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Abstract

Probabilistic Automata (PAs) are a widely-recognized mathematical framework
for the specification and analysis of systems with non-deterministic and stochas-
tic behaviors. This paper proposes Abstract Probabilistic Automata (APAs),
that is a novel abstraction model for PAs. In APAs uncertainty of the non-
deterministic choices is modeled by may/must modalities on transitions while
uncertainty of the stochastic behaviour is expressed by (underspecified) stochas-
tic constraints. We have developed a complete abstraction theory for PAs, and
also propose the first specification theory for them. Our theory supports both
satisfaction and refinement operators, together with classical stepwise design
operators. In addition, we study the link between specification theories and
abstraction in avoiding the state-space explosion problem.

Keywords: specification; abstraction; compositional reasoning; interface
automata; probabilistic automata

1. Introduction

One of the main research areas in computer science consists in studying new
specification formalisms for reasoning on system’s behaviors. Among existing
such formalisms one finds the one of Transition Systems (TS). In TS, the be-
havior of the system is represented by states modeling the current values of
the variables, and a relation between states, called transitions, representing the
evolution of the system, i.e., update of variables. Transitions are often labeled
with actions representing the possibly non-deterministic decisions taken at a
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given moment of time to govern this evolution. TSs are acknowledged to be a
simple but elegant formalism powerful enough to capture the control-flow of pro-
gramming languages; the formalism is used in most of existing formal validation
techniques proposed in the literature E]

As systems become more and more complex, it is necessary to add new
features to TSs. Such features can be used either to capture new phenomena
such as continuous evolution, or to reason on new properties of the system
such as energy consumption. Particularly, as soon as systems include random-
ized algorithms, probabilistic protocols, or interact with physical environment,
probabilistic models are required to reason about them. This is exacerbated by
requirements for fault tolerance, when systems need to be analyzed quantita-
tively for the amount of failure they can tolerate, or for the delays that may
appear. As Henzinger and Sifakis [4] point out, introducing probabilities into
design theories allows assessing dependability of IT systems in the same manner
as commonly practiced in other engineering disciplines.

Probabilistic Automata (PAs) constitute a mathematical framework for the
specification and analysis of non-deterministic probabilistic systems. PAs are
TSs whose evolution depends not only on non-deterministic actions but also
on a probability distribution that, together with the action, drives the choice
of the successor state. PAs have been developed by Segala E] to model and
analyze asynchronous, concurrent systems with discrete probabilistic choices in
a formal and precise way. PAs are akin to Markov decision processes (MDPs).
A detailed comparison with models such as MDPs, as well as generative and
reactive probabilistic transition systems is given in E] PAs are recognized as
an adequate formalism for randomized distributed algorithms and fault tolerant
systems. They are used as semantics model for formalisms such as probabilistic
process algebra ﬂ] and a probabilistic variant of Harel’s statecharts E An
input-output version of PAs is the basis of PIOA and variants thereof |9, E]
PAs have been enriched with notions such as weak and strong (bi)simulations [4],
decision algorithms for these notions M] and a statistical testing theory [12].
This paper brings two new contributions to the field of probabilistic automata:
the theories of abstraction and of specification.

As a first main contribution, we propose several abstraction techniques for
PAs. Abstraction is pivotal to combating the state space explosion problem in
the modeling and verification of realistic systems such as randomized distributed
algorithms. It aims at model reduction by collapsing sets of concrete states
to abstract states, e.g., by partitioning the concrete state space. This paper
presents a three-valued abstraction of PAs. The main design principle of our
model, named Abstract Probabilistic Automata (APAs), is to abstract sets of
distributions by constraint functions. This generalizes earlier work on interval-
based abstraction of probabilistic systems ﬁ, B, E] To abstract from action
transitions, we introduce may (?) and must (T) modalities in the spirit of modal
transition systems |16]. If all states in a partition p have a must-transition on
action a to some state in partition p’, the abstraction yields a must-transition
between p and p’. If some of the p-states have no such transition while others
do, it gives rise to a may-transition between p and p’. Our model can be viewed
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Figure 1: Examples of PA; APA and abstraction

as a combination of both Modal Automata M] and Constraint Markov Chains
(CMC) m, E] that are abstractions for transition systems and Markov Chains,
respectively. APAs can further be abstracted by merging their states or by
simplifying their corresponding constraints. We shall see that those abstractions
introduce new behaviors in the corresponding PAs, but that their precision can
be controlled. Concretely, the PA of Figure[[al gives the choice between two non-
deterministic actions a and b, both of them inducing a probability distribution on
the set of successor states. In addition, all states are equipped with sets of atomic
propositions. Assuming that both state 1 and 2 belong to the same partition
B and that states 0 and 3 are mapped to partitions A and C, respectively, we
obtain the APA given in Figure[[ll Notice that, in order to merge states 1 and
2 into a single state B, one has to consider sets of sets of atomic propositions.
There one can see that there is a must transition from A to B as any state in
A goes to a state in B with action a. However, the transition from B to A is
a may transition as there are states in B (here state 2) for which action a does
not lead to a state in A. The case of action b illustrates the use of constraints
to match the original distributions starting from states in B.

As a second major contribution, we also propose a new specification the-
ory for PAs. Our study is motivated by the observation that several industrial
sectors involving complex embedded systems have recently experienced deep



changes in their organization, aerospace and automotive being the most promi-
nent examples. In the past, they were organized around vertically integrated
companies, supporting in-house design activities from specification to imple-
mentation. Nowadays, systems are tremendously big and complex, and it is
almost impossible for one single team to have the complete control of the entire
chain of design from the specification to the implementation. In fact, complex
systems now result from the assembling of several components. These many
components are in general designed by teams, working independently but with
a common agreement on what the interface of each component should be. Such
an interface specifies the behaviors expected from the component as well as the
environment in which it can be used. The main advantage is that it does not
impose any constraint on the way the component is implemented, hence allow-
ing for independent implementation. According to state of practice, interfaces
are typically described using Word /Excel text documents or modeling languages
such as UML/XML. We instead recommend to follow a more mathematical ap-
proach relying most possibly on mathematically sound formalisms, thus best
reducing ambiguities. Our new theory is equipped with all essential ingredi-
ents of a compositional design methodology: a satisfaction relation (to decide
whether a PA is an implementation of an APA), a consistency check (to decide
whether the specification admits an implementation), a refinement (to compare
specifications in terms of inclusion of sets of implementations), logical compo-
sition (to compute the intersection of sets of implementations), and structural
composition (to combine specifications). Our framework also supports incre-
mental design m] To the best of our knowledge, the theory of APAs is the first
specification theory for PAs where both logical and structural compositions can
be computed within the same framework.

Our notions of refinement and satisfaction are, as usual, characterized in
terms of inclusion of sets of implementations. Our notion of satisfaction is a
compatible extension of the classical notion of probabilistic bisimulation E, m]
More precisely, one can show that two PAs that are probabilistic bisimilar satisfy
exactly the same APAs. One of our other important theorems shows that for
the class of deterministic APAs, refinement coincides with inclusion of sets of
implementations. This latter result is obtained by a reduction from APAs to
CMCs, for which a similar result holds. Hence, APAs can also be viewed as a
specification theory for Markov Chains (MCs). The model is as expressive as
CMCs, and hence more expressive than other theories for stochastic systems
such as Interval Markov Chains [13, 23, [14].

Our last contribution is to propose several abstraction-based methodologies
that allow to simplify the behavior of APAs with respect to the refinement rela-
tion — as we pointed above, abstraction is crucial to avoid state-space explosion.
We show that our abstraction preserves refinement, and that refinement is a
pre-congruence with respect to parallel composition. These results provide the
key ingredients to allow compositional abstraction of PAs. Consider again the
APA N of Figure[[Dl This APA can be further abstracted by merging partitions
B and C, which leads to the APA N’ given in Figure[[d Since there must be an
a transition from A to B in N, there is a must a transition from A to (B,C) in



N’. Inversely, since only one state out of two in (B, C) requires a b transition to
B or C, the abstracted state (B, C) will allow but not require this b transition.
The consequence of this abstraction is not only the reduction of the state space,
but also a simplification of the constraint associated to action b in state (B, C).
Another way of abstracting the APA of Figure [ is to simplify the constraints
by approximating them with intervals, as illustrated in Figure [d

Organisation of the paper. In Section Pl we introduce the concepts of PAs
and APAs as well as several of their properties. Section Bl is concerned with
several notions of refinements and abstractions as well as the relation between
satisfaction and probabilistic bisimulation. Section H introduces the notion of
consistency and structural composition (aka conjunction), while Section B pro-
poses a compositional reasoning theory based on APAs. Section Bl studies the
strong link between APAs and CMCs and proposes results for the class of deter-
ministic APAs. Since all the previous results are obtained for APAs with equal
sets of actions and atomic propositions, Section [ presents a methodology for
extending sets of actions and atomic propositions, showing that all our results
carry over to APAs with dissimilar alphabets. Finally, Section ] concludes the
paper. For clarity of the presentation, some repetitive proofs have been lifted
to an appendix.

2. Specifications and Implementations

In this section, we present the basic notions used in our formalism. We
first introduce the definitions of Labeled Transition Systems (LTS) and Markov
Chains (MC), which are classical notions of implementations, and then present
Probabilistic Automata (PA), that unify LTSs and MCs. We then introduce
Modal Transition Systems and Constraint Markov Chains, two classical notions
of specification theories for LTS and MC respectively. Finally, we present a new
notion of Abstract Probabilistic Automata (APA), a finite representation for a
possibly infinite set of PAs. APAs will act as a specification theory for PAs. Let
Act be a universe of actions.

Implementations. Labeled transition systems are usually used to represent
non-stochastic systems. We first introduce their definition.

Definition 1 (Labeled Transition System). A Labeled Transition System is
a tuple (S, A, L, AP,V,sy), where S is a finite set of states with initial state
sg € S, A C Act is a finite set of actions, L: S X A X S — By is a two-valued
transition function, AP is a finite set of atomic propositions, and V: S — 247
is a state-labeling function.

The set By = {1, T} denotes a lattice with the ordering 1 < T and meet ()
and join (L) operators. The transition function L identifies the transitions of
the automaton: L associates (1) the value T to a triple (s, a, s’) whenever there
is a transition from state s to state s’ labeled with action a, and (2) L otherwise.
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Figure 3: A PA with a single transition to a distribution [0,0.3,0.2,0.5]

An example of a LTS T is given in Figure Bal where transitions with value L
are left out of the picture.

When moving to the stochastic setting, the simplest notion of implementa-
tion is the one of Markov Chain.

Definition 2 (Markov Chain). A Markov Chain is a tuple (S, 7, AP,V,sq),
where S is a finite set of states with initial state so € S, m: S — Dist(S) is a
probability transition function: ), g 7(s)(s’)=1 for all s € S, AP is a finite
set of atomic propositions, and V: S — 247 is a state-labeling function.

We use Dist(S) to denote a set of probability distributions on the finite set S.
An example of a MC M is given in Figure2H where transitions with probability
0 are left out of the picture.

A PA |d] resembles a LTS, but its transitions target probability distributions
over states instead of single states. Hence, PAs can be seen as a combination of
MCs and LTSs.

Definition 3 (Probabilistic Automata). A probabilistic automaton (PA) is a
tuple (S, A, L, AP, V, sq), where S is a finite set of states with initial state so € S,
A C Act is a finite set of actions, L: S x A x Dist(S) — Ba is a two-valued
transition function, AP is a finite set of atomic propositions, and V: S — 24F
is a state-labeling function.

We write s — ;1 meaning L(s,a, ) = T. In the rest of the paper, we assume
that PAs are finitely branching, i.e., for any state s, the number of pairs (a, i)



such that s = p is finite. The labeling function V indicates the propositions
(or properties) that are valid in a state. Hence a Markov Chain, as defined
previously, is a PA with a single action and a single outgoing transition from
each state, i.e. for each s € S there exists exactly one triple (s, a, ) such that
L(s,a,pu) = T. Without loss of generality, we assume in the rest of the paper
that Act N AP = () for all PAs.

Example. Figureld presents a PA with L(s1,a,u) = T, where u(sz) = 0.3,
w(s3) = 0.2, and p(ss) = 0.5. We adopt a notational convention that represents
L(si,a,p) = T by a set of arrows with tails located close to each other on the
boundary of s1, and heads targeting the states in the support of u.

Specifications. We now introduce Abstract Probabilistic Automata, that is a
specification formalism for PAs. APAs are the combinations of Modal Transition
Systems and Constraint Markov Chains—specification formalisms for labeled
transition systems and Markov Chains, respectively. We first briefly introduce
Modal Transition Systems and Constraint Markov Chains, and then move to
APAs.

A Modal Transition System (MTS)|23, [16] is an automaton whose transi-
tions are typed with may and must modalities. Informally, a must transition
is available in every model of the specification, while a may transition may be
absent in some design.

Definition 4 (Modal Transition System). A Modal Transition System is a tuple
(S, A, L, APV, sq), where S is a finite set of states with initial state so € S,
A C Act is a finite set of actions, L: S x Ax S — Bs ={L,?, T} is a three-
valued transition function, AP is a finite set of atomic propositions, and V :
S — 247 s q state-labeling function. Transitions (s,a,s’) with L(s,a,s') =?
are called may transitions, and transitions (s,a,s’) with L(s,a,s’) = T are
called must transitions.

Here, B3 = {L,?, T} denotes a lattice with the ordering 1. < ? < T and meet
(M) and join (L)) operators. An example of an MTS N is given in Figure Eal
There, and throughout the paper, may transitions are represented by dashed
arrows and must transitions by plain ones. One can easily see that LTS T given
in Figure 2alis an implementation of N. Indeed, the must transition from state
0 to state 1 with action a in IV is present in T, while the transition from state 0
to state 3 with action ¢ in 7" corresponds to a may transition in IV and all state
labels are matching.

A Constraint Markov Chain (CMC) [18, 1d] is a MC equipped with a con-
straint on the next-state probabilities from any state. Roughly speaking, an
implementation of a CMC is a MC, whose next-state probability distributions
satisfy the constraint associated with each state. A constraint function ¢ :
Dist(S) — {0,1} represents a set of distributions on S. Let Sat(y) denote the
set of distributions p that satisfy constraint function ¢ (i.e. such that ¢(u) = 1),
and C(S) the set of constraint functions defined on state space S.
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Figure 4: Examples of MTS and CMC

Definition 5 (Constraint Markov Chain). A Constraint Markov Chain is a

tuple C = (S,v¢, AP, V,sq) where S is a finite set of states with initial state

so €85, ¢ : S — C(S) is a state-constraint function, AP is a set of atomic
.. 2AP . . .

propositions, and V : S — 2 is a state labeling function.

For each state s € S, the state-constraint function v is such that, for all
distributions 7 on S, ¥(s) is a constraint function as defined above. Intuitively,
¥ (s)(m) = 1 iff distribution 7 is allowed in state s. The function V labels each
state with a subset of the powerset of AP, which models a disjunctive choice
of possible combinations of atomic propositions, thus allowing a higher level of
abstraction w.r.t. implementations.

An example of a CMC C'is given in FigureBll Remark that the MC M given
in FigurePHis an implementation of C. Indeed, the distribution u outgoing from
state 0 in M agrees with the constraint ¢ specified in C' and the sets of atomic
propositions in M are included in the labels specified in C.

A CMC whose constraints are of the form [ < pu < r, where [, r are constant
vectors and p is a probability distribution over the state space is called an
Interval Markov Chain (IMC) [13].

We now present the central definition of the paper:

Definition 6 (Abstract Probabilistic Automata). An Abstract Probabilistic
Automaton (APA) is a tuple (S, A, L, AP,V,sy) where S, A, AP are finite sets
of states, actions, and atomic propositions respectively, so € S is the initial
state, L : S x A x C(S) — Bj is a three-valued state-constraint function, and
Vs —s 22" maps a state onto a set of admissible valuations.

A CMC is thus an APA, where for each s € S, there exists exactly one triple
(s,a, ) such that L(s,a,¢) = T. The labeling L(s,a, ) identifies the “type”
of the constraint function ¢ € C(S): T, ? and L indicate a must, a may and
the absence (forbidden) of a constraint function, respectively. Without loss of
generality, we assume in the rest of the paper that Act N AP = () for all APAs.

In practice, as will be seen in later definitions, a lack of value for given
argument is equivalent to the L value, so we will sometimes avoid defining
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1 -value rules in constructions to avoid clutter, and occasionally will say that
something applies if L takes the value of 1, meaning that it is either taking this
value or it is undefined.

We occasionally write Must(s) for the set of actions a such that there ex-
ists ¢, so that L(s,a,p) = T, and write May(s) for the set of actions b such
that there exists ¢, so that L(s,b,¢) # L. Remark that in our formalism,
Must(s) € May(s). This implies that we do not allow inconsistencies at the
level of modalities, i.e. required but not allowed transitions.

We could have limited ourselves to constraints denoting unions of inter-
vals. However, as for CMCs, polynomial constraints are needed to support both
conjunction and parallel composition . Later, we shall see that almost all
APAs whose states are labelled with a set of subsets of atomic propositions
can be turned into an equivalent (in the sense of implementations set) APA
whose states are labeled with a set that contains only a single subset of atomic
propositions.

Finally, observe that a PA is an APA in which every transition (s, a, ) is a
must-transition with |Sat(p)| = 1, and each state-label consists of a single set
of propositions.

Example. Consider the APA N given in Fig. [ State s} has two outgoing
transitions: a may a-transition (s},a,p,) and a must a-transition (s}, a,¢-).
The ¢y and @, constraints are shown under the automaton in the figure.

The constraints allow that each of the automaton’s two transitions can cover
multiple transitions in a concrete implementation PA. As an example, the a-
transition (s1,a,(0,0.3,0.2,0.5)) of the PA given in Fig. [ matches the must
a-transition (s},a,v,): if we write z4 = 0.2+ 0.5 the sum of all probabilities
going to states whose valuations are in the set specified in sy, and z5 = 0.3 the
sum of all probabilities going to states whose valuations are in the set specified
in sg, then we can verify that z) + z[ = 1, hence satisfying ¢.. In order to
avoid clutter, the transitions that do not admit any positive probabilities are not
represented in the figures.

In the rest of the paper we distinguish the class of deterministic APAs.
The distinction will be of particular importance when comparing APAs in Sec-
tion Bl We first present the definition of determinism for CMCs and MTS, as



introduced in E, |E] We say that a CMC C = (5,4, AP, V, s¢) is deterministic
if and only if for all states s,s’,s” € S, if there exists n' € Dist(S) such that
(W(s)(7" YA (7' (s") #£0)) and 7" € Dist(S) such that ((s)(7"”) A (z”(s”) # 0)),
then we have that V(s') NV (s"”) = 0.

We say that a MTS N = (S, A, L, AP,V,so) is deterministic if and only
if there is at most one outgoing transition for each action in all states, i.e.
Vs e S,Vae A {s' | L(s,a,s') # L} <1.

In APAs, the non-determinism can arise due to sets of valuations in states,
like for CMCs, or due to actions that label transitions, like for MTS. Informally,
an APA is (1) action-deterministic if there is at most one outgoing transition
for each action in all states; and (2) valuation-deterministic if two states with
overlapping atomic propositions can never be reached with the same transition.
Remark that the definition for valuation-determinism is similar to the notion of
determinism for CMCs presented above.

Definition 7 (Determinism). An APA N = (S, A, L, AP,V,sq) is
e action-deterministic if Vs€S,Vac€ A, [{¢ € C(S) | L(s,a,¢) # L}| < 1.
e valuation-deterministic if Vs € S,Va€ A,V e C(S) with L(s,a,p) # L:
V' 1" € Sat(p),s',s" €8, (W(s") >0Ap" (") >0 =V(s)NV(s")=10).

An APA N is deterministic if and only if it is action-deterministic and
valuation-deterministic.

Satisfaction. We relate APA specifications to PAs implementing them by
extending the definitions of satisfaction for probabilistic systems introduced in
[1d]. In this section, we only consider PAs / APAs with equal sets of actions and
equal sets of atomic propositions. The case of dissimilar alphabets is treated in
Section [

The following notion of simulation characterizes equivalent distributions ac-
cording to a given relation on sets of states. This definition is similar to the one
given in [14]. In Section B we show how this notion of simulation and the sub-
sequent notion of satisfaction are related to the classical notion of probabilistic
bisimulation for probabilistic automata [].

Definition 8 (Simulation). Let S and S’ be non-empty finite sets of states.
Given p € Dist(S), ' € Dist(S'), a function 6 : S — (8" — [0,1]), and
a binary relation R C S x S’, p is simulated by p/ with respect to R and 0,
denoted 1 €% 11/, if and only if

1. for all s € S, if u(s) > 0, then §(s) € Dist(S’),

2. foralls' €8, % cqm(s)d(s)(s") = p'(s'), and
3. for all s,s' € S, if 6(s)(s’) > 0, then (s,s’) € R.

In the rest of the paper, we write y €g ' whenever there exists a function §
such that p @‘15% i Such § is called a correspondence function.

10
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R={(1,4),(2,B),(3,B),(3,C),(4,C)} and a correspondence function .

Example. Simulation is illustrated in Fig.[@, where distribution p1 is simulated
by distribution uo with respect to the relation R = {(1, A), (2, B), (3, B), (3,C),
(4,C)}. In the picture, the correspondence function 0 is represented by the
labeled dashed arrows.

We now define a satisfaction relation between PAs and APAs. Remark that

this definition is a mix between the notion of satisfaction for MTS E, E] and
the notion of satisfaction for CMCs [18, [1d].

Definition 9 (Satisfaction Relation). Let P = (S, A, L, AP,V, s0) be a PA and
N = (S",A,L',AP, V', s,) be an APA. R C S x S’ is a satisfaction relation if
and only if, for any (s,s") € R, the following conditions hold:

1. Ya € AV € C(S), if L'(s',a,¢") =T, then 3u € Dist(S) : L(s,a,pu) =
T and i’ € Sat(¢') such that p €x 1,

2. Ya € A,Vu € Dist(S), if L(s,a,u) =T, then 3¢’ € C(S’) : L'(s',a,¢") #
L and i’ € Sat(¢') such that p €g 1, and

3. V(s) e V'(¢).

P satisfies N, denoted P |= N, if and only if there exists a satisfaction relation
relating so and sj. If P )= N, P is called an implementation of N.

Thus, a PA P is an implementation of an APA N if and only if any must-
transition of IV is matched by a must-transition of P that is simulated by one
of the probability distributions specified by the constraint, and reversely, P
does not contain must-transitions that do not have a corresponding (may- or
must-) transition in N. The set of implementations of N is denoted by [N] =
{P|PE N}.

Example. The relation R = {(s1, s}), (s2, 5%), (83, 5}), (84, 54)} is a satisfaction
relation between the PA P (Fig.[3) and the APA N (Fig. Q). Indeed, all pairs
(s,8") € R have matching valuations, and the outgoing must transition from s}
is matched by the outgoing transition from s1 (see previous example).

11
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Single valuation normal form. Asfor CMCs [18,119], a large class of APAs
whose states are labeled with a set of subsets of atomic propositions can be
turned into an equivalent APA (in terms of sets of implementations) whose
states are labeled with sets that contain a single subset of atomic propositions.
The latter are called APAs in single valuation normal form. Single valuation
normal form makes the manipulation of satisfaction/refinement relations easier.
However, as we shall see, building the single valuation normal form of a given
APA may lead to an exponential blowup in the number of states.

Definition 10 (Single Valuation Normal Form). An APA N = (S, A, L, AP, V, sg)
is in single valuation normal form (SVNF) iff all its admissible valuations sets
are singletons, i.e. Vs € S, |V (s)| = 1.

It turns out that any APA with a single valuation in the initial state can be
turned into an APA in single valuation normal form that admits the same set
of implementations. This transformation is called normalization.

We introduce it with an example, first. Consider the APA N in Fig.Bl Since
the valuation of state s} is not a singleton, N is not in SVNF. In the normal-
ization process we translate each state of the original APA into a collection
of states—one per each valuation. This mapping is captured by a normaliza-
tion function; the following function A is the normalization function for our
example. Note that the only interesting case is for state s/:

s1—= {s1}, 5o = {5}, o5 = {5}, o) = {sl, 55}, 55— {s6}-

Subsequently, each probability distribution constraint targeting a split state,
needs to be rewritten, so that the sum of the split probabilities, substituted for
the original value, still satisfies the constraint. Applying the normalization to
N results in the APA N(N) given in Fig.[l State s} of N is split into states s/
and s? in N(N). The combined probability of reaching these states in N'(N),
namely w4 4+ ws, is substituted for z4 in ¢,—the original probability of reaching
sy in N.

Definition 11 (Normalization). Let N = (S, A, L, AP,V,so) be an APA. Let
S’ be a set of states and let N': S — 2% be a function such that

12



LS =U,es N(s),

2. For all 51,59 € S such that s1 # sa, N'(s1) NN (s2) =0,

3. for all s € S, IN(s)| = |V(s)].
If |V (s0)| = 1, then the normalization of N, denoted N'(N), is the APAN(N) =
(S",A, L', AP, V', N (s0)) such that

1. Foralls' € S, [V/(s")]| =1,

Forall s €S, V(s) =Ugens) V'(s),

For all s € S, for s, s5 € N(s), s} # s < V'(s}) #V'(sh), and

for all s € S and a € A, if there exists o € C(S) such that L(s,a,p) # L,
then for all s' € N(s), L'(s',a,¢") = L(s,a,y) for ¢' € C(S’) such that
Sat(@) = {4’ € Dist(5)u: 51 3 ey (1) € St(2)}.

Remark 1. In the above definition, a set S’ and a function N always exist.

However, when |V (so)| # 1, any normalization of N would need to have several
initial states, which we do not consider here.

Ll

Clearly, N(N) is an APA in single valuation normal form.
The following theorem asserts that normalization preserves implementations.

Theorem 12. For any APA N = (S, A, L, AP,V, so) with |V (so)| =1, [N] =
V()]

Proof. Let N = (S, A, L, AP,V,sg) be an APA such that [V (sp)| = 1, and let
N(N) = (58",A, L', AP, V' ,N(sp)) be the normalization of N, given the function
N : S — 2%, We prove the two directions separately.

e [N] C [N(N)]: Let P = (Sp,A, Lp, AP,Vp,sk’) be any PA such that P €
[IV] with satisfaction relation R C Spx.S. We show that P € [N (N)]. Let R' C
Sp x S’ be the relation such that pR' s’ iff (Vp(p) € V'(s') and (p RN ~1(s'),
where N 71(s’) is the unique state s such that s’ € A'(s). We prove that R’ is
a satisfaction relation relating s’ and N (so).

Let p € Sp and s’ € S’ be such that p R’ s’, and let s = N ~!(s’). We show that
R’ satisfies the axioms of a satisfaction relation.

1. Let a € A and ¢’ € C(5’) such that L'(s',a,¢’) = T. By definition of
N(N), there must exist a constraint ¢ € C(S) such that L(s,a,¢) =T
and for all 4/ € Sat(¢’), the distribution p : t — 37 ' (u) is in
Sat(p).

Since P |= N, there exists up € Dist(Sp) such that Lp(p,a,up) = T and
Ju € Sat(p) such that up Er p. We will now show that I’ € Sat(¢’)
such that up €r/ p'.

Let § : Sp — (S — [0,1]) be the correspondence function witnessing
up €r p. Let & : Sp — (8" — [0,1]) be such that §(q)(t) = 5(q) (N ~L(t))
it Vp(q) € V'(t), and 0 otherwise.

Let pi' be the distribution on S’ such that p'(t) = >° 5, pp(9)d'(q)(t).
The following holds:

13



(a) Let ¢ € Sp such that up(q) > 0. By R, we have that (q) is a
distribution on S. Let r € S such that 6(¢)(r) > 0. By construction
of N(NV), there exists a single ¢ € S’ such that ¢ € N (r) and V(q) €
V(t). As a consequence, for all r € S, 3=, 0'(q)(t) = 0(q)(r).
Thus, we have ), ¢ 6'(q)(t) = >, c56(q)(r). Finally ¢’'(q) is also a

distribution on S’.
(b) By construction, we have that for all ¢t € 5",

W)= > ur(@)d (9)).
geESP
(c) Let ¢ € Sp and ¢t € S such that §'(¢)(t) > 0. By construction of ¢,
we have that (1) 6(q)(N~1(¢)) > 0 and (2) V(q) € V(¢). By (1), we
have that g R N ~1(t). As a consequence, by definition of R’ and (2),
we have ¢ R’ t.
Thus up €g/ p/. We now prove that u' € Sat(¢'). Let pl(r) =
ZtEN(r) w'(t). By definition of p/, we have

pory= > W)= Y > ur(@)d (@)

teN(r) teN(r) qESP
= > wple) Y, @)
qeSP teN(r)
= > pe(@)d(@)(r) = u(r)
qeESP

Thus p° = u € Sat(yp) and by definition of ¢, we have u’ € Sat(y').
Finally, there exists up € Dist(Sp) such that Lp(p,a, up) = T and there
exists p' € Sat(y’) such that up Er: 1.

2. Let a € A and pup € Dist(Sp), such that Lp(p,a,up) = T. By a similar
argument, there exists ¢’ € C(S’) such that L'(s,a,¢’) # L and there
exists 1’ € Sat(y¢’) such that up €r: p'.

3. By construction of R', we know that Vp(p) € V'(s).

We conclude that s§’ R’ N (sg), since Vp(sh) € V(sg) = V(N (so)) and s R
N~1(N(s0))) which is equivalent to saying that s’ R so.

e [N] 2 [N(N)]: Let P = (Sp, A, Lp, AP,Vp,st) be any PA such that P €
[NV(N)] with satisfaction relation R' C Sp x S’ with sf’ R sop. We show that
P € [N]. Let R C Sp x S be the relation such that pR s iff there exists
s" € N(s) such that pR’s’. By a similar reasoning as in the previous case, R is
a satisfaction relation and s’ R so, thus P = N.

o

In the rest of the paper, we sometimes require that APAs are in single valu-
ation normal form in order to make the manipulation of satisfaction/refinement
relations easier. By the above theorem, there is no loss of generality in making
this assumption when the initial state is already in single valuation normal form.
When it is not, it is equivalent to consider a set of APAs with inital states in
single valuation normal form, one for each valuation of the original initial state.

14



3. Refinement, Bisimulation and Abstraction

Being able to compare specifications is central to stepwise design. Systematic
comparison enables simplification of specifications (abstraction) and adding de-
tails to specifications (elaboration). Usually, specifications are compared using
a refinement relation. In this section, we first introduce several notions of re-
finement for APAs and study their ordering. Then we show that our formalism
is backward-compatible with the classical notion of bisimulation for PA E, m]
Finally, we propose two notions of abstraction for APAs.

3.1. Refinement

A refinement compares APAs with respect to their sets of implementations.
More precisely, if APA N refines APA N, then the set of implementations of N
should be included in the one of N’. The ultimate refinement relation that can
be defined between APAs is thus Thorough Refinement that exactly corresponds
to inclusion of sets of implementations.

Definition 13 (Thorough Refinement). Let N = (S, A, L, AP,V,sq) and N' =
(S',A, L', AP, V', s;) be APAs. N thoroughly refines N', denoted N <7 N', iff
[N] € [N'].

For most specification theories, it is known that deciding thorough refine-
ment is computationally intensive (see for example [24]). For many models such
as Modal automata or CMCs, one can partially avoid the problem by work-
ing with a syntactical notion of refinement. This definition, which is typically
strictly stronger than thorough refinement, is easier to check. The difference
between syntactic and semantic refinements resembles the difference between
simulations and trace inclusion for transition systems.

We consider three syntactic refinements. These relations extend two well
known refinement relations for CMCs and IMCs by combining them with the
refinement defined on modal automata. By tweaking the alternation of quan-
tifiers in the associated formulas, one can define several syntactical notions of
refinements with different expressivity. For the sake of completeness, we de-
fine all three notions and compare their granularity. We start with the strong
refinement.

Definition 14 (Strong Refinement). Let N = (S, A,L, AP, V,sy) and N' =
(S',A, L', AP, V', s;) be APAs. R C S x S’ is a strong refinement relation if
and only if, for all (s,s") € R, the following conditions hold:

1. Vae A, Vo' € C(S"), if L'(s',a,¢") =T, then Jp € C(S) : L(s,a,0) = T
and there exists a correspondence function § : S — (5" — [0,1]) such that
Yue€ Sat(yp), Iu’ € Sat(y') with p € 1/,

2. Vae A, Vo e C(S), if L(s,a,¢) # L, then 3¢’ € C(S") : L'(s',a,¢') # L
and there exists a correspondence function 6 : S — (S’ — [0,1]) such that
Yue Sat(yp), Iu’ € Sat(y') with p €% 1/, and

3. V(s) CV'(s).

15



We say that N strongly refines N, denoted N <g N', if and only if there exists
a strong refinement relation relating so and s;.

Observe that strong refinement imposes a “fixed-in-advance” correspondence
function ¢ in the simulation relation between distributions. In this way, it
strongly resembles the notion of satisfaction presented in Definition Bl This
assumption is lifted with the definition of weak refinement:

Definition 15 (Weak Refinement). Let N = (S, A, L, AP,V,sy) and N' =
(S',A, L', AP, V', s;) be APAs. R C S xS’ is a weak refinement relation if and
only if, for all (s,s') € R, the following conditions hold:

1. Vae A, Vo' € C(S"), if L'(s',a,¢’) = T, then 3pe C(S) : L(s,a,p) =T
and Y€ Sat(p), I’ € Sat(y’) such that u g 1,

2. Vae A, Vo e C(S), if L(s,a,¢) # L, then 3¢’ € C(S") : L'(s',a,¢’) # L
and Y€ Sat(p), u’ € Sat(¢') such that u €g ', and

3. V(s) CV/(s).

We say that N weakly refines N', denoted N < N', if and only if there exists a
weak refinement relation relating so and s;.

Weak weak refinement weakens the assumption even more by allowing to
choose, for each solution of the left constraint, both a different correspondence
function and a different constraint (transition) to which it will be linked:

Definition 16 (Weak Weak Refinement). Let N = (S, A, L, AP,V,s¢) and
N' = (S A, L',AP, V' s) be APAs. R C S x S’ is a weak weak refinement
relation if and only if, for all (s,s’) € R, the following conditions hold:

1. Vae A, Vo' € C(S"), if L'(s',a,¢") =T, then Ip € C(S) : L(s,a,0) =T
and Y € Sat(yp), I’ € Sat(¢’) such that u €g 1/,

2. Va € A, Vo € C(S), if L(s,a,p) # L, then Vu € Sat(p), 3¢ € C(5) :
L'(s',a,¢') # L and 3’ € Sat(y') such that p €g 1, and

3. V(s) CV'(s).

We say that N weakly weakly refines N', denoted N <w N’, if and only if
there exists a weak weak refinement relation relating so and ().

It is easy to see that the above definitions are combinations of the definitions
of strong and weak refinement of CMCs with the modal refinement of Modal
Automata. Hence algorithms for checking weak weak, weak, and strong refine-
ments for APAs can be obtained by combining existing fixed-point algorithms
for CMCs [19] and Modal Automata [17]. For the class of polynomial-constraint
APAs, the upper bound for deciding weak/strong refinement is thus exponential
in the number of states and doubly-exponential in the size of the constraints m]
Notice that all three refinement relations are preorders on the set of APAs.

Weak weak, weak, and strong refinement all imply inclusion of sets of imple-
mentations. However, the converse is not true. The following theorem classifies
the refinement relations.
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Figure 8: APAs N; and Ny such that Ny <y Nz, but not N3 < Na.

Theorem 17. Thorough refinement is strictly finer than weak weak refinement,
weak weak refinement is strictly finer than weak refinement, and weak refinement
is strictly finer than strong refinement. That is,

=) 2 Zw) 2 (2) 2 (29)-

Proof. We first prove the inclusions, and then show that all of them are strict.

e (Z7) 2 (Bw) 2 (%) 2 (Zg): By a swap of quantifiers in the definitions, it is
obvious that strong refinement implies weak refinement, and that weak refine-
ment implies weak weak refinement. We prove that weak weak refinement im-
plies thorough refinement. Let N = (S, A, L, AP, V,sg) and N = (S’, A, L', AP,
V', s;) be APAs such that N <y N’ with a weak weak refinement relation
R ' CSxS.
If [N] = 0, we have [N] C [N’]. Otherwise, let P = (Sp, A, Lp, AP, Vp, s{’) be
a PA such that P = N. Then there exists a satisfaction relation R"C Sp xS
such that s{’ R" so.
Let R C Sp x S’ be the relation such that « R w iff there exists v € S such that
uR" v and v R’ w. The proof that R is a satisfaction relation is standard and
follows the same lines as the proof of Theorem We give the key arguments
of this proof and report the details to

Let u € Sp and w € S’ be such that u Rw, and let v € S be such that
uR" v and vR w

o Let a € A’ and ¢’ € C(S') be such that L'(w,a,¢’) = T. By R/, there
exists ¢ € C(S) such that L(v,a,9) = T and Vu € Sat(yp),Ip’ € Sat(¢’)
such that u €g p'. Moreover, by R”, there exists up € Dist(Sp) such
that Lp(u,a,up) = T and ug € Sat(yp) such that up g ps.

Let pus € Dist(S) and p' € Dist(S’) be such that up €rr ps and
us €r . Let 6" : Sp — (S — [0, ])andé’ S — (8 — [ ])be
the correspondence functions witnessing pup CR,, ws and pg CR, ' re-

spectively. The correspondence function for R is § : Sp — (S' — [0,1])
such that 6(s)(t) = >, 56" (s)(r)é (r)(t). It follows that up €% 1.
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e Let a € A and pup € Dist(Sp) be such that Lp(u,a,u) # L. By R”,

there exists ¢ € C(S) such that L(v,a,¢) # L and Jus € Sat(y) such
that up €rr ps. Moreover, by R’, we have that for all y € Sat(y), there
exists ¢’ € C(5’) such that L'(w,a,¢’) # L and p' € Sat(p’) such that
1ER -
Let pus € Dist(S) be such that up €rr ps. Let ¢ € Dist(S") be
such that L'(w,a,¢’) >7 and let p' € Sat(¢') such that pus €p .
Let 6" : Sp — (S — [0,1]) and ¢’ : S — (S’ — [0,1]) be the corre-
spondence functions witnessing pp @%;, ws and pg @%/ u' respectively.
The correspondence function for R is § : Sp — (S’ — [0,1]) such that
§(s)(t) =X ,eg0”(s) ()8 (r)(¢). It follows that pup €% 4.

Thus R is a satisfaction relation. Moreover, since s)’ R” so and so R’ s)), we
have that s R sj), and we conclude that P € [N'], therefore N <7 N'.

o =<Xw#=: We show that for APAs N; and N,, given in Fig. B we have
N1 2w N2, but Ny A Na.

o N; <w Na: We show that R = {(s1,}), (s2, %), (s3,5%), (54,5}), (S5,55) }
is a weak weak refinement relation. By construction, the pairs (s3, s5),
(s3,55), (s4,8)) and (ss5, s§) satisfy the axioms of a weak weak refinement
relation. We now show that the pair of initial state (s1, s7) also satisfies the
axioms of a weak weak refinement relation. For distributions p € Sat(py)
such that p(s2) > 0 or p(s3) > 0 we choose the constraint ¢,, and for
other distributions we choose .. It is then clear that

Vi € Sat(ps), 39" € {py, @2}, 3’ € Sat(¢') : p €r 1.

e N; A Na: There exists no constraint ¢’ € C(S’) such that L'(s],a,¢’) #
L and Yu € Sat(py), I’ € Sat(') : p €r 1.

o =<#=g: We now show that for the APAs N3 and Ny, given in Fig. @ we
have N3 < Ny, but N3 ﬁg Ny.

e N3 < Ny: We show that R = {(s1, 1), (s2, $5), (s3, 55), (s3, %), (84, 55)} is
a weak refinement relation. Again, the pairs (sa, sb), (s3, s5), (s3, s4) and
(sa, s5) all satisfy the axioms of a weak refinement relation by construction.
We now show that the pair of initial states (s1, s7) also satisfies the axioms
of a weak refinement relation.

There is a constraint function ¢, € C(S) such that L(s1,a,y,) =7 and a
constraint function ¢, € C(S’) such that L(s},a,¢,) =?. We now show
that Vi € Sat(py), 3 € Sat(py) : p €r 1. Let p € Sat(p,) and let
§:S— (S —[0,1]) be given as

(Slusll) = 17 (8278/2) = 17 (83783) =, (837821) —1— v, (847‘9{5) = 17

where v = %53()52), if p(s2) <0.7,and v = %53(;2) otherwise.
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Figure 9: APAs N3 and Ny such that N3 < Ny, but not N3 =g Ny.

1. By definition of ¢, for each s € S, §(s) is a distribution on S’
2. Assume that p(s2) < 0.7. For s4, s} € ', we have

S ()6()(5) = () P2 0.7 (s,
seS (83)

0.7 — p(s2)
S e = ) (1= S

= p(s3) — 0.7+ p(s2).

Using this observation, u’' : " — [0, 1], given by s — u(s1), s5 —
w(s2), sh— 0.7 — p(s2), sy — p(ss) —0.74 u(s2), and s +— pu(sq), is
a distribution on ', ' € Sat(yp,), and u €% p'. The proof is similar
if ,u(82) > 0.7.

3. Pairs (s, s’) for which §(s)(s’) > 0 are related by R by construction.

For valuations in s; and s}, respectively, it holds that {{l}} C {{l}}.

e N3 £A5 Ny: Suppose that there exists a satisfaction relation R', and let
4§’ be the correspondence function witnessing relation of s; and s}. The
valuations require that ¢’ must be of the same type as § above with v > 0
(here +y is constant). Consider the following two distributions over .S, uq
and pe given by

p1: s1— 0, s3— 0.6, s3+— 0.1, s4 — 0.3

po i 81— 0, s5— 0.8, s3+— 0.1, s4 — 0.1.
The 2 following properties must hold: (1) Juj € Dist(S’),Vs' € S :
YDoeesi(8)0(s)(s") = pi(s') and (2) 3uy € Dist(S),Vs' € S
Y scg M2(s8)0(s)(s") = py(s"). However, (1) requires that v = 1, and (2)
requires that v = 0, which shows that such a strong refinement relation
cannot exist.

e <Xr#=y: Finally, we show that for the APAs N5 and Ng, given in Fig. [0,
we have N5 <1 Ng, but N5 Aw Ng.
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Figure 10: APAs N5 and Ng such that N5 <7 Ng, but not N5 <y Ng.

e N5 <7 Ng: It is easy to see that any PA satisfying N5 will also satisfy Ng.

e N5 Zw Ng: Consider the pair (s2,s5). Sat(py) = {p1,p2} , where
u1(s3) = 1 and pa(sg) = 1. Let uf be the distribution over Ng assigning
probability 1 to sj. A correspondence function § such that po @% 1
cannot exist, since such a 0 will satisty that d(s4)(s}) = 1 and this pair
cannot be related because {{o}} Z {{n}}. The same applies for (s, s%).
This implies that N5 Ay Ng.

O

We have just seen that, in general, thorough refinement is strictly finer than
any syntactical refinement. In Section 2 we will show that the thorough, weak
weak, weak, and strong refinement coincide on the class of deterministic APAs.
In the rest of this paper, each time that we show that a refinement relation
holds, we prove it for the strongest possible version of refinement.

3.2. Bisimulation

In this section, we first introduce the classical notion of bisimulation for
PAs [21]. Then, we show that the specification theory we propose in this paper
is backwards-compatible, in the sense that bisimilar PAs satisfy the same spec-
ifications. The section is structured as follows. First, we recap the definition of
bisimulation for PAs. Then, in Theorem B0l we propose a characterization of
bisimulation based on the notion of satisfaction. Finally, Theorem B2 presents
the main result of the section, i.e. bisimilar APAs satisfy the same specifications.
Detailed proofs of the theorems are given in
The following definition presents the classical notion of bisimulation proposed
in [21]].

Definition 18 (Bisimulation). Let P = (S, A, L, AP,V,so) and P' = (S’, A, L', AP, V', s()
be PAs with no unreachable states. We say that R C S x S’ is a bisimulation
relation iff whenever (s,s') € R, the following holds:
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o V(s) =V'(s), and

e Va € A, u € Dist(S) such that L(s,a,n) = T if and only if there ex-
ists p' € Dist(S") such that L'(s',a,1') = T and, for each equivalence
class T € (SUS')/R", u(T) = 1/ (T), where R* denotes the reflexive,
symmetric, transitive closure of R on (SUS’).

P and P’ are bisimilar, written P ~ P’, if and only if there exists a bisim-
ulation relation R such that so R .

Characterization. We now propose a methodology that uses the satisfaction
relation and a lifting algorithm from PAs to APAs in order to decide whether
two given PAs are bisimilar. This methodology and the subsequent theorem
will be of particular interest for proving backward compatibility.

It turns out that bisimulation between two given PAs holds whenever, when
lifted to APAs, they admit the same implementations. In the following, we
first formally define the lifting from PAs to APAs. We then propose a formal
syntactical characterization of bisimilar PAs.

Definition 19 (Lifting). Let P = (S, A, L, AP,V,so) be a PA. We define the
lifting of P, denoted P = (S, A, L, AP,V ,s0) as the APA where

o foralls € S, a€ A, and ¢ € C(S), L(s,a,9) = T if and only if there
exists p € Dist(S) such that L(s,a,pn) =T and Sat(p) = {u}, and

e forallse S, V(s)={V(s)}.

Informally, the lifting P of P extends state valuations to sets containing only
the original valuations, and contains only single-solution constraints based on
the original distributions of P.

We propose the following theorem:

Theorem 20. Let P and P’ be PAs. We have that P~ P’ < P = P'.

Proof. We give a sketch of the proof, while a detailed version is given in[Appendix_B.1|
Let P = (S,A,L,AP,V,sp) and P’ = (S',A, L', AP,V',s) be PAs, and let
P’ =(S',A L', AP, V', s) be the lifting of P’.

e P~P = PE P’; Assume that P ~ P’ with relation Rp. It happens
that R is a satisfaction relation such that P = P’.

e P~P &Pk P’: Assume that P = P’ with satisfaction relation R. We
prove that P ~ P’.

Let R* denote the reflexive, transitive, symmetric closure of the relation R
over SUS’, and let Ry, C S x S’ be the relation such that s Ry s’ iff sR*s’. It
follows that Ry is a bisimulation relation and that so Ry s;. We thus conclude
that P ~ P,

O
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Backward Compatibility. We now move to the main result of the section:
bisimilar PAs satisfy the same APAs. We first relate lifting and refinement.

Lemma 21. Let P be a PA and let N be an APA. The following holds:
PN« P=N.

Proof. e P = N = P < N: Let P = (S,A,L, AP,V,sy) be a PA and let
= (S",A, L', AP, V' s() be an APA such that P = N with relation R,. Let
P= (S,A,L,AP,V,sq) be the lifting of P. It happens that R, is also a weak
refinement relation between P and N. The proof is standard and reported
in [Append 5.2
Since R is a weak refinement relation and, by construction, soR sj, we
conclude that P < N.

eP =N« P=<N:Let P=(S,A L AP,V,s) beaPA,let P= (S, A, L,AP,
V,s0) be the lifting of P and let N = (S’, A, L', AP,V',s,) be an APA such
that P =< N with relation R,.. Again, R, is also a satisfaction relation between
P and N. The proof is standard and given in
Since R is a satisfaction relation and, by construction, so R sj, we conclude
that P &= N.
O

Observe that, by the two previous results, we obtain that the lifting of two
bisimilar PAs have equal sets of implementations:

P~P «— [P]=[P].

We now present the main result of the section, that is that bisimilar PAs
satisfy the same specifications.

Theorem 22. Let P and P’ be PAs such that P ~ P’. For all APA N, it holds
that P=N <= P = N.

Proof. Let P and P’ be PAs such that P ~ P’, and let N be an APA such that
P E N. Consider the liftings P and P’ of P and P’. By Lemma EIl we have
P < N. Moreover, by Theorem B, we have P’ = P. Since weak refinement

implies implementation set inclusion, we thus have that P’ = N. By symmetry,
we thus have that for all APA N, PN < P'=N. O

3.3. Abstraction

We now propose two different notions of abstraction. The first notion, called
state-based abstraction amounts to grouping sets of states into single abstract
states. The aim of state-based abstraction is to reduce the complexity of APAs
by reducing their state space. The second notion, called constraint-based ab-
straction, amounts to abstracting complex constraints into the smallest interval
constraints that encompass all their solutions. The aim of constraint-based ab-
straction is to reduce the complexity of the constraints. Indeed, as shown in m],
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manipulating interval constraints allows for less complex algorithms in general.
Observe that both notions of abstraction can be combined.

State-based abstraction. The aim of this abstraction is to partition the state
space, i.e., group (disjoint) sets of states into a single abstract state. Let N and
M be APA with state space S and S’, respectively. An abstraction function « :
S — S’is asurjection. The inverse of abstraction function « is the concretization
function 7 : " — 25. The state a(s) denotes the abstract counterpart of state
s while ~(s’) represents the set of all (concrete) states that are represented
by the abstract state s’. Abstraction is lifted to distributions as follows. The
abstraction of u € Dist(S), denoted a(u) € Dist(S’), is uniquely defined by
a(p)(s") = p(y(s") for all s’ € S'. Abstraction is lifted to sets of states, or sets
of distributions in a pointwise manner. It follows that ¢’ = a(y) if and only
it Sat(¢’) = a(Sat(p)). The cartesian product of two abstraction functions is
given as follows: (a1 X az2)(s1,s2) = (a1(s1), a2(s2)). These ingredients provide
the basis to define the state abstraction of an APA.

Definition 23 (State-based Abstraction). Given APA N = (S, A, L, AP,V, sy),
the abstraction function o : S — S’ induces the APA a(N) = (S', A, L', AP, V',
a(sg)), where for alla € A, s € 8" and ¢’ € C(S"):

if Vs €(s") : 3p € C(S): L(s,a,¢) =T, and
T Sat(e) = a(| Sat(e) (¥
(s,0)Ev(s")XC(S):L(s,a,p)=T

L'(s',a,¢') = if 3s€(s") :3p € C(S): L(s,a,¢) > ?,and

? b)
Sat(p') = Sat (
) = U peremo®napzs 2P
L otherwise (c)
N
and V'(s") = veen (s V(s)

Item (a) asserts that if there are must transitions (s,a, ) from all states
s € y(s'), then the must transition (s',a,¢’) represents their total behavior.
Item (b) asserts that a may a-transition emanating from s’ represents the total
behaviour of all may and must transitions (s, a, ) for all s € y(s’). Item (c)
asserts that if no state in v(s’) has an a-transition, then s’ also does not have
an a-transition.

The result of abstracting APA N is the APA «(N) that is able to mimic all
behaviours of N, but possibly exhibits more behaviour.

Example. Consider the APA N = (S, A, L, AP, V, sq) depicted in Fig. [Id Let
the abstraction function o : S — S’ be given by a(s1) = s}, a(s2) = a(ss) = shs,
a(sq) = 8y, ass) = st, and a(ss) = sg. The APA a(N) obtained following
Definition [Z3 is depicted in Figure [[10. State s| has a single outgoing must
a-transition, corresponding to the outgoing must a-transition of s1, where target
states are collapsed and the constraint is simplified accordingly. State shs has
two outgoing transitions: (1) a must a-transition because both so and ss have
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Figure 11: APA N and and its state abstraction a(N)

must a-outgoing transitions (item (a) of Definition [Z3), with a constraint that
represents the union of the constraints of the original must transitions; and (2) a
may a-transition because so has a may a-transition (item (b) of Definition [Z3),
with a constraint that represents the union of the constraints of all outgoing
a-transitions of so and ss3.

Observe that the abstract version of an APA is always weaker in term of
refinement than the original APA.

Lemma 24. For all APA N and abstraction function o, N <g a(N).

Proof. Let N = (S, A, L, AP,V,s0) be an APA and let « : S — S’ be an abstrac-
tion function. Consider the state abstraction a(N) = (S, A, L', AP, V', a(so)).
Let R € S x S’ be the relation such that s Rs" iff s’ = a(s). The proof that
R is a strong refinement relation is standard. The key point of this proof is
to use the following correspondence functions: § : S — (S’ — [0, 1]) such that
0(u)(v) =11if a(u) = v, and 0 otherwise. For the sake of completeness, the full

proof is reported in O

Observe that by the ordering of refinement relations given in Theorem [,
it also holds that N < a(N), N <y «a(N) and N =<7 «(N).

Constraint-based abstraction. Given a constraint ¢ € C(S), we say that
¢ is an interval constraint if there exist closed intervals {I#|s € S} such that
Vi, p € Sat(p) <= N,eg(p(s) € If). If, for all s € S, a € A, and ¢ € C(S)
such that L(s,a,¢) # L, it holds that ¢ is an interval constraint, then we call
N an Interval Probabilistic Automaton (IPA).

The following notion of abstraction abstracts an APA with the smallest TPA
encompassing all its implementations.

Definition 25 (Constraint-based Abstraction). Let N = (S, A, L, AP, V, sq) be
an APA. The constraint-abstracted APA x(N) = (S, A, L', AP,V, so) is defined
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such that for all states s € S and a € A, if there exists ¢ € C(S) such that
L(s,a,¢) # L, then L'(s,a,¢") = L(s,a, ) for ¢’ € C(S) defined as

/\ p'(s') € I;P/ } )

s'es

Sat(¢’) = {u’ € Dist(S)

where {I%|s' € S} are the smallest closed intervals such that Vi € Sat(p) :
Noesils') € I3

As expected, constraint-based abstraction is an abstraction with respect to
strong refinement.

Lemma 26. For any APA N, it holds that N <g x(N).

Proof. Let N = (S, A, L, AP,V,s¢) be an APA and let x(N) = (S, A, L', AP,V,
S0) be the constraint-abstraction of N. Let R = S x S be the identity rela-
tion. The proof that R is a strong refinement relation is standard. The key
point of this proof is to use identity correspondence functions. For the sake of

completeness, the full proof is given in O

We now show that if N is a valuation-deterministic APA in SVNF, then x(N)
is the smallest IPA in SVNF abstracting N with respect to weak refinement.
However, when N and (V) are not in SVNF, it is possible to abstract N in dif-
ferent ways by grouping states with different valuations, leading to abstractions
that cannot be compared with x(N) using the refinement relations.

Theorem 27. For any valuation-deterministic APA N in SVNF and IPA N’
in SVNF, N < N’ implies x(N) < N'.

Proof. Let N = (S, A, L, AP, V, sp) be a valuation-deterministic APA, and let
N' = (8",A, L', AP, V', s() be an IPA, both in SVNF, such that N < N’ with a
weak refinement relation R. Let x(IV) = (S, 4, L”, AP, V, s¢) be the constraint
abstraction of N. Let R’ := R. Although R and R’ are equal, we chose to use
two different notations to stress the fact that the former is a weak refinement
relation between N and N’ while the latter is a relation between x(NN) and N'.
We prove that R’ is a weak refinement relation such that x(N) < N’. Let s € S
and s’ € 9’ such that sR's’. We show that R’ satisfies the axioms of a weak
refinement relation.

1. Let a € A and ¢’ € C(5') such that L'(s',a,¢’) = T. By R, there
exists ¢ € C(S) such that L(s,a,p) =T and Vu € Sat(p)Ip’ € Sat(y’) :
1 Er 1. By construction of x(NN), there exists ¢; € C(5) (the constraint-
abstraction of o) such that L”(s,a, ;) = T and Sat(pr) = {u” € Dist(S)]
Noregtt(s") € IZ,} with {I7,]|s” € S} the smallest closed intervals such
that Yy € Sat(p) : Nyvegu(s”) € I7,.
Define R'(s1) = {s} € 9’|s1 R's|} for all s € S. Observe that for all
s1 # 82, p € C(Y), and a € A such that L(s,a,p) # L, if there ex-

ists w1, p2 € Sat(y) with py(s1) > 0 and pa2(s2) > 0, then, since N is
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valuation-deterministic and N’ is in SVNF, R'(s1) NR'(s2) = () (observa-
tion A).

Let {I£" = [ls,,us,]|s1 € S} be the intervals associated with o7, and let
{I;’;l = [l;,l,u's,l]|s’1 € S} be the intervals associated with ¢’. Let a € A
and ¢ € C(S) such that L(s,a,¢) # L. Let s; € S. By minimality of the
interval constraints in x(IN), there exists ;1 € Sat(p) such that p(s1) = Iy, .
Since s R §', there exists § : S — Dist(S’) such that

vsh e S Z p(s2)0(s2)(sh) = p'(sh),

s2€S

for some u' € Sat(y¢’), where L'(s',a,¢’) # L.

For 4, we deduce that Vs ¢ R'(s1),d(s1)(s}) = 0 and Vsa # s1,Vs)| €
R(s2),0(s2)(s}) = 0. By the first deduction, Vs} € R'(s1), p(s1)d(s1)(s}) >
l’s/1 and by the second, Es;eR/(sl) w(s2)d(s2)(sh) = ls,. As a consequence,
ls, > 25/167?,’(51) l;,l, and similarly, we obtain u,, < ngeR’(sl) u’s,l.

Let pur € Sat(¢r). We now prove that there exists u; € Sat(¢') such that
ur €rs wh. For all s; € S, define the correspondence function ¢ : S —
Dist(S") as follows: if p7(s1) = 0, then ¢'(s1)(s}) = 0 for all 8§ € S’ and
otherwise,

1 ( ’ (u's,l —l;/l )(HI(52)—ZS’2€R/(52) l's,z)

) / 7 7 f / c R/
5/(52)(5/1) = { pils2) \ 7o 25’2672/(52)(“5/2 _lsé) ) 1L 8 (82)
0 otherwise.

(1)
Let p7 € Dist(S') such that p7(s}) = >, cgp(s2)d(s2)(s1). We prove

that p; €%, pf.
(a) By construction, if yis(s1) > 0, then 3, g 6'(s1)(s7) = 1.
(b) Let s*' € S’. By observation A, there exists at most one s* € S such
that ur(s*) > 0 and s*' € R'(s*). There are two cases:

e If no such s* exists, then I}., = > ¢ pur(s2)d (s2)(s*') = 0 and
we have
v S (™) <

s*/*

e Otherwise, we have

> nr(s2)d (s2)(s™) = pr(s")8 (s7)(s")

so€S
(u/s*/ - l/s*’)(:ul(s*) - ES’QER/(S*) l;’2)
Zs;ew(s*)(“/g; - l;;)

Since 3y cri(sy) l;é <lg < pr(s*), we have that

- l;*/ +

i(s) = 3 ur(s2)8' (s2)(s™) > U

s2E€S

26



Similarly,

wr(s™) =Y pr(s2)d (s2)(s™) < .

s2E€S

We conclude that Vs; € S’ u;(s)) € Ig,l. Thus p} € Sat(¢').
(c) Assume that ¢’(s1)(s}) > 0. Then s} € R'(s1), and s; R’ s}.
We conclude that there exists u} € Sat(¢’) such that uy €gs pf.

2. Let a € A and ¢; € C(S) such that L”(s,a,pr) # L. By construction,
there exists ¢ € C(S) such that L(s,a,¢) # L. By refinement, there
exists ¢’ € C(S') such that L'(s',a,¢’) # L and Vu € Sat(p)Iu’ €
Sat(¢’) : u €r 1. Using the same reasoning as above, we can prove that
Vur € Sat(pr), there exists u} € Sat(y’) such that puy Er wh.

3. Clearly, V(s) C V'(s), as valuations in N and x(N) are equal.

This proves that R’ is a weak refinement relation. As so R’ s{,, we conclude
that y(N) < N'. 0

Observe that the above theorem does not hold for strong refinement: If N’
is an IPA in SVNF such that N <g N’, then we have x(N) < N’ but not
necessarily x(N) =g N'.

Example. We show that Thm. [ZA does not hold when the APA N is not
valuation-deterministic. Consider APA N and IPA N’ given in Fig. and[lZd
respectively. It is easy to see that N is not valuation-deterministic, and that
N =< N'. Let x(N) be the constraint-based abstraction of N, as given in Fig.[[20.
Consider PA P given in Fig.[[2d. It is easy to see that P = x(N), but P }= N'.
Thus, by Theorem A, x(N) A N'.

Notice that Thm. 24 holds regardless whether N is action-deterministic. It
turns out that if N is not action-deterministic, then the theorem holds for weak
refinement, but not for weak weak refinement. Fig.[[A illustrates a counter exam-
ple. This is not suprising as, because of the swap of quantifiers in its definition,
weak weak refinement can take more advantage of action non-determinism than
weak refinement.

Although state-based abstraction and constraint-based abstraction are both
abstractions, they cannot be compared in general in terms of refinement. This
statement is illustrated in the following example.

Example. Consider APA N given in Fig. [[Zd Fig. illustrates the state-
based abstraction of N where state s2 and s3 are grouped, and Fig. [I{d illustrates
the constraint-abstraction of N. It is easy to see that a(N) A x(N). Indeed,
state sh cannot refine either state sy or s, because their valuations do not
coincide. Also x(N) A a(N), because their constraints do not match.
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Figure 12: Example that constraint abstraction does not preserve < for non
valuation-deterministic APAs

4. Consistency, Pruning and Conjunction

We now turn our attention to deciding whether there exist implementations
satisfying one or several specifications. When considering only one specification,
this problem is called consistency. In the following subsection, we first formally
define consistency and then propose an algorithm to decide if a given APA is
consistent. We then move to the problem of deciding whether several APAs ad-
mit a common implementation. We propose an operation, called conjunction,
that combines requirements of several APAs into a single APA whose imple-
mentations are exactly those implementations that satisfy all original APAs.

4.1. Consistency and Pruning

Definition 28 (Consistency). An APA N is consistent if and only if it admits
at least one implementation, i.e. [N] # 0.

We say that a state s is consistent if V(s) # 0 and L(s,a,0) =T =
Sat(p) #0. An APA is locally consistent if all its states are consistent. It is
easy to see that a locally consistent APA is consistent. However, inconsistency
of a state does not imply inconsistency of the specification. In order to decide
whether a specification is consistent, we proceed as usual and propagate incon-
sistent states with the help of a pruning operator § that filters out distributions
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(a) A non action-deterministic APA N (b) The constraint abstraction x(IN) of
APA N

{81} {1}

(c) IPA N’ such that N <y N’ and (d) PA P such that P |= x(N)
x(N) 2w N’

Figure 13: Example that Thm.P27 does not hold for weak weak refinement with
a non action-deterministic APA
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Figure 14: «(N) and x (V) cannot be compared in terms of refinement

leading to inconsistent states. This operator is applied until a fixed point is
reached, i.e., until the specification does not contain inconsistent states (it is
locally consistent). We now formally define the pruning operator.

Definition 29 (Pruning). Let N = (S, A, L, AP,V,s0) be an APA with \ ¢ S
and let T C S be the set of inconsistent states in N. Let v : S — {A\}US\T
be defined by v(s) = X if s € T, and v(s) = s otherwise. Let 3 be a pruning
function defined by: If v(sg) = A, then B(N) is the empty APA. Otherwise,
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Figure 15: APAs N, 8(N) and #*(N) = 8*(N)

B(N) = (S",A, L', AP, V' sq) with S’ = S\ T, and for all s € S’, a € A,
p € AP and p € C(5'),

L if o =0
UgegsaL(s,a,P)  otherwise

L'(s,a,0) = {
V'(s) = V(s)

where % is the set of constraints on S, reachable from state s with label a,
that match ¢ when restricted to S’. More formally,

g ={geC(S)| L(s,a,9)# L and p € Sat(yp) iff Ig € Sat(P) s.t.
Vs € S, Tu(s) = u(s), and ¥t € T, fi(t) = 0}.

All states in T' are mapped onto A and are removed from APA N. APA
B(N) obtained by pruning may still contain inconsistent states. Therefore, we
repeat pruning until a fixpoint is reached such that 8%(N) = "1 (N), where n
represents the number of iterations. The existence of this fixpoint is guaranteed
as N is finite. Some of the operations (conjunction and composition) may
introduce inconsistent states, and are succeeded by a pruning phase to remove
such states.

Example. Consider APA N given in Fig. [[2d. State s3 of N is inconsistent
because of an empty valuation. The first round of pruning thus removes state
s3 and yields APA B(N) given in Fig. [[81. Since state s3 has been removed,
transitions that used to lead to s3 now have the constraint false, which admits
no solution. The outgoing must transition of state s4 thus becomes inconsistent.
As a consequence, the next round of pruning removes state s, and yields APA
B%(N) given in Fig.[I5d. Since there are no more inconsistencies, it follows that

B*(N) = B*(N).

Pruning preserves the set of implementations, as formalized in the following
theorem.

Theorem 30. For any APA N, it holds that [N] = [B(N)].
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Proof. Let N = (S, A, L, AP, V,sy) be an APA. Let T be the set of inconsistent
states of N and let B(NN) be the corresponding APA using the pruning operator
of Definition The result is trivial if (V) is empty. Otherwise, suppose that
B(N) = (S",A, L', AP, V' s0), and let P = (Q, A, Lp, AP, Vp,qo) be a PA. We
prove that P = N <= P = 3(N).

e PE= N = P [ B(N): Suppose that P = N, and let R C Q x S be the
corresponding satisfaction relation. Define the relation R' = RN(Q x S’). The
proof that R’ is a satisfaction relation is standard. The key argument relies
on the fact that all the states s € S such that there exists ¢ € @ with ¢ R s
are consistent, i.e. s ¢ T. Thus, considering the restriction of the relation R
to S\ T preserves implementations. For the sake of completeness, the detailed

proof is given in

e P=N < P 3(N): Suppose that P = B(N), and let R' C Q x S’ be the
corresponding satisfaction relation. By construction, the extension R of R’ to
Q@ x S is a satisfaction relation such that go R so. Thus P = N.

O

Observe that the above theorem only holds for thorough refinement. Indeed,
any syntactic notion of refinement between N and [(NN) fails because some
(potentially reachable) states of N are removed, and thus find no counterpart

in B(N).

4.2. Congunction

Conjunction, also called logical composition, allows combining two specifi-
cations into a single specification that has the conjunctive behavior of the two
operands. More precisely, a conjuncted specification admits the intersection of
sets of implementations of its constituents. The conjunction operation is a mix
between the corresponding operations for modal automata [23] and CMCs [19].
The main lines of the general conjunction operator that we define hereafter are
as follows: () a must transition on one side that has no counterpart on the other
side yields an inconsistent transition, ) a may transition on one side that has
no counterpart on the other side yields no transition, ) the combination of
two transitions (may or must) yields a may transition to a combination of the
constraints, and in addition, @ B) a must transition on one side yields a must
transition in the conjunction to a constraint combining the constraint associated
to the original must transition with a disjunction of all admissible constraints
on the other side. Notice that, although items ([IB) are very close to the
definitions of conjunction for modal automata and CMCs, items @H) are more
involved. Indeed, the general definition we present here needs to handle action
non-determinism, which is not taken care of in CMCs or modal automata. In
fact a simpler notion of conjunction can be defined for deterministic APAs ﬂ, E]

Notice that conjunction may introduce inconsistent transitions through ()
and should thus be followed by applying the pruning operator 5*.
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Definition 31. Let N = (S, A, L, AP,V,s9) and N' = (S, A, L', AP, V', s() be
APAs sharing action and proposition sets. Their conjunction N AN’ is the APA
(SxS A, L, AP,V (so0,sp)) where V((s,s")) =V (s)NV'(s") and

a € (Must(s")\May(s)) U (Must(s)\ May(s"))! 1)
L((s,s'), a, false) = 7
a € (May(s)\May(s")) U (MEY( ") \May(s)) @)
L((s,)0,¢) = ’
a€May(s)NMay(s’)  L(s, 790)75J— L'(sla, o) #L 3)
L((s,'),0,¢) = ’
where ¢ € C(S x S’) such that i € Sat(p) if and only if
distribution p : t — Z a((t, ") is in Sat(p) and
tres’
distribution p' : t' — Z[L((t, t')) is in Sat(¢').
tes
a € Must(s) L(s,a,9) =T (4)

L((s,8"),a,¢") =T
where 3 € C(S x S') such that i € Sat(p") if and only if both

the distribution p : t — Z a((t, ") is in Sat(p), and
tres
there exists ¢' € C(S") with L'(s',a,¢") # L and the distribution ' : t' —

Z/Z((t,t')) is in Sat(¢’).
tes
a € Must(s’)  L'(s',a,¢')=T
L((s,s),a,@T) =T
where 3'T € C(S x S') is such that i € Sat(¢'") if and only if both

there exists ¢ € C(S) such that L(s,a,p) # L and the distribution p : t —
Z a((t, ") is in Sat(p), and

tres’
the distribution p' : t' — 3, o i’ ((t,1')) is in Sat(o').

Note that conjunction A is symmetric.

We conclude the section by showing that conjunction is the greatest lower
bound with respect to weak weak refinement.

IRecall that Vs, Must(s) C May(s)
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Theorem 32. Let Ny, No, and N3 be consistent APAs sharing action and
atomic proposition sets. It holds that

° ﬁ*(Nl A\ Ng) <=w Ni.
o If N3=w N1 and N3 =<w N, then Ngjwﬁ*(Nl /\Nz).

Proof. Let Ni = (S1,A,L1,AP,Vi,s8}) and Ny = (S2, A, Lo, AP, Vs, s3) and
N3 = (S3, A, L3, AP, V3, s3) be three APAs. Let Ny ANy = (S; x So, A, L, AP, V,
(sp,53)) be the conjunction of Ny and Ny defined as in Definition BIl We prove
the claims separately.

e 3*(N1 A N2) =w Ni: Obviously, if N3 A Ny is inconsistent, then 5*(Ny A Na)

is empty and refines Ny with the empty refinement relation. Suppose now that
B*(N1 A No) = (SN A LN, AP,V (s}, s3)), with SN C S x Sz, not empty.
Define the relation R C S” x S; such that for all (s,s’) € S" and ¢t € Sj,
(s,s')Rtiff s =t. We prove that R is a weak weak refinement relation. Let
(s,8") € S” such that (s,s’) Rs. We show that R satisfies the axioms of a weak
weak refinement relation.

1. let a € A and ¢ € C(S1) such that Li(s,a,p) = T. Since (s,s’) € S", we
have that a € May(s’). Let ¢ € C(S1 x S2) such that fi € Sat(p) iff

o the distribution i : ¢ — 37, g, A((t, 1)) is in Sat(p), and

e there exists a distribution ¢’ € C(S3) such that La(s',a,¢’) # L and
the distribution p' : ¢ — 37, ¢ A((¢,1')) is in Sat(¢).

By definition of N A Ny, we have that L((s, s'), a, ) = T. Consider now
o™ € C(S") the constraint such that p” € Sat(¢”) iff there exists i €
Sat(p) such that Vr € S™, u(r) = f(r) and Vr € (S1 x S2)\ S*, ii(r) = 0.
According Definition B4, L"((s,s'),a, ") = quew(S*S’)*az((S’5/)"“@'

Since @ € P it holds that L"((s, 8'),a, o) = T.

Thus there exists ¢ € C(S") such that L"((s,s),a,¢”) = T. Moreover,
define the correspondence function § : S» — (S; — [0,1]) such that
((r,r") (") = 1 iff v = r. Let p € Sat(e”"), i the corresponding
distribution in Sat(p), and p the distribution such that p : r € S; —
> res, ((r,7")). By definition, u is in Sat(p) and by construction, we
have p” @% w. For the sake of completeness, a detailed proof of this fact
is given in

2. Let a € A and o™ € C(S") such that L"((s,s'),a,¢”") # L. By definition
of L", there exists ¢ € <p_’\t’a. Thus, L((s,s'),a,¢ # L in Ny A Ny, and a
distribution u” satisfies " iff there exists a distribution & € Sat(@) such
that p”(r) = ia(r) for all » € S” and f(r) = 0 for all r € 51 x Sa \ S™.
Since S contains only consistent states, there exists p” € Sat(¢”). Let
il € Sat(@) be a corresponding distribution in ¢. There are 3 cases.

o If a ¢ Must(s) and a ¢ Must(s’), then by Definition Bl there ex-
ists ¢ € C(S1) and ¢’ € C(S2) such that Li(s,a,9) # L and
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Lo(s',a,¢") # L. Moreover, g € Sat( ) iff the distributions g :
resS — Eres2 o((r,r")) and ¢ : 7" € Sy = > 5 0((r,7")) are
respectively in Sat(y) and in Sat(¢’). Since i € Sat(p), let p and
i’ be the corresponding distributions in Sat(y) and Sat(¢’). De-
fine the correspondence function 6 : S* — (S; — [0,1]) such that
S((r,r")) (") = 1 iff v = r. As above, we have " €% pu.

e Otherwise, if a € Must(s) and there exists ¢ € C(S7) such that ¢ is
such that g € Sat(p) ift

— the distribution g : 7 — 3 , 652 o((r,7")) is in Sat(y), and

— there exists a distribution cp € C(S2) such that La(s',a,¢") # L
and the distribution ¢’ : " — > o 0((r,7")) is in Sat(¢’).

Since i € Sat(p), let ¢’ € C(S2) be the correspondlng constraint on
Sy such that La(s',a,¢’) # L. Let p and p' be the corresponding
distributions in Sat(y) and Sat(y’). Define the correspondence func-
tion 6 : S — (S1 — [0,1]) such that §((r,r"))(r") =1if " =r. As
above, we have pu” @‘7;3 . The same holds in the symmetric case.

Finally, in any case, there exists ¢ € C'(S7) such that Li(s,a, ) # L and
there exists u € Sat(p) such that p" Ex p.
3. By definition, V"((s,s")) = V((s,s")) = Vi(s) N Va(s') C Vi(s).

Finally, R is a weak weak refinement relation, and we have 8*(N; A Na) <
Nj.

e if N3 <y Ny and N3 =y Na, then N3 <y 8* (N1 A Na): Let Ry C S5 x Sy
and Ry C S35 x S5 be the weak weak refinement relations such that N3 <y Ng
and N3 =<y Na. Obviously, if Ny A Ny is fully inconsistent, then 5*(Ny A Na)
is empty. In this case, there are no consistent APAs refining both N; and N,.
As a consequence, N3 is inconsistent, which violates the hypothesis. Suppose
now that 3*(Ny A Na) = (S, A, LN, AP, V" (s}, 82)), with S C S x Sa, is
not empty. Define the relation R" C S5 x S’A such that s” R"(s,s’) € SN iff
s"Rs € 8y and s"R's' € So. We prove that R" is a weak weak refinement
relation. Let s € S1,s” € So and s” € S3 such that s” R"(s,s’). We show that
R satisfies the axioms of a weak weak refinement relation.

1. Let a € A and ¢ € C(S") such that L"((s,s'),a, ") = T. By definition,
we have L((s,s'),a,¢) = T with ¢ € C(S; x S3) such that " € Sat(p")
iff there exists i € Sat(p) such that p”(r) = a(r) for all r € S” and
a(r) =0 for all r € S; x Sa \ S”. There are 2 cases.

e Suppose that a € Must(s) and there exists ¢ € C(S1) such that
Li(s,a,¢) =T, and g € Sat(p) iff
— the distribution o : t — 3, g, 0((t,1')) is in Sat(p), and

— there exists a distribution ¢’ € C'(S2) such that La(s',a,¢") # L
and the distribution ¢’ : ¢’ — >, .5 0((£,1')) is in Sat(¢").
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Since Li(s,a,) = T and s” Ry s, there exists ¢’ € C(S3) such
that Ls(s”,a,¢”) = T and Vu'’ € Sat(¢”),3u € Sat(p), such that
'’ ERr, (1).

Since L3(s”,a,¢"”) = T and s” Ry s’, we have that Vu" € Sat(¢"),
there exist ¢’ € C(S2) such that La(s',a,¢’) # L and p’ € Sat(¢)
such that u” €r, o' (2).

Let " € Sat(¢”). By (1) and (2), there exists u € Sat(p), ¢’ €
C(S2) such that La(s',a,¢’) # L and ¢/ € Sat(¢’) such that u” €x,
wand u” g, 1. Since (s,s’) and s are consistent, remark that for
all (r,r') in S; x S3\ S”, we cannot have s” Ry r and we cannot have
" Rar’ (3).

We now build g € Sat(o”") such that p” €rn p”.

Let § and ¢’ be the correspondence functions such that @%1 w and

u”’ @%2 u'. Define the correspondence function §” : S3 — (S —
[0,1]) such that for all v/ € S3 and (r,7") € S*, §"(v")((r,r")) =
5(r")(r)8" (r")(r'). We build p and prove that p”/ €5 p/.

— For all v € Ss, if p’(r"”) > 0, both 6(r"") and ¢'(r") are dis-
tributions. By (3), we know that for all (r,7’) € S; x Sz \ S”,
5(r'")(r) = & (r")(r") = 0. As a consequence, §” (") is a distri-
bution on S”.

— Define p(r,7") = 37 cg, ' ()" (r")((r,7")). Tt follows that
u” € Sat(p”). For the sake of completeness, a detailed proof of
this fact is given in

= If 6"(")((r,7")) > 0, then by definition o(r")(r) > 0 and
(") (") > 0. As a consequence, ' Ryr and " Ryr’, thus
" RN (r,r").

Finally, ¢/ €rr p” and p € Sat(¢”"). The same holds for the
symmetric case.

2. Let a € A and ¢” € C(S3) such that Ls(s”,a,¢"”) # L. Let u”” € Sat(y”).
Since " Ri1s and s” Rqs’, there must exist ¢ € C(S1), p € Sat(yp),
¢ € C(S2) and p' € Sat(¢') such that Li(s,a,¢) # L, La(s',a,¢') # L,
p' €r, pand y’ E€r, i/ . As a consequence, L((s,s'),a,$) # L, with
@ € C(S1 x S3) such that ¢ € Sat(p) iff the distributions ¢ : r € 57 —
Y ores, 0(r,7")) and o' 11" € Sy = Y7 g 0((r,7')) are respectively in
Sat(p) and in Sat(p’). Moreover, since s’ and (s, ') are consistent, there
exists " € C(S") such that L"((s,s'),a,¢") # L and " € Sat(p") iff
there exists ¢ € Sat(p) such that o (r,7’) = o(r,7’") for all (r,r') € S*
and g(r,r") = 0 for all (r,7") € S1 x Sz \ S™.

Let § and ¢’ the correspondence functions such that p’’ @%l wand p” @%2
w'. Since s and (s, s’) are consistent, we know that (1) for all (r,7') €
S1 x So\ 8", we have p(r) = p/(r') = 0 and (2) for all ¥ € S and
(r,7") € 81 x S2\ S”, we cannot have 7’/ R r and we cannot have 7’/ Ry 7',
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Define the correspondence function 6" : S5 — (S™ — [0, 1]) such that for
all 1 € Sy and (r,1”) € S, 8"()((r.1")) = 6(")(1)3"(+")(). We now
build p such that p” €%, p” and prove that p € Sat(¢").

e For all v/ € S3, if /(") > 0, both §(r") and ¢'(r") are dis-
tributions. By (2), we know that for all (r,7') € S; x Sg \ S,
o(r"y(r) = &' (")(r") = 0. As a consequence, 6”(r") is a distribu-
tion on S”.

e Define p"(r,r") = > 1cg, 1" (r")8" (r")((r,7")). As above, we can
prove that p" € Sat(p").

o If 8" (r")((r,7")) > 0, then by definition é(r")(r) > 0 and &' (+"") (") >
0. As a consequence, r’ Ry r and 7" Ra 7/, thus 7" R"(r, 7).

Finally, there exists ¢ € C(S”) such that L"((s,s'),a,¢") # L and
p™ € Sat(o™) such that p” Ern p’.
3. Since s” Ry s and s” Rz s’, we have V3(s”) C Vi(s) N Va(s') = V™ ((s, s")).

Thus, R" is a weak weak refinement relation between N3 and 3*(Ny A Na).
Moreover, we know that s3Ri s}, siRzs3, and (s, s3) is consistent. As a
consequence s3 R (s}, s2) and N3 <y 5*(Ny A Na).

O

From the above theorem, we can easily deduce that the set of implementa-
tions of the conjunction of two given APAs is exactly the intersection of their
sets of implementations.

Corollary 33. For APAs Ny and Na, it holds that [5* (N1 AN2)] = [N1]N[Nz].

Proof. Let N7 and Ny be APAs. We prove the result by double inclusion.

By Theorem B2 we have that 5*(N1 A N2) <y Ni. By Theorem [[7, we thus
have [6*(N1 ANz2)] C [N1]. By symmetry, we also obtain that [6*(Ny A Nz2)] C
[[NQ]], and thus [[6*(]\]1 A NQ)]] - [[Nll] n [[NQ]]

Recall that every PA P can be seen as an APA in SVNF with no may
transitions and with only single point constraints. Moreover, recall that all
notions of refinement boil down to satisfaction when the left operand is a PA,
ie. for all PA P and for all APA N, we have P N < P <y N <—
P <N <= P <g N. Let P be a PA such that P € [N1] N [N2]. By
definition, we have P = N; and P = Ns, and as a consequence P <y N;
and P <w Nz. By Theorem B2 we thus have P <y *(N1 A N2) and as a
consequence P |= 5*(N1ANz). Therefore, we have [N1]N[Nz2] C [6* (N1 AN2)],
which concludes the proof. O

The above result is surprising. Indeed, in many theories for non-deterministic
systems such as modal automata, there is no syntactical notion of conjunction
that allows to compute sets of implementation [26]. Observe also that Theo-
rem B2 holds for weak-weak refinement but neither for weak nor strong refine-
ments. Consider APAs N7 and Ns, and their conjunction 5*(N; A Na) given
in Fig. M@ It is easy to see that 5*(N1 A N2) cannot refine Ny with a weak

36



a,1,7 ! ‘a,1,?

{1 O sy OB {5} {1}
Gr= (22 =1)V (25 =1) 02 = (T =DV (zpy = 1)
(a) APA N, (b) APA N, (c) APA B*(Ni A Na)

Figure 16: APAs Ny, N2 and their conjunction 8*(Ny A N2) such that 8*(Ny A
N3) £ Na.

refinement relation. Indeed, the constraint ¢} present in state (1,1) cannot
be redistributed to a given constraint in No without knowing in advance which
of its solutions is considered. This again illustrates the power of interleaving
constraints and modalities through weak refinement.

5. Compositional Reasoning

We now propose a composition operation mixing the properties of the com-
position operation on modal transition systems and the composition operation
on CMCs. We then show how composition and abstraction can collaborate to
avoid state-space explosion in a component-wise manner.

In our theory, the composition operation is parametrized with a set of syn-
chronization actions like in CSP. This set allows to specify on which actions
the two specifications should collaborate and on which actions they can be-
have individually. The intuition is as follows: synchronizing transitions have
the lowest modality of the original transitions, and lead to a constraint whose
solutions are product distributions of solutions of the original constraints; and
non-synchronizing transitions keep their modality and impose that the other
component stays in its current state.

Definition 34 (Parallel composition of APAs). Let N = (S, A, L, AP, V, s¢) and
N' = (8" A',L',AP", V' s() be APAs and assume AP N AP’ = (). The parallel
composition of N and N’ with respect to synchronization set A C ANA’, written
as N|xN', is given as N|zN' = (Sx S, AUA', L, APUAP',V,(s0,5})) where

o L is defined as follows:

— For all (s,s') € S xS, a € A, if there exists ¢ € C(S) and
¢ € C(S'), such that L(s,a,¢) # L and L'(s';a,¢") # L, define

L((s,8'),a,p) = L(s,a,) ML (s, a,¢") with ¢ the new constraint in
C(S x S") such that i € Sat(P) if and only if there exists p € Sat(p)
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and p' € Sat(¢') such that fi(u,v) = plu)p' (v) for all uw € S and
ve s
If either for all p € C(S), we have L(s,a,9) = L, orVy¢' € C(S"), we

have L' (s',a,¢’) = L then for all p € C(S x S"), L((s,s'),a,p) = L.
— For all (s,8') € Sx S', a € A\ A, and for all p € C(S), define

L((s,s"),a,@) = L(s,a,¢) with ¢ the new constraint in C(S x S’)
such that it € Sat(Q) if and only if for allu € S and v # &', fi(u,v) =

0 and the distribution p :t— [(t,s) is in Sat(p).
— For all (s,s") € Sx S, ac A"\ A, and for all ¢’ € C(S'), define

L((s,s'),a,¢) = L'(s',a,¢") with &' the new constraint in C(S x
S') such that p/ € Sat(P') if and only if for all u # s and v €

S’ ! (u,v) = 0 and the distribution i’ : ¢ — p'(s,t') is in Sat(¢’).

e V is defined as follows: for all (s,s') € S xS, V((s,8')) = {B=BU
B'| BeV(s) and B' € V'(s)}.

Contrary to the conjunction operation, composition is defined for dissimilar
alphabets. Since PAs are a restriction of APAs, their composition is defined in
the same way. Remark that this boils down to the standard notion of parallel
composition for PAs [4]. By inspecting Definition B4l one can see that the
composition of two APAs whose constraints are systems of linear inequalities (or
polynomial constraints) may lead to an APA whose constraints are polynomial.
One can also see that the conjunction of two APAs with polynomial constraints
is an APA with polynomial constraints. The class of polynomial constraints
APAs is thus closed under all compositional design operations.

The following theorem characterizes the relation between parallel composi-
tion and refinement.

Theorem 35. Given a synchronization set A, all notions of refinement are a
precongruence with respect to the parallel composition operator || defined above,
i.e. if Nyx N{ and Nox Ny, then N1||xNax Ni|| 5z N3, for x € {=1, 2w, =, <s}.

Proof. We provide the proof for x ==. The other proofs are similar.

Let N1 = (Sl, Al, Ll, APl, ‘/1, 8(1)), N2 = (Sg, Ag, Lz, APQ, ‘/2, 8(2)), N{ =
(S}, Ay, L, AP, VY, sb') and N} = (Sh, Az, Ly, AP, V4, s2') be APAs such that
AP LN AP, = . Let A C A; N Ay, Assume that N; < N| and Ny < N}
with weak refinement relations R and Ro, respectively. Let Ni||zN2 = (S X
SQ, Al UAQ, L, APl UAPQ, ‘/, (Sé, S%)) and N]{HZNé = (Si X Sé, Al UAQ, L/, AP1 U
APy, V' (sb, s2")).

Let R C (S1 x S2) x (S] x S%) be the relation such that (s1, s2) R(s], sb) iff
s1 Ry s} and s2 Ra s5. We now show that R is a weak refinement relation such

Assume that (s1,s2) R(s],s5). We show that R satisfies the axioms of a
weak refinement relation.

1. Let a € A1 U Ay and ¢’ € C(S] x S}) such that L'((s},s5),a,¢') = T.
There are three cases:
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e If a € A, then there exists ¢} € C(S]) and ¢y € C(Sh) such that
Li(sh,a,¢)) = L4(sh,a,05) = T and ¢/ € Sat(e') iff there ex-
ists pj € Sat(y)) and ph € Sat(yh) such that p/ = pjph. Since
s1 R s} and s3 Ra s, there exists 1 € C(S1) and g2 € C(S2) with
Li(s1,a,¢1) = La(sa2,a,p2) = T and Yy € Sat(pr), Iu) € Sat(p)) :
p1 €r, py and VYo € Sat(pz), 3y € Sat(ph) : po €, Ho.

Define ¢ € C(S; x S2) such that Sat(p) = Sat(p1)Sat(p2). By
definition of Ny | xN2, we have L((s1,52),a,¢) = T. Let p € Sat(p).
Then there exist u1 € Sat(p1) and pe € Sat(p2) such that g = ug pe.
Since s; R1 s} and sg Ro sh, there exist p) € Sat(¢)), ph € Sat(vh)
and correspondence functions d; : .S1 — (S; — [0,1]) and d2 : S —
(S5 — [0,1]), such that u @%1 wy and o @%2 .

Define the correspondence function ¢ : (51 x S2) — ((S] x S%) —
[0,1])) as d(u,v)(w',v") = d1(u)(u) - d2(v)(v'). Consider the distri-
bution u’ such that p' = pjuh. By construction, u' € Sat(¢') and
I @% 1. For the sake of completeness, a detailed proof of this fact
is given in

e If a € A1\ A, then there exists ¢} € C(S]) such that L’ (s}, a,¢}) =
T. Since s1 Rq s}, there exists p; € C(S1) with Li(s1,a,01) = T
and Yy € Sat(p1),3p) € Sat(y)) such that uy €r, .

Define ¢ € C(S1 x S2) such that u € Sat(p) iff for all u € Sy
and v # so, u(u,v) = 0 and the distribution p; : ¢ — pu(t, s2) is in
Sat(yp1). By definition of Ni|4xN2, we have L((s1,s2),a,4) = T. Let
w € Sat(p). Then there exists a u; € Sat(p1) such that p; can be
written as ¢ — p(t, s2) and furthermore there exists ) € Sat(y})
and a correspondence function é; : S; — (S] — [0,1]) such that
p €R, -

Define the correspondence function 6 : (S; x S2) — ((S] x S5) —
[0,1]) as d(u,v)(w/,v") = o(u)(w') if v = s2 and v/ = sb, and 0
otherwise. Consider the distribution p' over S§ x S5 such that for all
u' € S1 and v’ # s, p/(v/,v") = 0 and for all v/ € S} p/(v/,sh) =
ph (u'). By construction, u’' € Sat(y') and u €% 1. For the sake of
completeness, a detailed proof of this fact is given in

o If a € Ay \ A, the proof is similar.

2. Let a € AJUA5 and ¢ € C(S7 X S2) such that L((s1, $2),a, ) # L. There
are three cases:

e If a € A, then there exists ¢; € C(S1) and ps € C(S2) such that
Li(s1,a,p1) # L, La(se,a,¢2) # L, and p € Sat(yp) iff there ex-
ist u1 € Sat(p1) and pe € Sat(psz) such that p = pius. Since
s1 R1 sy and sg2 Rq sh, there exists @) € C(S7) and ¢ € C(S}) with
Li(sh,a,¢1) # L, Ly(sy,a,95) # L, and Yur € Sat(pr), Iy €
Sat(h) : 1 Er, py and Yus € Sat(ps), Jus € Sat(vh) : pa Er, .

39



Define ¢’ € C(S] x S%) such that Sat(¢') = Sat(¢))Sat(vh). By def-
inition of Ni||xN3, we have L'((s],s5),a,¢") # L. Let p € Sat(p).
By definition of ¢, there exist pu; € Sat(e1) and pe € Sat(ps) such
that ¢ = pype. Furthermore, since s; Ry s} and sg R sh, there ex-
ist p} € Sat(p)), uy € Sat(ph) and two correspondence functions
01 : S1 — (87 — [0,1]) and 3 : S — (S5 — [0,1]) such that
p1 €%,y and py €32, i,
Define the correspondence function 6 : (S; x S2) — ((S] x S4) —
[0, 1]) such that, for all u,u’,v,v’, §(u,v)(v',v") = §1 (u)(u')-d2(v) (V").
By the same calculations as above, we know that the distribution u’
over S7 x S4 constructed as p' = pjph is in Sat(y’) and gives that
6
HER I
e If a € Ay \ A, then there exists ¢, € C(Sy) such that Li(s1,a, 1) #
L. Since s; Ry s}, there exists ¢} € C(S7) with Li(s],a,¢)) # L
and Yuy € Sat(p1),3p) € Sat(p)) : p1 Er, -
Define ¢’ € C(S] x S%) such that u' € Sat(y) iff for all ' € S
and v # sh, u(u’,v") = 0 and the distribution u] : ¢ — pu(t, s5) is in
Sat(p}). By definition of N7||xNj, we have L'((s],sh),a,¢’) # L.
Let u € Sat(y). Let pg be the distribution on S; such that for all
t € 51, u1(t) = p(t,s2). By definition, py € Sat(p1). Let p) €
Sat(p)) and a correspondence function 4y : S; — (S — [0, 1]) such
that gy @%1 e
Define the correspondence function ¢ : (51 x S2) — ((S] x S%) —
[0,1]) such that for all w,u’,v,v’, §(u,v)(u',v") = 61 (u)(u') if v = s9
and v = s, and 0 otherwise. By the same calculations as above, we
know that the distribution p’ € Sat(y’) such that for all v’ € S{ and
v #£ sh, (/' (u,v") =0 and for all ' € S7, p) = ' (v, %), gives that
6 7
HER K.
e If a € Ay \ A, the proof is similar.

3. For atomic propositions we have that, V' ((s1,s2)) = Vi(s1) U Va(s2) and
V'((s],85)) = {B = Bi1UBy | By € V/(s]) and By € Vj(s4)}. Since
$1R1 sy and s2Rq sh, we know by definition that Vi(s1) € V/(s}) and
Va(s2) € V5(sh). Considering By = Vi(s1) and By = Va(s2), we thus have
that V((s1,s2)) € V'((s], $5))-

By observing that (s3,s2) R(sd', s2), since si R1 s}’ and s2 Ry s2', we conclude
that R is a weak refinement relation. O

The facts that abstraction preserves strong refinement (cf. Lemma Pl), and
that strong refinement is a precongruence with respect to parallel composition,
enable us to apply abstraction in a component-wise manner. That is to say,
rather than first generating (the typically large PA) M| 4N, and then apply-
ing abstraction, it allows for first applying abstraction, yielding «;(M) and
az(N), respectively, and then constructing oy (M)||ga2(N). Possibly a further
abstraction of a1 (M)||ga2(N) can be employed. The next theorem shows that

40



component-wise abstraction is as powerful as applying the combination of the
“local” abstractions to the entire model.

Theorem 36. Let M and N be APAs, A a synchronization set, and o, oo be
abstraction functions. The following holds:

a1 (M) | gza2(N) = (o x a)(M ||z N) up to isomorphism.

Proof. Let M = (S, A, L, AP,V,sp) and N = (S”, A", L", AP", V" s{) be APAs
and let A C AN A” be a synchronization set such that the parallel composition
of M and N is given as M|xN = (S x S”, AU A", L, AP U AP",V,(s0,5])).
Let ; : S — S and ag : 87 — S, Let ay (M) = (S, A, L', AP, V' a1 (s0)),
as(N) = (8", A", L" AP" V" as(sgy)) and (a1 x ag)(M||zN) = (8" x 5", AU
A" L', AP U AP" V' (a1(s0),a2(sy))) be the induced APA. Let
ai(M)|ga2(N) = (8" x 8", AU A", L", AP UAP" V" (a1(s0), aa(sy)))-
Notice that the signatures of oy (M)||za2(N) and (a1 x az)(M||4N) only
differ on constraint functions and valuation functions. We establish the result by
proving the following: for all (s, s"”") € $’x 8", a € AUA”, and ¢ € C(S'xS"),
we have V'((s',5")) = V"((s', ")) and L'((s',s""),a,p) = L"((s',5"), a, ).
Let (s',8") € S" x 8.

e The valuation of (s',s") in oy (M)||za2(N) is

‘7”((8/,8///)) — {BUB/|B E V/(S/) /\BI e VI/I(SI”)}
= U {BUB'|BeV(s)AB e V"(s")}

(s,8")E(v1xv2)(s’,s""")
- U e
(s,8")€(v1xXv2)(s",8"")

— V’((SI, SI”)).

e For constraint functions we have the following:

— Let a € A and @' € C(S’ x S") such that L'((s',s"),a,@') = T:
then for all (s,s”) € (11 x 72)(s’,s"), we have that there exists

emn € C(S x 8") yielding L((s,s"),a, oarn) = T and

Sat(¢') = (a1 xaz) U Sat(pnn)
(558", 00| NDE(rL Xv2) (878" ) x C(Sx ST):
L((s,8"),a,p0mN)=T

(6)
For each of these ), we have, by the definition of parallel com-
position, that there exists ¢pr € C(S) and oy € C(S”) such that
L(s,a,onm) = T and L"(s",a,on) = T and ppn € Sat(pan) iff
there exists py € Sat(en) and pny € Sat(on) st. pan(u,v) =
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par(w)pn (v) for all (u,v) € S x §”. Define v, (ar) € C(S’), such
that Sat(p,, (ar)) is the abstraction of the union of satisfaction sets of
such @ps. Similarly, define @,,ny) € C(S"), such that Sat(pa,n))
is the abstraction of the union of satisfaction sets of such ¢x. That
is,

Sat(pa, () = Otl(U T Sat(em)) (7)

(s,0m)€71(s") X C(S):L(s,a,00)=

Sat(goa2(N)) = Oéz(U Sat(pn))

(8", on)€Y2(s" )X C(S): L(s" ;a,oN)=T

We will now have that L'(s’, a, pq, (ary)) = T and L (5", a, pa,(ny) =
@’y = T and Hay (M)]jaz(N) € Sat(@") iff there exists Hay (M
Sat(g&al(M)) and oy (N) S Sat(gpaz(N)) st. :U‘oq(M)Hag(N)(u; ’U)
Py (M) (W) Hag Ny (v) for all (u,v) € S x S”. It is clear that Sat(¢’) =
Sat(@").

The proof is similar if I?'((s', s"),a,@) =1,

Let a ¢ A (or wlog. a € A\ A) and @' € C(S” x C") such that
L'((s',s"),a,@') = T: then for all (s,s") € (71 X 72)(s', s"), we have
that there exists oy n € C(S x S”) yielding L((s,s"),a, OMIN) =
T and ¢’ is defined as in Equation B For each of these ¢y,
we have, by the definition of parallel composition, that there exists
onm € C(S) such that L(s,a,¢n) = T and ppyn € Sat(oan) iff
for all u € S and v # 5", paryn(u,v) =0 and parn (u, s”) = ear(u).
Define ¢, (ary € C(S’), such that Sat(¢q,(ar)) is the abstraction of
the union of satisfaction sets of such ¢y i.e. as in Equation [l We
will now have that L'(s’,a, s, (a)) = T. The definition of parallel

T. The definition of parallel composition implies that L”((s', s"), a,
)

composition implies that f/"((s', s"),a,@") =T and pa, (m)as(N) €
Sat(@") iff there exists fia, i € Sat(wa, ) st. for all uw € S" and v #

8" toy (M [az (V) (U, v) = 0 and po, (ar)as (3) (U 8™) = flay (ary (). It
is clear that Sat(¢') = Sat(@").

The proof is similar if L'((s',5"),a, @) =?.

O

The above theorem helps avoiding state-space explosion when combining
systems by allowing for abstraction as soon as possible.

This result cannot be transferred to the notion of constraint-abstraction.
Indeed, as shown for Interval Markov Chains m], the parallel composition of two
IPAs is not an IPA. However, we can prove the following proposition, relating
composition, constraint-abstraction and refinement.

Proposition 37. Let N = (S, A, L, AP,V,sq) and N' = (S", A", L', AP', V', 5)
be APAs with APNAP' =0. For ACANA", x(N)|[[ax(N') =5 x(N|lxzN").
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Proof. Let N||zN' = (S xS AUA",Lj,APUAP’, V|, (s0,50)), X(IN) = (5, A,
Ly APV, s0), x(N') = (8, A%, Ly, AP, Vi, s0), X(N)[[ax(N') = (8 %
S, AUA', L\, APUAP', V], (s0, 5})), and X(N||zN') = (Sx §', AUA', L¥, APU
AP’ VHX, (50,50)). As x(N)|[[xx(N’) and x(N||zN’) have similar state space,
structure, valuations, and initial states, we consider the identity relation R =
Ids s and show that it is a strong refinement relation. Let s; € S and s} € S’
such that (s1,s)) R(s1,s]). We show that R satisfies the axioms of a strong re-
finement relation. All the correspondence functions we consider are the identity
functions.

1. Leta € AU A, 90|>|< € C(S x §') such that L|>|<((5175/1)aav<%’|>\() = T. Then
by construction of x(N||zN’), there exists ¢ € C(S x S’) such that
Ly((s1,81),a,0) = T

o If @ € A, then there exists ¢ € C(S) and ¢’ € C(S’) such that
L(s1,a,) = T and L'(s},a,¢") = T and p € Sat(yp)) iff there
exists p € Sat(p) and p' € Sat(y¢’) such that ) (u,v) = p(u)p'(v)
for all w € S and v € §’. By construction of x(N) and x(N’), there
exists N € C(S) and go?‘v/ € C(5’) such that LY (s1, ,(pN) =T
and LY, (s},a,oN,) = This means that there exists gp € C(S x
S’) such that Li((sl,sl) ,@L) = T, where /1,|>|< € Sat(gox) iff there
exists py € Sat(py) and py, € Sat(p),) such that u”( v) =
oy (u )MN'( ) for all w € S and v € S’. We now show that Vu”
Sat( )EIu” € Sat(<pH) ,u|>‘< ER u” by showmg that ,u € Sat(gp”)

(and indeed Ux ERr ,uX) Assume that Hx ¢ Sat(<pH) By definition,

there exists py € Sat(p),) and pX, € Sat(p),) such that u” (u,v) =
15 (u) s, (v) for all w € S and v € S'. Let (IN)ues, (IN)pesr, and

i
I

gafv/, and gp , respectively.
If u ¢ Sat(<pH) there must exists v’ € S and v € S’ such that

,LLN( ):U‘N/( ) ¢ I(H /)7 that iS, /Lﬁc\[(u/)ﬂﬁc\f’(v/) < ml(‘u’ 'u/) or

wy (W) (v') > M(”u v)> assume the latter. By convexity and

)= =[m |(‘u v (Ilmv)])(u7v)es, be the intervals associated with ¢Y;,

minimality of I} and If)\,[ , for all constants € > 0, there must ex-
ist p € Sat(p) and p € Sat(y’) such that py(u )— plu') < e

N @, (v M) ’
and pX, (V') — p/(v') < e. For e = iRl (2) (oD - we have
that p(u )y (v") > M(”u o)~ However, the distribution s defined as

o (uw,v) = p(u)p'(v) for all w € S and v € S’, will satisfy ¢, which

contradicts the definition of I(Hu’,'u’)' As a consequence, /1,|>|< € S’at(cpl"‘).

e If a ¢ A, then assume that a € A. Then there exists ¢ € C(S) such
that L(s1,a,¢) = T and p € Sat(p)) iff for all u € S, u # 51,
and v € S, p(u,v) = 0 and there exists u € Sat(p) such that
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p(v) = py(s1,v) for all v € S’. By construction of x(N), there
exists o) € C(S) such that LY (s1,a,¢)) = T. This means that
there exists gp € C(S x §') such that Ll x((s1,8}), ,gp|>|<) T, where
u|>|< € Sat(y X) iff for all uw € S, u # s1, and v € 5, ILLL‘((U,’U) =0 and
there exists py, € Sat(p),) such that py, (v) = ,uli(sl, v) for allv € S'.
As above, it holds that V,u” € Sat(p ”) EI,u” € Sat(ga”) u|>|< ER ,uH

2. Letac AUA, goX € C(S x S’) such that Ll x((s1,87), ,gpx) # 1.

e If a € A, then there exists ¢ € C(S) and ¢y, € C(S’) such that
Li(s1,a,0%) # L and Ly (s1.0,0%,) # L and iy € Sat(py) iff
there exists py € Sat(p)) and py, € Sat(p),) such that u” (u,v) =
pwy (w)pn (v) for all w € S and v € S’. By construction of x (N ) and
X(N'), there exists ¢ € C(S) and ¢’ € C(S’) such that L(s1,a,¢) =
LY (s1,a,%) and L'(s},a,¢") = L. (s},a,pX,). This gives rise to
the existence of ¢ € C(S x §’) such that L((s1,s}),a,¢)) # L
and | € Sat(p)) iff there exists p € Sat(p) and p' € Sat(y¢’)
such that g (u,v) = p(u)p/(v) for all v € S and v € §'. By
construction of x(N|4N’), there exists <p|"‘ € C’(S x S’) such that

ﬂ‘((sl,s’l) ,gpﬂ‘) # 1. As above, Vul € Sat(y! )EI,uH € Sat(gpu)

,U|>|< Er /LH

e If a ¢ A, then assume that a € A. Again, we can show existence

of cpﬂ( € C(S x §') such that Ll"‘((sl,s’l),m@ﬁ) # 1 and Vu” c

Sat( )HNH € Sat(cp”) ML‘( Er N”
We conclude that x(N)|4x(N') <s x(N||zN"). O

6. Deterministic APAs

In this section, we focus on the class of deterministic APAs. Like in any
specification theory, deterministic specifications form a class with interesting
properties. First, notice that action-deterministic APAs allow for more conve-
nient definitions for refinement and conjunction, as explained in Iﬁ, El] In the
following, we first propose an algorithm that can be applied to any APA N
and provides a deterministic APA o(N) that abstracts N. Then, we study the
strong link between CMCs and APAs and prove that, like for CMCS m , all
the notions of refinement coincide for deterministic specifications.

6.1. Determinisation

As explained in E], the use of non-determinism changes expressiveness of
APAs with respect to the known conjunction operator. In fact, non-deterministic
APAs are gemerally more expressive than deterministic ones. Fig. [[7 presents
a non-deterministic APA, whose set of implementations cannot be specified by
a single deterministic APA. States 2 and 3 have overlapping labels (so state 1
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Figure 17: A (valuation) non-deterministic APA whose set of implementations
cannot be obtained with a deterministic APA.

has non-deterministic behaviour). We cannot put these states on two separate
a-transitions as this introduces action non-determinism. We cannot merge them
either, as their subsequent evolutions are different (and for the same reason we
cannot factor {6,~} to a separate state).

Nevertheless, the use of deterministic abstractions of non-deterministic be-
haviours is an interesting alternative to relying on more complex refinements
and more complex operators. Below, we present a determinisation algorithm
that can be applied to any APA N, producing a deterministic APA o(N), such
that N <5 o(N).

Our algorithm is based on subset construction and resembles the determin-
isation procedure for modal transition systems described in [21].

Let N = (S,A,L, AP,V,so) be a (consistent) APA in SVNF. Given a set of
states @ C S, an action a € A and a valuation § C AP we define Reach(Q, a, 6)
to be the maximal set of states with valuation 6 that can be reached with a
non-zero probability using a distribution p satisfying a constraint ¢ such that
L(q,a,¢) # L for some ¢ € Q. Formally, Reach : 2° x A x 247 — 29 is defined
by:

Reach(Q, a, 0) U{SES| V(s) = {6} and 3¢ € Q,
Jp € C(S), Ju € Sat(p), L(g,a,p) # L and u(s) > 0}
We lift this definition to all possible labellings as follows:
Reach(Q,a) = {Reach(Q,a,9) | 6 € 247}

We also extend the definition to sets of actions as follows: let B C A,

Reach(Q, B) U Reach(Q, a)

a€EB

Now let n > 1 and define the n-step reachability as

Reach™(Q, B) = Reach™ !(Q, B) U U Reach(Q’, B)
Q’€Reach™~1(Q,B)
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where Reach!(Q, B) = Reach(Q, B).
We denote the fixpoint of Reach as follows:

Reach™(Q, B) = [j Reach™(Q, B).

n=1

Now, by construction, the following properties hold:

e For all Q C S and a € A, for all Q',Q"” € Reach(Q,a), if Q" # Q" then
Q'NQ" =10, and

e Forall Q C S, BC A and Q' € Reach®(Q, B), there exists 6 € 247 such
that V¢’ € @', we have V(¢') = {0}.

We will now use the notion of reachability in our determinisation construc-
tion. Remark that the determinisation algorithm highly relies on the single
valuation normal form of the APA. In order to use it on any APA (with sin-
gle valuation in the initial state), it is thus necessary to use the normalization
algorithm first, as defined in Definition [l

Definition 38 (Determinisation). Let N = (S, A, L, AP,V,s¢) be a consistent
APA in SVNF. A deterministic APA for N is the APA o(N)=(S] A, L', AP,V!{so})
such that

e S"={s0} UReach*({so}, 4)

o V' is such that V'(Q) = {0} if and only if Vg€ Q.V(¢q) = {0}. There
always exists exactly one such 6 by construction

o L' is defined as follows: Let Q € S" and a € A.

— If, for all ¢ € Q, we have that Vo € C(S), L(q,a,p) = L, then define
L'(Q,a,¢") = L for all ¢’ € C(5").

— Otherwise, define ¢’ € C(S") such that p' € Sat(y’) if and only if (1)
vQ'
Reach(Q,a), we have p'(Q') = 0, and (2) there exists g € Q, ¢ €
C(S) and p € Sat(p) such that L(q, a, ¢) # L andVQ" € Reach(Q, a),
w(Q) =23y cq n(d). Then define

VgeQ,3p e C(S):
L(g,a,0) =T
? otherwise

U@Quag)=4 'Y

Example. Consider the non-deterministic APA N'(N) given in Figure[d Using
Definition [Z8, we obtain the APA o(N(N)) given in Figure [I8.
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Figure 18: Determinisation o(N(N)) of the APA N(N) given in Figure [

By construction, o(N) is action- and valuation-deterministic. As expected,
determinisation is an abstraction, but more than that it is also the smallest
deterministic abstraction of N. This is formalized in the following theorem.

Theorem 39. Let N be an APA in SVNF. The following statements hold:

1. N <5 o(N), and
2. for all deterministic APA N’ in SVNF, if N < N’, then o(N) < N'.

Proof. Let N = (S, A, L, AP,V, so) be a (consistent) APA in SVNF. Let o(N) =
(S, A, L', AP, V' {so}) be the determinisation of N defined as in Definition BS
We prove the two statements separately.

1. We prove that N <g o(N) by providing the following strong refinement
relation. Let R C S x S’ be the relation such that sRQ <= s € Q for all
Q € S’. The proof that R is a strong refinement relation is standard. For the
sake of completeness, a detailed proof is given in

2. Let N' = (T, A, LT, AP, VT t;) be a deterministic APA in SVNF. Assume
that N < N’ with weak refinement relation R C S x T (notice that since N’
is deterministic, weak refinement coincides with weak weak refinement). Let
R’ C 8’ x T be the relation such that Q Rt if and only if ¢ Rt for all ¢ € Q.
We prove that R’ is a weak refinement relation. Let (Q,t) € R'.

1. Let a € A and ¢' € C(T) be such that LT (t,a,¢') = T. By definition of

R/, for all s € Q, we have (s,t) € R. Thus, by definition of R, for all s € Q,
there exists ¢ € C(S) such that L(s,a,¢®) = T and for all us € Sat(e®),
there exists u! € Sat(¢?) such that us Er pil. As a consequence, by
definition of p(N), there exists ¢’ € C(S’) such that L(Q,a,¢’) = T.
Let p/ € Sat(y¢'). By construction of ¢, there exists s € @, p* € C(S)
and p € Sat(e®) such that L(s,a,¢®) # L and for all Q' € Reach(Q,a),
H(Q) = > geq m(s). Since (Q,t) € R, we have (s,t) € R and therefore
there exists ¢’ € C(T') such that LT (¢,a, ¢'*) # L. By determinism of N/,
we have ¢t = o'. Moreover, there must exist a correspondence function
6% and p! € Sat(pt) such that p € ut. Let 6 : S” — (T — [0,1]) be
such that 6(Q")(t) = > . co % if /(@) > 0 and 0 otherwise.
We now show that ¢ is a correspondence function and that p' @%, ut.
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e Let Q' € S’ be such that p/(Q") > 0. As a consequence, for all
s’ € @ such that u(s’) > 0, 6°(s’) € Dist(T). As a consequence,

D osreq % is also a distribution on 7" and 6(Q’) € Dist(T).

e Let ¢/ € T, we have

S @@= Y )y M0
Qes’ Qes’ | w(@)>0 Jew M@
= X > e
QeS| w(Q)>05'€Q’

=D (s (s)()

s'eS
= u'(t)

e Let (Q',¢') € 8" x T be such that §(Q')(t') > 0. Since Q' €
Reach(Q, a) by construction, we have that for all s’ € @', there exists
s"€Q, ¢" € C(S) and p" € Sat(p”) such that L(s,a,¢") # L and
u"(s') > 0. Since (s,t) € R and by determinism of N’, we can show
that (s',t') € R. Therefore we have that (s',¢') € R for all s € Q'
and consequently (Q',t') € R.

As a consequence, p/ €%, pl.

2. Let a € A and ¢’ € C(S’) be such that L'(Q, a, ¢’) # L. By construction,
there must thus exist s € @ and ¢* € C(S) such that L(s,a,p®) #
1. Therefore, since (s,t) € R, there must exist ' € C(T') such that
LT(t,a,¢') # L. Then, by the same reasoning as above, we can show
that for all i/ € Sat(y’), there exists u* € Sat(¢?) such that p/ €xs ut.

3. Recall that there exists § € 247 such that V(s) = 6 for all s € Q. Since
(s,t) € R for all s € Q, we have § C VT (¢) and therefore V'(Q) C V().

Finally, R’ is a weak refinement relation. Moreover, ({so},tq) € R’ by
construction, and thus o(N) < N'. O

6.2. Completeness and Relation with CMC's

In this section, we show that thorough and strong refinements coincide for
deterministic APAs. For doing so, we will compare the expressive power of
APAs and CMCs, showing that APAs can act as a specification theory for MCs.
Remark that single valuation normal form of CMCs is defined similarly as for
APAs. The satisfaction relation between MCs and CMCs as well as the notions
of weak and strong refinements are also defined similarly as for APAs.

On the relation between CMCs and APAs. We now show that APAs can
act as a specification theory for MCs. For doing so, we propose a satisfaction
relation between MCs and APAs. Our definition is in two steps. First we show
how to use PAs as a specification theory for MCs. Then, we use the existing
satisfaction relation between PAs and APAs to conclude.
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Since MCs do not directly allow choices between actions, we use bipartite
MCs in the following. Their state space is partitioned into action-states (Qp in
the definition below) and distribution-states (Q n in the definition below), and an
execution of a bipartite MC is a succession of alternations between action-states
and distribution-states.

Definition 40 (MC-PA Satisfaction). Let P = (S, A, L, AP, V, s¢) be a PA. Let
M = (Q, 7, An, Var, qo) be a bipartite Markouv chain such that (1) Q = QnUQDp,
with Qn N Qp = 0, for all ¢,q' € Qn,m(g)(¢') = 0 and for all g, € Qp,
m()(¢) =0, (2) o € Qp, and (3) Ay = AUAP. Let RC Qp x S. Risa
satisfaction relation if and only if whenever ¢ R s, we have

L Vi(q) =V (s).

2. Fora € A and p € Dist(S) such that L(s,a, ) = T, there exists ¢ € Qn
such that Var(q') = V(s) U {a}, 7(q¢)(¢') > 0, and 7(¢’) Er 4.

3. Forallq' € Qn such that w(q)(¢’) > 0, there exists a € A and . € Dist(S)
such that Vay(¢') = V(s) U {a}, L(s,a,u) =T, and 7(q¢') Er .

We say that M satisfies P if and only if there exists a satisfaction relation
R such that qo R sg.

The satisfaction relation between MCs and APAs follows directly. We say
that a MC M satisfies an APA N, which we write M [pe N, if and only
if there exists a PA P such that M satisfies P and P satisfies N. The set of
MC-implementation of APA N is denoted [N]asc.

Expressivity Completeness. In the previous paragraph, we have proposed
a satisfaction relation for MCs with respect to APAs. We now propose a trans-
formation that associates to every deterministic APA in SVNF a deterministic
CMC in SVNF representing the same set of MC-implementations. The pur-
pose of this transformation is to show that deterministic APAs do not allow for
describing a larger class of Markov Chains than deterministic CMCs.

Definition 41 (Transformation ~ ). Let N = (S, A, L, AP,V,so) be a deter-
ministic APA. Let € be a fresh variable. The CMC corresponding to N is
N = (QawaAuvaéa); with

¢ Q=15x(AUfe}),

® G0 = (s0,€),

e A=APU A,

o V((s,€) =V(s) for all s,

V((s,a)) ={BU{a} | B€ V(s)} for all s and a € A, and

!Recall that we assume Act N AP = () for all PAs/APAs
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Figure 19: APA N and CMC N

e 1 is such that
— For all (s,€) € Q, ¥((s,€)) () =1 if and only if

m((s,€)) =0
Vs #s,be AU{e}, n((s',b)) =0
Va € Must(s), m(s,a) >0
Va ¢ May(s), m(s,a) =0

— For alla € A and (s,a) € Q, ¥((s,a))(x) = 1 if and only if (1) for
all ' € S and b € A, we have w((s',b)) = 0 and (2) the distribution
7' 8 — w((s',€)) is such that there exists ¢ € C(S) such that
L(s,a,¢) # L and ©' € Sat(yp).

Informally, this transformation builds a CMC with a bipartite state space.
The non-determinism inherent to APAs in the choice of actions is simulated by
new states of the form (s,a) for each action a that can be taken from state
s. The probability of reaching state (s,a) emulates the modality of taking the
corresponding a-transition, and the constraint associated to state (s, a) matches
the constraint associated to the corresponding a-transition.

Example. Consider the APA N given in Figure [[d. Applying the transfor-
mation given in Definition[fQ] to N yields the CMC N given in Figure [L90.

By construction, the CMC N is deterministic and in single valuation normal
form. As expected, this transformation yields a CMC that admits the same set
of MC-implementations as the original APA. This is formalized in the following
theorem.

Theorem 42. For all deterministic APA N in SVNF, the CMC N is such that
[N]ae = [N].
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Proof. We prove the two directions separately.

e M =mc N = M Ecme N: Let M = (Q, 7, Ay, Vr, qo) be a Markov Chain.
We first prove that if M =yc N, then M =cme N. Suppose that there exists
aPA P = (Sp,A Lp,AP,Vp,sl’) such that M satisfies P and P = N. Let

N = (@,w,g, V,qo) be the transformation of N following Definition EIl By
the satisfaction relation between M and P, we obtain that Ay; = AU AP and
Q = QnUQp. Let RMC C Qp x Sp be the satisfaction relation witnessing
that M satisfies P. Let RFA C Sp xS Ee the satisfaction relation witnessing
P = N. Cousider the relation R C @ x @ such that

o ¢R(s,e) iff there exists p € S, such that gRMC p and pRFA s, and
e for all a € A, ¢ R(s,a) iff there exists ¢’ € Q such that

— 7(q')(q) >0,

- Vu(q) = Vam(q') U{a}, and

- q/ R(Sv 6)'

The proof that R is a satisfaction relation for CMCs is standard. For the

sake of completeness, the full proof is given in R
Moreover, we have that go R(so, €), which gives that M Ecmc N.

e M Evc N < M Ecumce N: Let M = (Q, 7, Anr, Vi, qo) be a Markov Chain.
We prove that if M Ecmc ]V, then M E=pe N, ie. there exists a PA P such
that M satisfies P and P = N. Let N = (@,w, A\, 17, Go) be the transformation
of N following Definition EI] R

Let R be the satisfaction relation for CMCs witnessing that M E=cmc N. First
observe that, by R, the Markov chain M satisfies the following properties: Let
Rp={q€Q|3s€S, qR(s,e)}and Qn ={q€ Q | Is € S,a € A, ¢R(s,a)},

we have
e Qp NQny = 0 because of their valuations and R,
* Vq,q' € Qp, 7(q)(¢') = 0 and VYg,¢' € Qn, 7(q)(¢') = 0,
® g0 € @Yp, and
o Ay =AUAP.

Define the PA P = (Sp, A, Lp, AP, Vp, st’) such that Sp = Qp, with s§’ = qo,
Vp is such that for all ¢ € Qp, Vp(q) = Va(q), and Lp is such that for all
s € Sp, a € A and for all distribution g over Sp, L(s,a, p) = T iff there exists
¢ € Qn such that

e m(q)(q") >0,
e V(¢') =V(q) U{a}, and

e 0=7(q).
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By construction, M satisfies P using the identity relation on @ p. We now prove
that P = N. Let RFA C Sp x S the relation such that p R s iff pR(s, €).
The proof that R is a satisfaction relation for APA is standard and given

in By construction, we have that s§’ RP* sg, thus P = N. As

a consequence, we have that there exists a PA P such that M satisfies P and
PEN. Thus M Enmc N. O

We have just shown that for all APA N, there exists a CMC N such that
[Nlmc = [N]cme. The reverse of the theorem also holds up to a syntactical
transformation that preserves sets of implementations. Since CMCs are not
equipped with actions, this transformation adds a single action to all valua-
tions of the original CMC in order to provide actions for the transitions of the
equivalent APA. Additionally, it duplicates the state-space in order to obtain a
bipartite CMC with bipartite MCs as implementations.

Consider a MC M = (Q, 7, A,V,qo) and a fresh variable for actions 6 ¢ A.
Let M = (QnUQp, 7, AU{0},V,¢d) be the MC such that

e Qp=1{q"q€Q},
o Qn={d" 1 q€Q},

e V is such that V(¢) = V(q) if ¢ € Qp and V(q) = V(q) U {8} if ¢ € Qn,
and

e 7 is such that

— for all ¢° € Qp, #(¢P)(¢") =1, and
— for all ¢V € Qn, 7(¢V)(¢") = 7(q)(¢') if ¢ € Qp and 0 otherwise.

This transformation naturally extends to CMCs. Obviously, it follows that
for all MC M and CMC C, we have M Ecuc C <= M Ecvce C. The
transformation from CMC M to an APA is then obvious, and preserves the set
of implementations.

This result together with Theorems 27 and 29 of @] leads to the following
important result.

Theorem 43. For deterministic APAs with single valuations in the initial state,
strong refinement coincides with thorough, weak-weak and weak refinement.

Proof. Let N = (S,A,L,AP,V,sy) and N’ = (S, A, L', AP,V' s{) be two
pruned deterministic APA in single valuation normal form. From Theorem [
we know that strong refinement implies thorough refinement. We now prove
that the reverse also holds.
Suppose that [N] C [N']. We prove that N <g N’.

Let N = (@,w,g,f/,(fo) and N/ = (@,w’,g,f/\’,q%) be the CMCs equivalent
to N and N’ (up to MC satisfaction) obtained by the transformation proposed
in Definition EIl By Definition of [-Jmc, we have that [N]mc € [N']mc. As
a consequence, by Theorem B2 we have that [N]ome C [[]/V\’]]CMC. Since N
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and N’ are deterministic _CMGs in _single valuation normal form, we have, by
Theorem 18 of 18], that N =<CMC N7 with a strong refinement relation between
CMGs. R .
Let R be the strong refinement relation between CMCs such that N <“M° N’
Define the relation R C S x S’ such that s R s" iff (s,€)R(s’,¢). We prove that
R is indeed a strong refinement relation on APAs. Let s € S and t € S” such

that s Rt. We show that R satisfies the axioms of a strong refinement relation
for APAs.

1. Let a € A and ¢’ € C(S’) such that L'(¢,a,¢’) = T. By construction,
we have (s, €)R(t, ), thus there exists a correspondence function 8 such
that for all distribution 7 satisfying 1 ((s,€)) we have that 7’ = 75 sat-
isfies 1/ ((t,€)). By construction, of ¢', we thus have that 7'((s,a)) > 0.
As a consequence, there exists (s',b) € Q such that 7((s’,b)) > 0 and
5((s',b)(t,a)) > 0. By definition of & and v, we have that s’ = s and
b = a. Thus 7((s,a)) > 0. Since this holds for all 7 € Sat(z)), we have
a € Must(s). Thus there exists ¢ € C(S) such that L(s,a,¢) # T.
Moreover, we have that (s, a)’l/i(t, a). Let &' be the associated correspon-
dence function. Let p € Sat(p) and let p/ € Dist(@) such that for all
s e Sand b e A, p((s,¢) = w(s') and ' ((s',b)) = 0. By defini-
tion, we have that p' satisfies ¥((s,a)). Thus, we have that o' = '8
satisfies ¢'((¢,a)). As a consequence, the distribution g € Dist(S’) such
that o(t") = o'((¢',¢€)) for all ¢ is such that there exists ¢’ such that
L'(t,a,¢") # L and 0 € Sat(¢"”). By action-determinism of N’; we have
that ¢ = . R
Let § be the correspondence function such that §(s")(t') = §((s', €))((¥', €)).
We prove that p @% 0.

(a) Let s" € S such that u(s’) > 0. As a consequence, p/'((s',€)) > 0.
As a consequence, by definition of §', we have that &' ((s',€)) is a
distribution over Q’. Moreover, since o/ = '8 satisfies ¢/ ((t,a)), we
have that for all ¢ € T and b € A, o'((¢',b)) = 0. As a consequence,
we have that for all #' € T and b € A, §((s',€))((t',b)) = 0. Thus
4(s") is a correct distribution over Q.

(b) By definition, we have ¢’ = /6. Since u((s',b)) = 0 for all b € A,
and since &' ((s/,€))((t/,b)) =0 for all & € S, ¢ € S and b € A, we
have that o = pd. As a consequence, we have that for all ¢ € S,

s'es
(c) Let s’ € S and ¢’ € T such that §(s')(t') > 0. By definition of 0,
we have 0'((s',€))((t',€)) > 0. Thus (s',¢)R(t',€), and consequently
SR,
Therefore, we have that @% 0.
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2. Let a € A and ¢ € C(S) such that L(s,a,9) # L. By construction,
we have (s, €)R(t, €), thus there exists a correspondence function § such
that for all distribution 7 satisfying 1((s, €)) we have that 7/ = 70 satisfies
¥'((t,€)). By construction of ¢, and because N is pruned, there must exist

~

7w € Dist(Q) satisfying ¢((s,¢€)), with 7((s,a)) > 0. As a consequence,
5 defines a distribution on @\’, thus there exists (¢,b) € 62\’ such that
g((s, a))((t',b)) > 0. By the recursion axiom, we have b = a. Let ' = o,
we have 7'((t',a)) > 0. Since 7’ satisfies 1’((¢, €)), we have that necessarily
t’' =t. As a consequence, by definition of ¢/, there must exist ¢’ € C(S")
such that L'(t,a,¢’) # L. As above, we can prove that there exists ¢ such

that for all yu € Sat(y), there exists o € Sat(¢’) such that p €% o.

3. Since (s, e)R(t, €), we have that V(s) C V'(s).
Finally, R is a strong refinement relation. Moreover, we have by construction
that sq R tg, thus N <g N'.
By the ordering of the refinement relations presented in Theorem [ it follows
that R is also a weak and a weak-weak refinement relation.
O

7. Extensions of Alphabets (Dissimilar Alphabets)

So far, the specification theory of APAs has required that all specifications
share same alphabets of actions and atomic propositions. We are now going to
lift this restriction by introducing the alphabet extension mechanism. As for the
extension of modal transition systems [16], there exist two ways of extending
alphabets [29]: it is necessary to choose the modality of transitions for new
actions introduced depending on the operation being applied to the result.

The weak extension is used when conjoining specifications with different
alphabets. This extension adds may loop transitions for all new actions and
extends the sets of atomic propositions in a classical way:

Definition 44 (Weak extension). Let N = (S, A, L, AP,V,sq) be an APA, and
let A’ and AP’ be sets of actions and atomic propositions such that ACA’ and
APC AP'. Let the weak extension of N to (A’, AP') be the APA N{}(A’, AP’) =
(S, A", L' AP, V' so) such that for all states s € S:

o L'(s,a,¢) = L(s,a,¢) if a € A,

o L'(s,a,0)="if a € A’\A and ¢ only admits a single point distribution p
such that p(s) = 1.

o V/(s)={BC AP | BNAP € V(s)}.

A different extension, the strong one, is used in parallel composition. This
extension adds must self-loops for all new actions and extends the sets of atomic
propositions in a classical way.
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Definition 45 (Strong extension). Let N = (S, A,L, AP, V,sy) be an APA,
and let A" and AP’ be sets of actions and atomic propositions such that A C A’
and AP C AP'. Define the extension for composition of N to A', AP, written
N 14%AP" 45 be the APA N 14AP = (S, A, L', AP, V' s9) such that

o forallse S, ac Aand p e C(S), L'(s,a,p) = L(s,a, p),

o for all s € S and a € A\ A, define L(s,a,p) = T, with ¢ such that
w € Sat(p) if and only if u(s) =1, and

o forallse S, V'(s)={BC AP | BNAP €V (s)}.

These different notions of extension give rise to different notions of satisfac-
tion and refinement between structures with dissimilar sets of actions. Satisfac-
tion (or refinement) between structures with different sets of actions is defined as
the satisfaction (respectively refinement) between the structures after extension
to a union of their alphabets.

By construction, all the results presented in the paper for conjunction and
composition of PAs / APAs sharing alphabets of actions and atomic propositions
safely extend to the setting of PAs / APAs with dissimilar alphabets, provided
that the right extension is applied first.

8. Conclusion

This paper presents Abstract Probabilistic Automata, a new abstraction
theory for Probabilistic Automata. The main contributions of the paper are:

e A new abstraction theory for Probabilistic Automata through APAs.

e A new specification theory for PAs using APAs as a specification language.
Our theory is equipped with a parallel composition and conjunction oper-
ators, and satisfaction and refinement relations.

e A complete characterization of semantic and syntactic notions of refine-
ment, and the characterization of a class of APAs on which they coincide.

e A compositional abstraction technique for APAs which can be used to
combate the state-space explosion problem.

e A proof that the proposed formalism is backward compatible with classical
notions of probabilistic bisimulation / parallel composition of Probabilistic
Automata.

There are various directions for future research. The first of them is to
implement and evaluate our results. This would require to design efficient algo-
rithms for the compositional design operators. Also, it would be of interest to
embed our abstraction procedure in a CEGAR model checking algorithm. An-
other interesting direction would be to design an algorithm to decide thorough
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refinement and characterize the complexity of this operation. Finally, one could
also consider a continuous-timed extension of our model inspired by [30].
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Appendix A. Details of the proof of Theorem 7

e (27) 2 (Zw) 2 () 2 (Xs): By aswap of quantifiers in the definitions, it is obvious

that strong refinement implies weak refinement, and that weak refinement implies weak
weak refinement. We prove that weak weak refinement implies thorough refinement.
Let N = (S, A, L, AP, V, s0) and N’ = (S",A, L', AP,
V' s0) be APAs such that N <y N’ with a weak weak refinement relation R’ C Sx.5’.
If [N] = 0, we have [N] C [N’]. Otherwise, let P = (Sp, A, Lp, AP, Ve, s8) be a PA
such that P |= N. Then there exists a satisfaction relation R C Sp x S such that
s& R so.

Let R C Sp x S’ be the relation such that u R w iff there exists v € S such that u R" v
and v R’ w. We prove that R is a satisfaction relation.

Let v € Sp and w € S’ such that u Rw, and let v € S such that v R” v and v R’ w.
We show that R satisfies the axioms of a satisfaction relation.

1. Let a € A" and ¢’ € C(9’) such that L' (w,a,¢’) = T. By R', there exists ¢ €
C(S) such that L(v,a,¢) = T and Vu € Sat(p), Iy’ € Sat(¢’) such that u Exs
u'. Moreover, by R”, there exists up € Dist(Sp) such that Lp(u,a,up) = T
and Jpus € Sat(p) : pp Egr 1s.

Take pns € Dist(S) such that up €rr ps and choose u’ € Dist(S’) such that
s €rr p'. Let 8" : Sp — (S — [0,1]) and &' : S — (S' — [0,1]) be the
correspondence functions witnessing pp @%:, ns and ps @%, i, respectively.
Let 6 : Sp — (8" — [0,1]) such that 6(s)(t) = >, 50" (s)(r)d'(r)(t). We prove
that up €% p':

(a) Let s € Sp such that pp(s) > 0. We have

D=3 8" () ()

tes’ teS’'res
= (Z 5”(5)(7")) <Z 5’(r)(t)> =1.
res tes’

Thus §(s) defines a distribution on S’.
(b) Let ¢t € S’. We have

Y up(9)d(s)() = Y ur(s) Y 8" (s)(r)d'(r)()

seSp sE€Sp res
=> 8 ()) Y ue(s)d"(s)(r)
resS seSp
= Z 3 ps(r) = i/ (t).
res

(c) Let s € Sp and t € S’ such that §(s)(t) > 0. By definition of §, there
exists 7 € S such that 6”(s)(r) > 0 and §'(r)(t) > 0. By definition of §’
and 8", we thus have sR” r and r R’ t. By definition of R, we thus have
sRt.

Thus there exists up € Dist(Sp) such that Lp(u,a,pup) = T and there exists
u' € Sat(y') such that up Er u'.
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2. Let a € A and pp € Dist(Sp) such that Lp(u,a,u) # L. By R”, there exists

¢ € C(S) such that L(v,a,¢) # L and Jus € Sat(p) such that up Err us.
Moreover, by R’, we have that for all 1 € Sat(yp), there exists ¢’ € C(S’) such
that L'(w,a,¢’) # L and 3y’ € Sat(y’) such that u €rr p'.
Choose pus € Dist(S) such that up g~ ps and choose ¢ € Dist(S’) such
that L'(w,a,¢’) >7 and there exists p/ € Sat(¢') with pus €g pu'. Let §” :
Sp — (S — [0,1]) and & : S — (S — [0,1]) be the correspondence functions
witnessing up @g:/ ws and ps @%, i respectively. Let § : Sp — (S" — [0,1])
such that (s)(t) = 3,5 0"(s)(r)d'(r)(t). Using the same reasoning as above,
we deduce that pp €% u'.

3. Since uR"” v, we have that Vp(u) € V(v). Moreover, since v R’ w, we have that
V(v) C V'(w). As a consequence, Vp(u) € V' (w).

Since s& R"” so and so R’ sh, we have that si R sh, and we conclude that R is a
satisfaction relation. Therefore P € [N'], and N <7 N’.

Appendix B. Details for Section B2

We first give an equivalent and constructive version of the definition for probabilis-
tic bisimulation. In order to produce constructive results, we will use this definition
throughout the section instead of Definition

Definition 46 (Probabilistic Bisimulation). Let P = (S, A, L, AP,V,s0) and P’ =
(S',A, L', AP, V' s) be PAs with no unreachable states. We say that R C S x S’ is a
probabilistic bisimulation relation if and only if the following conditions hold:
e There exists n € IN and partitions (S1,...,5,) and (S1,...,S}) of S and S,
respectively, such that
— for all i € {1,...,n}, and for all sy € S; and s2 € Sj, it holds that
(s1,82) € R, and
— foralli e {1,...,n} and for all j € {1,...,n} such that i # j and for all
s1 € Si and s2 € S it holds that (s1,s2) € R.
o Whenever (s,s’) € R,
- V(s)=V'(s), and
— for all a € A, there ewists p € Dist(S) such that L(s,a,u) = T if and
only if there ezists p' € Dist(S") such that L'(s',a,p’) = T such that
Vi € {17 R Tl}, ZS1€Si /1(31) = ZSQES; /J‘I(SZ)'

P and P’ are probabilistically bisimilar, written P ~ P’ if and only if there exists
a probabilistic bisimulation relation such that so R s(.

As expected, the lifting Pof P yields a specification that P satisfies. This is
formalized in the following lemma.

Lemma 47. Given a PA P, it holds that P = P.

Proof. Let P = (S,A,L,AP,V,s) be a PA and let P = (S, A, L, AP,V s0) be its
lifting. Let R C S x S be the identity relation on S. We prove that R is a satisfaction
relation such that P = P. Let s € S. We show that R satisfies the axioms of a
satisfaction relation.
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e Let a € A and ¢ € C(S) such that L(s,a,¢) = T. By construction of P, there
exists u € Dist(S) such that Sat(p) = {u} and L(s,a,u) = T. By construction,
we thus have p €r p.

e Let a € A and pu € Dist(S) such that L(s,a,u) = T. By construction of P,
there exists ¢ € C(S) such that L(s,a,p) = T, with Sat(p) = {u}. Again, by
construction, we have p €r p.

e By construction V(s) € {V(s)} = V(s).

Since so R so, we conclude that P = P. O

Appendiz B.1. Detailed proof for Theorem 211
The proof of the theorem is preceded by the following lemma.

Lemma 48. Let P = (S, A, L, AP,V,s0) and P' = (S, A, L', AP,V',s;) be PAs with
no unreachable states such that P = P’ with a satisfaction relation R. There exists n >
0 and partitions S1,...Sn of S and Si,...,S;, of S" such that, for all i € {1,...,n},
s€8; and s’ € S, either

e sRs' or

o there exists k € IN, s1,...,5, € S; and s,...,s, € S, such that

! !
sRs1 s1Rsy A
s1Rsy saRsh A

sE R s

Let P = (S,A,L,AP,V,s0) and P’ = (8", A,L’', AP,V’', s;) be PAs with no un-
reachable states such that P = P by a satisfaction relation R. We prove that there
exists n > 0 and partitions S1,...S, of S and Si,...,S, of S’ such that, for all
i€ {l,...,n}, s€S;and s’ € S, either

e sRs' or

e there exists k € IN, s1,...,5, € S; and s,..., s, € S; such that

sRsy s1Rsy A
s1Rsy saRsh A

sk Rs

Proof. Let P = (S,A,L,AP,V,s0) and P’ = (S', A, L', AP,V' s;) be PAs with no
unreachable states such that P = P by satisfaction relation R.

We first propose the following procedure in order to build the partitions of S and
S’, and then prove the lemma by induction on this procedure.

Let S be partitioned into singleton sets Ty = {s1},...,Tjs; = {sjs/} and let
Ui,---,U)s| be the partition of S’ such that V1 < i < |S] : U; = {s' € §'|si Rs'}.
Since there are no unreachable states in P and P’, it is obvious that U = U U. . .UU‘S‘.
The procedure is as follows:

e Let i be the smallest integer such that there exists j > ¢ such that U; NU; # 0,
if it exists.
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Foralll <iandi<!l<j,let U =U and T] = Ty;
Let U/ = U; UU; and T, = T; UT};

For all [ > j, let U = U1 and T} = Ti41;

Repeat.

e If there is no such ¢, then stop.

Let (S1,...,Sn) and (S1,...,S,) denote the partitions of S and S’ upon termina-
tion.
Remark that, at all iterations of the above procedure, it trivially holds that

VLU = | J{s'€S | sRs}.
seTy

We now prove the lemma using induction on the number of steps performed using
the above procedure.
e Let Ul(o)7 BN U,go) and T1(0)7 e ,T,EO) be the partitions in the initial state. By
construction, for all ¢ € {1,...,k}, if s € Ui(o) and s’ € Tl-(o)7 then s R s’.

e Let Ul(k)7 ey Ul(k) and Tl(k)7 e ,Tl(k) be the sets obtained after step k of the pro-
cedure and assume that the conclusion of the lemma holds after this step. Let ¢
and j be the indexes used in step k+ 1 of the procedure. Let Ufkﬂ), ey U
and Tl(kH)7 .. ,T,(fﬂ) be the partitions obtained after step k£ + 1 of the proce-
dure. Let ¢ € {1,...,m} and let s € Ty and s’ € UF™'. If ¢ # i then the
conclusions obviously hold.

If ¢ = i, then there are 3 cases

1. Ifse€ T} and s’ € Uf or s € T} and s’ € U}, then the conclusions hold by
induction.

2. If s € TF and ¢ € UJ’-“, then by construction of ¢ and j, we have that
UFn Uf # (). Thus, there must exist s*’ € UF N Uf and s] € Tf such that
STRS_*'. By the induction hypothesis, there exists r,t € IN, si,...,s% €

. > 7 o/ i
T, 81,8l €TF, si',...,st €Uf and s] ,...,s] € UF, such that
Rsi! iRl
SR sy s1 R s1 A
st=Rs* A

siRs* sIRs™ A
sIRs
Since Uf“ =UFU UJ’-c and Tf“ =TFU Tf, the above construction gives

that the lemma holds after step k£ + 1 of the procedure.
3. Ifse Tjk and s’ € UF, a symmetric reasoning applies.

We conclude that the lemma holds for the partition obtained upon termination of the

procedure.
|

We now give the detailed proof of Theorem Let P and P’ be PAs. We prove
that P~ P/ < P = P'.
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Proof. We prove the two directions separately.

eP~P = Pk D: Let P=(SA L AP,V,s) and P' = (S, A, L', AP,V", s})
be PAs such that P ~ P’ with relation Ry. Let P’ = (8", A, L', AP,V',s}) be the
lifting of P'. Let S1,...,S, and S1,..., S, be the partitions of S and S’ respectively,
according to Ry. Let R C S x S’ be the relation such that s R s" iff s Ry s". We prove
that R is a satisfaction relation such that P = P’.

Let s € S and s’ € S’ such that sRs’. We show that R satisfies the axioms of a

satisfaction relation.

1. Let a € A and ¢’ € C(S') such that L/(s',a,¢') = T. By construction of
P’ there exists ' € Dist(S') such that L'(s',a, p/) = T and Sat(¢') = {u'}.
Hence, by Rs, there exists p € Dist(S) such that L(s,a,pu) = T and for all
1<i<n, u(S;) = u'(Si). We now prove that p Er u'.

Let § : S — (8" — [0,1]) be a function defined as follows: Let s1 € S and
1 < i < n such that s1 € S;. Then for all s§ € S, let §(s1)(s1) = 0 if
s1 ¢ S; or u(s1) = 0. Otherwise, let §(s1)(s}) = % (by Rs, we know that
1'(Si) = u(Si) > 0).
(a) Let s1 € Sand1 < i < nsuchthats; € S; and p(s1) > 0. By construction,
we have the following:

S s(s)si) = 3 a(s1)(sh)

shes’ shes]

=Y “(;{;:1.

’
S’IGSZ( H (

(b) Let s1 € §" and 1 < i < n such that s; € S,. If u/(S;) = 0, then
11(Si) = 0 by Ry and by construction, 3, g pu(s1)d(s1)(s1) =0 = p'(sh).
Otherwise, we have the following:

Y uls)d(s1)(s1) = Y w(s1)8(s1)(s1)

s1€S s1E€S;

_ AU‘/('SII) Z M(Sl)

slesi

— W) B ().

(c) Let s1 € S and s € S’ such that §(s1)(s]) > 0. Then by construction
there exists 1 < i < n such that s1 € S; and s} € S,. Hence s1 Ry s7, and
thus s;1 R s].
Consequently, we have u Er p'.

2. Let a € A and p € Dist(S) such that L(s,a,u) = T. Then, by Ry, there exists
1 € Dist(S') such that L'(s',a,i/) = T. By construction of P/, there exists
¢’ € C(S) such that L'(s',a,¢') = T and Sat(y') = {u'}.

We now show that u €g p/. Define the correspondence function § : S — (5" —
[0,1]) as follows: let s1 € S and let 1 < ¢ < n such that s1 € S;. Define

8(s1)(sh) = %, if 1 € Si, and 0 otherwise.
s'est WS
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(a) Let s1 € S and assume that s1 € S; for some i € {1,...,n}.

S (s = 3 a(s)(sh)

shes’ shes]

(b) Let s7 € S’ and assume that s7 € S; for some i € {1,...,n}.

> uls1)d(s1)(s1) = D pls1)8(s1)(s1)

s1€S S1ES;

= > uls1) W(sh)

s1€S5; ZS/ES; N/(Sl)
! /
' (s1)
SICYR, o )
Zs’esé 'U/(s,) 31;91’
= p'(s1),
since by probabilistic bisimulation 37, 5 p(s1) = Zs'esg w'(s).

(c) Assume that 6(s1)(s7) > 0. Then s; € S; and s; € 5] for some i €
{1,...,n}, and hence s1 Ry s7. Then s1 R s].

3. By Ry, we have V(s) = V'(s'), and therefore V(s) € {V'(s')} = V/(s").
Finally, R is a satisfaction relation such that so R s, thus P |= P

eP~P <« PE P’; Let P = (S,A,L,AP,V,s0) and P' = (S', A, L', AP,V'  s;) be
PAs and let P’ = (S', A, L/, AP, V', s}) be the lifting of P’. Suppose that P = P'. We
prove that P ~ P'.

Let (S1,...,5,) and (S1,...,Sy,) be the partitions of S and S’ given by Lemma[ER]
Let Ry C S x S’ be the relation such that s Ry s if and only if 3¢ € {1,...,n} : s €
S; ANs' € S.. We prove that R, is a probabilistic bisimulation relation. Consider the
partitions above. It holds by construction that

e for all s € {1,...,n}, and for all s; € S; and s2 € S}, it holds that (s1,s2) € R,
and

e forallie {1,...,n} and for all j € {1,...,n} such that ¢ # j and for all s; € S;
and sz € S it holds that (s1,s2) € R.

Let s € S and s’ € S’ such that sR, s’. Remark that, by LemmaHS either s R s’
or there exists k € IN, s1,...,5, € S; and s,..., s, € 5, such that

sRsy s1Rsy A
51 Rsh s2Rsh A
sp RS

e By LemmaB8 and R, we have V(s) = V(s').
o Let a € A and p € Dist(S) such that L(s,a,p) = T.
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— If (s,s') € R, then by R there exists o' € C(S') such that L'(s’,a,¢’)
= T and Ju’ € Sat(¢’) : u @r u'; let § be the witnessing correspon-
dence function. By construction of P/, we have that Sat(¢’) = {¢'} and
L'(s',a,p’) = T. By construction of the partitions it holds, for all j €
{1,...,n} and all s1 € S, that §(s1)(s1) = 0if s; € Sj. As a consequence,
if s1 € S; and p(s1) > 0, then it holds by R that ZS/IES; 5(s1)(sy) = 1.

Let j € {1,...,n}.

ST = D0 uls)ils)(sh)

51 €S s) €5} s1€S

> uls1)d(s1)(sh)

s/les;. s51€S;

> us) D d(s1)(sh)

s51€S; s/IES;

> uls1).

s$1€S;

We conclude that s and s’ are indeed probabilistically bisimilar.

— If (s,5") € R, then there exists k € IN, s1,...,s; € S; and s1,...,s;, € S;
such that
sRsy s1Rsy A
s1RshH saRshy A

spRs

As above, for states v € S; and v’ € S; such that v Rv' we have that,
for all p, € Dist(S) such that L(v,a, u,) = T, there exists u, € Dist(S")
such that L'(v',a, ;) = T and all for all j € {1,...,n}, Zslesj o (s1) =

Zs’leS;, ,U‘L(SD

Moreover, for all u;, € Dist(S’) such that L'(s’, a, 1) = T, we have that
L'(v',a,¢,) = T with Sat(¢,) = {u'}. Thus, by R, there exists u, €
Dist(S) such that L(v,a, ) = T and pu, € p,. As above, we obtain that
for all j € {1,...,n}, Zslesj po(s1) = 25,165; w(s1).

By transitivity, we conclude that there exists yu' € Dist(S’) such that
L'(s'ya,p’) = Tandallforall j € {1,...,n}, Zslesj u(s1) = Zs/les; w'(s1).

e Let a € A and p/ € Dist(S’) such that L'(s’,a, ') = T. Then, by construction
of P, we have that L'(s',a,¢’) = T with Sat(¢’) = {u'}.

— If (s,5') € R, then by R there exists u € Dist(S) such that L(s,a,p) =T
and p @ p'. As above, we can conclude that for all j € {1,...,n}, we
have 3., g, 1(s1) = e (5.

— If (s,5") € R, there exists k € IN, s1,...,5;, € S; and s,...,s;, € S; such
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that
sRsy s1Rsy A
s1Rsh saRsh A

sk RS

As above, by transitivity, we prove that there exists yu € Dist(S) such
that L(s,a,p) = T and for all j € {1,...,n}, we have Zslesj wu(s1) =

Zsfles;, ' (s1)-

We conclude that Ry is a probabilistic bisimulation relation, thus P ~ P’. O

Appendiz B.2. Detailed proof for Lemma [Z11
Let P be a PA and let N be an APA. We prove the following: P = N <= P < N.

Proof. We prove the two directions separately.

e P=N= P=<N: Let P=(S,A,L,AP,V,s0) be a PA and let N = (§', A, L', AP,
V', s6) be an APA such that P = N with relation Rs. Let P = (S, A, L, AP,V s0) be
the lifting of P. Let R C S x S be the relation such that sR s’ iff sR.s’. We prove
that R is a refinement relation such that P < N.

Let s € S and s’ € S’ such that s R s’. We show that R satisfies the axioms of a
weak refinement relation.

1. Let a € A and ¢’ € C(S') such that L'(s’,a,¢’) = T. By Rs, there exists
w € Dist(S) and ' € Sat(y') such that L(s,a,u) = T and p €r, p'. By
construction of P, there exists ¢ € C(S) such that L(s,a,¢) = T and Sat(p) =
{p}. Let d; be the correspondence function witnessing p @‘7555 u'. Since R = R,
it also holds that €35 p/. Thus there exists ¢ € C(S) such that L(s,a, = T)
and for all p € Sat(y), there exists u' € Sat(¢') such that p €r p'.

2. Let @ € A and ¢ € C(S) such that L(s,a,) # L. By construction of P,
there exists p € Dist(S) such that L(s,a,pu) = T and Sat(¢) = {u}. By Rs,
there exists ¢’ € C(S’) such that L'(s’,a,¢’) # L and u' € Sat(y’) such that
1 Er, . As above, it also holds that u €x p'. Thus there exists ¢’ € C(S)
such that L'(s’,a,¢’) >? and for all u € Sat(y), there exists u’ € Sat(p’) such
that p €r p'.

3. Since V(s) = {V(s)} and V(s) € V'(s') by R, it holds that V(s) C V'(s").

Thus R is a weak refinement relation. Moreover, by construction, so R s5. Thus we
conclude that P < N.

eP=N<« P =<N: Let P= (S A L AP,V,s0) be a PA, let P = (S, A, L, AP,
V,50) be the lifting of P and let N = (S’ A, L', AP,V',s}) be an APA such that
P < N with relation R.. Let R C S x S’ be the relation such that s R s’ iff s R, s'.
We prove that R is a satisfaction relation such that P = N.
Let s € S and s’ € S’ such that sRs’. We show that R satisfies the axioms of a
satisfaction relation.

1. Let a € A and ¢’ € C(5) such that L'(s',a,¢’) = T. By R, there exists ¢ €
C(S) such that L(s,a,¢) = T and for all u € Sat(p), there exists p’ € Sat(y')
such that u €x, p'. By construction of P, there exists pu € Dist(S) such that
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L(s,a,u) = T and Sat(p) = {u}. Consider the distribution ' € Sat(y’) such
that 4 €, p' given by R,. Since R, = R, it also holds that u €xr u'. Thus
there exists p € Dist(S) such that L(s,a, ) = T and there exists u' € Sat(y’)
such that p €r p'.

2. Let a € A and p € Dist(S) such that L(s,a, ) = T. By construction of P,
there exists ¢ € C(S) such that L(s,a,¢) = T and Sat(p) = {u}. Thus, by
R, there exists ¢’ € C(S’) such that L'(s',a,¢’) # L and i’ € Sat(y’) such
that u €w, p'. Since R, = R, it also holds that u €r p'. Thus there exists
@ € C(S’) such that L'(s',a,¢’) >7 and p’ € Sat(y’) such that u €r u'.

3. Since V(s) = {V(s)} and V(s) C V'(s'), it holds that V(s) € V'(s').

Thus R is a satisfaction relation. Moreover, by construction, so R s5. As a conse-
quence, we conclude that P = N.
O

Appendix C. Detailed proof for Lemma 24

We prove that, for any APA N and abstraction function «, it holds that N <g
a(N).

Proof. Let N = (S, A, L, AP,V,s0) be an APA and let o : S — S’ be an abstraction
function. Consider the state abstraction a(N) = (S’, A, L', AP,V',a(so)). Let R C
S x S’ be the relation such that sRs" iff s' = a(s). We prove that R is a strong
refinement relation.

Let s € S and s’ € S’ such that sRs’. By construction, we thus have s € v(s).
We show that R satisfies the axioms of a strong refinement relation.

1. Let a € Aand ¢’ € C(S’) such that L'(s,a,¢’) = T. This implies, by definition
of abstraction, that there exists ¢ € C(S), such that L(s,a,¢) = T and

Sat(o) =« U Sat(p")
(s,p*)EN(s")XC(S):L(s,a,0*)=T

Define ¢ : S — (S" — [0,1]) such that 6(u)(v) =1 if a(u) = v, and 0 otherwise.
We now show that for all distribution 1 € Sat(ip), there exists u’ € Sat(¢') such
that p €% 1.
Let p € Sat(y) and let p’ € Dist(S") such that p'(s") = a(p)(s”) for all s” € S'.
Clearly, u' € Sat(y’).

(a) Let u € S such that u(u) > 0. By construction, d(u) is a distribution on

S’
(b) Let ve S

Youwiww) = > u)

ues u st. a(u)=v

= 3 (w) = alp)(©) = 4 (v),

u€y(v)

(c) Let w € S and v € S such that §(u)(v) > 0. By construction, we thus
have a(u) = v, and finally u R v.
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2. Let a € Aand ¢ € C(S) such that L(s, a,p) # L. By construction of a(N), then
there are two cases. Either (1) there exists ¢’ € C(S’) such that L' (s, a,¢’) =7
and

Sat(¢') =« U Sat(¢™)
(s,*)EV(s")XC(S):L(s,a,0*)# L
or (2) there is no constraint ¢” such that L'(s’,a, ") =?, which means that
L(s,a,p) =T and there exists ¢’ € C(S’) such that L'(s",a,¢’) = T and

Sat(¢') = a U Sat(p™)
(s,0*)€V(s")XC(S):L(s,a,0*)=T

Let 6 : S — (S — [0, 1]) be the correspondence function defined as above.
Let p € Sat(p) and consider p' € Dist(S’) such that u'(s”) = a(u)(s”) for all
s"" € 8. Clearly, in both cases, we have ' € Sat(¢'). Define 6 : S — (S' —
[0,1]) as 6(u)(v) = 1, if a(u) = v, and 0 otherwise. We now show that u €% s’
(a) Let u € S such that p(u) > 0. Clearly, §(u) is a distribution on S’.
(b) Let ve S

Do) = > uw
u€eS u st. a(u)=v
= 3 ) =),
u€y(v)

by definition of an abstraction of a distribution.
(c) Assume that §(u)(v) > 0. Then a(u) = v, and uRv.

3. By Definition 3] it is easy to see that V(s) C V'(s').

By construction, we have so R a(so), so we conclude that R is a strong refinement
relation and N <g a(N). a

Appendix D. Detailed proof for Lemma 26|
We prove that, for any APA N, it holds that N <g x (V).

Proof. Let N = (S,A,L,AP,V,so) be an APA and let x(N) = (S, A, L', APV,
so) be the constraint-abstraction of N. Let R = S x S be the identity relation.
We prove that R is a strong refinement relation.

Let s,s' € S such that sRs’. Notice that this is implies that s = s’. We show
that R satisfies the axioms of a strong refinement relation.

1. Let a € A and o1 € C(S) such that L'(s’,a,pr) = T. This implies, by Defi-
nition B8 that there exists ¢ € C(S5), such that L(s,a,¢) = T and Sat(¢r) =
{1’ € Dist(S)| Ny cg ' (s) € I7} with {I7|s" € S} the smallest closed intervals
such that Yu € Sat(p) : A, cgn(s’) € IS,

Let ¢ be the identity correspondence function.
Let p € Sat(p). By definition of ¢, it is trivial that p € Sat(pr) and p €% p.
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2. Let a € A and ¢ € C(S) such that L(s, a,¢) >?7. This implies, by Definition 2]
that there exists ¢r € C(S), such that L(s',a,¢r) = L(s,a,p) and Sat(pr) =
{1 € Dist(S)| Ny cg ' (s") € I5} with {I7]s" € S} the smallest closed intervals
such that Yu € Sat(p) : A, cgp(s’) € I3,

Let ¢ be the identity correspondence function.
Let i € Sat(p). Again, it is trivial that u € Sat(¢;) and p €% p.

3. By Definition 20l since s = s’, we have V(s) C V(s').

By construction, as the initial states are equal, we have so R so, so we conclude
that R is a strong refinement relation and N <g x(N).
O

Appendix E. Detailed proof for Theorem [0
We prove that for or any APA N, it holds that [N] = [8(N)], and [N] = [8"(N)].

Proof. Let N = (S,A,L,AP,V,s0) be an APA. Let T be the set of inconsistent
states of N and let S(N) be the corresponding APA using the pruning operator
of Definition The result is trivial if B(N) is empty. Otherwise, suppose that
B(N) = (S",A, L', AP,V' s0), and let P = (Q, A, Lp, AP,Vp,qo) be a PA. We prove
that P = N <= P |= B(N). If this holds, then, by applying 8 until a fixpoint is
reached, it holds that [N] = [8*(N)].

e PE N = P E 3(N): Suppose that P = N, and let R C QxS be the corresponding
satisfaction relation. Define the relation R’ C @Q x S’ such that for all s € S’, ¢ R’ s
iff ¢ R s. We prove that R’ is a satisfaction relation. Let ¢ € Q and s € S such that
gR’s. We show that R’ satisfies the axioms of a satisfaction relation.

1. Let a € A and ¢ € C(S’) such that L'(s,a,¢) = T. By definition of L', we
have that ¢ # () and Ugegs.aL(s,a,%) = T. As a consequence, there exists
7 € C(S) such that L(s,a,) =T and p € Sat(yp) iff there exists & € Sat(Pp)
such that f(s") = u(s’) for all s € " and (t) = 0 for all t € T
By R, there exists ¢ € Dist(Q) such that Lp(g,a,0) = T and there exists
7 € Sat(p) such that o €r 1. Let s’ € S and suppose that 7z(s’) > 0. Let § be
the correspondence function such that ¢ €% 7. By definition, there must exist
¢’ € Q such that o(¢') > 0 and §(¢’)(s") > 0. By the definition of R, this means
that s’ is not inconsistent. As a consequence, for all ¢ € T', we have 1z(t) = 0 (1).
Moreover, 6(q’')(s") > 0 also implies that s’ is consistent. Thus, for all ¢’ € Q
and ¢ € T, we have that §(q")(t) =0 (2).

Let pu € Dist(S’) such that for all s € S, u(s") = m(s’). By (1), u is mdeed a
distribution. Moreover, we have by constructlon that p € Sat( ). Let & :
(8" — [0,1]) such that for all ¢ € Q and s" € S, §(¢')(s') = d(¢')(s"). B (2),
we have that ¢ is a correspondence function, and
(a) For all ¢’ € Q, if o(¢') > 0, then, by R, §(¢’) is a distribution on S. Thus,
by (2), ¢’ is a distribution on S’.
(b) For all ' € &,
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(c) Whenever §’(s")(¢") > 0, we have by definition d(g")(s") > 0. Thus, by R,
¢ Rs', and finally ¢ R’ s'.

Finally, we have that o @%/ .

2. Let a € A and ¢ € Dist(Q) such that Lp(q,a,0) = T. By R, there exists
@ € C(S) and & € Sat(p) such that L(s,a,p) # L and o €r 1. Let ¢ € C(S")
be the constraint such that u* € Sat(y) iff there exists u*’ € Sat(®) such that,
for all s' € S/, p*(s") = u*(s’") and for all t € T, u*(t) = 0.

Let & be the associated correspondence function. Let s’ € S and suppose that
71(s") > 0. By definition, there must exist ¢ € @ such that o(¢’) > 0 and
5(¢")(s") > 0. By the definition of R, this means that s’ is not inconsistent.
As a consequence, for all ¢t € T, we have fi(t) = 0 (1). Moreover, §(¢')(s’) > 0
also implies that s’ is consistent. Thus, for all ¢ € Q and t € T, we have that
5(d)(1) = 0 (2)

Let ¢ € C(S’) such that u € Sat(p) iff there exists u’ € Sat(®) such that, for

all s € S, u(s") = 1/ (s") and for all t € T, p'(t) = 0. By construction, we have

© € 9% Thus, L'(s,a,¢) # L.

Moreover, let u € Dist(S’) be the distribution such that for all s’ € S’, u(s') =

7(s"). By (1), u is indeed a distribution. By construction, we have that u €

Sat(p). Let &' : @ — (8" — [0,1]) such that for all ¢ € Q and ' € 9,

8 (¢")(s") = 8(¢')(s"). By (2), we have that ¢’ is a correspondence function, and

(a) For all ¢’ € Q, if o(¢') > 0, then, by R, §(¢’) is a distribution on S. Thus,
by (2), ¢’ is a distribution on S’.
(b) For all ' € &,

Y old)d'(d)(s) = D e(d)s(d)(s)

9'€Q 7'€Q
— B(s') = u(s').
(c) Whenever §'(s")(g") > 0, we have by definition 6(¢’')(s") > 0. Thus, by R,
¢ Rs', and finally ¢ R s'.
Finally, we have that o @‘72, .
3. By R, we have that V(q) € V(s') = V'(s).

Finally, R’ is a satisfaction relation. Moreover, we have by definition that go R’ so,
thus P = B(N).

e PE N < P | B(N): Suppose that P = B(N), and let R' C Q x S’ be the
corresponding satisfaction relation. Define R C @ X S such that for all ¢ € @ and
s€S8,qRsiff s € 8 and qR's’. By construction, R is a satisfaction relation and
goR so. Thus P = N.

|

Appendix F. Detailed proof for Theorem

Let N1, N2, and N3 be consistent APAs sharing action and atomic proposition
sets. We prove that

° ﬁ*(Nl A Ng) <w N1 and ﬂ*(N1 A Nz) <w Na.

o If N3 <y N; and N3 <w Na, then N3z <y ﬂ*(Nl A Nz).
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Proof. Let N1 = (S1,A,L1,AP,V1,s0) and No = (SQ7A7L27AP7V2788) and N3 =
(Ss, A, Ly, AP, Vs,s3) be three APAs. Let Ny A No = (S1 x So,A,L, APV,
(s0,528)) be the conjunction of N; and No defined as in Definition Bl We prove
the claims separately.

e 3 (N1 AN2) <w Ni: Obviously, if N1 A Nz is fully inconsistent, then 5% (N1 A N2) is
empty and refines N; with the empty refinement relation. Suppose now that 8% (N1 A
No) = (8™, A, L™, AP, V", (s0,53)), with S”* C S1 x Sz, not empty. Define the relation
R C 8™ x Sy such that for all (s,s’) € S” and t € S1, (s,8") Rt iff s = t. We prove
that R is a weak weak refinement relation. Let (s,s’) € S” such that (s,s’) Rs. We
show that R satisfies the axioms of a weak weak refinement relation.

1. let a € A and ¢ € C(S1) such that Li(s,a,¢) = T. Since (s,s’) € S”, we have
that a € May(s'). Let ¢ € C(S1 x S2) such that g € Sat(p) iff

o the distribution pu: 1 — 37, g A((r,7")) is in Sat(p), and

e there exists a distribution ¢’ € C(S2) such that L2(s’,a,¢’) # L and the
distribution p' 1 7" — 37 ¢ fi((r,7")) is in Sat ().

By definition of N1 A Nz, we have that L((s,s’),a, @) = T. Consider now ¢" €
C(S") the constraint such that u" € Sat(¢”) iff there exists fi € Sat(() such
that vr € S™, 1" (r) = fi(r) and Vr € S1xS2\S", fi(r) = 0. According to the def-

inition of pruning, we know that L"((s,s'),a,¢") = uwe7(5’s/)‘”£((s’ s'),a,).
©

Since @ € W(S'S/)'a, it holds that L"((s,8),a,
) =T.

Thus there exists " € C(S") such that L"((s,s’),a, ") = T. Moreover, define
the correspondence function § : S — (S1 — [0,1]) such that §((r,7"))(r") = 1
iff " =r. Let p” € Sat(¢"), it the corresponding distribution in Sat(p), and
1 the distribution such that p:r € S1— > i((r,7")). By definition, yu is
in Sat(p). We now prove that u” €% .

e For all (r,7") € S*, 5((r,7")) is a distribution on S; by definition.

r’ €Sy

o Let r € 5.
> BN ) () = > w((r,))
(r,r")esSA r’'eSy | (r,r’)eSN

Il
=
N
=
3

ﬂ\
N
=

r’'eSy | (r,r’)eSN

> Al )

r’ €Sy

w(r)

e Finally, if 6((r,r"))(r"") > 0, then » = r"” and (r,7’) R r by definition.
Thus p" €% p.

2. Let a € A and " € C(S") such that L"((s,s"),a, ") # L. By definition of L",
there exists ¢ € go_At'a. Thus, z/((s7 s'),a,% # L in N1 A N2, and a distribution
p” satisfies " iff there exists a distribution fi € Sat(®) such that p”(r) = f(r)
for all r € S™ and fi(r) = 0 for all » € S1 x S2 \ S”. Since S” contains only
consistent states, there exists u” € Sat(¢”). Let i € Sat(p) be a corresponding
distribution in ¢. There are 3 cases.
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e If a ¢ Must(s) and a ¢ Must(s'), then by definition of L, there must exist
p € C(S1) and ¢’ € C(S2) such that Li(s,a,9) # L and La(s',a,¢’) # L.
Moreover, g € Sat(@) iff the distributions ¢ : r € S1 — 2, g, 0((r,7 )
and o' : 7' € S — > res, O((r,r ")) are respectively in Sat(y) and in
Sat(¢").

Since 1 € Sat( ), let 1 and p’ be the corresponding distributions in Sat(y)

and Sat(¢'). Define the correspondence function 6 : S — (S1 — [0,1])

such that §((r,r"))(r") = 1 iff ¥ = r. As above, we can prove that
A =6

B ER M

e Otherwise, suppose that a € Must(s) and there exists ¢ € C'(S1) such that
@ is such that ¢ € Sat(p) iff

— the distribution g : 7 — 3", 652 o((r,7")) is in Sat(p), and

— there exists a distribution ¢’ € C(S2) such that Lz(s’,a,¢’) # L and
the distribution ¢ : 7' — 37 g 06((r,7')) is in Sat(y’).

Since i € Sat(p), let ¢’ € C(S2) be the corresponding constraint on S»
such that L2(s',a,¢’) # L. Let pand p’ be the corresponding distributions
in Sat(p) and Sat(¢’). Define the correspondence function § : S — (S1 —
[0,1]) such that 6((r,7"))(r") = 1 iff " = r. As above, we can prove that
A 8

HER [

e Finally, suppose that a € Must(s’) and there exists ¢’ € C(S2) such that
@ is such that g € Sat(p) iff

— there exists a distribution ¢ € C(S1) such that Li(s,a,¢) # L and
the distribution ¢ : 7 — 3=, g, 0((r,r")) is in Sat(y), and

— the distribution ¢’ : 7" — 37 ¢ 6((r,7")) is in Sat(¥’).

Since i1 € Sat(p), let ¢ € C(S1) be the corresponding constraint on Sy
such that L1(s,a, ) # L. Let u and u' be the corresponding distributions
in Sat(p) and Sat(¢’). Define the correspondence function § : S* —
(S1 — [0,1]) such that &6((r,7"))(r") = 1 iff ¥ = r. As above, we can

prove that p" €% pu.

Finally, in any case, there exists ¢ € C'(S1) such that Li(s,a, ) # L and there
exists p € Sat(yp) such that p" €r p.
3. By definition, V" ((s,5")) = V((s,8")) = Vi(s) N Va(s') C Vi(s).

Finally, R is a weak weak refinement relation, and we have 8*(N1 A N2) <w Ni.

e 3"(N1 A N2) =w No: This result is obtained using a similar proof as above.

o if N3 <w N; and N3 <w Na, then N3 <y ﬂ*(Nl /\Nz): Let R1 € S3 x S1
and R2 C S3 x S2 be the weak weak refinement relations such that N3 < N; and
N3 < Na. Obviously, if N1 A N» is fully inconsistent, then (N1 A N2) is empty. In
this case, there are no consistent APAs refining both N; and N». As a consequence,
N3 is inconsistent, which violates the hypothesis. Suppose now that 8* (N1 A N2) =
(S, A, L™, AP, V", (s0,53)), with S C S1 x Ss, is not empty. Define the relation
R" C S3 x 8" such that s” R"(s,s’) € SN iff s" Rs € S1 and " R’ s’ € S2. We prove
that R” is a weak weak refinement relation.

Let s € S1,s € S2 and s” € S5 such that s” R"(s,s’). We show that R" satisfies
the axioms of a weak weak refinement relation.
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1. Let a € A and " € C(S") such that L"((s,s'),a, ") = T. By definition, we
have L((s,s'),a,3) = T with ¢ € C(S; x S2) such that " € Sat(¢”) iff there
exists ji € Sat(@) such that p”(r) = ji(r) for all » € S" and fi(r) = 0 for all
r € S1 x S2\ S”. There are 2 cases.

e Suppose that a € Must(s) and there exists ¢ € C(S1) such that L (s, a, ¢) =
T, and g € Sat(p) iff
— the distribution o : 7 — 33, g 0((r,7")) is in Sat(p), and
— there exists a distribution ¢’ € C(S2) such that Lz(s’,a,¢’) # L and
the distribution ¢’ : 7" — 37 g 6((r,r")) is in Sat(y’).
Since Li(s,a,p) = T and s” Ris, there exist ¢’ € C(S3) such that
Ls(s",a,¢") = T and V" € Sat(p”),Iu € Sat(yp), such that u” Er, p
(1).
Since Ls(s”,a,¢”) = T and s” R2s’, we have that Vu" € Sat(yp”), there
exist ¢’ € C(S2) such that La(s',a,¢’) # L and p' € Sat(¢') such that
p' er, 0 (2).
Let p’ € Sat(¢"”). By (1) and (2), there exists p € Sat(p), ¢’ € C(S2)
such that L2(s’,a¢’) # L and pu' € Sat(¢') such that p’ €, p and
' Er, p'. Since (s,s’) and s are consistent, remark that for all (r,7")
in S1 x S2\ S”, we cannot have s” R1r and we cannot have s” Ra7' (3).
We now build p” € Sat(¢”) such that p” €ra p”.
Let § and &' be the correspondence functions such that p” €%, p and
w @%2 w'. Define the correspondence function §” : S5 — (S" — [0,1])
such that for all v € S5 and (r,7') € S™, 8" (r")((r,r")) = (") (r)8' (r") ().
We build " and prove that p” @%//\ TR
— For all v € Ss, if p”’(r"”) > 0, both 6(r"”) and &' (r"’) are distribu-
tions. By (3), we know that for all (r,r’) € S1 x Sz \ S, 6(r"")(r) =
8 (r")(r") = 0. As a consequence, §”(r"') is a distribution on S”.
— Define p"(r,7’) = sy W) (r")((r,r")). We prove that uh €
Sat ("),

* Let ' € S2, we have

A /
po ()
r€Sy | (rr/)esn

Z z H" (7”")5”(7‘”) ((7’, 7ﬁ/))

reSy | (r,r’)eSA r’eSg

> D W) (r)d () ()

reSy | (r,r’)eSNr’eSs

= > W) > 3(r")(r)
r’"’eSs reSy | (r,r’)esSn
— z H//(r//)dl(r//)(r/)

r’’€Ss

= 1/'(r") by definition.

73



x Let r € S1, we have

> " (r,r")

r’eSy | (r,r’)eSN

Z Z // // // //)((7‘77“/))

r’€Sy | (r,r’)eSNr’eSs

S W8 )8 () )

r’€Sy | (r,r’)eSN r'’eSs

Y W()sr)(r) > &' (r")(r")

r’’eSs r’eSy | (r,r’)esSn
PONTHCGSLIGRIG!

r”ESg

= p(r) by definition.

Thus we have that
- the distribution o : 7 — 37 /g p w™((r,r")) is in Sat(p), and
- the distribution ¢ : 7' — 37 g p"((r,r")) is in Sat(¢’).
As a consequence, " € Sat(o”") by definition of ¢”.
= If §"(")((r,r")) > 0, then by definition §(r")(r) > 0 and
8 (r")(r") > 0. As a consequence, 7"’ Rir and " Ra 7', thus v’ R"(r,r").
Finally, 4/ €@rs p” and p” € Sat(p™).
e Suppose that a € Must(s) and there exists ¢’ € C(S2) such that Lz(s', a,
©') =T, and g € Sat(p) iff

— there exists a distribution ¢ € C(S1) such that Li(s,a,¢) # L and
the distribution ¢ : 7 — 3=, /g, 0((r,7")) is in Sat(y), and
— the distribution ¢’ : 7" — 37 ¢ 6((r,7")) is in Sat(¥’).
This case is strictly symmetric to the one presented above, so there also

exists ¢” € C(S3) such that Ls(s”,a,¢”) = T and for all p” € Sat(e"),
there exists u" € Sat(p”") such that p”’ €rr p’.

2. Let a € A and ¢ € C(S3) such that Ls(s”,a,¢”) # L. Let u” € Sat(¢”).

Since s Ris and s’ Ras’, there must exist ¢ € C(S1), u € Sat(yp ) =
C(S2) and u' € Sat(y') such that Li(s,a,¢) # L, La(s',a,¢') # L, u'’" Er, 1
and u’ €r, i . As a consequence, L((s,s'),a,@) # L, with ¢ € C(S1 x
S2) such that ¢ € Sat(p) iff the distributions o : 7 € S1 — 32, g, 0((r, "))
and o' 11" € Sz > 37 g 0((r,r")) ave respectively in Sat(yp) and in Sat(y’).
Moreover, since s” and (s, s") are consistent, there exists " € C(S") such that
LA((s7s’),a,¢:A) # 1 and ¢" € Sat(p") iff there exists § € Sat(@) such that
o (r,7") = a(r,7") for all (r,r") € S™ and g(r,r") = 0 for all (r,7') € S1 x S2\S".
Let & and &’ the correspondence functions such that p” €%, p and p” @%’2 .
Since s” and (s, ") are consistent, we know that (1) for all (r,7') € S1 x S2\ S,
we have p(r) = p/(r') = 0 and (2) for all '’ € S3 and (r,r") € Sy x S2 \ S, we
cannot have 7/ Ry r and we cannot have r” Ra 7'
Define the correspondence function 6" : S5 — (S” — [0,1]) such that for all
"¢ Sz and (r,7") € 8™, 8" (r")((r,7")) = 3(r")(r)8' (") (r"). We now build u”
such that p/ €5 p/ and prove that p/ € Sat(o").

74



e For all " € S5, if p”(r"") > 0, both 6(r") and §'(r"’) are distributions. By
(2), we know that for all (r,7") € S1 x S2\ ", 6(r")(r) = &' (+")(r') = 0.
As a consequence, §”(r") is a distribution on S”.

o Define p"(r,7') = X2 ,cq, 0/ (r")3" (") ((r,7")). As above, we can prove
that p" € Sat(¢”).

o If §"(r")((r,r")) > 0, then by definition 6(r")(r) > 0 and &' (r")(r") > 0.
As a consequence, " R1r and v’ Rar’, thus v/ R"(r,7’).

Finally, there exists ¢" € C(S") such that L"((s,s"),a,¢") # L and u" €
Sat(¢”) such that p” €rn p’.

3. Since s” R1 s and s” Rz s’, we have V3(s”) C Vi(s) N Va(s') = V" ((s,5")).
Finally, R" is a weak weak refinement relation between N3 and 8*(Ni A Na).
Moreover, we know that sj Riso, s5Rzsd, and (8078%) is consistent. As a
consequence sg R"(so,s2) and N3 < 3* (N1 A Na).

O

Appendix G. Detailed proof for Theorem

Given a synchronization set A, we prove that all notions of refinement are a pre-
congruence with respect to the parallel composition operator || defined above, i.e. if
N1 x Ni and Nz x N3, then Ni||xN2 x Ni|lzNg, for x € {=r, <w, =, <s}

Proof. We provide the proof for x ==<. The other proofs are similar.
Let N1 = (Sl7 1417 L17 A.P17 Vl7 8(1)), N2 = (527 Az7 L27 A.Pz7 V27 8(2)), N1, = (Si7 Al7
AP VY s8) and N = (S5, Ao, Ly, AP>, V3, s2') be APAs such that APLNAP, = ().
Let A C A1 N As. Assume that N1 < Nj and N2 < Nj with weak refinement relations
R1 and Rz, respectively. Let N]HZNQ = (Sl X Sz,Al @] Az, L, AP U APQ, ‘/, (8(1), 8%))
and N{|[xNj = (S] x 8%, A1 U Ao, L', APy U APy, V, (s, s2))).

Let R C (S1 x S2) x (S] x S3) be the relation such that (s1,s2) R(s!,s5) iff
s1R1 51 and s2 Ro sh. We now show that R is a weak refinement relation such that
N [lrNo < N[V

Assume that (s1,s2) R(s],s3). We show that R satisfies the axioms of a weak
refinement relation.

1. Let a € A1 U Az and ¢’ € C(S] x S3) such that L'((s],s5),a,¢’) = T. There
are three cases:

e If @ € A, then there exists ¢; € C(S}) and @5 € C(S%) such that
Li(s1,a,¢1) = Ly(sh,a,p5) = T and ' € Sat(y’) iff there exists uj €
Sat(p)) and py € Sat(eh) such that ' = pips. Since s1Ris) and
s2 Ra sh, there exists o1 € C(S1) and @2 € C(S2) with Li(s1,a,p1) =
Lo(s2,a,02) = T and Vu1 € Sat(p1),3p) € Sat(e}) : p1 €r, py and
Vo € Sat(p2), s € Sat(vy) : p2 Er, Mo
Define ¢ € C(S1 x S2) such that Sat(¢) = Sat(p1)Sat(p2). By definition
of Ni||zN2, we have L((s1,s2),a,9) = T. Let u € Sat(e). Then there
exist p1 € Sat(p1) and po € Sat(p2) such that p = pipe. Since s1 Ri 8]
and s2 Ro s5, there exist pj € Sat(v}), ps € Sat(ps) and correspondence
functions &1 : S1 — (S7 — [0,1]) and &2 : So — (S5 — [0,1]), such that

51 ’ b2 /
p1 €, p1 and p2 €77 po.
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Define the correspondence function § : (S1 x S2) — ((S1 x S3) — [0,1]) as
3(u,v)(u',v") = 61 (u)(u")d2(v)(v"). Consider the distribution p’ such that
@ = piph. By construction, i’ € Sat(¢’). We now prove that p €% p':
(a) Assume that for (u,v) € S1 X S2, pu(u,v) > 0. Then we have

S(uv) (W', v) = Y D Si(u)(w)d2(v) ()

(u’,w")€ST xS} u/ €8] v'eS)
= > aw) > S(v)()
u’€5] v’ €S}
=1.

Thus 6(u,v) is a distribution on S7 X S5.
(b) Let (u',v') € 8] x S5.

S uu0)s )@ ) = 3 ST W (v)

(u,v)€S1XS2 u€eS vES,
81 (u,u")o2(v,v")

= <Z ul(U)51(u)(u')>
u€eSy
(Z uz(v)f?z(v)(v')>

vESy
= pa(u)pz(v') = ' (u', ).

(c) Assume that 6(u,v)(u/,v") > 0. Then 4 (u)(v') > 0 and
d2(v)(v') > 0, and since N1 < Nj and No < N3, uR1 v and v Ra2v'.
Thus, by definition of R, we have (u,v) R(u',v").

e If a € A1 \ A, then there exists ] € C(S7) such that L(s},a,¢)) = T.
Since s1 R1 s, there exists 1 € C(S1) with Li(s1,a,¢1) = T and V1 €
Sat(p1),Ius € Sat(ph) such that p1 Exr, pi.

Define ¢ € C(S1 x Sz2) such that p € Sat(yp) iff for all v € S and v #

s2, (u,v) = 0 and the distribution pi : ¢ — p(t, s2) is in Sat(p1). By

definition of N ||xN2, we have L((s1, s2),a,¢) = T. Let u € Sat(p). Then
there exists a pu1 € Sat(pi) such that g1 can be written as t — u(t, s2)
and furthermore there exists p7 € Sat(¢}) and a correspondence function

81 : 81 — (S — [0,1]) such that u1 @%1 Ui

Define the correspondence function § : (S1 x S2) — ((S1 x S3) — [0,1]) as

5(u,v) (v, v") = 8(u)(u') if v = sz and v’ = s5, and 0 otherwise. Consider

the distribution p’ over Si x S5 such that for all v’ € S| and v’ # s5,

' (v',v") = 0 and for all v’ € S} p'(uv',s5) = pi(u'). By construction,

i € Sat(¢’). We now prove that p €% p':

(a) Assume that for (u,v) € S1 x S2, pu(u,v) > 0. Then we have

Su,v) (W', 0) = D Y Si(w)(u)
(u,v")eS] xS} u' eS| v'es)

> aw() =1.

u' €S
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Thus §(u,v) is a distribution on S} x S3.
(b) Let (u',v") € 81 x S5, with v # s5.

Z p(u, 0)d(u,v)(u',v') = Z Z w(u,v)0

(u,v)ES1 XSy u€ES] vESy
=0
= p'(u,0),
Let u’ € S7, we have

Z w(u, v)0(u, v) (v, s5) z Z v) (4, 55)

(u,v)€S1XS2 u€S] v=s3
Z o (w)d1 (u, u')
u€Sy
— HI(UI7U,).
(c) Assume that 6(u v)( v") > 0. By definition of §, we have §1 (u )( ">

0 and v = s2,v" = sh. By definition of &1, we thus have uR1 v’. Since
s2 R2 s4 by assumption, we finally have (u,v) R(u,v’).

e If a € Az \ A, the proof is similar.

2. Let a € A1 U Az and ¢ € C(S1 x S2) such that L((s1,s2),a,p) # L. There are
three cases:

e If @ € A, then there exists 1 € C(S1) and @2 € C(S2) such that
Li(s1,a,01) # L, La(s2,a,p2) # L, and p € Sat(p) iff there exist
p1 € Sat(p1) and p2 € Sat(pz) such that p = pipe. Since s1 R s] and
s2 Ra s5, there exists ¢ € C(S1) and o5 € C(S3) with L} (s, a,]) # L,
L5(sh,a,5) # L, and V1 € Sat(yp1), 3y € Sat(ph) : g Ewr, pi and
V2 € Sat(pz),3us € Sat(ps) : p2 ERr, fo.

Define ¢’ € C(S] x S5) such that Sat(¢") = Sat(¢)Sat(ps). By definition
of Ni||.xN2, we have L'((s], s2),a,¢’) # L. Let p € Sat(p). By definition
of ¢, there exist u1 € Sat(p1) and u2 € Sat(psz) such that p = pqpe.
Furthermore, since s1 R1 s and s2 Ro s5, there exist py € Sat(pl), ps €
Sat(py) and two correspondence functions 61 : S1 — (S; — [0,1]) and
82 : S2 — (S5 — [0,1]) such that u1 @%1 uh and po @%2 Lh.

Define the correspondence function § : (S1 x S2) — ((S1 x S3) — [0,1])
such that, for all u,u’,v,v’, 6(u,v)(v',v") = 61 (u)(u')d2(v)(v'). By the
same calculations as above, we know that the distribution ' over S7 x S5
constructed as ' = b is in Sat(y') and gives that u €% 1.

o Ifac A \Z, then there exists ¢1 € C'(S1) such that Li(s1,a,¢1) # L.

Since s1 R1 s, there exists @] € C(S7) with Lj(s],a,¢1) # L and V1 €
Sat(p1), s € Sat(ph) : p1 Ery pi-
Define ¢’ € C(S] x S3) such that u' € Sat(¢') iff for all v’ € S and
v’ # s, pu(u’,v") = 0 and the distribution p} : t — p(t, sb) is in Sat(eh).
By definition of Ni|4Ns, we have L'((s1, s2),a,¢’) # L. Let p € Sat(y).
Let p1 be the distribution on Sp such that for all t € S1, pa(t) = plt, s2).
By definition, pu1 € Sat(e1). Let py € Sat(pl) and a correspondence
function &1 : S1 — (S7 — [0, 1]) such that p1 @%1 Ui
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Define the correspondence function § : (S1 x S2) — ((S1 x S3) — [0,1])
such that for all u,u’,v,v", 6(u,v)(u,v") = 61 (u)(u') if v = s2 and v’ = sp,
and 0 otherwise. By the same calculations as above, we know that the
distribution u’ € Sat(p') such that for all v’ € S7 and v’ # sp, p'(u',v") =
0 and for all u’ € S}, ui = p' (v, s5), gives that u €% p'.

e If a € Az \ A, the proof is similar.

3. For atomic propositions we have that, V((s1,s2)) = Vi(s1) U Va(s2) and
V'((s1,s%)) = {B =B1UB;y | By € V/(s1) and Bz € V5(s3)}. Since S1R1 s}
and s2 Ro s5, we know by definition that Vi(s1) € V{(s]) and Va(sz2) € V3 (s5).
Considering B1 = Vi(s1) and B2 = Va(s2), we thus have that V((s1,s2)) €

V/((sh, 54)).
: 1.2 120\ 1 1/ 2 2/
By observing that (sg, sg) R(so ,So ), since sgR1 sy and sg Rz sg , we conclude that
R is a weak refinement relation. O

Appendix H. Detailed proof for Theorem
Let N be an APA in single valuation normal form. We prove that N <s o(N).

Proof. Let N = (S,A,L, AP,V, so) be a (consistent) APA in single valuation normal
form. Let o(N) = (S', A, L', AP,V' {s0}) be the determinisation of N defined as in
Definition B8l We prove that N <s o(N).

Let R C S x S be the relation such that sRQ <= s € Q. We prove that R is
a strong refinement relation. Let s,Q such that s R Q. We show that R satisfies the
axioms of a strong refinement relation.

1. Let a € Aand ¢’ € C(S’) such that L'(Q,a,¢’) = T. By construction of ¢, we
have that Vg € Q, 3¢, € C(S) such that L(g,a,pq) = T.
Since s € Q, there exists s such that L(s,a,ps) = T.
Define the correspondence function ¢ : S — (8" — [0, 1]) such that §(s")(Q’) =1
if Q" € Reach(Q,a) and s’ € Q'. Otherwise, 6(s")(Q") = 0.
We now prove that for all u € Sat(ps), there exists u' € Sat(¢') such that
w €% p'. Let pu € Sat(ps).
e Let s’ € S such that u(s’) > 0. As a consequence, by definition of Reach,
there exists a single Q" € S’ such that s’ € Q'. Thus §(s')(Q’) = 1 and for
all Q" # Q’, we have 6(s')(Q") = 0. Thus ¢ defines a distribution on S’.
e Define p/ : §" — [0,1] such that ' (Q") = >, cgu(s)6(s')(Q’). By def
of §, we have that (1) for all Q" ¢ Reach(Q,a), 1/(Q') = 0; (2) there
exists ¢ € Q, ¢ € C(S) and p € Sat(y) (namely s, s and p) such that
L(g,a,¢) # L and for all Q" € Reach(Q,a), ' (Q") = 3 /co 11(¢'). Thus
u' € Sat(y') by construction.
e Let s’, Q" such that 6(s')(Q’) > 0. By construction of §, we have s’ € Q’,
thus s RQ’.
As a consequence, there exists ' € Sat(y’) such that p €% '

2. Let a € A and ¢ € C(S) such that L(s,a,p) # L. By construction of o(N),
there exists ¢’ € C(S’) such that L'(Q,a,¢’) # L. ¢ is defined as follows:
u' € Sat(¢') iff (1) VQ' ¢ Reach(Q,a), we have p/(Q') = 0, and (2) there
exists ¢ € Q, pq € C(S) and pg € Sat(pq) such that L(g,a,¢q) # L and
VQ/ € ReaCh(Q7a)7 IU‘I(QI) = Zq’eQ’ AU‘Q(ql)'
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Define the correspondence function § : S — S’ — [0, 1]) such that 6(s')(Q") =1
if Q" € Reach(Q,a) and s’ € Q'. Otherwise, 6(s")(Q’) = 0.
We now prove that for all 4 € Sat(yp), there exists p' € Sat(¢’) such that
pw €% 1. Let € Sat(p). and let ' : S* — [0,1] be the distribution such that
1 (Q) =3 csu(s)8(s)(Q). We prove that p €% ' and p' € Sat(y)).
e Let s’ € S such that u(s’) > 0. As a consequence, by definition of Reach,
there exists a single Q' € S’ such that s’ € Q'. Thus §(s’')(Q’) = 1 and for
all Q" # Q', we have 6(s')(Q") = 0. Thus ¢ defines a distribution on S'.
e Define p/ : §" — [0,1] such that ' (Q") = >, cgu(s)6(s')(Q’). By def
of §, we have that (1) for all Q" ¢ Reach(Q,a), 1/(Q') = 0; (2) there
exists ¢ € Q, ¢q € C(S) and pg € Sat(pq) (namely s, ¢ and p) such

that L(g,a,pq) # L and for all Q" € Reach(Q, a), 1/ (Q") = 3= /c o 1a(q)-
Thus p’ € Sat(¢") by construction.

e Let s, Q" such that 6(s")(Q’) > 0. By construction of §, we have s’ € Q’,
thus s’ RQ’.

As a consequence, there exists ' € Sat(y¢') such that p €r p'.
3. By construction of go(N), we have that V(s) = V'(Q).

Finally, R is a strong refinement relation. Moreover, we have that so € {so}, thus
soR{so} and N <5 o(N). |

Appendix I. Detailed proof for Theorem

Let N = (S,A,L, AP,V,s0) be a deterministic APA in single valuation normal
form and such that AP N A = (. We prove that the CMC N is such that, for all MC
M, M =uc N < M [ N.

Proof. We prove the two directions separately.

o M yvc N = M Ecue N: Let M = (Q,, Anr, Var, qo) be a Markov Chain. We
first prove that if M Eyc N, then M =cve N. Suppose that there exists a PA
P = (Sp,A,Lp, AP, Vp,s§) such that M satisfies P and P = N. Let N = (Q,,
A\7 lA/, do) be the transformation of N following Definition BT}

By the satisfaction relation between M and P, we obtain that Ay = AU AP and
Q = QnUQp. Let RMY C Qp x Sp be the satisfaction relation witnessing that
M satisfies P. Let RFA C Sp x S be the satisfaction relation witnessing P = N.
Consider the relation R C @ X @ such that

e ¢R(s,e) iff there exists p € Sp such that gRMCpand pR™ s, and
e for all a € A, g R(s,a) iff there exists ¢’ € @ such that
- m(q')(q) >0,
= Va(q) = Var(q') U{a}, and
- ¢ R(s,e€).
We now prove that R is a satisfaction relation for CMCs.
First consider ¢ € @ and s € S such that ¢ R(s,¢). By definition, there exists

p € Sp such that ¢RM p and pRF*s. We show that, in this case, R satisfies the
axioms of a satisfaction relation for CMCs.
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1. By RMY, we have that Var(q) = Ve(p). By RY™, we know that Vr(p) € V(s).
Since V((&e)) = V/(s), we have, Vi (q) € ‘7((876)).

2. Let § be a correspondence function such that, for all ¢ € Q, s’ € S and a € A,
3 ((s',a)) = 1if & = s, 7(q)(¢") > 0 and Vim(q') = Vam(q) U {a} and 0
otherwise.

e Let ¢ € Q such that 7(¢)(¢’) > 0. By RMC there exists a € A and a
distribution g over Sp such that Vas(¢') = V(p)U{a}, Lp(p,a,0) = T and
7(q") Egmc . Thus, we have 7(g)(¢') > 0 and Var(¢') = Var(q)U{a}. Asa
consequence, 6(q')((s,a)) = 1, and for all (s',b) # (s,a), (¢')((s’,b)) = 0.
Finally, 6(¢’) defines a distribution on @

e Let v = m(q)d. We prove that ~ satisfies ¢((s,€)):

— By definition of 4, for all ¢ € Q, we have 6(¢')((s,¢)) = 0. As a
consequence,

¥((s,0)) = Y m(@)(@)é(d)((s,6) = 0.

'€Q

— By definition of §, we also have that for all ¢’ € Q, s’ € S with s’ # s
and b € AU{e}, (¢')((s',b)) = 0. As a consequence,

Vs' # 5,0 € AU{el, 1((s,0) = D (a)(d)d(d)((s',b)) = 0.

q'€Q

— Let a € Must(s), and ¢ € C(S) such that L(s,a,p) = T. By R*", we
have that there exists a distribution g over Sp such that Lp(p,a, ) =
T and there exists j € Sat(yp) such that ¢ €gar p. Thus, by RMC,
we have that there exists ¢’ € @ such that Va(q') = Vp(p) U {a} =
Vam(g) U{a}, 7(¢)(¢') > 0 and 7(q') Egmc o. By definition of §, we
have that J(¢')((s,a)) > 0. As a consequence,

1((s,0)) = Y w(a)(qd")6(q")((s,a)) > 0.
7’'eQ

— Let a ¢ May(s), i.e. such that for all ¢ € C(S), we have L(s,a,p) = L.
Suppose that v((s,a)) > 0. By definition of v, there must exist ¢’ € Q
such that 7(g)(¢") > 0 and 6(¢')((s,a)) > 0. By definition of §, we thus
have Vi (¢') = Var(q) U {a} = Vp(p) U {a}. Moreover, by R, there
exists a distribution ¢ such that Lp(p,a,0) = T and 7(q") Exmc o.
Thus, by RY, there must exist ¢ € C(S) such that L(s,a,p) # L,
which is a contradiction. As a consequence, we have

v((s,a)) = 0.
Finally, we have that « satisfies ¥ ((s,€)).
e Let ¢ € Q and (s',a) € Q such that 6(¢')((s',a)) > 0. By definition of &,
we have that 7(q)(¢’) >0, a # ¢, Va(¢') = Vim(q) U {a} and s’ = s. Since
qR(s,€), we have, by definition of R, that ¢’ R(s,a).

Let ¢ € Q, s € S and a € A such that g R(s,a). By definition, there exists ¢’ € Q
such that m(¢')(q) > 0, Var(g) = Vam(q') U {a} and ¢’ R(s,e). We show that, also in
this case, R satisfies the axioms of a satisfaction relation for CMCs.
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1. Since ¢' R(s,€), we know that there exists p € Sp such that ¢ R™%p and
pRY s. Thus, we have Var(¢') = Ve(p) € V(s). Moreover, by definition of N,
we have that V((s,a)) = {BU {a} | B € V(s)}. Since Va(q) = Var(¢') U {a}
and Vir(q') € V(s), we have that Var(q) € V((s,a)).

2. Since ¢ RMp and 7(¢')(¢) > 0, there exists a distribution ¢ over Sp such
that Lp(p,a,0) = T and there exists a correspondence function oM such

that 7(q) @ggfc 0. Moreover, since pRY s, there exists ¢ € C(S) such that
L(s,a,) # L, and there exist u € Sat(p) and a correspondence function 54

such that o @gﬁA .
Define the correspondence function § : Q — (Q — [0, 1]) such that for all ¢’ € Q
and s” € 9,

Vb e A, 6(¢")((s",b)) =0, and

(5(q”)((5"7 6)) — Z 6MC (q//)(p//)(SPA(pN) (8”).

p’eP

e Let ¢’ € Q such that 7(q)(¢”) > 0. By RM“, we know that §*“(¢")
is a distribution over Sp. Let now p” € Sp such that 6™ (¢")(p") > 0.
By RMC, we know that o(p”) = > oueq 7(q,u)6™C (u)(p”) > 0. As a

consequence, by RF2, we know that 674 (p”) is a distribution over S. As
a consequence, we have that §(¢") is a distribution over Q.

e Let v = m(q)d. We prove that ~ satisfies ¢((s,a)).
— By definition of §, we have that for all s” € S and b € A,

Y((s",0) = D w(a)(g")d(q")((s",b)) = 0.

q//EQ
— Let v : 8" — v((s",¢€)). Let s € S. By definition, we have
7 (") = ((s", )
= > w(@)(d")s(d") (5", ¢)

q"eQ
= > wa)(d") Y. M) ") ")(")
q"€Q p'’€Sp

S DD @@ @) @) | 8" (s)
€SP ¢"'eQ
Z o(p")8"™ (p")(s") By definition of §™¢
p'eSp
1 .. PA
= u(s") By definition of ¢
Finally, we have v/ = p. Since, by definition, u € Sat(p), we have
that there exists ¢ € C(S) such that L(s,a,y) # L and v € Sat(p).
Thus v satisfies ¥((s,a)).
— Let ¢" € Q and (s”,b) € Q such that §(¢")((s”,b)) > 0. By definition
of §, b = ¢ and there must exist p”’ € Sp such that (1) 5™ (¢”)(p”) > 0
and (2) 0"*(p”)(s”) > 0. By (1), we have ¢’ RM“p” and by (2),
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we have p” RY s”. As a consequence, by definition of R, we have
q"R(s" €).
Thus R is a satisfaction relation for CMCs. Moreover, we have that go R(so,¢€),
which gives that M Ecuc N.

e M Envc N < M Ecmc N: Let M = (Q,m, Anm, Vs, qo) be a Markov Chain. We
prove that if M Ecmc ]V, then M Emc N, i.e. there exists a PA P such that M
satisfies P and P |= N. Let N= (@7 P, 27 177 Go) be the transformation of N following
Definition Bl
Let R be the satisfaction relation for CMCs witnessing that M =cmc N. First observe
that, by R, the Markov chain M satisfies the following properties: Let Qp = {q €
Q|3IseS, qR(s,6)} and Qn ={¢ € Q | Is€ S,a € A, ¢R(s,a)}, we have
Qb N QN = D because of their valuations and R,

Vg,q' € Qp, m(g)(¢') = 0 and Vg, q' € Qn, 7(q)(¢") =0,

® o € Qp, and

o Ayy = AUAP.
Define the PA P = (Sp, A, Lp, AP, Vp, st) such that Sp = Qp, with sf = qo, Vp is
such that for all ¢ € Qp, Vr(q) = Va(q), and Lp is such that for all s € Sp, a € A
and for all distribution g over Sp, L(s,a, ) = T iff there exists ¢’ € Qn such that

o 7(q)(d') >0,

e V(¢')=V(q) U{a}, and

e 0=7(q).
By construction, it is trivial that M satisfies P using the identity relation on Qp.
We now prove that P = N. Let RFA C Sp x S the relation such that pRY™ s iff
pR(s,¢). We now prove that RY is a satisfaction relation for APA.

Let ¢ € Sp and s € S such that ¢ R s. We show that RF2 satisfies the axioms
of a satisfaction relation for APAs.

1. Let a € A and ¢ € C(S) such that L(s,a,¢) = T. By construction, we have
that a distribution ~ over @ satisfies P((s,€)) if v((s,a)) > 0.
Since ¢ R(s,€), we have that there exists a correspondence function 6 : @ —
(f\? — [0,1]) such that w(g)d satisfies 1((s,€)). As a consequence, there must
exist ¢’ € Q such that 7(q)(¢") > 0 and 6(¢")((s,a)) > 0. By R again, we have
that Var(¢') = Vam(q) U {a} = Vi (s) U {a}.
As a consequence, in P, we have that Lp(q, a,0) = T with o = m(q"). Moreover,
since §(q")((s,a)) > 0, we have that ¢’ R(s,a). Thus, there exists a correspon-
dence function 8" : Q — (Q — [0, 1]) such that m(¢')d’ satisfies ¥((s,a)), i.e. the
distribution 7' : s € S — [7(q")d'](s', €) is such that there exists ¢’ such that
L(s,a,¢") # L and o' € Sat(¢'). By determinism of N, we have ¢ = ¢’. Let
672 be the correspondence function between P and S such that for all p’ € Sp
and s' € S, sPA(p')(s") = &' (®')((s',¢€)). By construction of 1((s,a)), we have
that for all p’ € Sp, b€ Aand s’ € S, §(p')((s',b)) = 0. Thus, 6** is a correct
correspondence function by construction.
Moreover, we have that 067 € Sat(y), and, for all p’, s’ such that 672 (p')(s") >
0, we have that §'(p’)((s’,€)) > 0. So, by R, we have p’ R(s',€), and thus
p/ RPA s
Finally, we have that there exists o such that Lp(q,a,0) = T, and there exists
v = 06"™ € Sat(y) such that o @%TA v
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2. Let a € A and ¢ € Dist(Sp) such that Lp(q,a,0) = T. By construction, there
exists ¢’ € Qn such that m(q)(q") > 0, Var(¢") = Var(q) U {a} and 0 = 7(q").
Since g R(s,€), we have that there exists § such that 7(g)d satisfies 9((s,€)).
Since 7(q)(¢') > 0, delta(q’) defines a distribution over Q. As a consequence,
there exists (s',b) € Q such that §(¢')((s',b)) > 0. Since 7(q)d satisfies ¥((s,€)),
we have that (s’,b) = (s,a).

Thus §(q¢')((s,a)) > 0, and, by definition of §, we have that ¢’ R(s,a). As a
consequence, there exists a correspondence function §’ such that w(q")d" satis-
fies ¥((s,a)), i.e. the distribution 7' : s’ € S — [7(¢')d'](s',€) is such that
there exists ¢ such that L(s,a,¢) # L and 7 € Sat(p). Let 6 be the cor-
respondence function between P and S such that for all p’ € Sp and s’ € S,
P (") = 6 (p')((s,€)). By construction of ¥((s,a)), we have that for all
pe€Sp,beAands’ €8, (p)((s',b)) =0. Thus, ' is a correct correspon-
dence function by construction.

Moreover, we have that 06** € Sat(y), and, for all p’, s’ such that 6**(p')(s") >
0, we have that &'(p’)((s’,¢)) > 0. So, by R, we have p’ R(s,¢), and thus
p/ RPA s

Finally, there exists ¢ € C(S) such that L(s,a,p) # L and there exists 7' =
06" in Sat(yp) such that o @‘75:;;\ v

3. By construction, we have Vp(q) = Var(q). By R, we have Var(q) € V((s,¢)) =
V(s). Thus Vp(q) € V(s).

Finally, R"™ is indeed a satisfaction relation.
By construction, we have that s§ R so, thus P = N. As a consequence, we have
that there exists a PA P such that M satisfies P and P = N. Thus M Euc N. O
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