
Form Methods Syst Des (2011) 38: 1–32
DOI 10.1007/s10703-010-0107-8

Probabilistic contracts: a compositional reasoning
methodology for the design of systems with stochastic
and/or non-deterministic aspects

Benoît Delahaye · Benoît Caillaud · Axel Legay

Published online: 8 December 2010
© Springer Science+Business Media, LLC 2010

Abstract A contract allows to distinguish hypotheses made on a system (the guarantees)
from those made on its environment (the assumptions). In this paper, we focus on models
of Assume/Guarantee contracts for (stochastic) systems. We consider contracts capable of
capturing reliability and availability properties of such systems. We also show that classi-
cal notions of Satisfaction and Refinement can be checked by effective methods thanks to
a reduction to classical verification problems. Finally, theorems supporting compositional
reasoning and enabling the scalable analysis of complex systems are also studied.

Keywords Assume/Guarantee reasoning · Contracts · Probabilistic reasoning · Reliability
analysis · Availability

1 Introduction

Several industrial sectors involving complex embedded systems have recently experienced
deep changes in their organization, aerospace and automotive being the most prominent
examples. In the past, they were organized around vertically integrated companies, sup-
porting in-house design activities. These sectors have now evolved into more specialized,
horizontally structured companies: Equipment Suppliers (ESs) and Original Equipment

A preliminary version of this paper appeared in the 10th International Conference on Application of
Concurrency to System Design.
This work was supported by the European STREP-COMBEST project no. 215543 and by an “Action de
Recherche Collaborative” ARC (TP)I.

B. Delahaye
Université de Rennes 1/IRISA, Rennes, France
e-mail: benoit.delahaye@irisa.fr

B. Caillaud · A. Legay (�)
INRIA/IRISA, Rennes, France
e-mail: axel.legay@irisa.fr

B. Caillaud
e-mail: benoit.caillaud@irisa.fr

mailto:benoit.delahaye@irisa.fr
mailto:axel.legay@irisa.fr
mailto:benoit.caillaud@irisa.fr

2 Form Methods Syst Des (2011) 38: 1–32

Manufacturers (OEMs). OEMs perform system design and integration by importing, com-
bining, or reusing entire subsystems (also called components) provided by ESs.

In this context, techniques that allow to discover errors at the early stage of the design
are particularly appealing. Such techniques should be independent from the way components
are combined and must give strong confidence regarding the correctness of the entire system
without proceeding to a complete analysis. Developing these formal techniques pass by the
study of a mathematical formalism characterizing both properties that must be verified and
component behaviors/interactions. Results exist (see [18] and [40] for illustrations), but only
for limited classes of components, properties, and interactions. The objective of this paper
is to go one step further by studying systems that combine non-deterministic and stochas-
tic aspects. More precisely, we will propose: (1) a more complete set of component-based
design operations, (2) more complex properties than the classical safety/liveness properties
that are usually considered in the literature, and (3) a ompositional reasoning framework
for such systems.

The semantics foundations presented in this paper consist of a mathematical formalism
designed to support a component based design methodology and to offer modular and scal-
able verification techniques. At its basis, the mathematical formalism is a language theoretic
abstraction of systems behavior called contract [5]. Contracts allow to distinguish hypothe-
ses on a component (guarantees), from hypotheses made on its environment (assumptions).
In the paper we will focus on developing a contract-based compositional theory for two
classes of systems, that are (1) non-stochastic and possibly non-deterministic systems, and
(2) stochastic and possibly non-deterministic systems. As in classical non modular verifica-
tion [18, 51], the satisfaction relation will be Boolean for non-stochastic systems and quanti-
tative otherwise, hence leading to two notions of contracts. In addition, we will consider two
measures of satisfaction, namely reliability and availability. Availability is a measure of the
time during which a system satisfies a given property, for all possible runs of the system. In
contrast, reliability is a measure of the set of runs of a system that satisfy a given property.
Both quantities play an important role when designing, for instance, mission-critical sys-
tems. Our notion of satisfaction is assumption-dependent in the sense that runs that do not
satisfy the assumptions are considered to be “correct”. This interpretation, which has been
suggested by many industrial partners, is needed to propose compositional design operations
such as conjunction.

Aside from the satisfaction relation, any good contract-based theory should also support
the following requirements.

1. Refinement and shared refinement. Refinement of contracts expresses inclusion of sets of
models, and therefore allows to compare contracts.

2. Structural composition. The contract theory should also provide a combination operator
on contracts, reflecting the standard composition of models by, e.g. parallel product.

3. Logical composition/conjunction. Different aspects of systems are often specified by dif-
ferent teams. The issue of dealing with multiple aspects or multiple viewpoints is thus
essential. It should be possible to represent several contracts (viewpoints) for the same
system, and to combine them in a logical/conjunctive fashion.

The theory should also support incremental design (contracts can be composed/conjunct in
any order) and independent implementability (composable contracts can always be refined
separately) [25].

Form Methods Syst Des (2011) 38: 1–32 3

In the paper, we propose mathematical definitions for composition, conjunction and re-
finement. It is in fact known that most of industrial requirements1 for component-based
design translate to those operations (see [16] for an argumentation). Composition between
contracts, which mimics classical composition for systems, consists in taking the intersec-
tion between the assumptions and the intersection between the guarantees. Conjunction pro-
duces a contract whose assumptions are the union of the original ones and guarantees are
the intersection of the original ones. We say that a contract refines another contract if it guar-
antees more and assumes less. The definition is Boolean for non deterministic systems and
quantitative otherwise.

We also establish a compositional reasoning verification theory for those operations and
the two notions of satisfiability we consider. This methodology allows to reason on the
entire design by only looking at individual components . The theory differs with the type of
contracts under consideration. As an example, we will show that if a non stochastic system
S1 reliably satisfies2 a contract C1 and a non-stochastic system S2 reliably satisfies a contract
C2, then the composition of the two systems reliably satisfies the composition of the two
contracts. When moving to stochastic systems, we will show that if S1 satisfies C1 with
probability α and S2 satisfies C2 with probability β , then their composition satisfies the
composition of C1 and C2 with probability at least α + β − 1. The theory is fully general as
it assumes that both systems and contracts are represented by sets of runs.

Our last contribution is to propose effective and symbolic representations for contracts
and systems. Those representations rely on an automata-based representation of possibly
infinite sets of runs. Assuming that assumptions and guarantees are represented with Büchi
automata (which allows to specify assumptions and guarantees with logics such as LTL [43]
or PSL [27]), we observe that checking if a (stochastic) system satisfies a reliability prop-
erty can be done with classical techniques implemented in tools such as SPIN [49] or
LIQUOR [14]. In the paper, we show that satisfaction of availability properties can be
checked with an extension of the work presented in [23]. Finally, we also show that op-
erations between and on contracts can easily be performed on the automata-based represen-
tations.

Structure of the paper In Sect. 2, we recap all the basic notions that will be used through
the rest of the paper. Section 3 introduces the concept of contracts for non-stochastic sys-
tems. In Sect. 4, the concept is extended to the stochastic case. Section 5 is dedicated to
related work. Finally, Sect. 6 concludes the paper.

2 Preliminaries

In this section, we recap some definitions and concepts related to automata theory. We then
introduce some notations and concepts that will be used in the rest of the paper.

Let � be an alphabet. A finite word over � is a mapping w : {0, . . . , n − 1} → �. An
infinite word (or ω-word) w over � is a mapping w : N → �. An automaton is a tuple
A = (�,Q,Q0, δ,F), where � is a finite alphabet, Q is a set of states, Q0 ∈ Q is the
set of initial states, δ : Q × � → 2Q is a transition function (δ : Q × � → Q if the au-
tomaton is deterministic), and F ⊆ Q is a set of accepting states. A finite run of A on a

1Example: those of the European projects COMBEST [20] and SPEEDS [48].
2“Reliably satisfy” means that all the runs that satisfy the assumption must satisfy the guarantee.

4 Form Methods Syst Des (2011) 38: 1–32

finite word w : {0, . . . , n − 1}→� is a labeling ρ : {0, . . . , n}→Q such that ρ(0) ∈ Q0, and
(∀0≤ i ≤n − 1)(ρ(i +1) ∈ δ(ρ(i),w(i))). A finite run ρ is accepting for w if ρ(n) ∈ F . An
infinite run of A on an infinite word w : N→� is a labeling ρ : N→Q such that ρ(0) ∈ Q0,
and (∀0≤ i)(ρ(i + 1) ∈ δ(ρ(i),w(i)). An infinite run ρ is accepting for w with the Büchi
condition if inf (ρ) ∩ F �= ∅, where inf (ρ) is the set of states that are visited infinitely often
by ρ. We distinguish between finite-word automata that are finite automata accepting finite
words, and Büchi automata [12] that are finite automata accepting infinite words. A finite-
word automaton accepts a finite word w if there exists an accepting finite run for w in this
automaton. A Büchi automaton accepts an infinite word w if there exists an accepting in-
finite run for w in this automaton. The set of words accepted by A is called the language
accepted by A, and is denoted by L(A). Finite-word and Büchi automata are closed un-
der intersection and union. Inclusion and emptiness are also decidable. Both finite-word
and Büchi automata are closed under complementation and, in both cases, the construction
is known to be exponential. However, the complementation operation for Büchi automata
requires intricate algorithms that not only are worst-case exponential, but are also hard to
implement and optimize (see [52] for a survey).

Let N∞ = N ∪ {ω} be the closure of the set of natural integers and Nn = [0 . . . n − 1] the
interval ranging from 0 to n − 1. Let V be a finite set of variables that takes values in a
domain D. A step σ : V → D is a valuation of variables of V . A run on V is a sequence of
steps. More precisely, a finite or infinite run is a mapping w : Nn → V → D, where n ∈ N∞
is the length of w, also denoted |w|. Let ε be the run of length 0. Given k < n, the prefix of
w of length k +1 is denoted w[0,k]. Given a variable v ∈ V and a time i ≥ 0, the value of v at
time i is given by w(i)(v). Given w a finite run on V and σ a step on the same variables, w.σ

is the run of length |w|+1 such that ∀i < |w|, (w.σ)(i) = w(i) and (w.σ)(|w|) = σ . The set
of all finite (respectively infinite) runs on V is denoted by [V]∗ (respectively [V]ω). The set
of finite and infinite runs on V is denoted [V]∞ = [V]∗ ∪ [V]ω . Denote [V]n (respectively
[V]≤n) the set of all runs on V of length exactly n (respectively not greater than n). The
complement of
 ⊆ [V]∞ is given by ¬
 = [V]∞ \
. The projection of w on V ′ ⊆ V is
the run w ↓V ′ such that |w ↓V ′ | = |w| and ∀v ∈ V ′, ∀n ≥ 0, w ↓V ′ (n)(v) = w(n)(v). Given
a run w′ on V ′, the inverse-projection of w′ on V is the set of runs defined by w′ ↑V = {w ∈
[V]∞ | w ↓V ′= w′}. The extension of a set of runs
 on V to V ′, with V ⊆ V ′, is the set of
runs on V ′
 ↑V ′= ⋃

w∈
 w ↑V ′
.

A system over V is a pair (V ,
), where
 is a set of (finite and/or infinite) runs on
V . Let S = (V ,
) and S ′ = (V ′,
′) be two systems. The extension of S to an alphabet
V ′′ such that V ⊆ V ′′ is the system S ↑V ′′= (V ′′,
 ↑V ′′

). The inclusion of S in S ′, denoted
S ⊆ S ′, holds whenever
 ↑V ∪V ′⊆
′ ↑V ∪V ′

. The composition of S and S ′, denoted (V ,
)∩
(V ′,
′), is given by (V ∪ V ′,
′′) with
′′ =
 ↑V ∪V ′ ∩
′ ↑V ∪V ′

. The complement of S,
denoted ¬S, is given by ¬S = (V ,¬
). The restriction of system S = (V ,
) to runs of
length not greater than n ∈ N∞ (respectively exactly n) is the system S|≤n = (V ,
∩[V]≤n)

(respectively S|n = (V ,
∩[V]n)). In Sect. 4, it will be assumed that systems can respond to
every possible input on a set of probabilistic variables. Such systems are said to be receptive
to those variables. Given U ⊆ V , a set of distinguished variables, system S = (V ,
) is
U -receptive if and only if for all finite run w ∈
 ∩ [V]∗ and for all input ρ : U → D,
there exists a step σ : V → D such that σ ↓U= ρ and w.σ ∈
. Given U ⊆ V ∩ V ′, two
U -receptive systems S = (V ,
) and S ′ = (V ′,
′) are U -compatible if and only if S ∩ S ′ is
U -receptive.

A symbolic transition system over V is a tuple Symb = (V ,Qs,T ,Qs0), where V is a
set of variables defined over a finite domain D, Qs is a set of states (a state is a mapping
from V to D), T ⊆ Qs × Qs is the transition relation, and Qs0 ⊆ Qs is the set of initial

Form Methods Syst Des (2011) 38: 1–32 5

states. A run of Symb is a possibly infinite sequence of states qs0qs1 . . . such that for each
i≥0 (qsi , qs(i+1)) ∈ T and qs0 ∈ Qs0. A symbolic transition system for a system (V ,
) is
a symbolic transition system over V whose set of runs is
. Operations of (inverse) pro-
jection and intersection easily extend from systems to their symbolic representations (such
representation may not exist). Let BA = (�,Q,Q0, δ,F ⊆ Q) be an automaton such that
� is a mapping V → D. The synchronous product between BA and Symb is the automaton
B BA×Symb = (∅,Q′,Q′

0, δ
′,F ′), where Q′ = Qs ×Q, Q′

0 = Qs0 ×Q0, (a′, b′) ∈ δ′((a, b),∅)

iff (a, a′) ∈ T and b′ ∈ δ(b, a), F ′ = {(a, b) ∈ Q′|b ∈ F }. Each state in the product is a pair
of states: one for Symb and one for BA. If we do not take the information from BA into
account, a run of the product corresponds to a run of Symb.

3 Non-probabilistic contracts

In this section, we introduce the concept of contract for non stochastic systems. We also
study compositional reasoning for such contracts. We will present the theory in the most
general case by assuming that contracts and systems are given by (pair of) possibly infinite
sets of runs [5]. In practice, a finite representation of such sets is required and there are many
ways to instantiate our theory depending on this representation. At the end of the section,
we will give an example of such a representation. More precisely, we will follow a success-
ful trend in Model Checking and use automata as a finite representation for systems and
contracts. We will also derive effective algorithms based on this symbolic representation.

3.1 Contracts

We first recap the concept of contract [4], a mathematical representation that allows to dis-
tinguish between assumptions made on the environment and properties of the system.

Definition 1 (Contract) A contract over V is a tuple C = (V ,A,G), where V is the set
of variables of C, system A = (V ,
A) is the assumption and system G = (V ,
G) is the
guarantee.

The Contract C is said to be in canonical form if and only if ¬A ⊆ G. As we shall
see in Sect. 3.2, the canonical form is needed to have uniform notions of composition and
conjunction between contracts. As in [4], this assumption is safe in the sense that we do not
lose expressiveness. Indeed, any contract C = (V ,A,G) can be turned into an equivalent
contract C ′ in canonical form: C ′ = (V ,A,G ∪ ¬A).

We now turn to the problem of deciding whether a system satisfies a contract. A sys-
tem that satisfies a contract is an implementation of the contract. There are two types of
implementation relations, depending on the property captured by a contract. A first possible
interpretation is when the contract represents properties that are defined on runs of the sys-
tem. This includes safety properties. In this context, a system satisfies a contract if and only
if all system runs that satisfy the assumption are included in the guarantee. This applies to
reliability properties, and a system implementing a contract in this way is said to R-satisfy
the contract. Another possible interpretation is when the contract represents properties that
are defined on finite prefixes of the runs of the system and when one wants to evaluate how
often the system satisfies the contract. We will say that a system A-satisfies a contract with
level m (0 ≤ m ≤ 1) if and only if for each of its runs, the proportion of prefixes of system
runs that are either in the guarantee or in the complement of the assumption is greater or

6 Form Methods Syst Des (2011) 38: 1–32

equal to m. This concept can be used to check average safeness or reliability, i.e., to de-
cide for each run whether the average number of positions of the run that do satisfy a local
condition is greater or equal to a given threshold.

Definition 2 (R-Satisfaction) System S = (U,
) R-satisfies contract C = (V ,A,G) up to
time t ∈ N∞, denoted S |=R(t) C, if and only if S|≤t ∩ A ⊆ G.

Discussion. In this paper, we assume that runs that do not satisfy the assumptions are “good”
runs, i.e., they do not need to satisfy the guarantee. In our theory, assumptions are thus used
to distinguish runs that must satisfy the property from those that are not forced to satisfy
the property. There are other interpretations of the paradigm of assume/guarantee in which
the runs that do not satisfy the assumptions are considered to be bad. We (and our industrial
partners) believe that our definition is a more natural interpretation as there is no reason to
eliminate runs on which no assumption is made. Another advantage of this approach, which
will be made more explicit in Sect. 4, is that this interpretation allows to define a conjunction
operation in the stochastic case.

The definition of A-satisfiability is more involved and requires additional notations. The
objective is to compute an invariant measure of the amount of time during which the system
satisfies a contract. This relation can be combined with discounting,3 which allows to give
more weight to faults that arise in the early future. Let w ∈ [V]∞ be a (finite or infinite)
run and C = (V ,A,G) be a contract. We define the function ϕC

w : N|w| → {0,1} such that
ϕC

w(n) = 1 ⇐⇒ w[0,n] ∈ G ∪ ¬A. If we fix an horizon in time t ∈ N∞ and a discount factor
d≤1, define D

t,d
C (w) = 1

t

∑t

i=0 ϕC
w(i) if d = 1 and D

t,d
C (w) = 1−d

1−dt+1

∑t

i=0 diϕC
w(i) if d < 1.

D
t,d
C (w) is the mean-availability until position t along the execution corresponding to w with

discount factor d . The concept is illustrated in Fig. 1. A-Satisfaction can now be defined.

Definition 3 (A-Satisfaction) A system S = (U,
) A-satisfies at level m contract C =
(V ,A,G) until position k with discount factor d , denoted S |=A(k)

d,m C, iff:

min
w∈(S↑U∪V)|k

D
k,d

C↑U∪V (w) ≥ m if k < ω

inf
w∈(S↑U∪V)|k

lim inf
t→k

D
t,d

C↑U∪V (w) ≥ m if k = ω.

Fig. 1 Illustration of mean-availability

3Discounting is a concept largely used in many areas such as economy.

Form Methods Syst Des (2011) 38: 1–32 7

It is easy to see that the limit in Definition 3 converges, since D
t,d
C ≥ 0. In Sect. 3.4

we will propose techniques to check satisfiability for contracts that are represented with
symbolic structures.

In the rest of the section, we propose definitions for composition, conjunction, and re-
finement. We also study compositional verification with respect to these definitions and the
satisfaction relations we considered above.

3.2 Compositional reasoning

In this section, we first define operations between and on contracts and then propose a com-
positional reasoning framework for contracts. We start with the definition for composition
and conjunction. Composition between contracts mimics classical composition between sys-
tems at the abstraction level. It consists in taking the intersection between the assumptions
and the intersection between the guarantees. Conjunction is a more intriguing operation that
has no translation at the level of systems; its consists in producing a contract whose assump-
tions are the union of the original ones and guarantees are the intersection of the original
ones. Roughly speaking, the conjunction of two contracts represents their common require-
ments.

Definition 4 Let Ci = (Vi,Ai,Gi) with i = 1,2 be two contracts in canonical form. We
define

– The parallel composition between C1 and C2, denoted C1 ‖ C2, to be the contract
(V1 ∪ V2,A1 ∩ A2 ∪ ¬(G1 ∩ G2),G1 ∩ G2).

– The conjunction between C1 and C2, denoted C1 ∧ C2, to be the contract (V1 ∪ V2,

A1 ∪ A2,G1 ∩ G2).

It is easy to see that both conjunction and composition preserve canonicity.

Discussion. As pointed out in [4], the canonical form is needed to have uniform no-
tions of composition and conjunction between contracts. Indeed, consider two contracts
C1 = (V ,∅, [V]∞) and C2 = (V ,∅,∅). Observe that C1 is in canonical form and C2 is
not. Assume also that any system can satisfy both C1 and C2. The composition between
C1 and C2 is the contract (V , [V]∞,∅). This contract can only be satisfied by the empty
system. Consider now the contract C ′

2 = (V ,∅, [V]∞), which is the canonical form for
C2. It is easy to see that the composition between C1 and C ′

2 is satisfied by any sys-
tem. Non-canonical contracts can also be composed. Indeed, the composition of two non-
canonical contracts C1 = (V1,A1,G1) and C2 = (V2,A2,G2) is given by the following
formula C1 ‖nc C2 = (V1 ∪ V2, (A1 ∪ ¬G1) ∩ (A2 ∪ ¬G2),G1 ∩ G2). Observe that this
composition requires one more complementation operation, which may be computationally
intensive depending on the data-structure used to represent A and G (see Sect. 3.4).

We now turn to the definition of refinement, which leads to a preorder relation on con-
tracts.

Definition 5 We say that C1 refines C2 up to time t ∈ N∞, denoted C1 �(≤t) C2, if it
guarantees more and assumes less, for all runs of length not greater than t : A1 ↑V1∪V2⊇
(A2 ↑V1∪V2)|≤t and (G1 ↑V1∪V2)|≤t ⊆ G2 ↑V1∪V2 .

8 Form Methods Syst Des (2011) 38: 1–32

Property 1 By a simple inspection of Definitions 4 and 5, one observes that both conjunction
and composition are associative, i.e., C1 ‖ (C2 ‖ C3) = (C1 ‖ C2) ‖ C3 and C1 ∧ (C2 ∧C3) =
(C1 ∧ C2) ∧ C3 (incremental design). Consider C2 ‖ C3 (respectively, C2 ∧ C3). We also
observe that if C1 �(≤t) C2, then (C1 ‖ C3) �(≤t) (C2 ‖ C3) (respectively, (C1 ∧ C3) �(≤t)

(C2 ∧ C3)) (independent implementability).

It is interesting to see that the conjunction of two contracts coincide with their greatest
lower bound with respect to refinement preorder. Thus the following theorem.

Theorem 1 Consider two contracts C1 and C2, we have that

– C1 ∧ C2 �(≤t) C1 and C1 ∧ C2 �(≤t) C2, and
– for each C such that C �≤t C1 and C �≤t C2, we have C �≤t (C1 ∧ C2).

3.3 Compositional verification

In this paper, compositional verification refers to a series of results that allow to deduce
correctness of a global system by observing its atomic components only. We start with the
following theorem for reliability.

Theorem 2 [4] Consider S1, S2 two systems and C1, C2 two contracts in canonical form.
The following propositions hold for all t ∈ N∞:

– S1 |=R(t) C1 and S2 |=R(t) C2 implies that (S1 ∩ S2) |=R(t) (C1 ‖ C2);
– S1 |=R(t) C1 and S1 |=R(t) C2 iff S1 |=R(t) (C1 ∧ C2);
– S1 |=R(t) C1 and C1 �(≤t) C2 implies that S1 |=R(t) C2.

The above theorem can thus be used to deduce satisfaction w.r.t. to conjunction or dis-
junction without computing the result of these operations explicitly. The double implication
in the second item of the theorem is valid as conjunction is not defined at the level of sys-
tems. The theorem can also be used to decide satisfaction on a refined contract without
performing any computation. By combining the definitions of composition, conjunction,
and refinement, and Theorem 2, we get the following corollary.

Corollary 1 Let S be a system and C1,C2,C3 be three contracts in canonical form. We
have the following results.

– S |=R(t) C1 ‖ (C2 ‖ C3) iff S |=R(t) (C1 ‖ C2) ‖ C3;
– S |=R(t) C1 ∧ (C2 ∧ C3) iff S |=R(t) (C1 ∧ C2) ∧ C3;
– If C1 �(≤t) C2 and S |=R(t) (C1 ‖ C3) (respectively, S |=R(t) (C1 ∧ C3)), then S |=R(t)

(C2 ‖ C3) (respectively, S |=R(t) (C2 ∧ C3)).

We now switch to the case of availability. We propose the following theorem that, for
example, gives a lower bound on availability for conjunction and disjunction without com-
puting them explicitly.

Theorem 3 Consider S1 and S2 two systems and C1, C2 two contracts in canonical form.
Let d ≤ 1 be a discount factor. The following propositions hold for all t ∈ N∞:

– S1 |=A(t)
d,m1

C1 and S2 |=A(t)
d,m2

C2 implies that (S1 ∩ S2) |=A(t)

d,m1+m2−1 (C1 ‖ C2);

Form Methods Syst Des (2011) 38: 1–32 9

– S1 |=A(t)
d,m1

C1 and S1 |=A(t)
d,m2

C2 implies that S1 |=A(t)

d,m1+m2−1 (C1 ∧ C2);

– S1 |=A(t)
d,m C1 and C1 �(≤t) C2 implies that S1 |=A(t)

d,m C2.

The above theorem is an extension of Theorem 2 to the case of availability. It is in-
teresting that the double implication in item two of Theorem 2 does not remain valid in
this extension. This is because of the definition of availability. Observe that the last item
of Theorems 2 and 3 also holds if C1 and C2 are not in canonical form. Observe also that
Theorem 3 calls for a direct extension of Corollary 1 to the case of availability. Before we
give the proof for Theorem 3 and discuss the extension, we first recap the following classical
algebraic properties.

Property 2 Consider V ⊆ V ′ ⊆ V ′′ three sets of variables and E and E′′ two sets of runs
over V and V ′′ respectively. We have:

(E ↑V ′
) ↑V ′′ = E ↑V ′′ ; (2.1)

(E ↑V ′′
) ↓V ′ = E ↑V ′ ; (2.2)

(E′′ ↓V ′) ↓V = E ↓V ; (2.3)

w ∈ E′′ ⇒ w ↓V ∈ E′′ ↓V ; (2.4)

w ∈ E ⇒ w ↑V ′⊆ E ↑V ′
. (2.5)

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3 For the sake of simplicity, we will consider that k = ω. The proofs
for k < ω are simpler versions of those presented here. We consider the three items of the
theorem.

1. Let S = (U,
) = S1 ∩ S2 and C = (V ,A,G) = C1 ‖ C2. Since C1 and C2 are contracts
in canonical form, we have G1 = G1 ∪ ¬A1 and G2 = G2 ∪ ¬A2. Similarly, since com-
position preserves canonicity, we have G = G ∪ ¬A.

Consider w ∈ ((S1 ↑U1∪U2 ∩S2 ↑U1∪U2) ↑U∪V)|k . Let w1 = w ↓U1∪V1 and w2 =
w ↓U2∪V2 . By (2.4), we have w1 ∈ (((S1 ↑U1∪U2) ↑U∪V))|k ↓U1∪V1 . By (2.1) and (2.2),
this implies that w1 ∈ (S1 ↑U1∪V1)|k . Similarly, we also have w2 ∈ (S2 ↑U2∪V2)|k .

Consider t ≤ k and i ≤ t . By definition, if ϕC↑U∪V

w (i) = 0, then w[0,i] /∈ G ↑U∪V .
By (2.5), we deduce [(w1[0,i] /∈ G1 ↑U1∪V1) ∨ (w2[0,i] /∈ G2 ↑U2∪V2)]. As a consequence,

ϕC↑U∪V

w (i) ≥ ϕC1↑U1∪V1
w1

(i) + ϕC2↑U2∪V2
w2

(i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (w) ≥ D
(t,d)

C1↑U1∪V1
(w1)

+ D
(t,d)

C2↑U2∪V2
(w2) − 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2)

− 1.

10 Form Methods Syst Des (2011) 38: 1–32

By hypothesis, we have

⎧
⎨

⎩

lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2) ≥ m2.

As a consequence,

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ m1 + m2 − 1.

Finally,

∀w ∈ (S ↑U∪V)|k, lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ m1 + m2

− 1

⇒ inf
w∈(S↑U∪V)|k

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ m1 + m2

− 1.

2. Let C = (V ,A,G) = C1 ∧C2. Since C1 and C2 are contracts in canonical form, we have
G1 = G1 ∪ ¬A1 and G2 = G2 ∪ ¬A2. Similarly, since conjunction preserves canonicity,
we have G = G ∪ ¬A.

Consider w ∈ (S1 ↑U1∪V)|k . Let w1 = w ↓U1∪V1 and w2 = w ↓U1∪V2 . By (2.4), we have
w1 ∈ ((S1 ↑U1∪V))|k ↓U1∪V1 . By (2.2), this implies that w1 ∈ (S1 ↑U1∪V1)|k . Similarly, we
also have w2 ∈ (S1 ↑U1∪V2)|k .

Consider t ≤ k and i ≤ t . By definition, if ϕC↑U1∪V

w (i) = 0, then w[0,i] /∈ G ↑U1∪V .
By (2.5), we deduce [(w1[0,i] /∈ G1 ↑U1∪V1) ∨ (w2[0,i] /∈ G2 ↑U1∪V2)]. As a consequence,

ϕC↑U1∪V

w (i) ≥ ϕC1↑U1∪V1
w1

(i) + ϕC2↑U1∪V2
w2

(i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U1∪V (w) ≥ D
(t,d)

C1↑U1∪V1
(w1)

+ D
(t,d)

C2↑U1∪V2
(w2) − 1

⇒ lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2)

− 1.

By hypothesis, we have

⎧
⎨

⎩

lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2) ≥ m2.

As a consequence,

lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ m1 + m2 − 1.

Finally,

Form Methods Syst Des (2011) 38: 1–32 11

∀w ∈ (S1 ↑U1∪V)|k, lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ m1 + m2

− 1

⇒ inf
w∈(S1↑U1∪V)|k

lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ m1 + m2

− 1.

3. Consider w ∈ (S1 ↑U1∪V2)|k . Let w′ ∈ w ↑U1∪V1∪V2 and w1 = w′ ↓U1∪V1 . By (2.1)
and (2.2), we have w1 ∈ (S1 ↑U1∪V1)|k .

Consider now t ≤ k and i ≤ t . By definition, ϕC1↑U1∪V1
w1

(i) = 1 ⇐⇒ w1[0,i] ∈ (G1 ∪
¬A1) ↑U1∪V1 . By hypothesis, ((G1 ∪ ¬A1) ↑V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑V1∪V2)|≤k . Thus,
by (2.5), ((G1 ∪ ¬A1) ↑U1∪V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑U1∪V1∪V2)|≤k .
If ϕC1↑U1∪V1

w1
(i) = 1, then

w1[0,i] ∈ ((G1 ∪ ¬A1) ↑U1∪V1)|≤k

⇒ w1[0, i] ↑U1∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑U1∪V1∪V2)|≤k

⇒ w1[0, i] ↑U1∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑U1∪V1∪V2)|≤k

⇒ w′
[0,i] ∈ (G2 ∪ ¬A2) ↑U1∪V1∪V2

⇒ w′
[0,i] ↓U1∪V2∈ (G2 ∪ ¬A2) ↑U1∪V1∪V2↓U1∪V2 by (2.4)

⇒ w[0,i] ∈ (G2 ∪ ¬A2) ↑U1∪V2 by (2.2)

⇒ ϕC2↑U1∪V2
w (i) = 1.

Thus,

∀t ≤ k, ∀i ≤ t, ϕC2↑U1∪V2
w (i) ≥ ϕC1↑U1∪V1

w1
(i)

⇒ ∀t ≤ k, D
t,d

C2↑U1∪V2
(w) ≥ D

t,d

C1↑U1∪V1
(w1)

⇒ lim inf
t→k

D
t,d

C2↑U1∪V2
(w) ≥ lim inf

t→k
D

t,d

C1↑U1∪V1
(w1).

By hypothesis,

lim inf
t→k

D
t,d

C1↑U1∪V1
(w1) ≥ m.

As a consequence,

∀w ∈ (S1 ↑U1∪V2)|k, lim inf
t→k

D
t,d

C2↑U1∪V2
(w) ≥ m

⇒ inf
w∈(S1↑U1∪V2)|k

lim inf
t→k

D
t,d

C2↑U1∪V2
(w) ≥ m. �

Theorem 1 also extends to the case of availability. Hence, we have the following corollary

Corollary 2 Let S be a system and C1,C2,C3 be three contracts in canonical form. We
have the following results.

– S |=A(k)
d,m C1 ‖ (C2 ‖ C3) iff S |=A(k)

d,m (C1 ‖ C2) ‖ C3;

12 Form Methods Syst Des (2011) 38: 1–32

– S |=A(k)
d,m C1 ∧ (C2 ∧ C3) iff S |=A(k)

d,m (C1 ∧ C2) ∧ C3;

– If C1 �(≤t) C2 and S |=A(k)
d,m C1 ‖ C3 (respectively, S |=A(k)

d,m C1 ∧ C3), then S |=A(k)
d,m

(C2 ‖ C3) (respectively, S |=A(k)
d,m (C2 ∧ C3)).

3.4 Effective algorithms/representations

We propose symbolic and effective automata-based representations for contracts and sys-
tems. Those representations are needed to handle possibly infinite sets of runs with a finite
memory. We will be working with variables defined over a finite domain D. According to
our theory, a symbolic representation is effective for an assumption (resp. a guarantee) if
inclusion is decidable and the representation is closed under complementation (needed for
refinement), union, and intersection. A representation is effective for a system (that is not
an assumption or a guarantee) if it is closed under intersection and (inverse) projection, and
reliability/availability are decidable.

We assume that systems that are not assumptions or guarantees are represented with
symbolic transition systems (see Sect. 2 for properties) and that assumptions and guarantees
are represented with either finite-word or Büchi automata. Let C = (V ,A,G) be a contract,
a symbolic contract for C is thus a tuple (V , BA, BG), where BA and BG are automata with
L(BA) = A and L(BG) = G. Observe that there are systems and contracts for which there
exists no symbolic representation.

Since both finite-word and Büchi automata are closed under complementation, union and
intersection, it is easy to see that the composition and the conjunction of two symbolic con-
tracts is still a symbolic contract. Moreover, since inclusion is decidable for those automata,
we can always check whether refinement holds. We now focus on the satisfaction relations.
We distinguish between R-Satisfiability and A-Satisfiability. We consider a symbolic con-
tract C = (V , BA, BG) and a symbolic transition system Symb = (V ,Qs,T ,Qs0).

– Reliability. When considering R-satisfaction, we will assume that BA and BG are Büchi
automata. It is conceptually easy to decide whether Symb R-satisfies C. Indeed, following
results obtained for temporal logics [53, 54], implemented in the SPIN toolset [49], this
amounts to check whether the Büchi automaton obtained by taking the synchronous prod-
uct between Symb and ¬(BG ∪ ¬BA) is empty. Observe that assumptions and guarantees
can also be represented by logical formalisms that have a translation to Büchi automata—
this includes LTL [43] and ETL [55]. The theory generalizes to other classes of infinite
word automata closed under negation and union and other logical formalisms such as
CTL [17] or PSL [27].

– Availability with level m and discount factor d . In [23], de Alfaro et al. proposed DCTL,
a quantitative version of the CTL logic [17]. DCTL has the same syntax as CTL, but its
semantics differs: in DCTL, formulas and atomic propositions take values between 0 and
1 rather than in {0,1}. Let ϕ1 and ϕ2 be two DCTL formulas, the value of ϕ1 ∧ ϕ2 (resp.
ϕ1 ∨ ϕ2) is the minimum (resp. maximum) between the values of ϕ1 and ϕ2. The value
of ∀ϕ1 (resp. ∃ϕ1) is the minimum (resp. maximum) valuation of ϕ1 over all the runs.
In addition to its quantitative aspect, DCTL also allows to discount on the value of the
formula as well as to compute its average (�d operator, where d is the discount: see the
semantics with d = 1 and d < 1 page 6 of [23]) on a possibly infinite run. We assume that
BA and BG are complete finite-word automata and show how to reduce A-satisfaction to
the evaluation of a DCTL property. Our first step is to compute Symb′, the synchronous
product between Symb and BG ∪ ¬BA. The resulting automaton can also be viewed as a
symbolic transition system whose states are labeled with a proposition p which is true

Form Methods Syst Des (2011) 38: 1–32 13

if the state is accepting and false otherwise. In fact, finite sequences of states of Symb′

whose last state is accepting are prefixes of runs of Symb that satisfy BG ∪ ¬BA. Hence,
checking whether Symb A-satisfies C boils down to compute the minimal average to see
p = 1 in Symb′. Our problem thus reduces to the one of checking for each initial state of
Symb′ whether the value of the DCTL property ∀�d p is greater or equal to m.

4 Probabilistic contracts

We now extend the results of the previous section to systems that mix stochastic and non-
deterministic aspects. Stochastic information is needed to model systems with failures. As
for the previous section, all our results will be developed assuming that contracts and sys-
tems are represented by sets of runs and then an automata-based representation will be pro-
posed.

Consider a system whose set of variables is U . Our way to mix stochastic and non-
deterministic information consists in assuming that, at any moment of time, the value of a
set of variables P are chosen with respect to a given probability distribution. The value of
the variables in U \ P are chosen in a non-deterministic manner. From the point of view of
compositional reasoning, it matters whether variables in P are local to a given system or
global and shared by all the systems. Indeed, without going to the details, dealing with local
probabilistic variables would require to handle conditional probabilities in composition and
conjunction operations. To simplify the problem, we assume that variables in P are global
and shared by all the systems involved in the design. Remark that one can already model
a lot with global variables. Classically, the idea is to view some of the variables as “don’t
care” in the systems in where they do not matter. Without loss of generality, we also assume
that for a given system, the value of the non-deterministic variables remain the same for the
initial position of all the runs. This allows to select the initial value of the variables of the
run by using the probability distribution only.

We will assume that systems are receptive on P . Due to this property, one can see that
runs of a system on a set of variables U with P ⊆ U are runs on P in where each po-
sition is augmented with an assignment for the variables in U \ P . In addition, we sup-
pose that, in a given position, the probability to select the next values of the variables in
P is independent from the non-deterministic choice. This is done by assuming the exis-
tence of a unique probability distribution P over [P]ω and extending it to [P]∗ as follows:
∀w ∈ [P]∗, P(w) = ∫

{w′∈Pω | w<w′} P(w′)dw′, where < is the prefix order on runs.

Remark 1 Our model of computation is clearly not as powerful as Markov Decision
Processes (MDPs). Indeed, in an MDP, at any given moment of time, the choice of the
values of variables in U \ P may influence the distribution on the next values of variables
in P . As we assume a unique global distribution on the set of runs, the choice of the val-
ues of the variables in U \ P does not influence the probability distribution that is fixed in
advance and only depend on the probabilistic choices.

Before defining relations between systems and contracts, it is first necessary to define
a probability measure on the set of runs of the system. By hypothesis, this measure has
been defined on the set of runs over P and we have to lift it to runs on U . As the sys-
tem is receptive on P , one could think that the measure directly extends to the runs of the
system. This is actually not true. Indeed, one can associate several different values of the
non-deterministic variables to a given run of the stochastic variables. This problem can be

14 Form Methods Syst Des (2011) 38: 1–32

solved with the help of a scheduler that, in a given moment of time, associates a unique
value to each non-deterministic variable with a given value of the probabilistic variables. In
practice, systems are not defined as sets of runs but rather as symbolic objects, e.g., Markov
Decision processes, that generate runs from a set of initial states. In such context, the res-
olution of the non-determinism is incremental. The process starts from an initial value of
the probabilistic variables to which is associated a unique value of the non-deterministic
variables. Then, at any moment of time and for any run, the scheduler associates a unique
non-deterministic choice to a given value of the probabilistic variables. As the system is re-
ceptive on P , a scheduler basically associates to any position of any run on P a value for the
non-deterministic variables in order to retrieve a run of the system. This is sufficient to define
a probability measure on subsets of runs of the system. The assignments can either depend
(1) on the last position of the run, in which case the scheduler is said to be memoryless, or
(2) on a prefix of the run, in which case the scheduler is said to be history-dependent.

We now propose a general definition of the “effect of a scheduler”, i.e., computing a
subsets of runs of S receptive on P and on which a probability measure can be defined.
Characterizing the effect of the scheduler is enough to reason on compositional design. This
is different from the application of the scheduler itself, i.e., the choice made at a given
position. Consider a system S = (U,
). From a definition point of view, since the system
is receptive on P , the effect of a scheduler f can be characterized by a mapping from every
finite (or infinite) run w on probabilistic variables P to a run f (w) of S which coincides
with w for every probabilistic variable. This can be formalized with the following definition.

Definition 6 (Scheduler) A scheduler f of system S = (U,
), with P ⊆ U , is a
monotonous mapping [P]∗ →
 such that for all w ∈ [P]∗, f (w) ↓P = w. The set of sched-
ulers corresponding to a system S is denoted by Sched(S).

For simplicity of the presentation, we use the term scheduler to refer either to the resolu-
tion of the non-determinism in a given position (which will be needed in Sect. 4.3) of the run
or to the effect of applying the scheduler to generate a subset of runs of the system whose
probability measure is defined. Let f be a scheduler defined on a finite set of runs of length k.
To be coherent with classical definitions of schedulers that resolve non-determinism starting
from the initial set of states, we have to suppose that f is causal. More precisely, given a
run of length k + 1, this means that f cannot change the non-deterministic assignments to
the prefix of length k of the run. Formally, ∀w,w′ ∈ [P]∗,w < w′ ⇒ f (w) < f (w′). In
practice, this is a natural assumption that is only emphasized as it will be used in the proofs.

The above theory is illustrated in Fig. 2. Figure 2a presents the set of runs of a prob-
abilistic variable p that can take two values: 1 and 2. Figure 2b presents the set of runs
of a system whose unique probabilistic variable is p. The runs colored in dark are those
selected by the schedulers. One can see that the probability measure of these runs is
1 = 0.24 + 0.06 + 0.28 + 0.42, while the measure on all runs is 1.76. The reason is that
probability values are duplicated due to non-determinism. As an example, from the state
p : 1, n : 5, the probability that p = 2 in the next step is 0.2. However, this probability is du-
plicated because p : 2 can either be associated to n : 0 or to n : 5. The scheduler will choose
between those two values. For doing so, it may use the history of the run.

4.1 Probabilistic contracts

We will say that a contract C = (V ,A,G) is a probabilistic contract iff P ⊆ V , i.e. iff
its set of variables contains all the probabilistic variables. We now turn to the problem of

Form Methods Syst Des (2011) 38: 1–32 15

Fig. 2 Illustration of a scheduler defining a probability measure on a set of executions

deciding whether a system S = (U,
) satisfies a probabilistic contract C = (V ,A,G). As it
was already the case for non-probabilistic contracts, we will distinguish R-Satisfaction and
A-Satisfaction.

In Sect. 3, R-Satisfaction was defined with respect to a Boolean interpretation: either the
system R-satisfies a contract or it does not. When moving to the probabilistic setting, we can
give a quantitative definition for R-Satisfaction that is: for any scheduler, is the probability
to satisfy the contract greater or equal to a certain threshold?

Definition 7 (P-R-Satisfaction) A system S = (U,
) R-satisfies a probabilistic contract
C = (V ,A,G) for runs of length k (k ∈ N

∞) with level α, denoted S ||=R(k)
α C , iff

inf
f ∈Sched(S↑U∪V)

P([f ([P]k) ∩ (G ∪ ¬A) ↑U∪V] ↓P) ≥ α.

Observe that, as for the non-probabilistic case, we consider that runs that do not satisfy
the assumption are good runs. In addition to the motivation given in Sect. 3.1, we will see
that using such an interpretation is needed when considering the conjunction operation (see
the observation after Theorem 4).

Though A-Satisfaction was already quantitative, we now have to take into account the
probabilistic point of view: instead of considering the minimal value of the mean-availability
for all runs of the system, we now consider the minimal expected value of the mean-
availability for all schedulers.

16 Form Methods Syst Des (2011) 38: 1–32

Definition 8 (P-A-Satisfaction) A system S = (U,
) A-satisfies a probabilistic contract
C = (V ,A,G) for runs of length k (k ∈ N

∞) with level α and discount factor d , denoted
S ||=A(k)

d,α C , iff

inf
f ∈Sched(S↑U∪V)

∫

w∈[P]k
P(w) · F(w)dw ≥ α

with

F(w) =
⎧
⎨

⎩

D
k,d

C↑U∪V (f (w)) if k < ω

lim inf
t→k

D
t,d

C↑U∪V (f (w)) if k = ω.

4.2 Operations on probabilistic contracts and compositional reasoning

We now leverage the compositional reasoning results of Sect. 3.2 to probabilistic contracts.
We consider composition/conjunction and refinement separately.

4.2.1 Composition and conjunction

Composition and conjunction of probabilistic contracts is defined as for non-probabilistic
contracts (see Definition 4). We thus propose an extension of Theorems 2 and 3 which takes
the probabilistic aspects into account.

Theorem 4 (P-R-Satisfaction) Consider three systems S = (U,
), S1 = (U1,
1) and S2 =
(U2,
2) and two probabilistic contracts C1 = (V1,A1,G1) and C2 = (V2,A2,G2) that are
in canonical form. We have the following results:

1. Composition. Assume that S1 and S2 are P -compatible. If S1 ||=R(k)
α C1 and

S2 ||=R(k)
β C2, then S1 ∩ S2 ||=R(k)

γ C1 ‖ C2 with γ ≥ α + β − 1 if α + β≥1 and γ ≥ 0
otherwise.

2. Conjunction. Assume that S is P -receptive. If S ||=R(k)
α C1 and S ||=R(k)

β C2, then

S ||=R(k)
γ C1 ∧ C2 with γ ≥ α + β − 1 if α + β≥1 and γ ≥ 0 otherwise.

We first state a classical algebraic property, which in fact justify the choice for γ in the
theorem, and two lemmas that will be needed in the proof of Theorem 4. We then present
the proof. We start with the following property.

Property 3 Let E1 and E2 be two sets of runs over P . We have:

P(¬(E1 ∩ E2)) ≤ P(¬E1) + P(¬E2)

⇒ 1 − P(E1 ∩ E2) ≤ (1 − P(E1)) + (1 − P(E2))

⇒ P(E1 ∩ E2) ≥ P(E1) + P(E2) − 1. (3.1)

We now propose the two lemmas.

Lemma 1 Consider S = (U,
) a P-receptive system, f ∈ Sched(S) a scheduler of S

and U ′ a set of variables. If P ⊆ U ′ ⊆ U , then we have:

f ↓U ′ :
{ [P]∞ → S ↓U ′

w �→ f (w) ↓U ′

}

∈ Sched(S ↓U ′).

Form Methods Syst Des (2011) 38: 1–32 17

Proof Let f ′ = f ↓U ′ . By definition, f ′ : [P]∗ → S ↓U ′ . Consider now w ∈ [P]∗ and
w′ < w. Since w′ < w, we have f (w′) < f (w). As a consequence, f ′(w′) < f ′(w). More-
over, f (w) ↓P = w and P ⊆ U ′, thus by (2.3), (f (w) ↓U ′) ↓P = w. �

Lemma 2 Consider S = (U,
) a P-receptive system, f ∈ Sched(S) a scheduler of S

and U ′ and U ′′ two sets of variables. If P ⊆ U ′ ⊆ U , P ⊆ U ′′ ⊆ U and U ′ ∪ U ′′ = U ,
then

∀w ∈ (P)∞, f ↓U ′ (w) ∩ f ↓U ′′ (w) = {f (w)}.

Proof Let w′ = f ↓V ′ (w) and w′′ = f ↓V ′′ (w). w, w′ and w′′ are such that ∀i ∈ N,

∀v ∈ V ′, f (w)(i)(v) = w′(i)(v) and ∀i ∈ N,∀v ∈ V ′′, f (w)(i)(v) = w′′(i)(v). Moreover,
because w′ and w′′ are both projections of f (w), ∀i ∈ N,∀v ∈ V ′ ∩ V ′′, f (w)(i)(v) =
w′(i)(v) = w′′(i)(v).

Now, consider w0 ∈ f ↓V ′ (w) ∩ f ↓V ′′ (w). Since w0 ∈ (f ↓V ′ (w)) ↑V , we have
w0 ↓V ′= w′. Thus ∀i ∈ N,∀v ∈ V ′, w0(i)(v) = w′(i)(v) = f (w)(i)(v).

Similarly, since w0 ∈ (f ↓V ′′ (w)) ↑V , we have ∀i ∈ N,∀v ∈ V ′, w0(i)(v) = w′′(i)(v) =
f (w)(i)(v).

Finally, ∀i ∈ N,∀v ∈ V = V ′ ∪ V ′′, w′′(i)(v) = f (w)(i)(v), thus w′′ = f (w). �

We are now ready to give the proof of Theorem 4

Proof of Theorem 4 We consider the two items of the theorem.

1. Let S = (U,
) = S1 ∩ S2 and C = (V ,A,G) = C1 ‖ C2. Since C1 and C2 are in canonical
form and since composition preserves canonicity, we will consider that G1 = G1 ∪ ¬A1,
G2 = G2 ∪ ¬A2 and G = G ∪ ¬A.

Consider f ∈ Sched(S ↑U∪V). Since S1 and S2 are P-compatible, f is defined
over all runs in [P]k . Moreover, since S = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2), we have (f ∈
Sched((S1 ↑U1∪U2) ↑U∪V)) ∧ (f ∈ Sched((S2 ↑U1∪U2) ↑U∪V)). By (2.1), we obtain

(f ∈ Sched(S1 ↑U∪V)) ∧ (f ∈ Sched(S2 ↑U∪V)).

Let f1 = f ↓U1∪V1 and f2 = f ↓U2∪V2 . By Lemma 1, we have

{

∧
(f1 ∈ Sched((S1 ↑U∪V) ↓U1∪V1))

(f2 ∈ Sched((S2 ↑U∪V) ↓U2∪V2)).

Thus, by (2.2),

(f1 ∈ Sched(S1 ↑U1∪V1) ∧ (f2 ∈ Sched(S2 ↑U2∪V2)).

Consider now w ∈ [P]k . If f1(w) ∈ G1 ↑U1∪V1 , then by (2.5) and (2.1), f1(w) ↑U∪V ⊆
G1 ↑U∪V . Similarly, if f2(w) ∈ G2 ↑U2∪V2 , then f2(w) ↑U∪V ⊆ G2 ↑U∪V . As a con-
sequence, f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆ (G1 ∩ G2) ↑U∪V , and, by Lemma 2, f (w) ∈
(G1 ∩ G2) ↑U∪V . As a consequence,

18 Form Methods Syst Des (2011) 38: 1–32

E1
︷ ︸︸ ︷
[f1([P]k) ∩ G1 ↑U1∪V1] ↓P ∩

E2
︷ ︸︸ ︷
[f2([P]k) ∩ G2 ↑U2∪V2] ↓P

⊆ [f ([P]k) ∩ G ↑U∪V] ↓P︸ ︷︷ ︸
E

.

This implies, by (3.1), that P(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Thus, P(E) ≥ α + β − 1 and

∀f ∈ Sched(S ↑U∪V),

P([f ([P]k) ∩ G ↑U∪V] ↓P) ≥ α + β − 1

⇒ inf
f ∈Sched(S↑U∪V)

P([f ([P]k) ∩ G ↑U∪V] ↓P)

≥ α + β − 1.

2. We will use C = (V ,A,G) = C1 ∧ C2. Since C1 and C2 are in canonical form and since
conjunction preserves canonicity, we will consider that G1 = G1 ∪¬A1, G2 = G2 ∪¬A2

and G = G ∪ ¬A.
Consider f ∈ Sched(S ↑U∪V). Since S is P-receptive, f is defined over all runs

in [P]k .
Let f1 = f ↓U∪V1 and f2 = f ↓U∪V2 . By Lemma 1, we have

{

∧
(f1 ∈ Sched((S ↑U∪V) ↓U∪V1))

(f2 ∈ Sched((S ↑U∪V) ↓U∪V2)).

Thus, by (2.2),

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U2∪V2)).

Consider now w ∈ [P]k . If f1(w) ∈ G1 ↑U∪V1 , then by (2.5) and (2.1), f1(w) ↑U∪V ⊆
G1 ↑U∪V . Similarly, if f2(w) ∈ G2 ↑U∪V2 , then f2(w) ↑U∪V ⊆ G2 ↑U∪V . As a con-
sequence, f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆ (G1 ∩ G2) ↑U∪V , and, by Lemma 2, f (w) ∈
(G1 ∩ G2) ↑U∪V . As a consequence,

E1
︷ ︸︸ ︷
[f1([P]k) ∩ G1 ↑U∪V1] ↓P ∩

E2
︷ ︸︸ ︷
[f2([P]k) ∩ G2 ↑U∪V2] ↓P

⊆ [f ([P]k) ∩ G ↑U∪V] ↓P︸ ︷︷ ︸
E

.

This implies, by (3.1), that P(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Form Methods Syst Des (2011) 38: 1–32 19

Thus, P(E) ≥ α + β − 1 and

∀f ∈ Sched(S ↑U∪V),

P([f ([P]k) ∩ G ↑U∪V] ↓P) ≥ α + β − 1

⇒ inf
f ∈Sched(S↑U∪V)

P([f ([P]k) ∩ G ↑U∪V] ↓P)

≥ α + β − 1.

�

Remark 2 Consider two contracts (A1,G1) and (A2,G2) such that A1 ⊂ G1, A2 ⊂ G2 and
(A1 ∪ A2) ∩ (G1 ∩ G2) = ∅. It is easy to see that any system will reliably satisfy both con-
tracts with probability 1. According to an interpretation where one considers that runs that
do not satisfy assumptions are bad runs, the probability that a system satisfies the conjunc-
tion is always 0. With our interpretation, there are situations where this probability is strictly
higher than 0: those where there are runs that do not belong to A1 or A2.

Let us now consider to the case of P-A-Satisfaction. We propose the following theorem.

Theorem 5 (P-A-Satisfaction) Consider three systems S = (U,
), S1 = (U1,
1) and S2 =
(U2,
2) and two probabilistic contracts C1 = (V1,A1,G1) and C2 = (V2,A2,G2) that are
in canonical form. We have the following results:

1. Composition. Assume that S1 and S2 are P -compatible. If S1 ||=A(k)
d,α C1 and

S2 ||=A(k)
d,β C2, then S1 ∩ S2 ||=A(k)

d,γ C1 ‖ C2 with γ ≥ α + β − 1 if α + β≥1 and γ ≥ 0
otherwise.

2. Conjunction. Assume that S is P -receptive. If S ||=A(k)
d,α C1 and S ||=A(k)

d,β C2, then

S ||=A(k)
d,γ C1 ∧ C2 with γ ≥ α + β − 1 if α + β≥1 and γ ≥ 0 otherwise.

For the sake of simplicity, we will consider that k = ω. The proofs for k < ω are simpler
versions of the ones presented here.

Proof For the sake of simplicity, we will consider that k = ω. The proofs for k < ω are
simpler versions of the ones presented here. We consider the two items of the theorem.

1. Let S = (U,
) = S1 ∩ S2 and C = (V ,A,G) = C1 ‖ C2. Since C1 and C2 are in canonical
form and since composition preserves canonicity, we will consider that G1 = G1 ∪ ¬A1,
G2 = G2 ∪ ¬A2 and G = G ∪ ¬A.

Consider f ∈ Sched(S ↑U∪V). Since S1 and S2 are P-compatible, f is defined over
all runs in [P]k . Moreover, since S = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2), it is clear that (f ∈
Sched((S1 ↑U1∪U2) ↑U∪V)) ∧ (f ∈ Sched((S2 ↑U1∪U2) ↑U∪V)). Thus, by (2.1),

⇒ (f ∈ Sched(S1 ↑U∪V)) ∧ (f ∈ Sched(S2 ↑U∪V)).

Let f1 = f ↓U1∪V1 and f2 = f ↓U2∪V2 . By Lemma 1, we have

⇒
{

∧
(f1 ∈ Sched((S1 ↑U∪V) ↓U1∪V1))

(f2 ∈ Sched((S2 ↑U∪V) ↓U2∪V2)).

20 Form Methods Syst Des (2011) 38: 1–32

Thus, by (2.2),

(f1 ∈ Sched(S1 ↑U1∪V1) ∧ (f2 ∈ Sched(S2 ↑U2∪V2)).

Consider w ∈ [P]k , t ≤ k and i ≤ t . If ϕ
C↑U∪V

f (w) (i) = 0, then f (w)[0,i] /∈ G ↑U∪V . By (2.5)
and (2.2), we deduce that [(f1(w)[0,i] /∈ G1 ↑U1∪V1) ∨ (f2(w)[0,i] /∈ G2 ↑U2∪V2)]. As a
consequence,

ϕ
C↑U∪V

f (w) (i) ≥ ϕ
C1↑U1∪V1

f1(w) (i) + ϕ
C2↑U2∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f (w)) ≥ D
(t,d)

C1↑U1∪V1
(f1(w))

+ D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f (w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1.

As a consequence, ∀w ∈ [P]k ,

lim inf
t→k

D
(t,d)

C↑U∪V (f (w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f (w))dw

≥
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw

+
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw

− 1.

By hypothesis, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw ≥ α

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw ≥ β.

Thus, ∀f ∈ Sched(S ↑U∪V),

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f (w))dw ≥ α + β − 1.

Form Methods Syst Des (2011) 38: 1–32 21

2. Let C = (V ,A,G) = C1 ∧ C2. Since C1 and C2 are in canonical form and since conjunction
preserves canonicity, we will consider that G1 = G1 ∪ ¬A1, G2 = G2 ∪ ¬A2 and G =
G ∪ ¬A.

Consider f ∈ Sched(S ↑U∪V). Since S is P-receptive, f is defined over all runs
in [P]k . Let f1 = f ↓U∪V1 and f2 = f ↓U∪V2 . By Lemma 1, we have

⇒
{

∧
(f1 ∈ Sched((S ↑U∪V) ↓U∪V1))

(f2 ∈ Sched((S ↑U∪V) ↓U∪V2)).

Thus, by (2.2)

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U∪V2)).

Consider w ∈ [P]k , t ≤ k and i ≤ t . If ϕ
C↑U∪V

f (w) (i) = 0, then f (w)[0,i] /∈ G ↑U∪V . By (2.5)
and (2.2), we deduce that [(f1(w)[0,i] /∈ G1 ↑U∪V1) ∨ (f2(w)[0,i] /∈ G2 ↑U∪V2)]. As a con-
sequence,

ϕ
C↑U∪V

f (w) (i) ≥ ϕ
C1↑U∪V1

f1(w) (i) + ϕ
C2↑U∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f (w)) ≥ D
(t,d)

C1↑U∪V1
(f1(w))

+ D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f (w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1.

As a consequence, ∀w ∈ [P]k ,

lim inf
t→k

D
(t,d)

C↑U∪V (f (w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f (w))dw

≥
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw

+
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw

− 1.

22 Form Methods Syst Des (2011) 38: 1–32

By hypothesis, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw ≥ α

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw ≥ β.

Thus, ∀f ∈ Sched(S ↑U∪V),
∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f (w))dw ≥ α + β − 1. �

We now discuss the incremental design property. In fact, as Property 1 is independent
from the systems and because of Theorems 4 and 5, we directly obtain extensions to the
availability case for the two first items of Theorems 1 and 2. More precisely, we have the
following results.

Theorem 6 Consider three probabilistic contracts C1, C2, C3 and a system S. Assume that
S ||=R(k)

α1
C1, S ||=R(k)

α2
C2, S ||=R(k)

α3
C3. Let γ = α1 + α2 + α3 − 2 if α1 + α2 + α3 > 2 and 0

otherwise. We have

– S ||=R(k)
γ C1 ‖ (C2 ‖ C3) iff S ||=R(k)

γ (C1 ‖ C2) ‖ C3.
– S ||=R(k)

γ C1 ∧ (C2 ∧ C3) iff S ||=R(k)
γ (C1 ∧ C2) ∧ C3.

Theorem 7 Consider three probabilistic contracts C1, C2, C3 and a system S. Assume that
S ||=A(k)

d,α1
C1, S ||=A(k)

d,α2
C2, S ||=A(k)

d,α3
C3. Let γ = α1 + α2 + α3 − 2 if α1 + α2 + α3 > 2 and 0

otherwise. We have

– S ||=A(k)
d,γ C1 ‖ (C2 ‖ C3) iff S ||=A(k)

d,γ (C1 ‖ C2) ‖ C3.

– S ||=A(k)
d,γ C1 ∧ (C2 ∧ C3) iff S ||=A(k)

d,γ (C1 ∧ C2) ∧ C3.

4.2.2 Refinement

We consider refinement for probabilistic contracts. Contrarily to the case of non-probabilistic
contracts, we will distinguish between R-Satisfaction and A-Satisfaction.

Following our move from R-Satisfaction to P-R-Satisfaction, we propose the notion of
P-Refinement that is the quantitative version of the refinement we proposed in Sect. 3. We
have the following definition.

Definition 9 (P-Refinement) A probabilistic contract C1 = (V1,A1,G1) P-Refines a prob-
abilistic contract C2 = (V2,A2,G2) for runs of length k (k ∈ N

∞) with level α, denoted
C1 �R(k)

α C2, iff

∀f ∈ Sched((G1 ∪ ¬A1) ↑V1∪V2),

P([f ([P]k) ∩ (G2 ∪ ¬A2) ↑V1∪V2] ↓P) ≥ α.

Consider C2 ‖ C3 (respectively, C2 ∧ C3). If C1 �R(k)
α C2, then (C1 ‖ C3) �R(k)

α

(C2 ‖ C3) (respectively, (C1 ∧C3) �R(k)
α (C2 ∧C3)). Observe that P-Refinement is not a pre-

order relation. As a consequence, conjunction is not a greatest lower bound with respect to

Form Methods Syst Des (2011) 38: 1–32 23

P-Refinement. Quantitative refinement is compatible with the definition of P-R-Satisfaction,
which brings the following result.

Theorem 8 Consider a P -receptive system S = (U,
) and two probabilistic contracts Ci =
(Vi,Ai,Gi) for i = 1,2. If (G1 ∪ ¬A1) is P -receptive and prefix-closed, then

S ||=R(k)
α C1 ∧ C1 �R(k)

β C2 ⇒ S ||=R(k)

α+β−1 C2.

Before giving the proof of the theorem, we propose the following lemma, which proves
the existence of corresponding schedulers in two P-receptive systems.

Lemma 3 Consider S = (U,
) and S ′ = (U,
′) two systems over the same set of vari-
ables U . If S and S ′ are P-receptive and if S ′ is prefix-closed, then for all f ∈ Sched(S),
there exists f ′ ∈ Sched(S ′) such that

∀w ∈ [P]∗, f (w) ∈ S ′ ⇒ f ′(w) = f (w).

Proof Consider f ∈ Sched(S) and let f ′ : [P]∗ → S ′ such that:

⎧
⎪⎪⎨

⎪⎪⎩

f ′(ε) = ε

f ′(w.σ) = f (w.σ) if f (w.σ) ∈ S ′

f ′(w.σ) = f ′(w).σ ′ s.t. f ′(w).σ ′ ∈ S ′ and σ ′ ↓P = σ.

First of all, since S ′ is prefix-closed, if f (w) ∈ S ′, then for all w′ < w, f (w′) ∈ S ′, and as a
consequence f ′(w′) = f (w′). Moreover, since S ′ is P-receptive, if f ′(w) ∈ S ′, then for all
σ ∈ P → D, there exists σ ′ ∈ U → D such that σ ′ ↓P = σ and f ′(w).σ ′ ∈ S ′. This ensures
that the definition of f ′ is coherent.

We will now prove by induction that f ′ ∈ Sched(S ′).

– f ′(ε) = ε satisfies the prefix property.
– Let w ∈ [P]k and w′ < w. Suppose that f ′(w′) < f ′(w). Let σ ∈ P → D.

– If f (w.σ) ∈ S ′, then f ′(w.σ) = f (w.σ) and ∀w′′ < w, f ′(w′′) = f (w′′). Since f is a
scheduler, we have f (w′) < f (w.σ).

– Else, f ′(w.σ) = f ′(w).σ ′ and as a consequence, f ′(w′) < f ′(w) < f ′(w).σ ′. �

We now give the proof for Theorem 8.

Proof of Theorem 8 Consider f ∈ Sched(S ↑U∪V2). By Lemma 1, there exists f ′ ∈
Sched(S ↑U∪V1∪V2) such that f ′ ↓U∪V2= f . Let f1 = f ′ ↓U∪V1 . By Lemma 1, we have
f1 ∈ Sched(S ↑U∪V1). Lemma 3 states that there exists f ′

2 ∈ Sched((G1 ∪ ¬A1) ↑U∪V1∪V2)

such that ∀w ∈ [P]∗, f ′(w) ∈ (G1 ∪ ¬A1) ↑U∪V1∪V2⇒ f ′
2(w) = f ′(w). Let f2 = f ′

2 ↓V1∪V2 .
By Lemma 1, we have f2 ∈ Sched((G1 ∪ ¬A1) ↑V1∪V2 .

Consider w ∈ [P]k . If f1(w) ∈ (G1 ∪ ¬A1) ↑U∪V1 , then by (2.5), f ′(w) ∈ (G1 ∪
¬A1) ↑U∪V1∪V2 ⇒ f ′

2(w) = f ′(w). Moreover, if f2(w) ∈ (G2 ∪ ¬A2) ↑ V1 ∪ V2, then by
(2.5), f ′

2(w) ∈ (G2 ∪ ¬A2) ↑U∪V1∪V2 . Thus,

24 Form Methods Syst Des (2011) 38: 1–32

f ′(w) ∈ (G2 ∪ ¬A2) ↑U∪V1∪V2

⇒ f (w) ∈ (G2 ∪ ¬A2) ↑U∪V2 by (2.4).

As a consequence, let

E1 = [f1([P]k) ∩ (G1 ∪ ¬A1) ↑U∪V1] ↓P

E2 = [f2([P]k) ∩ (G2 ∪ ¬A2) ↑V1∪V2] ↓P

E = [f ([P]k) ∩ (G2 ∪ ¬A2) ↑U∪V2] ↓P .

We have E1 ∩ E2 ⊆ E.
This implies, by (3.1), that P(E) ≥ P(E1) + P(E2) − 1. Moreover, by hypothesis,

{
P(E1) ≥ α

P(E2) ≥ β.

Thus, P(E) ≥ α + β − 1 and ∀f ∈ Sched(S ↑U∪V2),

P([f ([P]k) ∩ (G2 ∪ ¬A2) ↑U∪V2] ↓P) ≥ α + β − 1. �

P-A-satisfaction and quantitative refinement are orthogonal measures. Indeed,
P-A-satisfaction measures the infimal expected availability of a system for all schedulers,
while quantitative refinement measures the infimal set of traces of a probabilistic contract
that corresponds to another probabilistic contract. In such context, the minimal schedulers
for the two notions may differ. We propose the following result, which links P-A-Satisfaction
with the definition of refinement proposed for non-probabilistic contracts.

Theorem 9 Consider a P -receptive system S = (U,
) and two probabilistic contracts Ci =
(Vi,Ai,Gi) for i = 1,2. If S ||=A(k)

d,α C1 and C1 �(≤k) C2, then S |=A(k)
d,α C2.

Proof For the sake of simplicity, we will consider that k = ω. The proof for k < ω is a
simpler version of the one presented here.

Consider f ∈ Sched(S ↑U∪V2). By Lemma 1, there exists f ′ ∈ Sched(S ↑U∪V1∪V2) such
that f ′ ↓U∪V2= f . Let f1 = f ′ ↓U∪V1 . By Lemma 1, we also have f1 ∈ Sched(S ↑U∪V1).

Consider now w ∈ [P]k , t ≤ k and i ≤ t . By definition, ϕ
C1↑U∪V1

f1(w) (i) = 1 ⇐⇒ f1(w)[0,i] ∈
(G1 ∪ ¬A1) ↑U∪V1 . By hypothesis,

((G1 ∪ ¬A1) ↑V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑V1∪V2)|≤k.

Thus, by (2.5),

((G1 ∪ ¬A1) ↑U∪V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑U∪V1∪V2)|≤k.

If ϕ
C1↑U∪V1

f1(w) (i) = 1, then

f1(w)[0,i] ∈ ((G1 ∪ ¬A1) ↑U∪V1)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑U∪V1∪V2)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑U∪V1∪V2)|≤k

Form Methods Syst Des (2011) 38: 1–32 25

⇒ f ′(w)[0,i] ∈ (G2 ∪ ¬A2) ↑U∪V1∪V2

⇒ f ′(w)[0,i] ↓U∪V2∈ (G2 ∪ ¬A2) ↑U∪V1∪V2↓U∪V2 by (2.4)

⇒ f (w)[0,i] ∈ (G2 ∪ ¬A2) ↑U∪V2 by (2.2)

⇒ ϕ
C2↑U∪V2

f (w) (i) = 1.

Thus,

∀t ≤ k, ∀i ≤ t, ϕ
C2↑U∪V2

f (w) (i) ≥ ϕ
C1↑U∪V1

f1(w) (i)

⇒ ∀t ≤ k, D
t,d

C2↑U∪V2
(f (w)) ≥ D

t,d

C1↑U∪V1
(f1(w))

⇒ lim inf
t→k

D
t,d

C2↑U∪V2
(f (w)) ≥ lim inf

t→k
D

t,d

C1↑U∪V1
(f1(w)).

By hypothesis,

lim inf
t→k

D
t,d

C1↑U∪V1
(f1(w)) ≥ α.

As a consequence,

∀w ∈ [P]k, lim inf
t→k

D
t,d

C2↑U∪V2
(f (w)) ≥ m

⇒
∫

w∈[P]k
P(w) · lim inf

t→k
D

t,d

C2↑U∪V2
(f (w))dw ≥ m.

Finally, ∀f ∈ Sched(S ↑U∪V2),
∫

w∈[P]k
P(w) · lim inf

t→k
D

t,d

C2↑U∪V2
(f (w))dw ≥ m. �

We now briefly discuss independent implementability in the probabilistic case. For
P-R-Satisfaction, the property is defined with respect to P-Refinement. For P-A-satisfaction
we use the notion of refinement introduced for non-probabilistic contracts. We have the
following theorem, whose proof is a direct consequence of Theorems 4, 5, 8 and 9.

Theorem 10 Let S be a P -receptive system and C1, C2 and C3 be three probabilistic con-
tracts such that C1 and C3 are P -compatible, and C2 and C3 are also P -compatible. We have
the following results.

– Assume that (G1 ∪ ¬A1) is prefix-closed and P -receptive. If C1 �R(k)
α C2 and

S ||=R(k)
β (C1 ‖ C3) (respectively, S ||=R(k)

β (C1 ∧ C3)), then S ||=R(k)
γ (C2 ‖ C3) (respectively,

S ||=R(k)
γ (C2 ∧ C3)), with γ ≥ α + β − 1 if α + β ≥ 1 and 0 else.

– If C1 �(≤k) C2 and S ||=A(k)
d,α (C1 ‖ C3) (respectively, S ||=A(k)

d,α (C1 ∧ C3)), then

S ||=A(k)
d,α (C2 ‖ C3) (respectively, S ||=A(k)

d,α (C2 ∧ C3)).

4.2.3 An illustration

The objective of this paper is to introduce the theoretical foundations for contracts and their
stochastic extensions. In the rest of this section, we give a simple example that illustrates the
approach. Deliverable 5.1.1 of the SPEEDS project (available at [48]) shows the interest of

26 Form Methods Syst Des (2011) 38: 1–32

Fig. 3 Reliability: example

industrials for our methodology and discuss other examples for the case of non-stochastic
contracts. Also, the work in [32], which can be subsumed by our contribution, has been
applied to an interesting case study. We now present the example.

Consider the systems and contracts given in Fig. 3. Assume that ∀i ∈ N,

P(f1(i) = 1) = 10−3 and P(f2(i) = 1) = 2.10−3. It is easy to show that S1 ||=R(50)

(1−10−3)50 C1 and

S2 ||=R(50)

(1−2.10−3)50 C2. It is however more difficult to deduce the probability for which S1 ∩ S2

satisfies the contract C1 ‖ C2. Thanks to Theorem 4, we know that this probability is at least
(0.999)50 + (0.998)50 − 1 = 0.86. Considering C3 = ({f1, f2, a, c, d}, “true”, “�(d = ((a ∧
¬f1) ∨ c) ∧ ¬f2)”), it is clear that C1 ‖ C2 �R(50)

1 C3, which implies that S1 ∩ S2 |=R(50)

0.86 C3.

4.3 Effective algorithms/representations

The constructions are similar to those given in Sect. 3.4. We assume the reader to be familiar
with the concepts of (discrete) Markov Chains and turn-based Markov Decision Processes
(else, see [10, 11, 19, 46] for an introduction and references). Roughly speaking, a Markov
Chain is a symbolic transition system whose states are labeled with valuations for variables
in P and whose transitions are labeled by probabilities. The labeling by probabilities fol-
lows a probability distribution, i.e., for a given state, the sum of the probability values for all
outgoing transitions must be less or equal to one. In a given state, one picks up the next val-
uation for the probability variables, i.e., the next state. The probability to pick up a valuation
is the value given on the transition that links the current state to the next chosen one. There
is a special state called “init” from where one has to chose the first value. The concept of
representing P with a Markov Chain is illustrated in Fig. 5a, where P = {b} and D = {0,1}.
In this example, the probability that a run starts with b = 0 is 1/2. The probability that a run
starts with the prefix (b = 0)(b = 1)(b = 0) is given by (1/2) × (1/4) × (1/3) = 1/24.

Form Methods Syst Des (2011) 38: 1–32 27

Fig. 4 A symbolic transition system and its split

Fig. 5 The product of a split symbolic transition system with a Markov chain

Let C = (V , BA, BG) be a symbolic contract and Symb = (V ,Qs,T ,Qs0) be a symbolic
transition system. We consider a set P ⊆ V of probabilistic variables. We assume that the
distribution over P is symbolically represented with a Markov Chain. At each state, we have
a probability distribution over the possible set of valuations for the variables. The Markov
chain is finitely-branching as D is finite. Observe that each state of Symb can be split into
two states, one for the valuations of the non-probabilistic variables followed by one for the
valuations of the probabilistic variables. The result is a new symbolic system Symb′′ where
one first evaluates V \ P and then P .

Example 1 The split is illustrated in Fig. 4. Consider the state X = {a = 1, b = 0, c = 1}
in the system given in Fig. 4a. This state can be split into two states, A = {a = 1, c = 1}
and E = {b = 0}. The state Y = {a = 1, b = 1, c = 1} can be split into B = {a = 1, c = 1}
and F = {b = 1}. In the split, there will be transitions from A to E and from B to F . Any
transition from X (resp. Y) to Y (resp. X) will now be from E (resp. F) to B (resp. A).
Since A and B have the same label and successors, they can be merged, which gives the
split in Fig. 4b.

It is easy to see that we can use the Markov Chain that represents the probability distribu-
tion in order to “transform” the transitions from a non-deterministic variable state of Symb′′

28 Form Methods Syst Des (2011) 38: 1–32

into a probability distribution over the probabilistic variable states simply by synchroniz-
ing the two systems. By doing so, Symb′′ becomes a turn-based Markov Decision Process
(MDP). Recall that a turn-based MDP mixes both non-determinism and probabilities. In our
setting, non-determinism thus comes from the choice of the values for the non-probabilistic
variables, while probabilities arise when evaluating variables in P . The transitions from
states that are labeled with probabilistic variables are thus non-deterministic (since one has
to pick up the next values for the non-probabilistic variables). Transitions from states that are
labeled with non-probabilistic variables form a probability distribution on the possible val-
ues of the probabilistic variables. In this context, a run for the MDP is simply an alternation
of valuations of the non-probabilistic and the probabilistic variables.

Example 2 The concept of turn-based Markov Decision Process resulting from the prod-
uct of a split and a Markov Chain for P is illustrated in Fig. 5(b). Observe that the state
{a = 1, c = 1} has been duplicated. Indeed, according to the Markov Chain in Fig. 5a, the
probability to select {b = 0} in the first step is not the same as the one to select it after the
first step. The role of the “init” state is to decide (with some probability) of the initial value
of the probabilistic variable b. This is a very simple example as in each step, there is only
one non-deterministic choice. In more complex designs several choices will be available and
a scheduler will have to select one of them, depending or not of the history of the execution.

Remark 3 The above example is somehow naive as it only considers one value for the non-
deterministic variables. However, the construction easily generalizes to several values. In
the example, there is a clear alternance between states for stochastic variables and states for
non-deterministic variables. The latter can be eliminated with a merging of the probabilistic
state with its non-deterministic successors (this is the classical transformation of a turn-
based Markov Decision Process into a concurrent one). The situation is illustrated in Fig. 6.
If we apply this principle to the Markov Decision Process of Fig. 5 and then remove the
initial state and the stochastic information from the resulting system, then one obtains the
system given in Fig. 4a.

Assuming that the combination of the system with the distribution can be represented
with a MDP, we now briefly discuss P-R-Satisfaction and P-A-Satisfaction. In this context,
we have the following methodology.

• P-R-Satisfaction. Assuming that BA and BG are Büchi automata, P-R-Satisfaction can
be checked with the technique introduced in [9, 21, 51] (which requires a determiniza-
tion step from Büchi to deterministic Rabin [47]) and implemented in the LIQUOR
toolset [14]. Indeed, this technique allows to compute the minimal probability for a

Fig. 6 From turn-based to concurrent Markov decision process

Form Methods Syst Des (2011) 38: 1–32 29

Markov decision process to satisfy a property which is representable with a Büchi au-
tomaton. We can thus consider assumptions and guarantees represented with logical for-
malisms that have a translation to Büchi automata, e.g., ETL [55].

• P-A-Satisfaction with level m and discount factor d . The DCTL logic can also be
interpreted over MDPs. The definition of synchronous product easily extends to MDPs.
The product between a MDP and an automaton can be interpreted as a MDP. We can thus
use the labeling technique with propositions that was proposed for the non-probabilistic
case (assuming that the states of the automaton have also been split (see the split for
transition system)). For a given scheduler (which transforms the MDP into a Markov
chain), we can compute the expected value for the formula �d p. We then compute the
minimum between the expected values for all schedulers and check whether it is greater
than m. More details about model checking DCTL over MDPs can be found in Sect. 2.2
of [23]. The overall formula we model check is ∀E[�d p], where E states for “expected
value”.

Remark 4 Memoryless schedulers are sufficient for P-R-Satisfaction, but history-dependent
schedulers are needed for the case of P-A-Satisfaction (see page 13 of [23]).

5 Some related work

In this section, we compare our work with related work on contracts, process algebra, modal
automata, and interface automata.

Contracts In [4], Benveniste et al. have presented a contract theory where availability, ef-
fective representations, and stochastic aspects are not considered. Other definitions of con-
tracts have been proposed in [33, 44] and in [32], where the mathematical theory of [4]
is recast in a reactive synchronous language setting. In [42], Pace and Schneider study the
satisfaction of contracts that combines deontic and temporal concepts. Composition for such
contracts is studied in [29, 30].

Probabilistic contracts In the probabilistic setting, Xu et al. [56] have recently proposed
another formalism for probabilistic contracts. Their proposal differs from ours in the sense
that they directly focus on Interactive Markov Chains [34], that is a well-known abstract
model for stochastic systems with non-determinism on actions. The drawbacks of the ap-
proach are that (1) the model they propose does not embed any notion of (global) variables,
while our framework can be instantiated with variables, and (2) availability is not consid-
ered.

Process algebra Works on behavioral types in process algebras bear commonalities with
contract theories. In a similar way, the probabilistic contract theory must be compared with
stochastic process algebras [2, 38]. In both cases, the main difference is that compositional
reasoning is possible only in contract theories thanks to the fact that contracts are impli-
cations where an assumption implies a guarantee. A second major difference with process
algebras, is that contract theories are general and can be instantiated in many different ef-
fective automata-based settings. This covers many logical frameworks (CTL [17], LTL [43],
PCTL [35], PSL [27], . . .) for specifying properties of components.

30 Form Methods Syst Des (2011) 38: 1–32

Modal specifications In [37], Larsen proposed modal specifications that correspond to de-
terministic modal automata, i.e., automata whose transitions are typed with may and must
modalities. A modal specification thus represents a set of models; informally, a must transi-
tion is available in every component that implements the modal specification, while a may
transition needs not be. The components that implement modal specifications are prefix-
closed languages, or equivalently deterministic automata. As contracts, modal specifications
support both refinement, conjunction, and composition operations. Moreover, modal speci-
fications support a quotient operation which is the adjunct of parallel composition [45]. The
theory has recently been extended to the timed setting [7, 8]. However, contrary to contracts,
modal specifications do not allow an explicit treatment of assumptions and guarantees. It is
also known that modal specifications are not more expressive than nu-calculus [28], while
the theory of contracts is general and could potentially embed any type of property. Finally,
aside from some attempts [16] there is no stochastic extension for modal specifications.

Interface automata In interface automata [22, 24], an interface is represented by an in-
put/output automaton [39], i.e., an automaton whose transitions are labeled with input or
output actions. The semantics of such an automaton is given by a two-player game: an
Input player represents the environment, and an Output player represents the component
itself. Interface automata do not encompass any notion of model, because one cannot dis-
tinguish between interfaces and implementations. Alternatively, properties of interfaces are
described in game-based logics, e.g., ATL [1], with a high-cost complexity. The game-based
interpretation offers a more elaborated version of the composition operation than our con-
tract approach. More precisely, the game-based interpretation offers an optimistic treatment
of composition: two interfaces can be composed if there exists at least one environment
(i.e., one strategy for the Input player) in which they can interact together in a safe way
(i.e., whatever the strategy of the Output player is). This is referred as compatibility of
interfaces. However, contrary to contracts, interface automata do not allow an explicit treat-
ment of assumptions and guarantees. In [41], Pavese et al. propose a quantitative analysis
of non-probabilistic models using probabilistic environments. In their setting, a given non-
probabilistic system is composed with a probabilistic environment, which allows to perform
quantitative analysis. However, the framework does not consider any notion of composition,
conjunction, or refinement.

Compositional reasoning Another assume-guarantee approach for the verification of sys-
tems consists in decomposing the system into sub-systems and choosing an adequate as-
sumption for a particular decomposition (see [13] for a survey). As we already said in the
paper, those works clearly differ from ours. First, they have to find a decomposition of the
system in sub-systems, and second, they do not support compositional design operators
(conjunction, refinement). In [36], Kwiatkowska et al. propose a compositional verifica-
tion technique based on assume-guarantee reasoning. In this approach, both assumption and
guarantees are regular safety properties represented by finite automata. This work differs
from ours in several ways: their satisfaction relation is restricted to safety properties, their
compositional rules are qualitative and they consider neither refinement nor conjunction. In
[26], another framework is proposed in order to handle dependent probability distributions.
However, conjunction is not considered and the stochastic model remains rather simple. Our
work is much related to the work by Basu et al. [3] on the BIP toolset [6]. In their work, they
do consider a much more elaborated composition operation. However, they do not consider
conjunction, availability (they mostly restrict themselves to safety properties), and stochastic
aspects.

Form Methods Syst Des (2011) 38: 1–32 31

6 Conclusion

We have proposed a new theory for (probabilistic) contracts, which extends the one we
developed for the European project SPEEDS [48]. Our contributions are: (1) a theory for
reliability and availability, (2) a treatment of the stochastic aspects and (3) a discussion
on effective symbolic representations. We are currently implementing the non-probabilistic
approach in the SPIN toolset [49] and we plan to implement the probabilistic approach in
the LIQUOR toolset [14].

In addition to implementation, there are various other directions for future research.
A first direction is to develop a notion of quantitative refinement that is compatible with
P-A-satisfaction. We also plan to consider other symbolic representations such as visibly
pushdown systems [31]. Considering such representations will require new DCTL model
checking algorithms. We also plan to extend our results to the timed setting and consider a
more elaborated version of composition. Considering the case of dependent probability dis-
tributions like in [26] is also a challenging issue. Finally, it would be interesting to define an-
other satisfaction for contracts based on statistical techniques in the spirit of [15, 50, 57, 58].

References

1. Alur R, Henzinger TA, Kupferman O (2002) Alternating-time temporal logic. J ACM 49(5):672–713
2. Andova S (1999) Process algebra with probabilistic choice. In: ARTS. LNCS, vol 1601. Springer, Berlin,

pp 111–129
3. Bensalem S, Bozga M, Nguyen T, Sifakis J (2009) D-finder: A tool for compositional deadlock detection

and verification. In: CAV. Lecture notes in computer science, vol 5643. Springer, Berlin, pp 614–619
4. Benveniste A, Caillaud B, Ferrari A, Mangeruca L, Passerone R, Sofronis C (2008) Multiple viewpoint

contract-based specification and design. In: FMCO’07. LNCS, vol 5382. Springer, Berlin, pp 200–225
5. Benveniste A, Caillaud B, Passerone R (2007) A generic model of contracts for embedded systems.

CoRR, abs/0706.1456
6. Bip—incremental component-based construction of real-time systems. http://www-verimag.imag.fr/

async/bip.php
7. Bertrand N, Legay A, Pinchinat S, Raclet J-B (2009) A compositional approach on modal specifications

for timed systems. In: ICFEM. LNCS, vol 679–697. Springer, Berlin, p 5885
8. Bertrand N, Pinchinat S, Raclet J-B (2009) Refinement and consistency of timed modal specifications. In:

Proc of the 3rd international conference on language and automata theory and applications (LATA’09),
Tarragona, Spain, 2009. LNCS, vol 5457. Springer, Berlin, pp 152–163

9. Bustan D, Rubin S, Vardi MY (2004) Verifying omega-regular properties of Markov chains. In: CAV.
LNCS, vol 3114. Springer, Berlin, pp 189–201

10. Bertsekas DP, Tsitsiklis JN (2002) Introduction to probability. Scientific, Athena
11. Bertsekas DP, Tsitsiklis JN (2008) Introduction to probability. MIT Press, New York
12. Büchi JR (1960) Weak second-order arithmetic and finite automata. Z Math Log Grundl Math 6:66–92
13. Cobleigh JM, Avrunin GS, Clarke LA (2008) Breaking up is hard to do: An evaluation of automated

assume-guarantee reasoning. ACM Trans Softw Eng Methodol 17(2):1–52
14. Ciesinski F, Baier C (2006) Liquor: A tool for qualitative and quantitative linear time analysis of reactive

systems. In: QEST. IEEE Computer Society, New York, pp 131–132
15. Clarke EM, Donzé A, Legay A (2010) On simulation-based probabilistic model checking of mixed-

analog circuits. Formal Methods Syst Des 36(2):97–113
16. Caillaud B, Delahaye B, Larsen KG, Legay A, Pedersen ML, Wasowski A (2010) Compositional design

methodology with constraint Markov chains. In: QEST. IEEE, New York
17. Clarke EM, Emerson EA (1981) Design and synthesis of synchronization skeletons using branching-time

temporal logic. In: Logic of programs. LNCS, vol 131. Springer, Berlin, pp 52–71
18. Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, New York
19. Cox DR, Miller HD (1965) The theory of stochastic processes / d r cox, h d miller
20. Combest http://www.combest.eu.com
21. de Alfaro L (1997) Formal verification of probabilistic systems. PhD thesis, Stanford University
22. de Alfaro L, da Silva LD, Faella M, Legay A, Roy P, Sorea M (2005) Sociable interfaces. In: FroCos.

LNCS, vol 3717. Springer, Berlin, pp 81–105

http://www-verimag.imag.fr/async/bip.php
http://www-verimag.imag.fr/async/bip.php
http://www.combest.eu.com

32 Form Methods Syst Des (2011) 38: 1–32

23. de Alfaro L, Faella M, Henzinger TA, Majumdar R, Stoelinga M (2004) Model checking discounted
temporal properties. In: TACAS. LNCS, vol 2988. Springer, Berlin, pp 77–92

24. de Alfaro L, Henzinger TA (2001) Interface automata. In: FSE. ACM Press, New York, pp 109–120
25. de Alfaro L, Henzinger TA (2005) Interface-based design. In: Engineering theories of software-intensive

systems. NATO science series: mathematics, physics, and chemistry, vol 195. Springer, Berlin, pp 83–
104

26. de Alfaro L, Henzinger TA, Jhala R (2001) Compositional methods for probabilistic systems. In: CON-
CUR. LNCS, vol 2154. Springer, Berlin, pp 351–365

27. Eisner C, Fisman D (2006) A practical introduction to PSL. Springer, Berlin
28. Feuillade G, Pinchinat S (2007) Modal specifications for the control theory of discrete-event systems.

Discrete Event Dyn Syst 17(2):181–205
29. Fenech S, Pace GJ, Schneider G (2009) Automatic conflict detection on contracts. In: ICTAC. Lecture

notes in computer science, vol 5684. Springer, Berlin, pp 200–214
30. Fenech S, Pace GJ, Schneider G (2009) Clan: A tool for contract analysis and conflict discovery. In:

ATVA. LNCS, vol 5799. Springer, Berlin, pp 90–96
31. Finkel A, Willems B, Wolper P (1997) A direct symbolic approach to model checking pushdown systems.

In: ENTCS, vol 9
32. Glouche Y, Le Guernic P, Talpin J-P, Gautier T (2009) A boolean algebra of contracts for logical assume-

guarantee reasoning. CoRR, inria-00292870
33. Goessler G, Raclet J-B (2009) Modal contracts for component-based design. In: SEFM. IEEE Computer

Society, New York, pp 295–303
34. Hermanns H (2002) Interactive Markov chains: the quest for quantified quality. LNCS, vol 2428.

Springer, Berlin
35. Hansson H, Jonsson B (1994) A logic for reasoning about time and reliability. Formal Asp Comput

6(5):512–535
36. Kwiatkowska MZ, Norman G, Parker D, Qu H (2010) Assume-guarantee verification for probabilistic

systems. In: TACAS. LNCS, vol 6015. Springer, Berlin, pp 23–37
37. Larsen KG (1989) Modal specifications. In: Automatic verification methods for finite state systems.

Lecture notes in computer science, vol 407. Springer, Berlin, pp 232–246
38. López N, Núñez M (2004) An overview of probabilistic process algebras and their equivalences. In:

Validation of stochastic systems. LNCS, vol 2925. Springer, Berlin, pp 89–123
39. Lynch N, Tuttle MR (1989) An introduction to Input/Output automata. CWI Q 2(3):219–246
40. Milner R (1989) Communication and concurrency. Prentice Hall, New York
41. Pavese E, Braberman VA, Uchitel S (2009) Probabilistic environments in the quantitative analysis of

(non-probabilistic) behaviour models. In: Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT international symposium on foundations of software
engineering, Amsterdam, The Netherlands, August 24–28, 2009. ACM Press, New York, pp 335–344

42. Pace GJ, Schneider G (2009) Challenges in the specification of full contracts. In: IFM. Lecture notes in
computer science, vol 5423. Springer, Berlin, pp 292–306

43. Pnueli A (1977) The temporal logic of programs. In: FOCS. IEEE, New York, pp 46–57
44. Quinton S, Graf S (2008) Contract-based verification of hierarchical systems of components. In: SEFM.

IEEE Computer Society, New York, pp 377–381
45. Raclet J-B (2007) Residual for component specifications. In: FACS
46. Rutten JJMM, Kwiatkowska M, Norman G, Parker D (2004) Mathematical techniques for analyzing

concurrent and probabilistic systems, vol 23. American Mathematical Society, Providence
47. Rabin MO, Scott D (1959) Finite automata and their decision problems. IBM J Res Dev 115–125
48. Speeds. http://www.speeds.eu.com
49. The spin tool (spin). Available at http://spinroot.com/spin/whatispin.html
50. Sen K, Viswanathan M, Agha G (2005) On statistical model checking of stochastic systems. In: CAV.

LNCS, vol 3576. Springer, Berlin, pp 266–280
51. Vardi MY (1985) Automatic verification of probabilistic concurrent finite-state programs. In: FOCS.

IEEE, New York, pp 327–338
52. Vardi MY (2007) From church and prior to psl. Available at http://www.cs.rice.edu/~vardi/papers/index.

html
53. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification (prelim-

inary report). In: LICS. IEEE Computer Society, New York, pp 332–344
54. Vardi MY, Wolper P (1994) Reasoning about infinite computations. Inf Comput 115(1):1–37
55. Wolper P (1983) Temporal logic can be more expressive. Inf Control 56(1/2):72–99
56. Xu DN, Gößler G, Girault A (2010) In: ATVA. LNCS, vol 6252. Springer, Berlin, pp 325–340
57. Younes HLS (2005) Verification and planning for stochastic processes with asynchronous events. PhD

thesis, Carnegie Mellon
58. Younes HLS (2006) Error control for probabilistic model checking. In: VMCAI. LNCS, vol 3855.

Springer, Berlin, pp 142–156

http://www.speeds.eu.com
http://spinroot.com/spin/whatispin.html
http://www.cs.rice.edu/~vardi/papers/index.html
http://www.cs.rice.edu/~vardi/papers/index.html

	Probabilistic contracts: a compositional reasoning methodology for the design of systems with stochastic and/or non-deterministic aspects
	Abstract
	Introduction
	Structure of the paper

	Preliminaries
	Non-probabilistic contracts
	Contracts
	Compositional reasoning
	Compositional verification
	Effective algorithms/representations

	Probabilistic contracts
	Probabilistic contracts
	Operations on probabilistic contracts and compositional reasoning
	Composition and conjunction
	Refinement
	An illustration

	Effective algorithms/representations

	Some related work
	Contracts
	Probabilistic contracts
	Process algebra
	Modal specifications
	Interface automata
	Compositional reasoning

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

