s4,ǫ) ≤ .5

(b)

bN

Figure 19: APA N and CMC N̂

• ψ is su
h that

� For all (s, ǫ) ∈ Q̂, ψ((s, ǫ))(π) = 1 if and only if





π((s, ǫ)) = 0
∀s′ 6= s, b ∈ A ∪ {ǫ}, π((s′, b)) = 0

∀a ∈ Must(s), π(s, a) > 0
∀a /∈ May(s), π(s, a) = 0

� For all a ∈ A and (s, a) ∈ Q̂, ψ((s, a))(π) = 1 if and only if (1) for

all s′ ∈ S and b ∈ A, we have π((s′, b)) = 0 and (2) the distribution

π′ : s′ 7→ π((s′, ǫ)) is su
h that there exists ϕ ∈ C(S) su
h that

L(s, a, ϕ) 6= ⊥ and π′ ∈ Sat(ϕ).

Informally, this transformation builds a CMC with a bipartite state spa
e.

The non-determinism inherent to APAs in the 
hoi
e of a
tions is simulated by

new states of the form (s, a) for ea
h a
tion a that 
an be taken from state

s. The probability of rea
hing state (s, a) emulates the modality of taking the


orresponding a-transition, and the 
onstraint asso
iated to state (s, a) mat
hes

the 
onstraint asso
iated to the 
orresponding a-transition.

Example. Consider the APA N given in Figure 19a. Applying the transfor-

mation given in De�nition 41 to N yields the CMC N̂ given in Figure 19b.

By 
onstru
tion, the CMC N̂ is deterministi
 and in single valuation normal

form. As expe
ted, this transformation yields a CMC that admits the same set

of MC-implementations as the original APA. This is formalized in the following

theorem.

Theorem 42. For all deterministi
 APA N in SVNF, the CMC N̂ is su
h that

[[N ]]MC = [[N̂ ]].

50



Proof. We prove the two dire
tions separately.

• M |=
MC

N ⇒M |=
CMC

N̂ : Let M = (Q, π,AM , VM , q0) be a Markov Chain.

We �rst prove that if M |=
MC

N , then M |=
CMC

N̂ . Suppose that there exists

a PA P = (SP , A, LP , AP, VP , s
P
0 ) su
h that M satis�es P and P |= N . Let

N̂ = (Q̂, ψ, Â, V̂ , q̂0) be the transformation of N following De�nition 41. By

the satisfa
tion relation between M and P , we obtain that AM = A ∪ AP and

Q = QN ∪ QD. Let RMC ⊆ QD × SP be the satisfa
tion relation witnessing

that M satis�es P . Let RPA ⊆ SP × S be the satisfa
tion relation witnessing

P |= N . Consider the relation R ⊆ Q× Q̂ su
h that

• qR(s, ǫ) i� there exists p ∈ Sp su
h that qRMC p and pRPA s, and

• for all a ∈ A, qR(s, a) i� there exists q′ ∈ Q su
h that

� π(q′)(q) > 0,

� VM (q) = VM (q′) ∪ {a}, and

� q′ R(s, ǫ).

The proof that R is a satisfa
tion relation for CMCs is standard. For the

sake of 
ompleteness, the full proof is given in Appendix I.

Moreover, we have that q0 R(s0, ǫ), whi
h gives that M |=
CMC

N̂ .

• M |=
MC

N ⇐M |=
CMC

N̂ : Let M = (Q, π,AM , VM , q0) be a Markov Chain.

We prove that if M |=
CMC

N̂ , then M |=
MC

N , i.e. there exists a PA P su
h

that M satis�es P and P |= N . Let N̂ = (Q̂, ψ, Â, V̂ , q̂0) be the transformation

of N following De�nition 41.

Let R be the satisfa
tion relation for CMCs witnessing that M |=
CMC

N̂ . First

observe that, by R, the Markov 
hain M satis�es the following properties: Let

QD = {q ∈ Q | ∃s ∈ S, qR(s, ǫ)} and QN = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s, a)},
we have

• QD ∩QN = ∅ be
ause of their valuations and R,

• ∀q, q′ ∈ QD, π(q)(q′) = 0 and ∀q, q′ ∈ QN , π(q)(q′) = 0,

• q0 ∈ QD, and

• AM = A ∪AP .

De�ne the PA P = (SP , A, LP , AP, VP , s
P
0 ) su
h that SP = QD, with s

P
0 = q0,

VP is su
h that for all q ∈ QD, VP (q) = VM (q), and LP is su
h that for all

s ∈ SP , a ∈ A and for all distribution ̺ over SP , L(s, a, ̺) = ⊤ i� there exists

q′ ∈ QN su
h that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).
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By 
onstru
tion,M satis�es P using the identity relation on QD. We now prove

that P |= N . Let RPA ⊆ SP × S the relation su
h that pRPA s i� pR(s, ǫ).
The proof that RPA

is a satisfa
tion relation for APA is standard and given

in Appendix I. By 
onstru
tion, we have that sP0 RPA s0, thus P |= N . As

a 
onsequen
e, we have that there exists a PA P su
h that M satis�es P and

P |= N . Thus M |=
MC

N .

We have just shown that for all APA N , there exists a CMC N̂ su
h that

[[N ]]
MC

= [[N̂ ]]
CMC

. The reverse of the theorem also holds up to a synta
ti
al

transformation that preserves sets of implementations. Sin
e CMCs are not

equipped with a
tions, this transformation adds a single a
tion to all valua-

tions of the original CMC in order to provide a
tions for the transitions of the

equivalent APA. Additionally, it dupli
ates the state-spa
e in order to obtain a

bipartite CMC with bipartite MCs as implementations.

Consider a MC M = (Q, π,A, V, q0) and a fresh variable for a
tions θ /∈ A.
Let M̌ = (QN ∪QP , π̌, A ∪ {θ}, V̌ , qD0 ) be the MC su
h that

• QD = {qD | q ∈ Q},

• QN = {qN | q ∈ Q},

• V̌ is su
h that V̌ (q) = V (q) if q ∈ QD and V̌ (q) = V (q) ∪ {θ} if q ∈ QN ,
and

• π̌ is su
h that

� for all qD ∈ QD, π̌(qD)(qN ) = 1, and

� for all qN ∈ QN , π̌(qN )(q′) = π(q)(q′) if q′ ∈ QD and 0 otherwise.

This transformation naturally extends to CMCs. Obviously, it follows that

for all MC M and CMC C, we have M |=
CMC

C ⇐⇒ M̌ |=
CMC

Č. The

transformation from CMC M̌ to an APA is then obvious, and preserves the set

of implementations.

This result together with Theorems 27 and 29 of [28℄ leads to the following

important result.

Theorem 43. For deterministi
 APAs with single valuations in the initial state,

strong re�nement 
oin
ides with thorough, weak-weak and weak re�nement.

Proof. Let N = (S,A, L,AP, V, s0) and N ′ = (S′, A, L′, AP, V ′, s′0) be two

pruned deterministi
 APA in single valuation normal form. From Theorem 17,

we know that strong re�nement implies thorough re�nement. We now prove

that the reverse also holds.

Suppose that [[N ]] ⊆ [[N ′]]. We prove that N �S N
′
.

Let N̂ = (Q̂, ψ, Â, V̂ , q̂0) and N̂ ′ = (Q̂′, ψ′, Â, V̂ ′, q̂′0) be the CMCs equivalent

to N and N ′
(up to MC satisfa
tion) obtained by the transformation proposed

in De�nition 41. By De�nition of [[·]]
MC

, we have that [[N ]]
MC

⊆ [[N ′]]
MC

. As

a 
onsequen
e, by Theorem 42, we have that [[N̂ ]]
CMC

⊆ [[N̂ ′]]
CMC

. Sin
e N̂
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and N̂ ′
are deterministi
 CMCs in single valuation normal form, we have, by

Theorem 18 of [18℄, that N̂ �CMC N̂ ′
with a strong re�nement relation between

CMCs.

Let R̂ be the strong re�nement relation between CMCs su
h that N̂ �CMC N̂ ′
.

De�ne the relation R ⊆ S × S′
su
h that sR s′ i� (s, ǫ)R̂(s′, ǫ). We prove that

R is indeed a strong re�nement relation on APAs. Let s ∈ S and t ∈ S′
su
h

that sR t. We show that R satis�es the axioms of a strong re�nement relation

for APAs.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(t, a, ϕ′) = ⊤. By 
onstru
tion,

we have (s, ǫ)R̂(t, ǫ), thus there exists a 
orresponden
e fun
tion δ̂ su
h

that for all distribution π satisfying ψ((s, ǫ)) we have that π′ = πδ̂ sat-

is�es ψ′((t, ǫ)). By 
onstru
tion, of ψ′
, we thus have that π′((s, a)) > 0.

As a 
onsequen
e, there exists (s′, b) ∈ Q̂ su
h that π((s′, b)) > 0 and

δ̂((s′, b)(t, a)) > 0. By de�nition of δ̂ and ψ, we have that s′ = s and

b = a. Thus π((s, a)) > 0. Sin
e this holds for all π ∈ Sat(ψ), we have

a ∈ Must(s). Thus there exists ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊤.

Moreover, we have that (s, a)R̂(t, a). Let δ̂′ be the asso
iated 
orrespon-

den
e fun
tion. Let µ ∈ Sat(ϕ) and let µ′ ∈ Dist(Q̂) su
h that for all

s′ ∈ S and b ∈ A, µ′((s′, ǫ)) = µ(s′) and µ′((s′, b)) = 0. By de�ni-

tion, we have that µ′
satis�es ψ((s, a)). Thus, we have that ̺′ = µ′δ̂′

satis�es ψ′((t, a)). As a 
onsequen
e, the distribution ̺ ∈ Dist(S′) su
h

that ̺(t′) = ̺′((t′, ǫ)) for all t′ is su
h that there exists ϕ′′
su
h that

L′(t, a, ϕ′′) 6= ⊥ and ̺ ∈ Sat(ϕ′′). By a
tion-determinism of N ′
, we have

that ϕ′′ = ϕ′
.

Let δ be the 
orresponden
e fun
tion su
h that δ(s′)(t′) = δ̂′((s′, ǫ))((t′, ǫ)).
We prove that µ ⋐

δ
R ̺.

(a) Let s′ ∈ S su
h that µ(s′) > 0. As a 
onsequen
e, µ′((s′, ǫ)) > 0.

As a 
onsequen
e, by de�nition of δ̂′, we have that δ̂′((s′, ǫ)) is a

distribution over Q̂′
. Moreover, sin
e ̺′ = µ′δ̂′ satis�es ψ′((t, a)), we

have that for all t′ ∈ T and b ∈ A, ̺′((t′, b)) = 0. As a 
onsequen
e,

we have that for all t′ ∈ T and b ∈ A, δ̂′((s′, ǫ))((t′, b)) = 0. Thus

δ(s′) is a 
orre
t distribution over Q′
.

(b) By de�nition, we have ̺′ = µ′δ̂′. Sin
e µ((s′, b)) = 0 for all b ∈ A,

and sin
e δ̂′((s′, ǫ))((t′, b)) = 0 for all s′ ∈ S, t′ ∈ S′
and b ∈ A, we

have that ̺ = µδ. As a 
onsequen
e, we have that for all t′ ∈ S′
,

∑

s′∈S

µ(s′)δ(s′)(t′) = ̺(t′).

(
) Let s′ ∈ S and t′ ∈ T su
h that δ(s′)(t′) > 0. By de�nition of δ,

we have δ′((s′, ǫ))((t′, ǫ)) > 0. Thus (s′, ǫ)R̂(t′, ǫ), and 
onsequently

s′ R t′.

Therefore, we have that µ ⋐
δ
R ̺.
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2. Let a ∈ A and ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥. By 
onstru
tion,

we have (s, ǫ)R̂(t, ǫ), thus there exists a 
orresponden
e fun
tion δ̂ su
h

that for all distribution π satisfying ψ((s, ǫ)) we have that π′ = πδ̂ satis�es
ψ′((t, ǫ)). By 
onstru
tion of ψ, and be
ause N is pruned, there must exist

π ∈ Dist(Q̂) satisfying ψ((s, ǫ)), with π((s, a)) > 0. As a 
onsequen
e,

δ̂ de�nes a distribution on Q̂′
, thus there exists (t′, b) ∈ Q̂′

su
h that

δ̂((s, a))((t′, b)) > 0. By the re
ursion axiom, we have b = a. Let π′ = πδ̂,
we have π′((t′, a)) > 0. Sin
e π′

satis�es ψ′((t, ǫ)), we have that ne
essarily
t′ = t. As a 
onsequen
e, by de�nition of ψ′

, there must exist ϕ′ ∈ C(S′)
su
h that L′(t, a, ϕ′) 6= ⊥. As above, we 
an prove that there exists δ su
h
that for all µ ∈ Sat(ϕ), there exists ̺ ∈ Sat(ϕ′) su
h that µ ⋐

δ
R ̺.

3. Sin
e (s, ǫ)R̂(t, ǫ), we have that V (s) ⊆ V ′(s′).

Finally, R is a strong re�nement relation. Moreover, we have by 
onstru
tion

that s0 R t0, thus N �S N ′
.

By the ordering of the re�nement relations presented in Theorem 17, it follows

that R is also a weak and a weak-weak re�nement relation.

7. Extensions of Alphabets (Dissimilar Alphabets)

So far, the spe
i�
ation theory of APAs has required that all spe
i�
ations

share same alphabets of a
tions and atomi
 propositions. We are now going to

lift this restri
tion by introdu
ing the alphabet extension me
hanism. As for the

extension of modal transition systems [16℄, there exist two ways of extending

alphabets [29℄: it is ne
essary to 
hoose the modality of transitions for new

a
tions introdu
ed depending on the operation being applied to the result.

The weak extension is used when 
onjoining spe
i�
ations with di�erent

alphabets. This extension adds may loop transitions for all new a
tions and

extends the sets of atomi
 propositions in a 
lassi
al way:

De�nition 44 (Weak extension). Let N = (S,A, L,AP, V, s0) be an APA, and

let A′
and AP ′

be sets of a
tions and atomi
 propositions su
h that A⊆A′
and

AP ⊆AP ′
. Let the weak extension of N to (A′, AP ′) be the APA N⇑(A′, AP ′) =

(S,A′, L′, AP ′, V ′, s0) su
h that for all states s ∈ S:

• L′(s, a, ϕ) = L(s, a, ϕ) if a ∈ A,

• L′(s, a, ϕ)= ? if a ∈ A′\A and ϕ only admits a single point distribution µ
su
h that µ(s) = 1.

• V ′(s) = {B ⊆ AP ′ | B ∩AP ∈ V (s)}.

A di�erent extension, the strong one, is used in parallel 
omposition. This

extension adds must self-loops for all new a
tions and extends the sets of atomi


propositions in a 
lassi
al way.
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De�nition 45 (Strong extension). Let N = (S,A, L,AP, V, s0) be an APA,

and let A′
and AP ′

be sets of a
tions and atomi
 propositions su
h that A ⊆ A′

and AP ⊆ AP ′
. De�ne the extension for 
omposition of N to A′, AP ′

, written

N ↑A
′,AP ′

to be the APA N ↑A
′,AP ′

= (S,A′, L′, AP ′, V ′, s0) su
h that

• for all s ∈ S, a ∈ A and ϕ ∈ C(S), L′(s, a, ϕ) = L(s, a, ϕ),

• for all s ∈ S and a ∈ A′ \ A, de�ne L(s, a, ϕ) = ⊤, with ϕ su
h that

µ ∈ Sat(ϕ) if and only if µ(s) = 1, and

• for all s ∈ S, V ′(s) = {B ⊆ AP ′ | B ∩AP ∈ V (s)}.

These di�erent notions of extension give rise to di�erent notions of satisfa
-

tion and re�nement between stru
tures with dissimilar sets of a
tions. Satisfa
-

tion (or re�nement) between stru
tures with di�erent sets of a
tions is de�ned as

the satisfa
tion (respe
tively re�nement) between the stru
tures after extension

to a union of their alphabets.

By 
onstru
tion, all the results presented in the paper for 
onjun
tion and


omposition of PAs / APAs sharing alphabets of a
tions and atomi
 propositions

safely extend to the setting of PAs / APAs with dissimilar alphabets, provided

that the right extension is applied �rst.

8. Con
lusion

This paper presents Abstra
t Probabilisti
 Automata, a new abstra
tion

theory for Probabilisti
 Automata. The main 
ontributions of the paper are:

• A new abstra
tion theory for Probabilisti
 Automata through APAs.

• A new spe
i�
ation theory for PAs using APAs as a spe
i�
ation language.

Our theory is equipped with a parallel 
omposition and 
onjun
tion oper-

ators, and satisfa
tion and re�nement relations.

• A 
omplete 
hara
terization of semanti
 and synta
ti
 notions of re�ne-

ment, and the 
hara
terization of a 
lass of APAs on whi
h they 
oin
ide.

• A 
ompositional abstra
tion te
hnique for APAs whi
h 
an be used to


ombate the state-spa
e explosion problem.

• A proof that the proposed formalism is ba
kward 
ompatible with 
lassi
al

notions of probabilisti
 bisimulation / parallel 
omposition of Probabilisti


Automata.

There are various dire
tions for future resear
h. The �rst of them is to

implement and evaluate our results. This would require to design e�
ient algo-

rithms for the 
ompositional design operators. Also, it would be of interest to

embed our abstra
tion pro
edure in a CEGAR model 
he
king algorithm. An-

other interesting dire
tion would be to design an algorithm to de
ide thorough
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re�nement and 
hara
terize the 
omplexity of this operation. Finally, one 
ould

also 
onsider a 
ontinuous-timed extension of our model inspired by [30℄.
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Appendix A. Details of the proof of Theorem 17

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S): By a swap of quanti�ers in the de�nitions, it is obvious
that strong re�nement implies weak re�nement, and that weak re�nement implies weak

weak re�nement. We prove that weak weak re�nement implies thorough re�nement.

Let N = (S,A,L,AP, V, s0) and N ′ = (S′, A, L′, AP,
V ′, s′0) be APAs su
h thatN �W N ′

with a weak weak re�nement relation R′ ⊆ S×S′
.

If [[N ]] = ∅, we have [[N ]] ⊆ [[N ′]]. Otherwise, let P = (SP , A, LP , AP, VP , s
P
0 ) be a PA

su
h that P |= N . Then there exists a satisfa
tion relation R′′ ⊆ SP × S su
h that

sP0 R′′ s0.
Let R ⊆ SP ×S′

be the relation su
h that uRw i� there exists v ∈ S su
h that uR′′ v
and vR′ w. We prove that R is a satisfa
tion relation.

Let u ∈ SP and w ∈ S′
su
h that uRw, and let v ∈ S su
h that uR′′ v and vR′ w.

We show that R satis�es the axioms of a satisfa
tion relation.

1. Let a ∈ A′
and ϕ′ ∈ C(S′) su
h that L′(w, a, ϕ′) = ⊤. By R′

, there exists ϕ ∈
C(S) su
h that L(v, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ),∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R′

µ′
. Moreover, by R′′

, there exists µP ∈ Dist(SP ) su
h that LP (u, a, µP ) = ⊤
and ∃µS ∈ Sat(ϕ) : µP ⋐R′′ µS .
Take µS ∈ Dist(S) su
h that µP ⋐R′′ µS and 
hoose µ′ ∈ Dist(S′) su
h that

µS ⋐R′ µ′
. Let δ′′ : SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the


orresponden
e fun
tions witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
, respe
tively.

Let δ : SP → (S′ → [0, 1]) su
h that δ(s)(t) =
P

r∈S δ
′′(s)(r)δ′(r)(t). We prove

that µP ⋐
δ
R µ′

:

(a) Let s ∈ SP su
h that µP (s) > 0. We have

X

t∈S′

δ(s)(t) =
X

t∈S′

X

r∈S

δ′′(s)(r)δ′(r)(t)

=

 

X

r∈S

δ′′(s)(r)

! 

X

t∈S′

δ′(r)(t)

!

= 1.

Thus δ(s) de�nes a distribution on S′
.

(b) Let t ∈ S′
. We have

X

s∈SP

µP (s)δ(s)(t) =
X

s∈SP

µP (s)
X

r∈S

δ′′(s)(r)δ′(r)(t)

=
X

r∈S

δ′(r)(t)
X

s∈SP

µP (s)δ′′(s)(r)

=
X

r∈S

δ′(r)(t)µS(r) = µ′(t).

(
) Let s ∈ SP and t ∈ S′
su
h that δ(s)(t) > 0. By de�nition of δ, there

exists r ∈ S su
h that δ′′(s)(r) > 0 and δ′(r)(t) > 0. By de�nition of δ′

and δ′′, we thus have sR′′ r and rR′ t. By de�nition of R, we thus have

sR t.

Thus there exists µP ∈ Dist(SP ) su
h that LP (u, a, µP ) = ⊤ and there exists

µ′ ∈ Sat(ϕ′) su
h that µP ⋐R µ′
.
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2. Let a ∈ A and µP ∈ Dist(SP ) su
h that LP (u, a, µ) 6= ⊥. By R′′
, there exists

ϕ ∈ C(S) su
h that L(v, a, ϕ) 6= ⊥ and ∃µS ∈ Sat(ϕ) su
h that µP ⋐R′′ µS .
Moreover, by R′

, we have that for all µ ∈ Sat(ϕ), there exists ϕ′ ∈ C(S′) su
h
that L′(w, a, ϕ′) 6= ⊥ and ∃µ′ ∈ Sat(ϕ′) su
h that µ ⋐R′ µ′

.

Choose µS ∈ Dist(S) su
h that µP ⋐R′′ µS and 
hoose ϕ′ ∈ Dist(S′) su
h

that L′(w, a,ϕ′) ≥? and there exists µ′ ∈ Sat(ϕ′) with µS ⋐R′ µ′
. Let δ′′ :

SP → (S → [0, 1]) and δ′ : S → (S′ → [0, 1]) be the 
orresponden
e fun
tions

witnessing µP ⋐
δ′′

R′′ µS and µS ⋐
δ′

R′ µ′
respe
tively. Let δ : SP → (S′ → [0, 1])

su
h that δ(s)(t) =
P

r∈S δ
′′(s)(r)δ′(r)(t). Using the same reasoning as above,

we dedu
e that µP ⋐
δ
R µ′

.

3. Sin
e uR′′ v, we have that VP (u) ∈ V (v). Moreover, sin
e vR′ w, we have that
V (v) ⊆ V ′(w). As a 
onsequen
e, VP (u) ∈ V ′(w).

Sin
e sP0 R′′ s0 and s0 R
′ s′0, we have that sP0 R s′0, and we 
on
lude that R is a

satisfa
tion relation. Therefore P ∈ [[N ′]], and N �T N
′
.

Appendix B. Details for Se
tion 3.2

We �rst give an equivalent and 
onstru
tive version of the de�nition for probabilis-

ti
 bisimulation. In order to produ
e 
onstru
tive results, we will use this de�nition

throughout the se
tion instead of De�nition 18.

De�nition 46 (Probabilisti
 Bisimulation). Let P = (S,A,L, AP, V, s0) and P ′ =
(S′, A, L′, AP, V ′, s′0) be PAs with no unrea
hable states. We say that R ⊆ S × S′

is a

probabilisti
 bisimulation relation if and only if the following 
onditions hold:

• There exists n ∈ IN and partitions (S1, . . . , Sn) and (S′
1, . . . , S

′
n) of S and S′

,

respe
tively, su
h that

� for all i ∈ {1, . . . , n}, and for all s1 ∈ Si and s2 ∈ S′
i, it holds that

(s1, s2) ∈ R, and

� for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} su
h that i 6= j and for all

s1 ∈ Si and s2 ∈ S′
j it holds that (s1, s2) 6∈ R.

• Whenever (s, s′) ∈ R,

� V (s) = V ′(s′), and

� for all a ∈ A, there exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ if and

only if there exists µ′ ∈ Dist(S′) su
h that L′(s′, a, µ′) = ⊤ su
h that

∀i ∈ {1, . . . , n},
P

s1∈Si
µ(s1) =

P

s2∈S
′
i
µ′(s2).

P and P ′
are probabilisti
ally bisimilar, written P ≃ P ′

, if and only if there exists

a probabilisti
 bisimulation relation su
h that s0 R s′0.

As expe
ted, the lifting

eP of P yields a spe
i�
ation that P satis�es. This is

formalized in the following lemma.

Lemma 47. Given a PA P , it holds that P |= eP .

Proof. Let P = (S,A,L,AP, V, s0) be a PA and let

eP = (S,A, L̃, AP, Ṽ , s0) be its

lifting. Let R ⊆ S×S be the identity relation on S. We prove that R is a satisfa
tion

relation su
h that P |= eP . Let s ∈ S. We show that R satis�es the axioms of a

satisfa
tion relation.
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• Let a ∈ A and ϕ ∈ C(S) su
h that

eL(s, a, ϕ) = ⊤. By 
onstru
tion of

eP , there
exists µ ∈ Dist(S) su
h that Sat(ϕ) = {µ} and L(s, a, µ) = ⊤. By 
onstru
tion,
we thus have µ ⋐R µ.

• Let a ∈ A and µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤. By 
onstru
tion of

eP ,

there exists ϕ ∈ C(S) su
h that

eL(s, a, ϕ) = ⊤, with Sat(ϕ) = {µ}. Again, by

onstru
tion, we have µ ⋐R µ.

• By 
onstru
tion V (s) ∈ {V (s)} = eV (s).

Sin
e s0 R s0, we 
on
lude that P |= eP .

Appendix B.1. Detailed proof for Theorem 20

The proof of the theorem is pre
eded by the following lemma.

Lemma 48. Let P = (S,A,L, AP, V, s0) and P ′ = (S′, A,L′, AP, V ′, s′0) be PAs with

no unrea
hable states su
h that P |= fP ′
with a satisfa
tion relation R. There exists n >

0 and partitions S1, . . . Sn of S and S′
1, . . . , S

′
n of S′

su
h that, for all i ∈ {1, . . . , n},
s ∈ Si and s

′ ∈ S′
i, either

• sR s′ or

• there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i su
h that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

Let P = (S,A,L, AP, V, s0) and P ′ = (S′, A,L′, AP, V ′, s′0) be PAs with no un-

rea
hable states su
h that P |= fP ′
by a satisfa
tion relation R. We prove that there

exists n > 0 and partitions S1, . . . Sn of S and S′
1, . . . , S

′
n of S′

su
h that, for all

i ∈ {1, . . . , n}, s ∈ Si and s
′ ∈ S′

i, either

• sR s′ or

• there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i su
h that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

Proof. Let P = (S,A,L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0) be PAs with no

unrea
hable states su
h that P |= fP ′
by satisfa
tion relation R.

We �rst propose the following pro
edure in order to build the partitions of S and

S′
, and then prove the lemma by indu
tion on this pro
edure.

Let S be partitioned into singleton sets T1 = {s1}, . . . , T|S| = {s|S|} and let

U1, · · · , U|S| be the partition of S′
su
h that ∀1 ≤ i ≤ |S| : Ui = {s′ ∈ S′|siR s′}.

Sin
e there are no unrea
hable states in P and P ′
, it is obvious that U = U1∪. . .∪U|S|.

The pro
edure is as follows:

• Let i be the smallest integer su
h that there exists j > i su
h that Ui ∩ Uj 6= ∅,
if it exists.
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For all l < i and i < l < j, let U ′
l = Ul and T

′
l = Tl;

Let U ′
i = Ui ∪ Uj and T

′
i = Ti ∪ Tj ;

For all l ≥ j, let U ′
l = Ul+1 and T ′

l = Tl+1;

Repeat.

• If there is no su
h i, then stop.

Let (S1, . . . , Sn) and (S′
1, . . . , S

′
n) denote the partitions of S and S′

upon termina-

tion.

Remark that, at all iterations of the above pro
edure, it trivially holds that

∀l, Ul =
[

s∈Tl

{s′ ∈ S′ | sR s′}.

We now prove the lemma using indu
tion on the number of steps performed using

the above pro
edure.

• Let U
(0)
1 , . . . , U

(0)
k and T

(0)
1 , . . . , T

(0)
k be the partitions in the initial state. By


onstru
tion, for all i ∈ {1, . . . , k}, if s ∈ U
(0)
i and s′ ∈ T

(0)
i , then sR s′.

• Let U
(k)
1 , . . . , U

(k)
l and T

(k)
1 , . . . , T

(k)
l be the sets obtained after step k of the pro-


edure and assume that the 
on
lusion of the lemma holds after this step. Let i
and j be the indexes used in step k+1 of the pro
edure. Let U

(k+1)
1 , . . . , U

(k+1)
m

and T
(k+1)
1 , . . . , T

(k+1)
m be the partitions obtained after step k + 1 of the pro
e-

dure. Let q ∈ {1, . . . ,m} and let s ∈ T k+1
q and s′ ∈ Uk+1

q . If q 6= i then the


on
lusions obviously hold.

If q = i, then there are 3 
ases

1. If s ∈ T ki and s′ ∈ Uki or s ∈ T kj and s′ ∈ Ukj , then the 
on
lusions hold by

indu
tion.

2. If s ∈ T ki and s′ ∈ Ukj , then by 
onstru
tion of i and j, we have that

Uki ∩Ukj 6= ∅. Thus, there must exist s∗′ ∈ Uki ∩Ukj and s∗1 ∈ T kj su
h that

s∗1 R s∗′. By the indu
tion hypothesis, there exists r, t ∈ IN, si1, . . . , s
i
r ∈

T ki , s
j
1, . . . , s

j
t ∈ T kj , s

i
1
′
, . . . , sir

′
∈ Uki and sj1

′
, . . . , sjt

′
∈ Ukj , su
h that

sR si1
′

si1 R si1
′

∧
. . .

sir = R s∗′ ∧

s∗1 R s∗′ sj1 R s∗′ ∧
. . .

sjt R s′

Sin
e Uk+1
i = Uki ∪ Ukj and T k+1

i = T ki ∪ T kj , the above 
onstru
tion gives

that the lemma holds after step k + 1 of the pro
edure.

3. If s ∈ T kj and s′ ∈ Uki , a symmetri
 reasoning applies.

We 
on
lude that the lemma holds for the partition obtained upon termination of the

pro
edure.

We now give the detailed proof of Theorem 20. Let P and P ′
be PAs. We prove

that P ≃ P ′ ⇐⇒ P |= fP ′
.
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Proof. We prove the two dire
tions separately.

• P ≃ P ′ ⇒ P |= fP ′
: Let P = (S,A,L,AP, V, s0) and P ′ = (S′, A, L′, AP, V ′, s′0)

be PAs su
h that P ≃ P ′
with relation Rb. Let

fP ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the

lifting of P ′
. Let S1, . . . , Sn and S′

1, . . . , S
′
n be the partitions of S and S′

respe
tively,

a

ording to Rb. Let R ⊆ S × S′
be the relation su
h that sR s′ i� sRb s

′
. We prove

that R is a satisfa
tion relation su
h that P |= fP ′
.

Let s ∈ S and s′ ∈ S′
su
h that sR s′. We show that R satis�es the axioms of a

satisfa
tion relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that

eL′(s′, a, ϕ′) = ⊤. By 
onstru
tion of

fP ′
, there exists µ′ ∈ Dist(S′) su
h that L′(s′, a, µ′) = ⊤ and Sat(ϕ′) = {µ′}.

Hen
e, by Rb, there exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ and for all

1 ≤ i ≤ n, µ(Si) = µ′(Si). We now prove that µ ⋐R µ′
.

Let δ : S → (S′ → [0, 1]) be a fun
tion de�ned as follows: Let s1 ∈ S and

1 ≤ i ≤ n su
h that s1 ∈ Si. Then for all s′1 ∈ S′
, let δ(s1)(s

′
1) = 0 if

s′1 /∈ S′
i or µ(s1) = 0. Otherwise, let δ(s1)(s

′
1) =

µ′(s′1)

µ′(S′
i
)
(by Rb, we know that

µ′(S′
i) = µ(Si) > 0).

(a) Let s1 ∈ S and 1 ≤ i ≤ n su
h that s1 ∈ Si and µ(s1) > 0. By 
onstru
tion,
we have the following:

X

s′1∈S
′

δ(s1)(s
′
1) =

X

s′1∈S
′
i

δ(s1)(s
′
1)

=
X

s′1∈S
′
i

µ′(s′1)

µ′(S′
i)

= 1.

(b) Let s′1 ∈ S′
and 1 ≤ i ≤ n su
h that s′1 ∈ S′

i. If µ′(S′
i) = 0, then

µ(Si) = 0 by Rb and by 
onstru
tion,

P

s1∈S
µ(s1)δ(s1)(s

′
1) = 0 = µ′(s′1).

Otherwise, we have the following:

X

s1∈S

µ(s1)δ(s1)(s
′
1) =

X

s1∈Si

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Si

µ(s1)
µ′(s′1)

µ′(S′
i)

=
µ′(s′1)

µ′(S′
i)

X

s1∈Si

µ(s1)

= µ′(s′1)
µ(Si)

µ′(S′
i)

= µ′(s′1).

(
) Let s1 ∈ S and s′1 ∈ S′
su
h that δ(s1)(s

′
1) > 0. Then by 
onstru
tion

there exists 1 ≤ i ≤ n su
h that s1 ∈ Si and s
′
1 ∈ S′

i. Hen
e s1 Rb s
′
1, and

thus s1 R s′1.
Consequently, we have µ ⋐R µ′

.

2. Let a ∈ A and µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤. Then, by Rb, there exists

µ′ ∈ Dist(S′) su
h that L′(s′, a, µ′) = ⊤. By 
onstru
tion of

fP ′
, there exists

ϕ′ ∈ C(S) su
h that

eL′(s′, a, ϕ′) = ⊤ and Sat(ϕ′) = {µ′}.
We now show that µ ⋐R µ

′
. De�ne the 
orresponden
e fun
tion δ : S → (S′ →

[0, 1]) as follows: let s1 ∈ S and let 1 ≤ i ≤ n su
h that s1 ∈ Si. De�ne

δ(s1)(s
′
1) =

µ′(s′1)
P

s′∈S′
i
µ′(s′)

, if s′1 ∈ S′
i, and 0 otherwise.
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(a) Let s1 ∈ S and assume that s1 ∈ Si for some i ∈ {1, . . . , n}.

X

s′1∈S
′

δ(s1)(s
′
1) =

X

s′1∈S
′
i

δ(s1)(s
′
1)

=
X

s′1∈S
′
i

µ′(s′1)
P

s′∈S′
i
µ′(s′)

= 1.

(b) Let s′1 ∈ S′
and assume that s′1 ∈ S′

i for some i ∈ {1, . . . , n}.

X

s1∈S

µ(s1)δ(s1)(s
′
1) =

X

s1∈Si

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Si

µ(s1)
µ′(s′1)

P

s′∈S′
i
µ′(s′)

=
µ′(s′1)

P

s′∈S′
i
µ′(s′)

X

s1∈Si

µ(s1)

= µ′(s′1),

sin
e by probabilisti
 bisimulation

P

s1∈Si
µ(s1) =

P

s′∈S′
i
µ′(s′).

(
) Assume that δ(s1)(s
′
1) > 0. Then s1 ∈ Si and s′1 ∈ S′

i for some i ∈
{1, . . . , n}, and hen
e s1 Rb s

′
1. Then s1 R s′1.

3. By Rb, we have V (s) = V ′(s′), and therefore V (s) ∈ {V ′(s′)} = fV ′(s′).

Finally, R is a satisfa
tion relation su
h that s0 R s′0, thus P |= fP ′
.

• P ≃ P ′ ⇐ P |= fP ′
: Let P = (S,A,L,AP, V, s0) and P

′ = (S′, A,L′, AP, V ′, s′0) be

PAs and let

fP ′ = (S′, A, L̃′, AP, Ṽ ′, s′0) be the lifting of P
′
. Suppose that P |= fP ′

. We

prove that P ≃ P ′
.

Let (S1, . . . , Sn) and (S′
1, . . . , S

′
n) be the partitions of S and S′

given by Lemma 48.

Let Rb ⊆ S × S′
be the relation su
h that sRb s

′
if and only if ∃i ∈ {1, . . . , n} : s ∈

Si ∧ s
′ ∈ S′

i. We prove that Rb is a probabilisti
 bisimulation relation. Consider the

partitions above. It holds by 
onstru
tion that

• for all i ∈ {1, . . . , n}, and for all s1 ∈ Si and s2 ∈ S′
i, it holds that (s1, s2) ∈ R,

and

• for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} su
h that i 6= j and for all s1 ∈ Si
and s2 ∈ S′

j it holds that (s1, s2) 6∈ R.

Let s ∈ S and s′ ∈ S′
su
h that sRb s

′
. Remark that, by Lemma 48, either sR s′

or there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i su
h that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

• By Lemma 48 and R, we have V (s) = V (s′).

• Let a ∈ A and µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤.
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� If (s, s′) ∈ R, then by R there exists ϕ′ ∈ C(S′) su
h that

eL′(s′, a, ϕ′)
= ⊤ and ∃µ′ ∈ Sat(ϕ′) : µ ⋐R µ′

; let δ be the witnessing 
orrespon-

den
e fun
tion. By 
onstru
tion of

fP ′
, we have that Sat(ϕ′) = {µ′} and

L′(s′, a, µ′) = ⊤. By 
onstru
tion of the partitions it holds, for all j ∈
{1, . . . , n} and all s1 ∈ Sj , that δ(s1)(s

′
1) = 0 if s′1 6∈ S′

j . As a 
onsequen
e,

if s1 ∈ Sj and µ(s1) > 0, then it holds by R that

P

s′1∈S
′
j
δ(s1)(s

′
1) = 1.

Let j ∈ {1, . . . , n}.

X

s′1∈S
′
j

µ′(s′1) =
X

s′1∈S
′
j

X

s1∈S

µ(s1)δ(s1)(s
′
1)

=
X

s′1∈S
′
j

X

s1∈Sj

µ(s1)δ(s1)(s
′
1)

=
X

s1∈Sj

µ(s1)
X

s′1∈S
′
j

δ(s1)(s
′
1)

=
X

s1∈Sj

µ(s1).

We 
on
lude that s and s′ are indeed probabilisti
ally bisimilar.

� If (s, s′) 6∈ R, then there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i

su
h that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

As above, for states v ∈ Si and v′ ∈ S′
i su
h that vR v′ we have that,

for all µv ∈ Dist(S) su
h that L(v, a, µv) = ⊤, there exists µ′
v ∈ Dist(S′)

su
h that L′(v′, a, µ′
v) = ⊤ and all for all j ∈ {1, . . . , n},

P

s1∈Sj
µv(s1) =

P

s′1∈S
′
j
µ′
v(s

′
1).

Moreover, for all µ′
v ∈ Dist(S′) su
h that L′(s′, a, µ′

v) = ⊤, we have that
eL′(v′, a, ϕ′

v) = ⊤ with Sat(ϕ′
v) = {µ′}. Thus, by R, there exists µv ∈

Dist(S) su
h that L(v, a, µv) = ⊤ and µv ⋐ µ′
v. As above, we obtain that

for all j ∈ {1, . . . , n},
P

s1∈Sj
µv(s1) =

P

s′1∈S
′
j
µ′
v(s

′
1).

By transitivity, we 
on
lude that there exists µ′ ∈ Dist(S′) su
h that

L′(s′, a, µ′) = ⊤ and all for all j ∈ {1, . . . , n},
P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

• Let a ∈ A and µ′ ∈ Dist(S′) su
h that L′(s′, a, µ′) = ⊤. Then, by 
onstru
tion

of

fP ′
, we have that

eL′(s′, a, ϕ′) = ⊤ with Sat(ϕ′) = {µ′}.

� If (s, s′) ∈ R, then by R there exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤
and µ ⋐R µ′

. As above, we 
an 
on
lude that for all j ∈ {1, . . . , n}, we
have

P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

� If (s, s′) 6∈ R, there exists k ∈ IN, s1, . . . , sk ∈ Si and s
′
1, . . . , s

′
k ∈ S′

i su
h
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that

sR s′1 s1 R s′1 ∧
s1 R s′2 s2 R s′2 ∧

.

.

.

skR s′

As above, by transitivity, we prove that there exists µ ∈ Dist(S) su
h

that L(s, a, µ) = ⊤ and for all j ∈ {1, . . . , n}, we have

P

s1∈Sj
µ(s1) =

P

s′1∈S
′
j
µ′(s′1).

We 
on
lude that Rb is a probabilisti
 bisimulation relation, thus P ≃ P ′
.

Appendix B.2. Detailed proof for Lemma 21

Let P be a PA and let N be an APA. We prove the following: P |= N ⇐⇒ eP � N .

Proof. We prove the two dire
tions separately.

• P |= N ⇒ eP � N : Let P = (S,A,L, AP, V, s0) be a PA and let N = (S′, A, L′, AP,

V ′, s′0) be an APA su
h that P |= N with relation Rs. Let
eP = (S,A, L̃, AP, Ṽ , s0) be

the lifting of P . Let R ⊆ S × S′
be the relation su
h that sR s′ i� sRs s

′
. We prove

that R is a re�nement relation su
h that

eP � N .

Let s ∈ S and s′ ∈ S′
su
h that sR s′. We show that R satis�es the axioms of a

weak re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤. By Rs, there exists

µ ∈ Dist(S) and µ′ ∈ Sat(ϕ′) su
h that L(s, a, µ) = ⊤ and µ ⋐Rs µ′
. By


onstru
tion of

eP , there exists ϕ ∈ C(S) su
h that

eL(s, a, ϕ) = ⊤ and Sat(ϕ) =
{µ}. Let δs be the 
orresponden
e fun
tion witnessing µ ⋐

δs
Rs

µ′
. Sin
e R = Rs,

it also holds that µ ⋐
δs
R µ′

. Thus there exists ϕ ∈ C(S) su
h that L(s, a, ϕ = ⊤)
and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ′

.

2. Let a ∈ A and ϕ ∈ C(S) su
h that

eL(s, a, ϕ) 6= ⊥. By 
onstru
tion of

eP ,
there exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}. By Rs,

there exists ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h that

µ ⋐Rs µ
′
. As above, it also holds that µ ⋐R µ′

. Thus there exists ϕ′ ∈ C(S′)
su
h that L′(s′, a, ϕ′) ≥? and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) su
h
that µ ⋐R µ′

.

3. Sin
e

eV (s) = {V (s)} and V (s) ∈ V ′(s′) by Rs, it holds that
eV (s) ⊆ V ′(s′).

Thus R is a weak re�nement relation. Moreover, by 
onstru
tion, s0 R s′0. Thus we


on
lude that

eP � N .

• P |= N ⇐ eP � N : Let P = (S,A,L,AP, V, s0) be a PA, let

eP = (S,A, L̃, AP,
Ṽ , s0) be the lifting of P and let N = (S′, A, L′, AP, V ′, s′0) be an APA su
h that

eP � N with relation Rr. Let R ⊆ S × S′
be the relation su
h that sR s′ i� sRr s

′
.

We prove that R is a satisfa
tion relation su
h that P |= N .

Let s ∈ S and s′ ∈ S′
su
h that sR s′. We show that R satis�es the axioms of a

satisfa
tion relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤. By Rr, there exists ϕ ∈

C(S) su
h that

eL(s, a, ϕ) = ⊤ and for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′)

su
h that µ ⋐Rr µ
′
. By 
onstru
tion of

eP , there exists µ ∈ Dist(S) su
h that
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L(s, a, µ) = ⊤ and Sat(ϕ) = {µ}. Consider the distribution µ′ ∈ Sat(ϕ′) su
h
that µ ⋐Rr µ

′
given by Rr. Sin
e Rr = R, it also holds that µ ⋐R µ′

. Thus

there exists µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤ and there exists µ′ ∈ Sat(ϕ′)
su
h that µ ⋐R µ′

.

2. Let a ∈ A and µ ∈ Dist(S) su
h that L(s, a, µ) = ⊤. By 
onstru
tion of

eP ,

there exists ϕ ∈ C(S) su
h that

eL(s, a, ϕ) = ⊤ and Sat(ϕ) = {µ}. Thus, by

Rr, there exists ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h

that µ ⋐Rr µ
′
. Sin
e Rr = R, it also holds that µ ⋐R µ′

. Thus there exists

ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) ≥? and µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ′
.

3. Sin
e

eV (s) = {V (s)} and

eV (s) ⊆ V ′(s′), it holds that V (s) ∈ V ′(s′).

Thus R is a satisfa
tion relation. Moreover, by 
onstru
tion, s0 R s′0. As a 
onse-

quen
e, we 
on
lude that P |= N .

Appendix C. Detailed proof for Lemma 24

We prove that, for any APA N and abstra
tion fun
tion α, it holds that N �S
α(N).

Proof. Let N = (S,A,L, AP, V, s0) be an APA and let α : S → S′
be an abstra
tion

fun
tion. Consider the state abstra
tion α(N) = (S′, A,L′, AP, V ′, α(s0)). Let R ⊆
S × S′

be the relation su
h that sR s′ i� s′ = α(s). We prove that R is a strong

re�nement relation.

Let s ∈ S and s′ ∈ S′
su
h that sR s′. By 
onstru
tion, we thus have s ∈ γ(s′).

We show that R satis�es the axioms of a strong re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤. This implies, by de�nition

of abstra
tion, that there exists ϕ ∈ C(S), su
h that L(s, a, ϕ) = ⊤ and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗)=⊤

Sat(ϕ∗)

1

A

De�ne δ : S → (S′ → [0, 1]) su
h that δ(u)(v) = 1 if α(u) = v, and 0 otherwise.

We now show that for all distribution µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) su
h
that µ ⋐

δ
R µ′

.

Let µ ∈ Sat(ϕ) and let µ′ ∈ Dist(S′) su
h that µ′(s′′) = α(µ)(s′′) for all s′′ ∈ S′
.

Clearly, µ′ ∈ Sat(ϕ′).

(a) Let u ∈ S su
h that µ(u) > 0. By 
onstru
tion, δ(u) is a distribution on

S′
.

(b) Let v ∈ S′
.

X

u∈S

µ(u)δ(u)(v) =
X

u st. α(u)=v

µ(u)

=
X

u∈γ(v)

µ(u) = α(µ)(v) = µ′(v),

(
) Let u ∈ S and v ∈ S′
su
h that δ(u)(v) > 0. By 
onstru
tion, we thus

have α(u) = v, and �nally uR v.
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2. Let a ∈ A and ϕ ∈ C(S) su
h that L(s, a,ϕ) 6= ⊥. By 
onstru
tion of α(N), then
there are two 
ases. Either (1) there exists ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) =?
and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗) 6=⊥

Sat(ϕ∗)

1

A

or (2) there is no 
onstraint ϕ′′
su
h that L′(s′, a, ϕ′′) =?, whi
h means that

L(s, a, ϕ) = ⊤ and there exists ϕ′ ∈ C(S′) su
h that L′(s′, a, ϕ′) = ⊤ and

Sat(ϕ′) = α

0

@

[

(s,ϕ∗)∈γ(s′)×C(S):L(s,a,ϕ∗)=⊤

Sat(ϕ∗)

1

A

Let δ : S → (S′ → [0, 1]) be the 
orresponden
e fun
tion de�ned as above.

Let µ ∈ Sat(ϕ) and 
onsider µ′ ∈ Dist(S′) su
h that µ′(s′′) = α(µ)(s′′) for all
s′′ ∈ S′

. Clearly, in both 
ases, we have µ′ ∈ Sat(ϕ′). De�ne δ : S → (S′ →
[0, 1]) as δ(u)(v) = 1, if α(u) = v, and 0 otherwise. We now show that µ ⋐

δ
R µ′

.

(a) Let u ∈ S su
h that µ(u) > 0. Clearly, δ(u) is a distribution on S′
.

(b) Let v ∈ S′
.

X

u∈S

µ(u)δ(u)(v) =
X

u st. α(u)=v

µ(u)

=
X

u∈γ(v)

µ(u) = µ′(v),

by de�nition of an abstra
tion of a distribution.

(
) Assume that δ(u)(v) > 0. Then α(u) = v, and uR v.

3. By De�nition 23, it is easy to see that V (s) ⊆ V ′(s′).

By 
onstru
tion, we have s0 Rα(s0), so we 
on
lude that R is a strong re�nement

relation and N �S α(N).

Appendix D. Detailed proof for Lemma 26

We prove that, for any APA N , it holds that N �S χ(N).

Proof. Let N = (S,A,L, AP, V, s0) be an APA and let χ(N) = (S,A,L′, AP, V,
s0) be the 
onstraint-abstra
tion of N . Let R = S × S be the identity relation.

We prove that R is a strong re�nement relation.

Let s, s′ ∈ S su
h that sR s′. Noti
e that this is implies that s = s′. We show

that R satis�es the axioms of a strong re�nement relation.

1. Let a ∈ A and ϕI ∈ C(S) su
h that L′(s′, a, ϕI) = ⊤. This implies, by De�-

nition 25, that there exists ϕ ∈ C(S), su
h that L(s, a, ϕ) = ⊤ and Sat(ϕI) =
{µ′ ∈ Dist(S)|

V

s′∈S µ
′(s′) ∈ Iϕ

s′
} with {Iϕ

s′
|s′ ∈ S} the smallest 
losed intervals

su
h that ∀µ ∈ Sat(ϕ) :
V

s′∈S µ(s′) ∈ Iϕ
s′
.

Let δ be the identity 
orresponden
e fun
tion.

Let µ ∈ Sat(ϕ). By de�nition of ϕI , it is trivial that µ ∈ Sat(ϕI) and µ ⋐
δ
R µ.
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2. Let a ∈ A and ϕ ∈ C(S) su
h that L(s, a, ϕ) ≥?. This implies, by De�nition 25,

that there exists ϕI ∈ C(S), su
h that L(s′, a, ϕI) = L(s, a, ϕ) and Sat(ϕI) =
{µ′ ∈ Dist(S)|

V

s′∈S µ
′(s′) ∈ Iϕ

s′
} with {Iϕ

s′
|s′ ∈ S} the smallest 
losed intervals

su
h that ∀µ ∈ Sat(ϕ) :
V

s′∈S µ(s′) ∈ Iϕ
s′
.

Let δ be the identity 
orresponden
e fun
tion.

Let µ ∈ Sat(ϕ). Again, it is trivial that µ ∈ Sat(ϕI) and µ ⋐
δ
R µ.

3. By De�nition 25, sin
e s = s′, we have V (s) ⊆ V (s′).

By 
onstru
tion, as the initial states are equal, we have s0 R s0, so we 
on
lude

that R is a strong re�nement relation and N �S χ(N).

Appendix E. Detailed proof for Theorem 30

We prove that for or any APA N , it holds that [[N ]] = [[β(N)]], and [[N ]] = [[β∗(N)]].

Proof. Let N = (S,A,L,AP, V, s0) be an APA. Let T be the set of in
onsistent

states of N and let β(N) be the 
orresponding APA using the pruning operator

of De�nition 29. The result is trivial if β(N) is empty. Otherwise, suppose that

β(N) = (S′, A, L′, AP, V ′, s0), and let P = (Q,A,LP , AP, VP , q0) be a PA. We prove

that P |= N ⇐⇒ P |= β(N). If this holds, then, by applying β until a �xpoint is

rea
hed, it holds that [[N ]] = [[β∗(N)]].

• P |= N ⇒ P |= β(N): Suppose that P |= N , and letR ⊆ Q×S be the 
orresponding

satisfa
tion relation. De�ne the relation R′ ⊆ Q × S′
su
h that for all s ∈ S′

, qR′ s
i� qR s. We prove that R′

is a satisfa
tion relation. Let q ∈ Q and s ∈ S′
su
h that

qR′ s. We show that R′
satis�es the axioms of a satisfa
tion relation.

1. Let a ∈ A and ϕ ∈ C(S′) su
h that L′(s, a,ϕ) = ⊤. By de�nition of L′
, we

have that ϕs,a 6= ∅ and ⊔ϕ∈ϕs,aL(s, a, ϕ) = ⊤. As a 
onsequen
e, there exists

ϕ ∈ C(S) su
h that L(s, a, ϕ) = T and µ ∈ Sat(ϕ) i� there exists µ ∈ Sat(ϕ)
su
h that µ(s′) = µ(s′) for all s′ ∈ S′

and µ(t) = 0 for all t ∈ T .
By R, there exists ̺ ∈ Dist(Q) su
h that LP (q, a, ̺) = ⊤ and there exists

µ ∈ Sat(ϕ) su
h that ̺ ⋐R µ. Let s′ ∈ S and suppose that µ(s′) > 0. Let δ be
the 
orresponden
e fun
tion su
h that ̺ ⋐

δ
R µ. By de�nition, there must exist

q′ ∈ Q su
h that ̺(q′) > 0 and δ(q′)(s′) > 0. By the de�nition of R, this means

that s′ is not in
onsistent. As a 
onsequen
e, for all t ∈ T , we have µ(t) = 0 (1).

Moreover, δ(q′)(s′) > 0 also implies that s′ is 
onsistent. Thus, for all q′ ∈ Q
and t ∈ T , we have that δ(q′)(t) = 0 (2).

Let µ ∈ Dist(S′) su
h that for all s′ ∈ S′
, µ(s′) = µ(s′). By (1), µ is indeed a

distribution. Moreover, we have by 
onstru
tion that µ ∈ Sat(ϕ). Let δ′ : Q→
(S′ → [0, 1]) su
h that for all q′ ∈ Q and s′ ∈ S, δ′(q′)(s′) = δ(q′)(s′). By (2),

we have that δ′ is a 
orresponden
e fun
tion, and

(a) For all q′ ∈ Q, if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S. Thus,
by (2), δ′ is a distribution on S′

.

(b) For all s′ ∈ S′
,

X

q′∈Q

̺(q′)δ′(q′)(s′) =
X

q′∈Q

̺(q′)δ(q′)(s′)

= µ(s′) = µ(s′).
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(
) Whenever δ′(s′)(q′) > 0, we have by de�nition δ(q′)(s′) > 0. Thus, by R,

q′ R s′, and �nally q′ R′ s′.

Finally, we have that ̺ ⋐
δ′

R′ µ.

2. Let a ∈ A and ̺ ∈ Dist(Q) su
h that LP (q, a, ̺) = ⊤. By R, there exists

ϕ ∈ C(S) and µ ∈ Sat(ϕ) su
h that L(s, a, ϕ) 6= ⊥ and ̺ ⋐R µ. Let ϕ ∈ C(S′)
be the 
onstraint su
h that µ∗ ∈ Sat(ϕ) i� there exists µ∗′ ∈ Sat(ϕ) su
h that,

for all s′ ∈ S′
, µ∗(s′) = µ∗(s′) and for all t ∈ T , µ∗(t) = 0.

Let δ be the asso
iated 
orresponden
e fun
tion. Let s′ ∈ S and suppose that

µ(s′) > 0. By de�nition, there must exist q′ ∈ Q su
h that ̺(q′) > 0 and

δ(q′)(s′) > 0. By the de�nition of R, this means that s′ is not in
onsistent.

As a 
onsequen
e, for all t ∈ T , we have µ(t) = 0 (1). Moreover, δ(q′)(s′) > 0
also implies that s′ is 
onsistent. Thus, for all q′ ∈ Q and t ∈ T , we have that
δ(q′)(t) = 0 (2).

Let ϕ ∈ C(S′) su
h that µ ∈ Sat(ϕ) i� there exists µ′ ∈ Sat(ϕ) su
h that, for

all s′ ∈ S′
, µ(s′) = µ′(s′) and for all t ∈ T , µ′(t) = 0. By 
onstru
tion, we have

ϕ ∈ ϕs,a. Thus, L′(s, a, ϕ) 6= ⊥.
Moreover, let µ ∈ Dist(S′) be the distribution su
h that for all s′ ∈ S′

, µ(s′) =
µ(s′). By (1), µ is indeed a distribution. By 
onstru
tion, we have that µ ∈
Sat(ϕ). Let δ′ : Q → (S′ → [0, 1]) su
h that for all q′ ∈ Q and s′ ∈ S,
δ′(q′)(s′) = δ(q′)(s′). By (2), we have that δ′ is a 
orresponden
e fun
tion, and

(a) For all q′ ∈ Q, if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S. Thus,
by (2), δ′ is a distribution on S′

.

(b) For all s′ ∈ S′
,

X

q′∈Q

̺(q′)δ′(q′)(s′) =
X

q′∈Q

̺(q′)δ(q′)(s′)

= µ(s′) = µ(s′).

(
) Whenever δ′(s′)(q′) > 0, we have by de�nition δ(q′)(s′) > 0. Thus, by R,

q′ R s′, and �nally q′ R′ s′.

Finally, we have that ̺ ⋐
δ′

R′ µ.

3. By R, we have that V (q) ∈ V (s′) = V ′(s′).

Finally, R′
is a satisfa
tion relation. Moreover, we have by de�nition that q0 R

′ s0,
thus P |= β(N).

• P |= N ⇐ P |= β(N): Suppose that P |= β(N), and let R′ ⊆ Q × S′
be the


orresponding satisfa
tion relation. De�ne R ⊆ Q × S su
h that for all q ∈ Q and

s ∈ S, qR s i� s ∈ S′
and qR′ s′. By 
onstru
tion, R is a satisfa
tion relation and

q0 R s0. Thus P |= N .

Appendix F. Detailed proof for Theorem 32

Let N1, N2, and N3 be 
onsistent APAs sharing a
tion and atomi
 proposition

sets. We prove that

• β∗(N1 ∧N2) �W N1 and β∗(N1 ∧N2) �W N2.

• If N3�W N1 and N3�W N2, then N3�W β∗(N1 ∧N2).
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Proof. Let N1 = (S1, A, L1, AP, V1, s0) and N2 = (S2, A, L2, AP, V2, s
2
0) and N3 =

(S3, A, L3, AP, V3, s
3
0) be three APAs. Let N1 ∧ N2 = (S1 × S2, A, L̃, AP, Ṽ ,

(s0, s
2
0)) be the 
onjun
tion of N1 and N2 de�ned as in De�nition 31. We prove

the 
laims separately.

• β∗(N1∧N2) �W N1: Obviously, if N1 ∧N2 is fully in
onsistent, then β∗(N1∧N2) is
empty and re�nes N1 with the empty re�nement relation. Suppose now that β∗(N1 ∧
N2) = (S∧, A, L∧, AP, V ∧, (s0, s

2
0)), with S

∧ ⊆ S1×S2, not empty. De�ne the relation

R ⊆ S∧ × S1 su
h that for all (s, s′) ∈ S∧
and t ∈ S1, (s, s′)R t i� s = t. We prove

that R is a weak weak re�nement relation. Let (s, s′) ∈ S∧
su
h that (s, s′)R s. We

show that R satis�es the axioms of a weak weak re�nement relation.

1. let a ∈ A and ϕ ∈ C(S1) su
h that L1(s, a,ϕ) = ⊤. Sin
e (s, s′) ∈ S∧
, we have

that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) su
h that µ̃ ∈ Sat(ϕ̃) i�

• the distribution µ : r →
P

r′∈S2
µ̃((r, r′)) is in Sat(ϕ), and

• there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and the

distribution µ′ : r′ →
P

r∈S1
µ̃((r, r′)) is in Sat(ϕ′).

By de�nition of N1 ∧N2, we have that L̃((s, s′), a, ϕ̃) = ⊤. Consider now ϕ∧ ∈
C(S∧) the 
onstraint su
h that µ∧ ∈ Sat(ϕ∧) i� there exists µ̃ ∈ Sat(ϕ̃) su
h
that ∀r ∈ S∧, µ∧(r) = µ̃(r) and ∀r ∈ S1×S2\S

∧, µ̃(r) = 0. A

ording to the def-
inition of pruning, we know that L∧((s, s′), a, ϕ∧) = ⊔

ψ∈ϕ∧(s,s′),a L̃((s, s′), a, ψ).

Sin
e ϕ̃ ∈ ϕ∧(s,s′),a
, it holds that L∧((s, s′), a,

ϕ∧) = ⊤.
Thus there exists ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) = ⊤. Moreover, de�ne

the 
orresponden
e fun
tion δ : S∧ → (S1 → [0, 1]) su
h that δ((r, r′))(r′′) = 1
i� r′′ = r. Let µ∧ ∈ Sat(ϕ∧), µ̃ the 
orresponding distribution in Sat(ϕ̃), and
µ the distribution su
h that µ : r ∈ S1 7→

P

r′∈S2
µ̃((r, r′)). By de�nition, µ is

in Sat(ϕ). We now prove that µ∧
⋐
δ
R µ.

• For all (r, r′) ∈ S∧
, δ((r, r′)) is a distribution on S1 by de�nition.

• Let r ∈ S1.

X

(r,r′′)∈S∧

µ∧((r′, r′′))δ((r′, r′′))(r) =
X

r′∈S2 | (r,r′)∈S∧

µ∧((r, r′))

=
X

r′∈S2 | (r,r′)∈S∧

µ̃((r, r′))

=
X

r′∈S2

µ̃((r, r′))

= µ(r)

• Finally, if δ((r, r′))(r′′) > 0, then r = r′′ and (r, r′)R r by de�nition.

Thus µ∧
⋐
δ
R µ.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) 6= ⊥. By de�nition of L∧
,

there exists ϕ̃ ∈ ϕ∧t,a
. Thus, L̃((s, s′), a, ϕ̃ 6= ⊥ in N1 ∧N2, and a distribution

µ∧
satis�es ϕ∧

i� there exists a distribution µ̃ ∈ Sat(ϕ̃) su
h that µ∧(r) = µ̃(r)
for all r ∈ S∧

and µ̃(r) = 0 for all r ∈ S1 × S2 \ S∧
. Sin
e S∧


ontains only


onsistent states, there exists µ∧ ∈ Sat(ϕ∧). Let µ̃ ∈ Sat(ϕ̃) be a 
orresponding
distribution in ϕ̃. There are 3 
ases.
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• If a /∈ Must(s) and a /∈ Must(s′), then by de�nition of L̃, there must exist

ϕ ∈ C(S1) and ϕ
′ ∈ C(S2) su
h that L1(s, a, ϕ) 6= ⊥ and L2(s

′, a, ϕ′) 6= ⊥.
Moreover, ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→

P

r′∈S2
˜̺((r, r′))

and ̺′ : r′ ∈ S2 7→
P

r∈S1
˜̺((r, r′)) are respe
tively in Sat(ϕ) and in

Sat(ϕ′).

Sin
e µ̃ ∈ Sat(ϕ̃), let µ and µ′
be the 
orresponding distributions in Sat(ϕ)

and Sat(ϕ′). De�ne the 
orresponden
e fun
tion δ : S∧ → (S1 → [0, 1])
su
h that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we 
an prove that

µ∧
⋐
δ
R µ.

• Otherwise, suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) su
h that

ϕ̃ is su
h that ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sin
e µ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the 
orresponding 
onstraint on S2

su
h that L2(s
′, a, ϕ′) 6= ⊥. Let µ and µ′

be the 
orresponding distributions

in Sat(ϕ) and Sat(ϕ′). De�ne the 
orresponden
e fun
tion δ : S∧ → (S1 →
[0, 1]) su
h that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we 
an prove that

µ∧
⋐
δ
R µ.

• Finally, suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) su
h that

ϕ̃ is su
h that ˜̺ ∈ Sat(ϕ̃) i�

� there exists a distribution ϕ ∈ C(S1) su
h that L1(s, a, ϕ) 6= ⊥ and

the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sin
e µ̃ ∈ Sat(ϕ̃), let ϕ ∈ C(S1) be the 
orresponding 
onstraint on S1

su
h that L1(s, a, ϕ) 6= ⊥. Let µ and µ′
be the 
orresponding distributions

in Sat(ϕ) and Sat(ϕ′). De�ne the 
orresponden
e fun
tion δ : S∧ →
(S1 → [0, 1]) su
h that δ((r, r′))(r′′) = 1 i� r′′ = r. As above, we 
an

prove that µ∧
⋐
δ
R µ.

Finally, in any 
ase, there exists ϕ ∈ C(S1) su
h that L1(s, a, ϕ) 6= ⊥ and there

exists µ ∈ Sat(ϕ) su
h that µ∧
⋐R µ.

3. By de�nition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak re�nement relation, and we have β∗(N1 ∧N2) �W N1.

• β∗(N1 ∧N2) �W N2: This result is obtained using a similar proof as above.

• if N3 �W N1 and N3 �W N2, then N3 �W β∗(N1 ∧ N2): Let R1 ⊆ S3 × S1

and R2 ⊆ S3 × S2 be the weak weak re�nement relations su
h that N3 � N1 and

N3 � N2. Obviously, if N1 ∧ N2 is fully in
onsistent, then β∗(N1 ∧ N2) is empty. In

this 
ase, there are no 
onsistent APAs re�ning both N1 and N2. As a 
onsequen
e,

N3 is in
onsistent, whi
h violates the hypothesis. Suppose now that β∗(N1 ∧ N2) =
(S∧, A,L∧, AP, V ∧, (s0, s

2
0)), with S∧ ⊆ S1 × S2, is not empty. De�ne the relation

R∧ ⊆ S3 ×S∧
su
h that s′′ R∧(s, s′) ∈ S∧

i� s′′ R s ∈ S1 and s′′ R′ s′ ∈ S2. We prove

that R∧
is a weak weak re�nement relation.

Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 su
h that s′′ R∧(s, s′). We show that R∧

satis�es

the axioms of a weak weak re�nement relation.
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1. Let a ∈ A and ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) = ⊤. By de�nition, we

have L̃((s, s′), a, ϕ̃) = ⊤ with ϕ̃ ∈ C(S1 × S2) su
h that µ∧ ∈ Sat(ϕ∧) i� there

exists µ̃ ∈ Sat(ϕ̃) su
h that µ∧(r) = µ̃(r) for all r ∈ S∧
and µ̃(r) = 0 for all

r ∈ S1 × S2 \ S∧
. There are 2 
ases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) su
h that L1(s, a, ϕ) =
⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� there exists a distribution ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and

the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

Sin
e L1(s, a, ϕ) = ⊤ and s′′ R1 s, there exist ϕ′′ ∈ C(S3) su
h that

L3(s
′′, a, ϕ′′) = ⊤ and ∀µ′′ ∈ Sat(ϕ′′),∃µ ∈ Sat(ϕ), su
h that µ′′

⋐R1 µ
(1).

Sin
e L3(s
′′, a, ϕ′′) = ⊤ and s′′ R2 s

′
, we have that ∀µ′′ ∈ Sat(ϕ′′), there

exist ϕ′ ∈ C(S2) su
h that L2(s
′, a, ϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h that

µ′′
⋐R2 ̺

′
(2).

Let µ′′ ∈ Sat(ϕ′′). By (1) and (2), there exists µ ∈ Sat(ϕ), ϕ′ ∈ C(S2)
su
h that L2(s

′, aϕ′) 6= ⊥ and µ′ ∈ Sat(ϕ′) su
h that µ′′
⋐R1 µ and

µ′′
⋐R2 µ

′
. Sin
e (s, s′) and s′′ are 
onsistent, remark that for all (r, r′)

in S1 × S2 \ S
∧
, we 
annot have s′′ R1 r and we 
annot have s′′ R2 r

′
(3).

We now build µ∧ ∈ Sat(ϕ∧) su
h that µ′′
⋐R∧ µ∧

.

Let δ and δ′ be the 
orresponden
e fun
tions su
h that µ′′
⋐
δ
R1

µ and

µ′′
⋐
δ′

R2
µ′
. De�ne the 
orresponden
e fun
tion δ′′ : S3 → (S∧ → [0, 1])

su
h that for all r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′).

We build µ∧
and prove that µ′′

⋐
δ′′

R∧ µ∧
.

� For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distribu-

tions. By (3), we know that for all (r, r′) ∈ S1 × S2 \ S∧
, δ(r′′)(r) =

δ′(r′′)(r′) = 0. As a 
onsequen
e, δ′′(r′′) is a distribution on S∧
.

� De�ne µ∧(r, r′) =
P

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). We prove that µ∧ ∈

Sat(ϕ∧),

∗ Let r′ ∈ S2, we have

X

r∈S1 | (r,r′)∈S∧

µ∧(r, r′)

=
X

r∈S1 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ′′(r′′)((r, r′))

=
X

r∈S1 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ(r′′)(r)δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ′(r′′)(r′)
X

r∈S1 | (r,r′)∈S∧

δ(r′′)(r)

=
X

r′′∈S3

µ′′(r′′)δ′(r′′)(r′)

= µ′(r′) by de�nition.
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∗ Let r ∈ S1, we have

X

r′∈S2 | (r,r′)∈S∧

µ∧(r, r′)

=
X

r′∈S2 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ′′(r′′)((r, r′))

=
X

r′∈S2 | (r,r′)∈S∧

X

r′′∈S3

µ′′(r′′)δ(r′′)(r)δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ(r′′)(r)
X

r′∈S2 | (r,r′)∈S∧

δ′(r′′)(r′)

=
X

r′′∈S3

µ′′(r′′)δ(r′′)(r)

= µ(r) by de�nition.

Thus we have that

· the distribution ̺ : r →
P

r′∈S2
µ∧((r, r′)) is in Sat(ϕ), and

· the distribution ̺′ : r′ →
P

r∈S1
µ∧((r, r′)) is in Sat(ϕ′).

As a 
onsequen
e, µ∧ ∈ Sat(ϕ∧) by de�nition of ϕ∧
.

� If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and

δ′(r′′)(r′) > 0. As a 
onsequen
e, r′′ R1 r and r
′′ R2 r

′
, thus r′′ R∧(r, r′).

Finally, µ′′
⋐R∧ µ∧

and µ∧ ∈ Sat(ϕ∧).

• Suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) su
h that L2(s
′, a,

ϕ′) = ⊤, and ˜̺ ∈ Sat(ϕ̃) i�

� there exists a distribution ϕ ∈ C(S1) su
h that L1(s, a, ϕ) 6= ⊥ and

the distribution ̺ : r →
P

r′∈S2
˜̺((r, r′)) is in Sat(ϕ), and

� the distribution ̺′ : r′ →
P

r∈S1
˜̺((r, r′)) is in Sat(ϕ′).

This 
ase is stri
tly symmetri
 to the one presented above, so there also

exists ϕ′′ ∈ C(S3) su
h that L3(s
′′, a, ϕ′′) = ⊤ and for all µ′′ ∈ Sat(ϕ′′),

there exists µ∧ ∈ Sat(ϕ∧) su
h that µ′′
⋐R∧ µ∧

.

2. Let a ∈ A and ϕ′′ ∈ C(S3) su
h that L3(s
′′, a, ϕ′′) 6= ⊥. Let µ′′ ∈ Sat(ϕ′′).

Sin
e s′′ R1 s and s′′ R2 s
′
, there must exist ϕ ∈ C(S1), µ ∈ Sat(ϕ), ϕ′ ∈

C(S2) and µ
′ ∈ Sat(ϕ′) su
h that L1(s, a, ϕ) 6= ⊥, L2(s

′, a, ϕ′) 6= ⊥, µ′′
⋐R1 µ

and µ′′
⋐R2 µ′

. As a 
onsequen
e, L̃((s, s′), a, ϕ̃) 6= ⊥, with ϕ̃ ∈ C(S1 ×
S2) su
h that ˜̺ ∈ Sat(ϕ̃) i� the distributions ̺ : r ∈ S1 7→

P

r′∈S2
˜̺((r, r′))

and ̺′ : r′ ∈ S2 7→
P

r∈S1
˜̺((r, r′)) are respe
tively in Sat(ϕ) and in Sat(ϕ′).

Moreover, sin
e s′′ and (s, s′) are 
onsistent, there exists ϕ∧ ∈ C(S∧) su
h that

L∧((s, s′), a, ϕ∧) 6= ⊥ and ̺∧ ∈ Sat(ϕ∧) i� there exists ˜̺ ∈ Sat(ϕ̃) su
h that

̺∧(r, r′) = ˜̺(r, r′) for all (r, r′) ∈ S∧
and ˜̺(r, r′) = 0 for all (r, r′) ∈ S1×S2\S

∧
.

Let δ and δ′ the 
orresponden
e fun
tions su
h that µ′′
⋐
δ
R1

µ and µ′′
⋐
δ′

R2
µ′
.

Sin
e s′′ and (s, s′) are 
onsistent, we know that (1) for all (r, r′) ∈ S1×S2 \S
∧
,

we have µ(r) = µ′(r′) = 0 and (2) for all r′′ ∈ S3 and (r, r′) ∈ S1 × S2 \ S∧
, we


annot have r′′ R1 r and we 
annot have r′′ R2 r
′
.

De�ne the 
orresponden
e fun
tion δ′′ : S3 → (S∧ → [0, 1]) su
h that for all

r′′ ∈ S3 and (r, r′) ∈ S∧
, δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We now build µ∧

su
h that µ′′
⋐
δ′′

R∧ µ∧
and prove that µ∧ ∈ Sat(ϕ∧).

74



• For all r′′ ∈ S3, if µ
′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By

(2), we know that for all (r, r′) ∈ S1 × S2 \ S∧
, δ(r′′)(r) = δ′(r′′)(r′) = 0.

As a 
onsequen
e, δ′′(r′′) is a distribution on S∧
.

• De�ne µ∧(r, r′) =
P

r′′∈S3
µ′′(r′′)δ′′(r′′)((r, r′)). As above, we 
an prove

that µ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by de�nition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0.
As a 
onsequen
e, r′′ R1 r and r

′′ R2 r
′
, thus r′′ R∧(r, r′).

Finally, there exists ϕ∧ ∈ C(S∧) su
h that L∧((s, s′), a, ϕ∧) 6= ⊥ and µ∧ ∈
Sat(ϕ∧) su
h that µ′′

⋐R∧ µ∧
.

3. Sin
e s′′ R1 s and s
′′ R2 s

′
, we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Finally, R∧
is a weak weak re�nement relation between N3 and β∗(N1 ∧ N2).

Moreover, we know that s30 R1 s0, s
3
0 R2 s

2
0, and (s0, s

2
0) is 
onsistent. As a


onsequen
e s30 R
∧(s0, s

2
0) and N3 � β∗(N1 ∧N2).

Appendix G. Detailed proof for Theorem 35

Given a syn
hronization set A, we prove that all notions of re�nement are a pre-


ongruen
e with respe
t to the parallel 
omposition operator ‖A de�ned above, i.e. if

N1 ⋉ N ′
1 and N2 ⋉ N ′

2, then N1‖AN2 ⋉N ′
1‖AN

′
2, for ⋉ ∈ {�T ,�W ,�,�S}.

Proof. We provide the proof for ⋉ =�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N

′
1 = (S′

1, A1,
L′

1, AP1, V
′
1 , s

1
0
′
) and N ′

2 = (S′
2, A2, L

′
2, AP2, V

′
2 , s

2
0
′
) be APAs su
h that AP1∩AP2 = ∅.

Let A ⊆ A1 ∩A2. Assume that N1 � N ′
1 and N2 � N ′

2 with weak re�nement relations

R1 and R2, respe
tively. Let N1‖AN2 = (S1 × S2, A1 ∪ A2, L, AP1 ∪ AP2, V, (s
1
0, s

2
0))

and N ′
1‖AN

′
2 = (S′

1 × S′
2, A1 ∪A2, L

′, AP1 ∪AP2, V, (s
1
0
′
, s20

′
)).

Let R ⊆ (S1 × S2) × (S′
1 × S′

2) be the relation su
h that (s1, s2)R(s′1, s
′
2) i�

s1 R1 s
′
1 and s2 R2 s

′
2. We now show that R is a weak re�nement relation su
h that

N1‖AN2 � N ′
1‖AN

′
2.

Assume that (s1, s2)R(s′1, s
′
2). We show that R satis�es the axioms of a weak

re�nement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S′
1 × S′

2) su
h that L′((s′1, s
′
2), a, ϕ

′) = ⊤. There

are three 
ases:

• If a ∈ A, then there exists ϕ′
1 ∈ C(S′

1) and ϕ′
2 ∈ C(S′

2) su
h that

L′
1(s

′
1, a, ϕ

′
1) = L′

2(s
′
2, a, ϕ

′
2) = ⊤ and µ′ ∈ Sat(ϕ′) i� there exists µ′

1 ∈
Sat(ϕ′

1) and µ′
2 ∈ Sat(ϕ′

2) su
h that µ′ = µ′
1µ

′
2. Sin
e s1 R1 s

′
1 and

s2 R2 s
′
2, there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) with L1(s1, a, ϕ1) =

L2(s2, a, ϕ2) = ⊤ and ∀µ1 ∈ Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ′
1 and

∀µ2 ∈ Sat(ϕ2),∃µ
′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.

De�ne ϕ ∈ C(S1 × S2) su
h that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By de�nition

of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ). Then there

exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h that µ = µ1µ2. Sin
e s1 R1 s
′
1

and s2 R2 s
′
2, there exist µ

′
1 ∈ Sat(ϕ′

1), µ
′
2 ∈ Sat(ϕ′

2) and 
orresponden
e

fun
tions δ1 : S1 → (S′
1 → [0, 1]) and δ2 : S2 → (S′

2 → [0, 1]), su
h that

µ1 ⋐
δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.
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De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1]) as
δ(u, v)(u′, v′) = δ1(u)(u

′)δ2(v)(v
′). Consider the distribution µ′

su
h that

µ′ = µ′
1µ

′
2. By 
onstru
tion, µ′ ∈ Sat(ϕ′). We now prove that µ ⋐

δ
R µ′

:

(a) Assume that for (u, v) ∈ S1 × S2, µ(u, v) > 0. Then we have

X

(u′,v′)∈S′
1×S

′
2

δ(u, v)(u′, v′) =
X

u′∈S′
1

X

v′∈S′
2

δ1(u)(u
′)δ2(v)(v

′)

=

0

@

X

u′∈S′
1

δ1(u)(u
′)

1

A

0

@

X

v′∈S′
2

δ2(v)(v
′)

1

A

= 1.

Thus δ(u, v) is a distribution on S′
1 × S′

2.

(b) Let (u′, v′) ∈ S′
1 × S′

2.

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, v′) =
X

u∈S1

X

v∈S2

µ1(u)µ2(v)

δ1(u, u
′)δ2(v, v

′)

=

 

X

u∈S1

µ1(u)δ1(u)(u
′)

!

 

X

v∈S2

µ2(v)δ2(v)(v
′)

!

= µ′
1(u

′)µ′
2(v

′) = µ′(u′, v′).

(
) Assume that δ(u, v)(u′, v′) > 0. Then δ1(u)(u
′) > 0 and

δ2(v)(v
′) > 0, and sin
e N1 � N ′

1 and N2 � N ′
2, uR1 u

′
and vR2 v

′
.

Thus, by de�nition of R, we have (u, v)R(u′, v′).

• If a ∈ A1 \ A, then there exists ϕ′
1 ∈ C(S′

1) su
h that L′
1(s

′
1, a, ϕ

′
1) = ⊤.

Sin
e s1 R1 s
′
1, there exists ϕ1 ∈ C(S1) with L1(s1, a, ϕ1) = ⊤ and ∀µ1 ∈

Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) su
h that µ1 ⋐R1 µ
′
1.

De�ne ϕ ∈ C(S1 × S2) su
h that µ ∈ Sat(ϕ) i� for all u ∈ S1 and v 6=
s2, µ(u, v) = 0 and the distribution µ1 : t 7→ µ(t, s2) is in Sat(ϕ1). By

de�nition of N1‖AN2, we have L((s1, s2), a, ϕ) = ⊤. Let µ ∈ Sat(ϕ). Then
there exists a µ1 ∈ Sat(ϕ1) su
h that µ1 
an be written as t 7→ µ(t, s2)
and furthermore there exists µ′

1 ∈ Sat(ϕ′
1) and a 
orresponden
e fun
tion

δ1 : S1 → (S′
1 → [0, 1]) su
h that µ1 ⋐

δ1
R1

µ′
1.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1]) as
δ(u, v)(u′, v′) = δ(u)(u′) if v = s2 and v′ = s′2, and 0 otherwise. Consider

the distribution µ′
over S′

1 × S′
2 su
h that for all u′ ∈ S′

1 and v′ 6= s′2,
µ′(u′, v′) = 0 and for all u′ ∈ S′

1 µ′(u′, s′2) = µ′
1(u

′). By 
onstru
tion,

µ′ ∈ Sat(ϕ′). We now prove that µ ⋐
δ
R µ′

:

(a) Assume that for (u, v) ∈ S1 × S2, µ(u, v) > 0. Then we have

X

(u′,v′)∈S′
1×S

′
2

δ(u, v)(u′, v′) =
X

u′∈S′
1

X

v′∈S′
2

δ1(u)(u
′)

=
X

u′∈S′
1

δ1(u)(u
′) = 1.
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Thus δ(u, v) is a distribution on S′
1 × S′

2.

(b) Let (u′, v′) ∈ S′
1 × S′

2, with v
′ 6= s′2.

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, v′) =
X

u∈S1

X

v∈S2

µ(u, v)0

= 0

= µ′(u′, v′),

Let u′ ∈ S′
1, we have

X

(u,v)∈S1×S2

µ(u, v)δ(u, v)(u′, s′2) =
X

u∈S1

X

v=s2

µ(u, v)δ(u, v)(u′, s′2)

=
X

u∈S1

µ1(u)δ1(u, u
′)

= µ′(u′, v′).

(
) Assume that δ(u, v)(u′, v′) > 0. By de�nition of δ, we have δ1(u)(u
′) >

0 and v = s2, v
′ = s′2. By de�nition of δ1, we thus have uR1 u

′
. Sin
e

s2 R2 s
′
2 by assumption, we �nally have (u, v)R(u′, v′).

• If a ∈ A2 \ A, the proof is similar.

2. Let a ∈ A1 ∪ A2 and ϕ ∈ C(S1 × S2) su
h that L((s1, s2), a, ϕ) 6= ⊥. There are
three 
ases:

• If a ∈ A, then there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) su
h that

L1(s1, a, ϕ1) 6= ⊥, L2(s2, a, ϕ2) 6= ⊥, and µ ∈ Sat(ϕ) i� there exist

µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h that µ = µ1µ2. Sin
e s1 R1 s
′
1 and

s2 R2 s
′
2, there exists ϕ

′
1 ∈ C(S′

1) and ϕ
′
2 ∈ C(S′

2) with L
′
1(s

′
1, a, ϕ

′
1) 6= ⊥,

L′
2(s

′
2, a, ϕ

′
2) 6= ⊥, and ∀µ1 ∈ Sat(ϕ1),∃µ

′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ′
1 and

∀µ2 ∈ Sat(ϕ2),∃µ
′
2 ∈ Sat(ϕ′

2) : µ2 ⋐R2 µ
′
2.

De�ne ϕ′ ∈ C(S′
1×S

′
2) su
h that Sat(ϕ′) = Sat(ϕ′

1)Sat(ϕ
′
2). By de�nition

of N ′
1‖AN

′
2, we have L

′((s′1, s
′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ). By de�nition

of ϕ, there exist µ1 ∈ Sat(ϕ1) and µ2 ∈ Sat(ϕ2) su
h that µ = µ1µ2.

Furthermore, sin
e s1 R1 s
′
1 and s2 R2 s

′
2, there exist µ′

1 ∈ Sat(ϕ′
1), µ

′
2 ∈

Sat(ϕ′
2) and two 
orresponden
e fun
tions δ1 : S1 → (S′

1 → [0, 1]) and

δ2 : S2 → (S′
2 → [0, 1]) su
h that µ1 ⋐

δ1
R1

µ′
1 and µ2 ⋐

δ2
R2

µ′
2.

De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1])
su
h that, for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′)δ2(v)(v
′). By the

same 
al
ulations as above, we know that the distribution µ′
over S′

1 × S′
2


onstru
ted as µ′ = µ′
1µ

′
2 is in Sat(ϕ′) and gives that µ ⋐

δ
R µ′

.

• If a ∈ A1 \ A, then there exists ϕ1 ∈ C(S1) su
h that L1(s1, a, ϕ1) 6= ⊥.
Sin
e s1 R1 s

′
1, there exists ϕ

′
1 ∈ C(S′

1) with L
′
1(s

′
1, a, ϕ

′
1) 6= ⊥ and ∀µ1 ∈

Sat(ϕ1),∃µ
′
1 ∈ Sat(ϕ′

1) : µ1 ⋐R1 µ
′
1.

De�ne ϕ′ ∈ C(S′
1 × S′

2) su
h that µ′ ∈ Sat(ϕ′) i� for all u′ ∈ S′
1 and

v′ 6= s′2, µ(u′, v′) = 0 and the distribution µ′
1 : t 7→ µ(t, s′2) is in Sat(ϕ′

1).
By de�nition of N ′

1‖AN
′
2, we have L

′((s′1, s
′
2), a, ϕ

′) 6= ⊥. Let µ ∈ Sat(ϕ).
Let µ1 be the distribution on S1 su
h that for all t ∈ S1, µ1(t) = µ(t, s2).
By de�nition, µ1 ∈ Sat(ϕ1). Let µ′

1 ∈ Sat(ϕ′
1) and a 
orresponden
e

fun
tion δ1 : S1 → (S′
1 → [0, 1]) su
h that µ1 ⋐

δ1
R1

µ′
1.
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De�ne the 
orresponden
e fun
tion δ : (S1 × S2) → ((S′
1 × S′

2) → [0, 1])
su
h that for all u, u′, v, v′, δ(u, v)(u′, v′) = δ1(u)(u

′) if v = s2 and v
′ = s′2,

and 0 otherwise. By the same 
al
ulations as above, we know that the

distribution µ′ ∈ Sat(ϕ′) su
h that for all u′ ∈ S′
1 and v′ 6= s′2, µ

′(u′, v′) =
0 and for all u′ ∈ S′

1, µ
′
1 = µ′(u′, s′2), gives that µ ⋐

δ
R µ′

.

• If a ∈ A2 \ A, the proof is similar.

3. For atomi
 propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and

V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s′1) and B2 ∈ V ′
2(s′2)}. Sin
e S1 R1 s

′
1

and s2 R2 s
′
2, we know by de�nition that V1(s1) ∈ V ′

1(s′1) and V2(s2) ∈ V ′
2 (s′2).

Considering B1 = V1(s1) and B2 = V2(s2), we thus have that V ((s1, s2)) ∈
V ′((s′1, s

′
2)).

By observing that (s10, s
2
0)R(s10

′
, s20

′
), sin
e s10 R1 s

1
0
′
and s20 R2 s

2
0
′
, we 
on
lude that

R is a weak re�nement relation.

Appendix H. Detailed proof for Theorem 39

Let N be an APA in single valuation normal form. We prove that N �S ̺(N).

Proof. Let N = (S,A,L, AP, V, s0) be a (
onsistent) APA in single valuation normal

form. Let ̺(N) = (S′, A, L′, AP, V ′, {s0}) be the determinisation of N de�ned as in

De�nition 38. We prove that N �S ̺(N).
Let R ⊆ S × S′

be the relation su
h that sRQ ⇐⇒ s ∈ Q. We prove that R is

a strong re�nement relation. Let s,Q su
h that sRQ. We show that R satis�es the

axioms of a strong re�nement relation.

1. Let a ∈ A and ϕ′ ∈ C(S′) su
h that L′(Q,a, ϕ′) = ⊤. By 
onstru
tion of ϕ′
, we

have that ∀q ∈ Q,∃ϕq ∈ C(S) su
h that L(q, a, ϕq) = ⊤.
Sin
e s ∈ Q, there exists ϕs su
h that L(s, a, ϕs) = ⊤.
De�ne the 
orresponden
e fun
tion δ : S → (S′ → [0, 1]) su
h that δ(s′)(Q′) = 1
if Q′ ∈ Reach(Q, a) and s′ ∈ Q′

. Otherwise, δ(s′)(Q′) = 0.
We now prove that for all µ ∈ Sat(ϕs), there exists µ′ ∈ Sat(ϕ′) su
h that

µ ⋐
δ
R µ′

. Let µ ∈ Sat(ϕs).

• Let s′ ∈ S su
h that µ(s′) > 0. As a 
onsequen
e, by de�nition of Reach,

there exists a single Q′ ∈ S′
su
h that s′ ∈ Q′

. Thus δ(s′)(Q′) = 1 and for

all Q′′ 6= Q′
, we have δ(s′)(Q′′) = 0. Thus δ de�nes a distribution on S′

.

• De�ne µ′ : S′ → [0, 1] su
h that µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). By def

of δ, we have that (1) for all Q′ /∈ Reach(Q,a), µ′(Q′) = 0; (2) there

exists q ∈ Q, ϕ ∈ C(S) and µ ∈ Sat(ϕ) (namely s, ϕs and µ) su
h that

L(q, a, ϕ) 6= ⊥ and for all Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µ(q′). Thus

µ′ ∈ Sat(ϕ′) by 
onstru
tion.

• Let s′, Q′
su
h that δ(s′)(Q′) > 0. By 
onstru
tion of δ, we have s′ ∈ Q′

,

thus s′ RQ′
.

As a 
onsequen
e, there exists µ′ ∈ Sat(ϕ′) su
h that µ ⋐
δ
R µ′

.

2. Let a ∈ A and ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥. By 
onstru
tion of ̺(N),
there exists ϕ′ ∈ C(S′) su
h that L′(Q, a,ϕ′) 6= ⊥. ϕ′

is de�ned as follows:

µ′ ∈ Sat(ϕ′) i� (1) ∀Q′ /∈ Reach(Q,a), we have µ′(Q′) = 0, and (2) there

exists q ∈ Q, ϕq ∈ C(S) and µq ∈ Sat(ϕq) su
h that L(q, a, ϕq) 6= ⊥ and

∀Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µq(q
′).
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De�ne the 
orresponden
e fun
tion δ : S → S′ → [0, 1]) su
h that δ(s′)(Q′) = 1
if Q′ ∈ Reach(Q, a) and s′ ∈ Q′

. Otherwise, δ(s′)(Q′) = 0.
We now prove that for all µ ∈ Sat(ϕ), there exists µ′ ∈ Sat(ϕ′) su
h that

µ ⋐
δ
R µ′

. Let µ ∈ Sat(ϕ). and let µ′ : S′ → [0, 1] be the distribution su
h that

µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). We prove that µ ⋐
δ
R µ′

and µ′ ∈ Sat(ϕ′).

• Let s′ ∈ S su
h that µ(s′) > 0. As a 
onsequen
e, by de�nition of Reach,

there exists a single Q′ ∈ S′
su
h that s′ ∈ Q′

. Thus δ(s′)(Q′) = 1 and for

all Q′′ 6= Q′
, we have δ(s′)(Q′′) = 0. Thus δ de�nes a distribution on S′

.

• De�ne µ′ : S′ → [0, 1] su
h that µ′(Q′) =
P

s′∈S µ(s′)δ(s′)(Q′). By def

of δ, we have that (1) for all Q′ /∈ Reach(Q,a), µ′(Q′) = 0; (2) there

exists q ∈ Q, ϕq ∈ C(S) and µq ∈ Sat(ϕq) (namely s, ϕ and µ) su
h

that L(q, a, ϕq) 6= ⊥ and for all Q′ ∈ Reach(Q, a), µ′(Q′) =
P

q′∈Q′ µq(q
′).

Thus µ′ ∈ Sat(ϕ′) by 
onstru
tion.

• Let s′, Q′
su
h that δ(s′)(Q′) > 0. By 
onstru
tion of δ, we have s′ ∈ Q′

,

thus s′ RQ′
.

As a 
onsequen
e, there exists µ′ ∈ Sat(ϕ′) su
h that µ ⋐R µ′
.

3. By 
onstru
tion of ̺(N), we have that V (s) = V ′(Q).

Finally, R is a strong re�nement relation. Moreover, we have that s0 ∈ {s0}, thus
s0 R{s0} and N �S ̺(N).

Appendix I. Detailed proof for Theorem 42

Let N = (S,A,L, AP, V, s0) be a deterministi
 APA in single valuation normal

form and su
h that AP ∩ A = ∅. We prove that the CMC

bN is su
h that, for all MC

M , M |=
MC

N ⇐⇒ M |= bN .

Proof. We prove the two dire
tions separately.

• M |=
MC

N ⇒ M |=
CMC

bN : Let M = (Q,π,AM , VM , q0) be a Markov Chain. We

�rst prove that if M |=
MC

N , then M |=
CMC

bN . Suppose that there exists a PA

P = (SP , A, LP , AP, VP , s
P
0 ) su
h that M satis�es P and P |= N . Let

bN = ( bQ,ψ,
bA, bV , bq0) be the transformation of N following De�nition 41.

By the satisfa
tion relation between M and P , we obtain that AM = A ∪AP and

Q = QN ∪ QD. Let RMC ⊆ QD × SP be the satisfa
tion relation witnessing that

M satis�es P . Let RPA ⊆ SP × S be the satisfa
tion relation witnessing P |= N .

Consider the relation R ⊆ Q× bQ su
h that

• qR(s, ǫ) i� there exists p ∈ Sp su
h that qRMC p and pRPA s, and

• for all a ∈ A, qR(s, a) i� there exists q′ ∈ Q su
h that

� π(q′)(q) > 0,

� VM (q) = VM (q′) ∪ {a}, and

� q′ R(s, ǫ).

We now prove that R is a satisfa
tion relation for CMCs.

First 
onsider q ∈ Q and s ∈ S su
h that qR(s, ǫ). By de�nition, there exists

p ∈ SP su
h that qRMC p and pRPA s. We show that, in this 
ase, R satis�es the

axioms of a satisfa
tion relation for CMCs.
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1. By RMC
, we have that VM (q) = VP (p). By RPA

, we know that VP (p) ∈ V (s).

Sin
e

bV ((s, ǫ)) = V (s), we have, VM (q) ∈ bV ((s, ǫ)).

2. Let δ be a 
orresponden
e fun
tion su
h that, for all q′ ∈ Q, s′ ∈ S and a ∈ A,
δ(q′)((s′, a)) = 1 if s′ = s, π(q)(q′) > 0 and VM (q′) = VM (q) ∪ {a} and 0
otherwise.

• Let q′ ∈ Q su
h that π(q)(q′) > 0. By RMC
, there exists a ∈ A and a

distribution ̺ over SP su
h that VM (q′) = V (p)∪{a}, LP (p, a, ̺) = ⊤ and

π(q′) ⋐RMC ̺. Thus, we have π(q)(q′) > 0 and VM (q′) = VM (q)∪{a}. As a

onsequen
e, δ(q′)((s, a)) = 1, and for all (s′, b) 6= (s, a), δ(q′)((s′, b)) = 0.

Finally, δ(q′) de�nes a distribution on

bQ.

• Let γ = π(q)δ. We prove that γ satis�es ψ((s, ǫ)):

� By de�nition of δ, for all q′ ∈ Q, we have δ(q′)((s, ǫ)) = 0. As a


onsequen
e,

γ((s, ǫ)) =
X

q′∈Q

π(q)(q′)δ(q′)((s, ǫ)) = 0.

� By de�nition of δ, we also have that for all q′ ∈ Q, s′ ∈ S with s′ 6= s
and b ∈ A ∪ {ǫ}, δ(q′)((s′, b)) = 0. As a 
onsequen
e,

∀s′ 6= s, b ∈ A ∪ {ǫ}, γ((s′, b)) =
X

q′∈Q

π(q)(q′)δ(q′)((s′, b)) = 0.

� Let a ∈ Must(s), and ϕ ∈ C(S) su
h that L(s, a,ϕ) = ⊤. By RAP
, we

have that there exists a distribution ̺ over SP su
h that LP (p, a, ̺) =
⊤ and there exists µ ∈ Sat(ϕ) su
h that ̺ ⋐RAP µ. Thus, by RMC

,

we have that there exists q′ ∈ Q su
h that VM (q′) = VP (p) ∪ {a} =
VM (q) ∪ {a}, π(q)(q′) > 0 and π(q′) ⋐RMC ̺. By de�nition of δ, we
have that δ(q′)((s, a)) > 0. As a 
onsequen
e,

γ((s, a)) =
X

q′′∈Q

π(q)(q′′)δ(q′′)((s, a)) > 0.

� Let a /∈ May(s), i.e. su
h that for all ϕ ∈ C(S), we have L(s, a, ϕ) = ⊥.
Suppose that γ((s, a)) > 0. By de�nition of γ, there must exist q′ ∈ Q
su
h that π(q)(q′) > 0 and δ(q′)((s, a)) > 0. By de�nition of δ, we thus
have VM (q′) = VM (q)∪ {a} = VP (p)∪{a}. Moreover, by RMC

, there

exists a distribution ̺ su
h that LP (p, a, ̺) = ⊤ and π(q′) ⋐RMC ̺.
Thus, by RPA

, there must exist ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥,
whi
h is a 
ontradi
tion. As a 
onsequen
e, we have

γ((s, a)) = 0.

Finally, we have that γ satis�es ψ((s, ǫ)).

• Let q′ ∈ Q and (s′, a) ∈ bQ su
h that δ(q′)((s′, a)) > 0. By de�nition of δ,
we have that π(q)(q′) > 0, a 6= ǫ, VM (q′) = VM (q) ∪ {a} and s′ = s. Sin
e
qR(s, ǫ), we have, by de�nition of R, that q′ R(s, a).

Let q ∈ Q, s ∈ S and a ∈ A su
h that qR(s, a). By de�nition, there exists q′ ∈ Q
su
h that π(q′)(q) > 0, VM (q) = VM (q′) ∪ {a} and q′ R(s, ǫ). We show that, also in

this 
ase, R satis�es the axioms of a satisfa
tion relation for CMCs.
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1. Sin
e q′ R(s, ǫ), we know that there exists p ∈ SP su
h that q′ RMC p and

pRPA s. Thus, we have VM (q′) = VP (p) ∈ V (s). Moreover, by de�nition of

bN ,

we have that

bV ((s, a)) = {B ∪ {a} | B ∈ V (s)}. Sin
e VM (q) = VM (q′) ∪ {a}

and VM (q′) ∈ V (s), we have that VM (q) ∈ bV ((s, a)).

2. Sin
e q′ RMC p and π(q′)(q) > 0, there exists a distribution ̺ over SP su
h

that LP (p, a, ̺) = ⊤ and there exists a 
orresponden
e fun
tion δMC
su
h

that π(q) ⋐
δMC

RMC ̺. Moreover, sin
e pRPA s, there exists ϕ ∈ C(S) su
h that

L(s, a, ϕ) 6= ⊥, and there exist µ ∈ Sat(ϕ) and a 
orresponden
e fun
tion δPA

su
h that ̺ ⋐
δPA

RPA µ.

De�ne the 
orresponden
e fun
tion δ : Q→ ( bQ→ [0, 1]) su
h that for all q′′ ∈ Q
and s′′ ∈ S,

∀b ∈ A, δ(q′′)((s′′, b)) = 0, and

δ(q′′)((s′′, ǫ)) =
X

p′′∈P

δMC(q′′)(p′′)δPA(p′′)(s′′).

• Let q′′ ∈ Q su
h that π(q)(q′′) > 0. By RMC
, we know that δMC(q′′)

is a distribution over SP . Let now p′′ ∈ SP su
h that δMC(q′′)(p′′) > 0.
By RMC

, we know that ̺(p′′) =
P

u∈Q π(q, u)δMC(u)(p′′) > 0. As a


onsequen
e, by RPA

, we know that δPA(p′′) is a distribution over S. As

a 
onsequen
e, we have that δ(q′′) is a distribution over

bQ.

• Let γ = π(q)δ. We prove that γ satis�es ψ((s, a)).

� By de�nition of δ, we have that for all s′′ ∈ S and b ∈ A,

γ((s′′, b)) =
X

q′′∈Q

π(q)(q′′)δ(q′′)((s′′, b)) = 0.

� Let γ′ : s′′ 7→ γ((s′′, ǫ)). Let s′′ ∈ S. By de�nition, we have

γ′(s′′) = γ((s′′, ǫ))

=
X

q′′∈Q

π(q)(q′′)δ(q′′)((s′′, ǫ))

=
X

q′′∈Q

π(q)(q′′)
X

p′′∈SP

δMC(q′′)(p′′)δPA(p′′)(s′′)

=
X

p′′∈SP

0

@

X

q′′∈Q

π(q)(q′′)δMC(q′′)(p′′)

1

A δPA(p′′)(s′′)

=
X

p′′∈SP

̺(p′′)δPA(p′′)(s′′) By de�nition of δMC

= µ(s′′) By de�nition of δPA

Finally, we have γ′ = µ. Sin
e, by de�nition, µ ∈ Sat(ϕ), we have

that there exists ϕ ∈ C(S) su
h that L(s, a, ϕ) 6= ⊥ and γ′ ∈ Sat(ϕ).
Thus γ satis�es ψ((s, a)).

� Let q′′ ∈ Q and (s′′, b) ∈ bQ su
h that δ(q′′)((s′′, b)) > 0. By de�nition

of δ, b = ǫ and there must exist p′′ ∈ SP su
h that (1) δMC(q′′)(p′′) > 0
and (2) δPA(p′′)(s′′) > 0. By (1), we have q′′ RMC p′′ and by (2),

81



we have p′′ RPA s′′. As a 
onsequen
e, by de�nition of R, we have

q′′ R(s′′, ǫ).

Thus R is a satisfa
tion relation for CMCs. Moreover, we have that q0 R(s0, ǫ),

whi
h gives that M |=
CMC

bN .

• M |=
MC

N ⇐ M |=
CMC

bN : Let M = (Q,π,AM , VM , q0) be a Markov Chain. We

prove that if M |=
CMC

bN , then M |=
MC

N , i.e. there exists a PA P su
h that M

satis�es P and P |= N . Let

bN = ( bQ,ψ, bA, bV , bq0) be the transformation of N following

De�nition 41.

LetR be the satisfa
tion relation for CMCs witnessing thatM |=
CMC

bN . First observe

that, by R, the Markov 
hain M satis�es the following properties: Let QD = {q ∈
Q | ∃s ∈ S, qR(s, ǫ)} and QN = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s, a)}, we have

• QD ∩QN = ∅ be
ause of their valuations and R,

• ∀q, q′ ∈ QD, π(q)(q′) = 0 and ∀q, q′ ∈ QN , π(q)(q′) = 0,

• q0 ∈ QD, and

• AM = A ∪ AP .

De�ne the PA P = (SP , A,LP , AP, VP , s
P
0 ) su
h that SP = QD, with s

P
0 = q0, VP is

su
h that for all q ∈ QD, VP (q) = VM (q), and LP is su
h that for all s ∈ SP , a ∈ A
and for all distribution ̺ over SP , L(s, a, ̺) = ⊤ i� there exists q′ ∈ QN su
h that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).

By 
onstru
tion, it is trivial that M satis�es P using the identity relation on QD.
We now prove that P |= N . Let RPA ⊆ SP × S the relation su
h that pRPA s i�

pR(s, ǫ). We now prove that RPA

is a satisfa
tion relation for APA.

Let q ∈ SP and s ∈ S su
h that qRPA s. We show that RPA

satis�es the axioms

of a satisfa
tion relation for APAs.

1. Let a ∈ A and ϕ ∈ C(S) su
h that L(s, a, ϕ) = ⊤. By 
onstru
tion, we have

that a distribution γ over

bQ satis�es ψ((s, ǫ)) if γ((s, a)) > 0.
Sin
e qR(s, ǫ), we have that there exists a 
orresponden
e fun
tion δ : Q →

( bN → [0, 1]) su
h that π(q)δ satis�es ψ((s, ǫ)). As a 
onsequen
e, there must

exist q′ ∈ Q su
h that π(q)(q′) > 0 and δ(q′)((s, a)) > 0. By R again, we have

that VM (q′) = VM (q) ∪ {a} = VM (s) ∪ {a}.
As a 
onsequen
e, in P , we have that LP (q, a, ̺) = ⊤ with ̺ = π(q′). Moreover,

sin
e δ(q′)((s, a)) > 0, we have that q′ R(s, a). Thus, there exists a 
orrespon-

den
e fun
tion δ′ : Q→ ( bQ→ [0, 1]) su
h that π(q′)δ′ satis�es ψ((s, a)), i.e. the
distribution γ′ : s′ ∈ S 7→ [π(q′)δ′](s′, ǫ) is su
h that there exists ϕ′

su
h that

L(s, a, ϕ′) 6= ⊥ and γ′ ∈ Sat(ϕ′). By determinism of N , we have ϕ = ϕ′
. Let

δPA be the 
orresponden
e fun
tion between P and S su
h that for all p′ ∈ SP
and s′ ∈ S, δPA(p′)(s′) = δ′(p′)((s′, ǫ)). By 
onstru
tion of ψ((s, a)), we have

that for all p′ ∈ SP , b ∈ A and s′ ∈ S, δ′(p′)((s′, b)) = 0. Thus, δPA is a 
orre
t


orresponden
e fun
tion by 
onstru
tion.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ su
h that δPA(p′)(s′) >
0, we have that δ′(p′)((s′, ǫ)) > 0. So, by R, we have p′ R(s′, ǫ), and thus

p′ RPA s′.
Finally, we have that there exists ̺ su
h that LP (q, a, ̺) = ⊤, and there exists

γ′ = ̺δPA ∈ Sat(ϕ) su
h that ̺ ⋐
δPA

RPA γ
′
.
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2. Let a ∈ A and ̺ ∈ Dist(SP ) su
h that LP (q, a, ̺) = ⊤. By 
onstru
tion, there

exists q′ ∈ QN su
h that π(q)(q′) > 0, VM (q′) = VM (q) ∪ {a} and ̺ = π(q′).
Sin
e qR(s, ǫ), we have that there exists δ su
h that π(q)δ satis�es ψ((s, ǫ)).

Sin
e π(q)(q′) > 0, delta(q′) de�nes a distribution over

bQ. As a 
onsequen
e,

there exists (s′, b) ∈ bQ su
h that δ(q′)((s′, b)) > 0. Sin
e π(q)δ satis�es ψ((s, ǫ)),
we have that (s′, b) = (s, a).
Thus δ(q′)((s, a)) > 0, and, by de�nition of δ, we have that q′ R(s, a). As a


onsequen
e, there exists a 
orresponden
e fun
tion δ′ su
h that π(q′)δ′ satis-
�es ψ((s, a)), i.e. the distribution γ′ : s′ ∈ S 7→ [π(q′)δ′](s′, ǫ) is su
h that

there exists ϕ su
h that L(s, a, ϕ) 6= ⊥ and γ′ ∈ Sat(ϕ). Let δPA be the 
or-

responden
e fun
tion between P and S su
h that for all p′ ∈ SP and s′ ∈ S,
δPA(p′)(s′) = δ′(p′)((s′, ǫ)). By 
onstru
tion of ψ((s, a)), we have that for all

p′ ∈ SP , b ∈ A and s′ ∈ S, δ′(p′)((s′, b)) = 0. Thus, δPA is a 
orre
t 
orrespon-

den
e fun
tion by 
onstru
tion.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ su
h that δPA(p′)(s′) >
0, we have that δ′(p′)((s′, ǫ)) > 0. So, by R, we have p′ R(s′, ǫ), and thus

p′ RPA s′.
Finally, there exists ϕ ∈ C(S) su
h that L(s, a,ϕ) 6= ⊥ and there exists γ′ =

̺δPA in Sat(ϕ) su
h that ̺ ⋐
δPA

RPA γ
′
.

3. By 
onstru
tion, we have VP (q) = VM (q). By R, we have VM (q) ∈ bV ((s, ǫ)) =
V (s). Thus VP (q) ∈ V (s).

Finally, RPA

is indeed a satisfa
tion relation.

By 
onstru
tion, we have that sP0 RPA s0, thus P |= N . As a 
onsequen
e, we have

that there exists a PA P su
h that M satis�es P and P |= N . Thus M |=
MC

N .
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