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Abstract. We present an algebra of discrete timed input/output au-
tomata that execute in the context of different clock granularities —
timed machines — as models of systems that can be dynamically inter-
connected at run time in a heterogeneous context. We show how timed
machines can be refined to a lower granularity of time and how timed
machines with different clock granularities can be composed. We propose
techniques for checking whether timed machines are consistent or feasi-
ble. Finally, we investigate how consistency and feasibility of composition
can be proved at run-time without computing products of automata.

1 Introduction

Many software applications operating in cyberspace need to connect, dynam-
ically, to other software systems. For example, in the domain of intelligent
transportation, systems for congestion avoidance or coordination of self-driven
convoys of cars need to be able to accommodate interconnections that are estab-
lished at run time between components that cannot be pre-determined at design
time.

Applications such as these often have real-time requirements, i.e., their cor-
rectness depends not only on what outputs are returned to given inputs, but
also on the time at which inputs are received and corresponding outputs are
produced and communicated. When components of such software applications,
usually written in a high-level programming language and relying on particular
time abstractions, are executed in a given execution platform, their real-time
behaviour is additionally restricted by the clock period of that platform. Com-
ponents interconnected at run time will be likely to operate over different clock
periods, resulting in a timed heterogeneous system.

Existing formalisms for modeling time-constrained systems focus mainly on
mono-periodic systems, i.e., they assume that all system components will operate
over a shared clock period. These models can still be used for timed heteroge-
neous systems whose structure is fixed and known a-priori by modeling the
system components in terms of a global clock that is the least common multiple
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of all local clocks. In the case of systems whose structure is dynamic and defined
at run time, this is no longer possible [3].

In this paper, we propose a formal model for timed heterogeneous systems that
does not require a-priori knowledge of their composition structure. Our model is
based on input/output automata and supports run-time compositionality in the
following sense: it is possible to ensure that components canwork together as inter-
connected over heterogeneous local clocks by relying only on properties of models
of those components, with no need for calculating their composition. More specifi-
cally, we provide the means to determine if the interconnection of two automata is
consistent (there is at least a joint execution) or feasible (there is at least a joint exe-
cution nomatter what inputs the components receive from their environment) not
by calculating and checking properties of their product at run time but by relying
on properties of the individual automata that can be established at design or com-
position time. Those properties ensure that the automata are able to co-operate at
run time without modifying their time domains.

Our starting point is the homogeneous timed component algebra that we pro-
posed in [8] for services. The extension from a homogenous to a heterogeneous set-
ting is not trivial (which justifies this paper)because,where the algebraic properties
of composition in a homogenous-time domain generalise those of the un-timed do-
main, interconnection in a heterogeneous setting is not even always admissible. For
that reason, the algebra that we propose in Sec. 3 separates the space of discrete
timed input/output automata (TIOA) [14,7] from that of their executions over a
given clock: the components of our algebra are pairs of aTIOAanda clockgranular-
ity, what we call timedmachines. Two operations are defined over timedmachines:
heterogeneous composition, which extends the traditional product of TIOA to the
situation inwhich the granularities of the twomachines arenot the same, and refine-
ment, which extends a machine with new states and transitions in order to accom-
modate a finer clock granularity as required to interoperate with other machines.
Still, refinement does not reduce heterogeneous composition to the homogeneous
setting, which leads us to define a notion of ‘best approximation’ throughwhich we
can characterise classes of timedmachines that can be used to reason about or sim-
ulate interconnections of timedmachineswith commensurable clock granularities.

In Sec. 4, we study two important properties when modelling systems: con-
sistency, in the sense that a machine can be ensured to generate a non-empty
language, and feasibility, in the sense that a machine can be ensured to generate
a non-empty language no matter what inputs it receives. Finally, we prove two
compositionality results, one for consistency and the other for feasibility. Those
results rely on a number of properties that can be checked, at design time, over
given timed machines to ensure that their interconnection will be consistent or
feasible without actually having to calculate the product of the corresponding
automata at run time. Those properties ensure that components that implement
the timed machines can work together across different clock granularities.
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2 Preliminaries

2.1 Timed Traces

Although transition systems are typically used as operational semantics of au-
tomata (including timed transitions systems for timed automata as in [13]), we
use instead a trace semantics because the topological properties of trace domains
allow us to provide a finer characterisation of properties such as consistency and
feasibility (cf. Sec. 4). For example, existing transition-system semantics such
as [7] offer a weaker notion of consistency for timed automata because it fails
to enforce time progression and, therefore, an automaton that does not accept
any non-Zeno timed sequence can still be consistent. The proposed operational
semantics is also much closer to the one that we used in the homogeneous-timed
[8] and un-timed [9] domains, thus making it easier to understand the challenges
raised by a heterogeneous domain.

We start by recalling a few concepts related to traces. Given a set A, a trace
λ over A is an element of Aω , i.e., an infinite sequence of elements of A. We
denote by λ(i) the (i+1)-th element of λ. A segment π is an element of A∗, i.e.,
a finite sequence of elements of A.

In our timed model, a trace consists of an infinite sequence of pairs of an
instant of time and of the set of actions that are observed at that instant of
time. Every such set of actions can be empty so that, on the one hand, we can
model components that stop executing after a certain point in time while still
part of a system and, on the other hand, we can model observations that are
triggered by actions performed by components outside the system.

Definition 1 (Timed Traces). Let A be a set (of actions).

– A time sequence τ is a trace over R≥0 such that:
• τ(0) = 0;
• for every i ∈ N, τ(i) < τ(i + 1);
• the set {τ(i) : i ∈ N} is unbounded, i.e., time progresses (also called the
‘non-Zeno’ condition).

– An action sequence σ is a trace over 2A, i.e., an infinite sequence of sets of
actions, such that σ(0) = ∅.

– A timed trace over A is a pair λ = 〈σ, τ〉 of an action and a time sequence.
We denote by Λ(A) the set of timed traces over A and we call any Λ ⊆ Λ(A)
a timed property.

– Given δ∈R>0, the δ-time sequence τδ consists of all multiples of δ — for
every i∈N, τδ(i) = i · δ. A δ-timed trace over A is a timed trace 〈σ, τδ〉.

That is, in δ-timed traces, actions occur according to a fixed period (δ). These
traces are useful to capture the behaviour of discrete systems that execute ac-
cording to a fixed clock granularity.

In order to address heterogeneity, we need a notion of time refinement:

Definition 2 (Time Refinement). Let ρ : N → N be a monotonically in-
creasing function that satisfies ρ(0) = 0.
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– Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ (τ ′ �ρ τ)
iff, for every i ∈ N, τ(i) = τ ′(ρ(i)). We say that τ ′ refines τ (τ ′ � τ) iff
τ ′ �ρ τ for some ρ.

– Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ
through ρ (λ′ �ρ λ) iff
• τ ′ �ρ τ ,
• σ(i) = σ′(ρ(i)) for every i ∈ N, and
• σ′(j) = ∅ for every ρ(i) < j < ρ(i+ 1).

We also say that λ′ refines λ (λ′ � λ) iff λ′ �ρ λ for some ρ.
– The r-closure of a timed property Λ is Λr = {λ′ : ∃λ∈Λ(λ′ � λ)}.
– We say that Λ is closed under time refinement, or r-closed, iff Λr ⊆ Λ.

We extend the notion of refinement to timed properties:

– A timed property Λ′ refines a timed property Λ (Λ′ � Λ) iff, for every λ′∈Λ′,
there exists λ∈Λ such that λ′ � λ.

– A timed property Λ′ approximates a timed property Λ (Λ′ � Λ) iff Λ′ � Λ
and, for every λ∈Λ, there exists λ′∈Λ′ such that λ′ � λ.

That is, a time sequence refines another if the former interleaves time observa-
tions between any two time observations of the latter. For instance,

〈∅ · {a, b} · {b, c} . . . , 0 · 2 · 4 · · · 〉
is refined by

〈∅ · ∅ · {a, b} · ∅ · {b, c} . . . , 0 · 1 · 2 · 3 · 4 · · · 〉
Refinement extends to traces by requiring that no actions be observed in the

finer trace between two consecutive times of the coarser. A timed property Λ′

refines Λ if all traces of Λ′ refine some trace of Λ. If all the traces of Λ have a
refinement in Λ′, then Λ′ approximates Λ.

2.2 Timed Input/Output Automata

In order to model machines, we use timed I/O automata as in [7] except that
transitions perform sets of actions instead of single actions. Working with sets
of actions simplifies the treatment of interconnections by introducing synchro-
nisation sets and gives us for free the empty set as an abstraction of actions
performed by the environment that an automaton can observe without being
directly involved.

A timed automaton is defined in terms of a finite set C of clocks. A condition
over C is a finite conjunction of expressions of the form c 	
 n where c ∈ C,
	
∈{≤,≥} and n∈N. We denote by B(C) the set of conditions over C.

Definition 3 (TIOA). A timed I/O automaton A (TIOA) is a tuple

A = 〈Loc, q0,C, E,Act, Inv〉
where:
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– Loc is a finite set of locations;
– q0∈Loc is the initial location;
– C is a finite set of clocks;
– E ⊆ Loc× 2Act × B(C)× 2C × Loc is a finite set of edges;
– Act = ActI ∪ ActO ∪ Actτ is a finite set of actions partitioned into inputs,

outputs and internal actions, respectively;
– Inv: Loc → B(C) is a mapping that associates an invariant with every loca-

tion.

In addition, we impose that every TIOA is open in the sense of not interfering
with the ability of the environment to make progress: for all l∈Loc, there is an
edge (l, ∅, φ, ∅, l′)∈E for some location l′ such that Inv(l′) is implied by Inv(l)
and for some tautology φ.

Given an edge (l, S, C,R, l′), l is the source location, l′ is the target location, S is
the set of actions executed during the transition, C is a guard (a condition that
determines if the transition can be performed), and R is the set of clocks that
are reset by the transition. The requirement that every location is the source of
a transition labelled by ∅ that is always enabled means that the behavior of A
is always open to the execution of actions in which it is not involved.

A clock valuation over a set C of clocks is a mapping v: C → R≥0. Given
d ∈ R≥0 and a valuation v, we denote by v+d the valuation defined by, for any
clock c∈C, (v+d)(c) = v(c)+d. Given R ⊆ C and a clock valuation v, we denote
by vR the valuation where clocks from R are reset, i.e., such that vR(c)=0 if
c∈R and vR(c)=v(c) otherwise. Given a condition C in B(C), we use v � C to
express that C holds for the clock valuation v.

Definition 4 (Execution). Let A = 〈Loc, q0,C, E,Act, Inv〉 be a TIOA. An
execution of A starting in l0 and valuation v0 is a sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

where, for all i: (1) li∈Loc, vi is a clock valuation over C and di∈R>0; (2) Si⊆Act
and Ri⊆C; (3) for all 0 ≤ t ≤ di, vi + t � Inv(li); (4) vi+1=(vi + di)

Ri ; and
(5) there is (li, Si, C,Ri, li+1)∈E such that vi + di � C. A partial execution is
of the form

(l0, v0, d0)
S0,R0−→ · · · Sn−1,Rn−1−→ (ln, vn, dn)

where (1) and (3) hold for all i∈[0..n], and (2), (4) and (5) for all i∈[0..n− 1].

That is, each triple (li, vi, di) consists of a location, the value of the clocks when
that location is reached at that point of the execution, and the duration for
which the automaton remains at that location before the next transition (which
can leave the automaton in the same location). During this time, the invariant
Inv(li) must hold. A transition out of (li, vi, di) happens at the end of di units
of time and needs to be made by an edge whose guard Ci holds at that time and
leads to a location whose invariant is satisfied. As a result of the transition, the
clocks are updated to (vi + di)

Ri .
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A pair (l, v) where l is a location and v is a clock valuation is said to be reach-
able at time T ∈ R≥0 if either (a) (l, v) = (q0, 0), T = 0 and, there exists d0>0
such that t � Inv(q0) for all 0 ≤ t ≤ d0; or (b) there exists a partial execution
that starts at (q0, 0) and ends at (ln, vn) = (l, v), and T =

∑
i=0···n−1 di.

∅

true

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

a?

x ≤ 6

A B

y ≤ 6

b?

∅
a!, b?
y ≥ 3

y ≥ 3
a!

y := 0
b?

∅

true

21

Fig. 1. Two TIOAs: Ax (left) and Ay (right)

Example 5. Consider the TIOAs in Fig. 1: Ax=〈{A,B}, A, {x}, Ex, Actx, Invx〉
with ActIx = {a} and ActOx = {b}, and Ay = 〈{1, 2}, 1, {y}, Ey, Acty, Invy〉 with
ActIy = {b} and ActOy = {a} (for clarity, inputs are decorated with ? and outputs
with !).

– Ay starts by sending an a within six time units but not before three units
have passed; it then waits for receiving a b to start again and send another
a. More b’s can be received meanwhile (even while sending an a), but they
are all ignored.

– Ax waits for receiving an a, after which it sends a b within six time units
but not before two times units have passed (all a’s received in the meanwhile
being ignored); then, Ax waits for receiving another a.

An example of a partial execution of Ax is

(A, 0, 2)
{a},{x}−→ (B, 0, 3)

{b},∅−→ (A, 3, 5)
{a},{x}−→ (B, 0, 2)

which shows that (B, 0) is reachable at times 2 and 10.

We now recall the classical definition of composition of compatible TIOAs, which
captures partial synchronisation.

Definition 6 (Compatibility). Two TIOAs Ai=〈Loci, qi0,Ci, Ei, Acti, Inv
i〉

are compatible iff C1∩C2=ActI1∩ActI2=ActO1 ∩ActO2 =Actτ1∩Act2=Actτ2∩Act1= ∅.
Definition 7 (Composition). The composition of two compatible TIOAs Ai =
〈Loci, qi0,Ci, Ei, Acti, Inv

i〉 is

A1 ‖ A2 = 〈Loc1 × Loc2, (q10 , q
2
0),C

1 ∪ C2, E,Act, Inv〉

where:
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– ActI = (ActI1\ActO2 ) ∪ (ActI2\ActO1 ),
– ActO = (ActO1 \ActI2) ∪ (ActO2 \ActI1),
– Actτ = Actτ1 ∪ Actτ2 ∪ (ActI1∩ActO2 ) ∪ (ActO1 ∩ActI2), and
– for all (q1, q2)∈Loc1×Loc2:

• Inv((q1, q2))=Inv1(q1) ∧ Inv2(q2);
• ((q1, q2), S, C,R, (q′1, q′2))∈E iff (q1, S1, C1, q

′
1)∈E1, (q2, S2, C2, q

′
2)∈E2,

C = C1 ∧ C2, Si = S ∩ Acti (i = 1, 2) and R = R1 ∪R2.

Notice that, because the guards of transitions are conjoined, for the TIOA that
results from the composition to be open (cf. Def. 3) we need to require the exis-
tence of a transition labeled with ∅ and a tautological guard (instead of simply
true). Notice also that, by construction, whenever S∩Act1 �= ∅ and S∩Act2 �= ∅,
all actions on which A1 and A2 synchronise (those in S ∩Act1∩Act2) are neces-
sarily inputs on one side and outputs on the other; the composition makes those
actions internal. Finally, transitions such that S ∩ Acti = ∅, which are usually
considered as non-synchronising, are in our case handled as synchronising tran-
sitions where Ai performs the empty set of actions (which corresponds to an
open semantics).

3 Timed Machines: Definition and Operations

In order to model systems where applications execute over specific platforms,
which implies that they are subject to the clock granularity of the platform, we
extend TIOAs to what we call timed machines.

3.1 Timed Machines

A timed machine is a TIOA that executes in the context of a clock granularity
δ, i.e., its actions are always executed at instant times that are multiples of δ.

Definition 8 (DTIOM). A discrete timed I/O machine (DTIOM) is a pair

M = 〈δM,AM〉

where δM∈R>0 and AM is a TIOA.
The executions and partial executions of M are those of AM restricted to

transitions at every δM, i.e.,

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

such that all the durations di are δM. Therefore, we represent executions of
DTIOMs as sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

and call each pair (li, vi) an execution state.
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The behaviour �M� of M is the set of executions such that l0=q0 and v0(c)=0
for all c∈C, i.e., those that start in the initial location with all clocks set to 0.

Every execution of a DTIOM M defines the δM-timed trace λ=〈σ, τδM 〉 over
Act where σ(0)=∅ and, for i ≥ 0, σ(i+1) = Si. We denote by ΛM the r-closure
of the set of timed traces defined by �M�, which we call its language.

The fact that the language of a DTIOM is r-closed means that it contains all
possible interleavings of empty observations, thus capturing the behaviour of the
DTIOM in any possible environment. This notion of closure can be related to
mechanisms that, such as stuttering [1], ensure that components do not constrain
their environment.

Example 9. Consider Mx = 〈δx,Ax〉, and My = 〈δy ,Ay〉, with δx = 2, δy = 1
and Ax and Ay as in Ex. 5. Notice that the partial execution of Ax given in Ex. 5
is not a partial execution of Mx as it does not respect the granularity δx = 2.
An example of a partial execution of Mx is

(A, 0)
{a},{x}−→ (B, 0)

∅,∅−→ (B, 2)
{b},∅−→ (A, 4)

Note that this means that a was executed at time 2, nothing was executed at time
4 and b was executed at time 6.

3.2 Composition and Refinement of Timed Machines

Composition of DTIOMs with the same clock granularity is as for TIOA:

Definition 10 (Composition). Given two TIOAs A1 and A2 that are com-
patible, we define the composition 〈δ,A1〉‖〈δ,A2〉 = 〈δ,A1‖A2〉.
It is not difficult to prove that the language Λ〈δ,A1‖A2〉 of the composition is the
intersection

Λι1
〈δ,A1〉 ∩ Λι2

〈δ,A2〉

where

– ιi is the inclusion of Acti in Act1∪Act2 and
– Λιi

〈δ,Ai〉 = {λ : ι−1
i (λ)∈Λ〈δ,Ai〉} are the projections of the languages of

the machines to the alphabet of the composition defined by, for every k,
ι−1
i (λ)(k) = ι−1

i (λ(k)).

That is, the language of the composition consists of the timed traces that project
to timed traces of languages of the component DTIOMs. This is what is usually
taken to be the joint behaviour of a system of components in a trace-based se-
mantic domain, meaning that 〈δ,A1‖A2〉 provides a model of the joint behaviour
of two systems of which 〈δ,A1〉 and 〈δ,A2〉 are models.

If 〈δ1,A1〉 and 〈δ2,A2〉 have different clock granularities, we can still calculate
the intersection Λι1

〈δ,A1〉∩Λ
ι2
〈δ,A2〉, which is the joint behaviour of the two machines

synchronising on shared inputs and outputs at times that are multiple of both
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δ1 and δ2. If no such multiples exist, the two machines cannot synchronise and,
therefore, either they do not have liveness requirements, in which case they can
agree on timed traces that only execute the empty set of actions, or they cannot
agree on any timed trace — their interconnection is inconsistent.

If δ1 and δ2 admit a common multiple, i.e., δ1 ·n = δ2 ·m for given n,m ∈ N>0,
then they are commensurable, i.e., they admit a common divisor (δ1/m = δ2/n)
– again, a real number. This is the situation that we characterise now. More
precisely, our aim is to construct a machineM that, although it may not generate
the full set of joint behaviours, i.e., be such that ΛM = Λι1

M1
∩ Λι2

M2
, it will be

the ‘best’ approximation of that set in the sense that ΛM � Λι1
M1

∩ Λι2
M2

and,
for any other machine M′ such that ΛM′ � Λι1

M1
∩ Λι2

M2
, ΛM′ � ΛM. Having

a best approximation is important so that properties of the global behaviour
of the system (such as consistency and feasibility, discussed in Sec. 4) can be
inferred from that of the composed machine or that the behaviour of the system
can be simulated through a machine.

The idea is to refine the timed machines to a common clock granularity and
then compose the refinements: intuitively, given a timed machine M = 〈δ,A〉, we
define its k-refinement Mk = 〈δ/k,Ak〉 by dividing both the clock granularity
and the TIOA A by k so as to produce a TIOA Ak that divides every state in k
copies such that the original transitions are performed in the last ‘tick’, all previ-
ous ‘ticks’ performing no actions and, therefore, being open for synchronisation
with a machine that ticks with a granularity δ/k.

Definition 11 (Refinement). Given a TIOA A = 〈Loc, q0,C, E,Act, Inv〉
and k ∈ N>0, its k-refinement is the TIOA Ak = 〈Lock, qk0,C, Ek, Act, Invk〉
where:

– Lock = Loc× [0..k − 1];
– qk0 = (q0, 0);
– Invk(l, i) = Inv(l);
– for every (l, S, C,R, l′) of E, Ek has the edge ((l, k − 1), S, C,R, (l′, 0)) and

all edges of the form ((l, i), ∅, true, ∅, (l, i+ 1)), i ∈ [0..k − 2].

It is easy to see that ΛMk
� ΛM, i.e., the language of Mk refines that of M; in

fact, because the languages are r-closed, ΛMk
⊆ ΛM. Because every execution

of M defines a (unique) execution of Mk, the language of Mk actually approx-
imates that of M, i.e., ΛMk

� ΛM, meaning that all possible behaviours of M
can be accounted for in Mk through a refinement: we say that Mk approximates
M and write Mk � M. More generally, for arbitrary DTIOMs M and M′ that
have a common alphabet (i.e., ActM′ = ActM), we define M′ � M to mean
that δM is a multiple of δM′ and ΛM′ � ΛM.

Example 12. Consider the TIOA Ax in Fig. 1 and the corresponding DTIOM
Mx defined in Ex. 9, which has granularity 2. Its refinement to a DTIOM with
granularity 1 is Mx

2 = 〈1,Ax
2〉, with Ax

2 given in Fig. 2. The refinement of the
partial execution of Mx given in Ex. 9 is:

((A, 0), 0)
∅,∅−→ ((A, 1), 1)

{a},{x}−→ ((B, 0), 0)
∅,∅−→ ((B, 1), 1)

∅,∅−→ ((B, 0), 2)
∅,∅−→ ((B, 1), 3)

{b},∅−→ ((A, 0), 4)
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true

∅

true

∅

a?
x := 0

b!
x ≥ 2

x ≥ 2
b!, a?

∅

x ≤ 6

∅a?

x ≤ 6

A, 1 B, 0

B, 1A, 0

Fig. 2. The refinement Ax
2 of Ax

∅ ∅

aτ

y ≥ 3, x := 0

∅ ∅

x ≥ 2, y := 0
bτy ≤ 6

y ≤ 6 x ≤ 6

x ≤ 6

(A, 1), 1 (B, 0), 2

(A, 0), 1 (B, 1), 2

Fig. 3. The TIOA Ax,y of Mx‖My

We can now extend the composition of two timed machines to the case where
their clock granularities are commensurable (have a common divisor):

Definition 13 (Heterogeneous Compatibility). Two DTIOMs Mi=〈δi,Ai〉,
i = 1, 2, are said to be δ-compatible (where δ ∈ R>0) if (a) A1 and A2 are
compatible, and (b) δ is a common divisor of δ1 and δ2. They are said to be
compatible if they are δ-compatible for some δ.

Definition 14 (Heterogeneous Composition). The δ-composition of two δ-
compatible DTIOMs is

M1 ‖δ M2 = M1(δ1/δ) ‖ M2(δ2/δ) = 〈δ,A1(δ1/δ) ‖ A2(δ2/δ)〉

If δ is the greatest common divisor of δ1 and δ2, we use the notation M1‖M2

and simply refer to the composition of M1 and M2.

Notice that if A1 and A2 are compatible, so are A1(δ1/δ) and A2(δ2/δ).

Example 15. Consider DTIOMs Mx and My from Ex. 9. Because Ax and
Ay are compatible and δx and δy have a common divisor (δ = 1), we can com-
pute their composition. The first step consists in refining Ax into Ax

2 (Fig. 2).
The composition Mx‖My is 〈1,Ax,y〉 where Ax,y = Ax

2‖Ay is given in Fig. 3.
Notice that actions a and b are synchronised and, hence, made internal in the
composition, which we denote by aτ and bτ , respectively.

The language of a heterogeneous composition is not necessarily the intersection
of the languages of the components. However, if M1 and M2 can be composed,
the machine M1‖M2 approximates Λι1

M1
∩Λι2

M2
, and is a best approximation:

Theorem 16. Let Mi, i = 1, 2, be two compatible DTIOMs. The composition
M1‖M2 is the machine that best approximates Λ = Λι1

M1
∩ Λι2

M2
, i.e.,

– ΛM1‖M2
� Λ and,

– for any other machine M such that ΛM � Λ, M � M1‖M2.
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3.3 Büchi Representation of Timed Machines

In order to check different structural properties of DTIOMs, namely properties
formulated in terms of reachable states, it is useful to be able to construct Büchi-
automata “equivalent”.

Let A = 〈Loc, l0,C, E,Act, Inv〉 be a TIOA. Given a clock c, let MaxA(c) de-
note the maximal constant with which c is compared in the guards and invariants
of A. Let M = 〈δ,A〉 and BM = 〈Q, q0, 2

Act,→, Q〉 be the Büchi automaton
such that:

– Q = Loc×∏
c∈C

[0 .. �MaxM(c)
δ �+ 1] (i.e., states consist of a location l and a

natural number nc ≤ �MaxM(c)
δ �+ 1, for every c ∈ C);

– q0 = (l0,0);

– (l,ν)
S→ (l′,ν′) iff there exists a transition (l, S, C,R, l′) ∈ E such that:

(i) for all 0 ≤ t ≤ δ, ν · δ + t |= Inv(l),
(ii) ν · δ + δ |= C,

(iii) for all c ∈ C, ν′(c) =

⎧
⎨

⎩

0 if c ∈ R

ν(c) if c /∈ R and ν(c) = �MaxA(c)
δ �+ 1

ν(c) + 1 otherwise

⎫
⎬

⎭

(iv) ν ′ · δ |= Inv(l′).

Notice that Q involves only natural numbers. The size of BM is in O(|Loc| ·
(�Max

δ � + 2)|C|), where |Loc| and |C| are the size of Loc and the number of

clocks, respectively, and Max = max{MaxA(c) | c ∈ C} is the maximal constant
considered in all constraints and invariants of M.

The Büchi automaton BM is equivalent to M in the following sense:

Theorem 17. For all action sequences σ over Act, 〈σ, τδ〉∈�M� iff the infinite
sequence σ(1)σ(2) . . . is in the language of BM.

4 Consistency and Feasibility of Timed Machines

In this section, we investigate two important properties of DTIOMs as models
of systems: consistency (in the sense that they generate a non-empty language)
and feasibility (in the sense that they generate a non-empty language no matter
what inputs they receive). We are especially interested in conditions under which
consistency/feasibility are preserved by composition. This is because, in order
to support run-time interconnections, one should be able to guarantee that a
composition of DTIOMs is consistent/feasible without having to compose them.

4.1 Consistency

Definition 18 (Consistency). A DTIOM M is said to be consistent if ΛM �=∅.
Notice that consistency is preserved by refinement:
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Proposition 19. Let k ∈ N>0. A DTIOM M is consistent iff its k-refinement
Mk is consistent. More generally, for arbitrary DTIOM M and M′,

– if M′ � M and M′ is consistent, then so is M, and
– if M′ � M, then M′ is consistent iff M is consistent.

A sufficient condition for consistency is that the DTIOM is initializable and
makes independent progress. A DTIOM is initializable if it can stay in the initial
state until the first tick of the clock:

Definition 20 (Initializable). A DTIOM M is said to be initializable if, for
all 0 ≤ t ≤ δM, (q0, t) � Inv(q0).

For a machine to make independent progress (which we adapt from [7]), it needs
to make a transition from any reachable state without forcing the environment
to provide any input:

Definition 21 (Independent Progress). A DTIOM M is said to make inde-
pendent progress if, for every reachable state (l, v), there is an edge (l, A, C,R, l′)
such that: (a) A ⊆ ActOM ∪ActτM, (b) v+ δM � C, and (c) for all 0 ≤ t ≤ δM,
(v + δM)R + t � Inv(l′).

As an example, both Mx and My as in Ex. 9 are initializable and make inde-
pendent progress.

Proposition 22. Any initializable DTIOM that makes independent progress is
consistent.

Notice that checking that a timed machine makes independent progress requires
only the analysis of properties of its reachable states. In practice, this can be
done using a syntactic check on the Büchi automaton as constructed in Sec. 3.3:
a given DTIOM M makes independent progress iff all reachable states (l,ν)
of the equivalent Büchi automaton BM have at least one outgoing transition

(l,ν)
A→ (l′,ν′) with A ⊆ ActOM ∪ ActτM. BM has only finitely many states,

denoted by |BM|, and finitely many transitions, denoted by |EM|, and, hence,
this can be checked in time O(|BM| · |EM|).

4.2 Compositional Consistency Checking

In order to investigate conditions that can guarantee compositionality of con-
sistency checking, we start by remarking that the fact that two DTIOMs M1

and M2 are such that δ1 and δ2 are commensurate simply means that we can
find a clock granularity in which we can accommodate the transitions that the
two DTIOMs perform: by itself, this does not ensure that the two DTIOMs can
jointly execute their input/output synchronisation pairs. For example, if δ1 = 2
and δ2 = 3 and M2 only performs non-empty actions at odd multiples of 3,
the two machines will not be able to agree on their input/output synchronisa-
tion pairs. For the DTIOMs to actually interact with each other it is necessary
that their input/output synchronisation pairs can be performed on a common
multiple of δ1 and δ2.
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Definition 23 (Cooperative). A DTIOM M is said to be cooperative in re-
lation to Q⊆ActM and a multiple δ of δM if the following holds for every (l, v)
reachable at a time T such that (T + δM) is not a multiple of δ:

for every edge (l, A, C,R, l′) ∈ EM such that v+δM � C and (v+δM)R+t �
InvM(l′) for all 0 ≤ t ≤ δM — i.e., the machine makes a transition at a
time that is not a multiple of δ — there exists an edge (l, A\Q,C′, R′, l′′)
such that v + δM � C′; for all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � InvM(l′′) —

i.e., the machine can make an alternative transition that does not perform
any actions in Q.

Essentially, being cooperative in relation to Q and δ means that the machine will
not force transitions that perform actions in Q at times that are not multiples
of δ. In practice, this can be verified using a syntactic check on the states of the
equivalent Büchi automaton that can be reached with a number of transitions
n such that n + 1 is not a multiple of δ/δM. This can be done in time in
O( δ

δM · |BM| · |EM|2), with |BM| the size of the Büchi automaton BM defined
in Sec. 3.3.

y ≥ 5

y ≥ 5

y ≤ 5

Fig. 4. The TIOA A′

Example 24. My from Ex. 9 is cooperative in relation to {a, b} and δ = 2. In
constrast, the machine M′ with δ′ = 1 and the TIOA A′ presented in Fig. 4
is not cooperative in relation to {a, b} and δ = 2. Indeed, the fact that the
state corresponding to the location 1 is reached at time 4 enables the transi-
tion (1, a, y ≥ 5, ∅, 2), which cannot be replaced by (1, ∅, true, ∅, 1) because the
last condition — for all 0 ≤ t ≤ 1 = δy, 5 + t ≤ 5 — is violated. Because the
machine M′ forces the output of a at time 5, it is easy to conclude that its com-
position with the machine Mx from Ex. 9 (which has a clock granularity δx = 2)
results in a inconsistent DTIOM.

In relation to the composition of M1 and M2, the idea is to require that a
common multiple of δ1 and δ2 exists such that both DTIOMs are cooperative
in relation to ActM1∩ActM2 . However, this is not enough to guarantee that the
two DTIOMs can actually work together: we need to ensure that if, say, M1

wants to output an action, M2 can accept it.

Definition 25 (DP-enabled). A DTIOM M is said to be DP-enabled in re-
lation to J⊆ActIM and δ multiple of δM if the following property holds for every
B⊆J and state (l, v) reachable at a time T such that (T+δM) is a multiple of δ:
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for every edge (l, A, C,R, l′) ∈ EM such that v+δM � C and, for all 0 ≤ t ≤
δM, (v+ δM)R+ t � InvM(l′) — i.e., the machine can make a transition —
there exists an edge (l, B ∪ (A\J), C′, R′, l′′) such that v + δM � C′ and, for
all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � InvM(l′′) — i.e., the machine can make

an alternative transition that accepts instead B as inputs and still performs
the same outputs (and inputs outside J).

That is, a DTIOM is DP-enabled in relation to a set of inputs J and a multiple
δ of its clock granularity if, whenever it leaves a reachable state at a multiple of
δ, it can do so by accepting any subset of J , and if its outputs are independent
of the inputs in J that it receives. Both Mx and My from Ex. 9 are DP-enabled
in relation to the set of input actions (resp., {a} and {b}) and δx = 2.

Notice that being DP-enabled is different from being input-enabled [14] in that
we work with sets of actions (synchronisation sets), not just individual actions
in the edges. Because, in our case, inputs and outputs can occur simultaneously,
we need to ensure that there is no dependency between those that are included
in the same synchronisation set.

DP-enabledness can be verified using a syntactic check on states of the equiv-
alent Büchi automaton that can be reached in a number of steps n such that

n+1 is a multiple of δ/δM. This can be done in O( δ
δM

· |BM| · |EM|2 · 2|ActIM|),
with |BM| as given in Sec. 3.3.

We now investigate how a composition can be shown to be consistent. We
start by analysing how properties behave under refinement and composition.

Lemma 26. If a DTIOM M is initializable (makes independent progress, is
DP-enabled / cooperative in relation to J and δ′), then so does Mk for all
k ∈ N>0.

That is, refinement preserves initializability, independent progress, DP-
enabledness and cooperativeness.

Lemma 27. Let Mi = 〈δi,Ai〉, i = 1, 2, be two δ-compatible DTIOMs and δ′1
a multiple of δ1.

(a) If M1 and M2 are initializable so is M1 ‖δ M2.
(b) If M1 is DP-enabled in relation to J ⊆ ActI1 and δ′1, then M1 ‖δ M2 is

DP-enabled in relation to J \ActO2 and δ′1.
(c) If M1 is cooperative in relation to Q ⊆ ActO1 \ActI2 and δ′1, then M1 ‖δ M2

is cooperative in relation to Q and δ′1.

Notice that in the preservation of DP-enabledness, we need to remove from J
any actions that were used for synchronisation with M2, which are necessarily
in ActO2 . This is because they become internal to the composition and, therefore,
are no longer available for synchronisation. The preservation of cooperativeness
is relative to set of actions that are not used for synchronisation.

Theorem 28 (Compositionality). Let Mi, i = 1, 2, be two δ-compatible and
initializable DTIOMs that can make independent progress. Let δ′ be a common
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multiple of δ1 and δ2. If M1 is DP-enabled in relation to ActI1 ∩ ActO2 and δ′,
M2 is DP-enabled in relation to ActI2 ∩ActO1 and δ′, and both M1 and M2 are
δ′-cooperative in relation to Act1∩Act2, then M1 ‖δ M2 is initializable and can
make independent progress (and, hence, by Prop. 22, is consistent).

This result allows us to conclude that the machines Mx and My presented in
Ex. 9 can work together (i.e., Mx ‖ My is consistent). This is because, as noted
before, Mx and My are DP-enabled in relation to δ′ = 2 and {a} and {b},
respectively, and are cooperative in relation to {a, b} and δ′ = 2.

Notice that, from Lemma 27, if Mi is DP-enabled in relation to J ⊆ ActIi
and δ′i is a multiple of δi, the composition M1 ‖δ M2 is DP-enabled in relation
to J \ ActO

i
and δ′i, with 1 = 2 and 2 = 1. Moreover, if Mi is cooperative in

relation to Q ⊆ ActOi \ ActI
i
and δ′i multiple of δi, M1 ‖δ M2 is cooperative

in relation to Q and δ′i (also a multiple of δ). This implies that, in order to
ensure that the composition of M1 ‖δ M2 with a third machine M3 (which
can itself be the result of a composition) is consistent, we can verify the required
properties (being initializable, DP-enabled and cooperative) over the component
machines: we do not need to make checks over the machines resulting from the
compositions (compositionality).

This result is also important to certify that the behaviour of a system of
interacting components — Λ = Λι1

M1
∩Λι2

M2
in the case of two components that

implement M1 and M2 — is not empty and, hence, the components can indeed
operate together. This is because, by Theo. 16, ΛM1‖M2

� Λ and, hence, if
M1 ‖ M2 is consistent, Λι1

M1
∩ Λι2

M2
is not empty.

4.3 Feasibility

The property of being DP-enabled is related to a stronger notion of consistency
called ‘feasibility’: whereas consistency guarantees the existence an execution,
feasibility requires that, no matter what inputs the machine receives from its
environment, it can produce an execution.

Definition 29 (Feasible). A DTIOM M is said to be feasible in relation to
J ⊆ ActIM and a multiple δ of δM if, for every δ-timed trace λ over J and
state (l, v) reachable at a time T such that (T + δM) is a multiple of δ, there
is an execution starting at (l, v) that generates a δM-timed trace λ′ such that
λ′|J � λ, where λ′|J is the timed trace obtained from λ′ by forgetting the elements
in ActM \ J from the underlying action sequence. A DTIOM M is said to be
feasible if it is feasible in relation to ActIM and δM.

This notion of feasibility is similar to the one use, for example, in [14], which we
have relativised to given sets of input actions in order to account for structured
interactions with the environment.

Proposition 30. A DTIOM M that makes independent progress and is DP-
enabled in relation to J ⊆ ActIM and a multiple δ of δM is feasible in relation
to J and δ.
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In relation to the compositionality of feasibility, we can prove:

Theorem 31. Let Mi, i = 1, 2, be two δ-compatible DTIOMs that can make
independent progress. Let δ′ be a common multiple of δ1 and δ2 and δ′1 a multiple
of δ1 and J ⊆ ActI1. If (a) M1 is DP-enabled in relation to J and δ′1, (b) M1 is
DP-enabled in relation to ActI1 ∩ActO2 and δ′, (c) M2 is DP-enabled in relation
to ActI2 ∩ ActO1 and δ′, and (d) both M1 and M2 are δ′-cooperative in relation
to Act1 ∩ Act2, then M1 ‖δ M2 is feasible in relation to J \ActO2 and δ′1.

5 Related Work

Several researchers have recently addressed discrete timed systems with hetero-
geneous clock granularities. However, the main focus has been either on spec-
ification or on modelling and simulation, not so much on the challenges that
heterogeneity raises on run-time interconnection of systems. For example, For-
get et al. propose in [10] a synchronous data-flow language that supports the
modelling of multi-periodic systems. In this setting, each system has its own
discrete periodic clock granularity; composition is supported by a formal clock
calculus that allows, in particular, for the refinement of clock granularities in a
way that is similar to what we propose in Sec. 3. Aside from the fact that we
adopt an automata-based representation, the main difference with our work is
that they leave open the question of component-based verification of properties
such as consistency.

Similarly, in [6], the authors introduce a formal communication model of be-
haviour for the composition of heterogeneous real-time cyber-physical systems
based on logical clock constraints. Although this model supports the combina-
tion of heterogeneous timed systems, the authors do not consider the particular
case of discrete periodic systems. In [17], the authors present a methodology
(ForSyDe) for high-level modelling and refinement of heterogeneous embedded
systems; whilst the semantics they propose, and the notion of clock-refinement
they introduce, are similar in essence to ours, their main focus is again on mod-
elling and simulation, whereas ours is on the structures that support composi-
tional reasoning over properties of interconnected systems.

To cope with heterogenous time scales, several approaches to the specification
of real-time systems, notably the Timebands Framework [5], have also adopted
an explicit representation of time granularity. That framework, unlike others,
does not require that all descriptions be transformed into the finest granularity.

Some attempts have also been made at addressing compositionality, for ex-
ample in [15] that exploits the concept of tag machines [2]. However, the notion
of composition of systems introduced by the authors (using tag morphisms) is
more relaxed than ours in that it allows for the delay between events to be mod-
ified in given tag machines. A consequence of this generality is that the language
resulting from a composition is not an approximation of the intersection of the
original languages, which, as argued in our paper, is essential for addressing
global properties of interconnected systems as implemented.
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From a practical point of view, some tools have been developed for mod-
elling and simulating heterogeneous systems. For example, Ptolemy Classic [4]
introduced the concept of heterogeneous combinations of semantics such as asyn-
chronous models with timed discrete-events models. The concept was picked up
in other tools such as System C [12], Metropolis [11] and Ptolemy II [16]. The
common characteristics of these tools is that (1) they are based on a model that
is more general than the one we propose in this paper, and (2) they do not
consider composition of discrete timed systems with different periodic clocks. As
a consequence, they are not able to provide results as strong as ours when it
comes to reasoning about specific global properties of interconnected systems.

6 Concluding Remarks

This paper proposes a new theoretical framework for the compositional design
of timed heterogeneous systems based on an extension of timed input/output
automata [14,7] where automata are assigned a clock granularity (what we call
timed machines). Composition is thus extended to cater for automata that op-
erate over different clock granularities.

One key aspect of our work is that we support the design of heterogeneous
timed systems whose clock granularities can be made compatible without modi-
fying the time domains of the individual components. This is important so that
components can be interconnected at run time, not design time, which is essential
for addressing the new generation of systems that are operating in cyberspace,
where they need to be interconnected, on the fly, to other systems. Our ap-
proach is truly compositional in that we can obtain properties of a whole system
of interconnected components without having to compute their composition.

The main properties that we address are consistency (there exists at least
a joint trace on which all components can agree) and feasibility (there exists
at least a joint trace on which all components can agree no matter what input
they receive from their environment). The technical results that support com-
positional verification of consistency and feasibility are based on new notions of
time refinement and of cooperation conditions through which timed components
can be ensured to be open to interactions with other components across different
time granularities.

There are two main directions for future work. The first is to implement
and evaluate our approach on concrete case studies. A possibility would be to
implement the framework as an extension of Ptolemy [4], which would give us
access to industrial-size case studies. The second aims at extending our work to
networks of heterogeneous timed systems that communicate asynchronously by
building on [8] and [9].
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