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Abstract. There are two fundamentally different approaches to speci-
fying and verifying properties of systems. The logical approach makes
use of specifications given as formulae of temporal or modal logics and
relies on efficient model checking algorithms; the behavioural approach
exploits various equivalence or refinement checking methods, provided
the specifications are given in the same formalism as implementations.

In this paper we provide translations between the logical formalism of
Hennessy-Milner logic with greatest fixed points and the behavioural
formalism of disjunctive modal transition systems. We also introduce a
new operation of quotient for the above equivalent formalisms, which is
adjoint to structural composition and allows synthesis of missing specifica-
tions from partial implementations. This is a substantial generalisation of
the quotient for deterministic modal transition systems defined in earlier
papers.

1 Introduction

There are two fundamentally different approaches to specifying and verifying
properties of systems. Firstly, the logical approach makes use of specifications
given as formulae of temporal or modal logics and relies on efficient model checking
algorithms. Secondly, the behavioural approach exploits various equivalence or
refinement checking methods, provided the specifications are given in the same
formalism as implementations.

In this paper, we discuss different formalisms and their relationship. As an
example, let us consider labelled transition systems and the property that “at all
time points after executing request, no idle nor further requests but only work is
allowed until grant is executed”. The property can be written in e.g. CTL [13] as

AG(request⇒ AX(work AW grant))
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Fig. 1. DMTS specification corresponding to AG(request⇒ AX(work AW grant)), and
its implementation

or as a recursive system of equations in Hennessy-Milner logic [28] as

X = [grant, idle,work]X ∧ [request]Y
Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

where the solution is given by the greatest fixed point.
As formulae of modal logics can be difficult to read, some people prefer

automata-based behavioural specifications to logical ones. One such behavioural
specification formalism is the one of disjunctive modal transition systems (DMTS)
[25]. Fig. 1 (left) displays a specification of our example property as a DMTS.
Here the dashed arrows indicate that the transitions may or may not be present,
while branching of the solid arrow indicates that at least one of the branches
must be present. An example of a labelled transition system that satisfies our
logical specifications and implements the behavioural one is also given in Fig. 1.

The alternative between logical and behavioural specifications is not only
a question of preference. Logical specification formalisms put a powerful logical
language at the disposal of the user, and the logical approach to model check-
ing [13, 33] has seen a lot of success and tool implementations. Automata-based
specifications [11, 26], on the other hand, have a focus on compositional and
incremental design in which logical specifications are somewhat lacking, with the
trade-off of generally being less expressive than logics.

To be more precise, automata-based specifications are, by design, composi-
tional in the sense that they support structural composition of specifications and,
in most cases, its adjoint, quotient. This is useful, even necessary, in practical
verification, as it means that (1) it is possible to infer properties of a system
from the specifications of its components, and (2) the problem of correctness for
a system can be decomposed into verification problems for its components. We
refer to [27] for a detailed account on composition and decomposition.

It is thus desirable to be able to translate specifications from the logical
realm into behavioural formalisms, and vice versa from behavioural formalisms
to logic-based specifications. This is, then, the first contribution of this paper: we
show that Hennessy-Milner logic with greatest fixed points (νHML) and DMTS
(with several initial states) are equally expressive, and we provide translations
forth and back. For doing this, we introduce an auxiliary intermediate formalism
NAA (a nondeterministic extension of acceptance automata [21, 34]) which is
equivalent in expressiveness to both νHML and DMTS.

We also discuss other desirable features of specification formalisms, namely
structural composition and quotient. As an example, consider a specification S
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of the final system to be constructed and T either an already implemented
component or a specification of a service to be used. The task is to construct the
most general specification of the rest of the system to be implemented, in such
a way that when composed with any implementation of T , it conforms with the
specification S. This specification is exactly the quotient S/T .

Contribution Firstly, we show that the formalisms of νHML, NAA and DMTS
have the same expressive power, and provide the respective translations. As
a result, the established connection allows for a graphical representation of νHML
as DMTS. This extends the graphical representability of HML without fixed
points as modal transition systems [9,26]. In some sense this is optimal, as due
to the alternation of least and greatest fixed points, there seems to be no hope
that the whole µ-calculus could be drawn in a similarly simple way.

Secondly, we show that there are natural operations of conjunction and
disjunction for NAA which mimic the ones of νHML. As we work with multiple
initial states, disjunction is readily defined, and conjunction extends the one for
DMTS [5]. Thirdly, we introduce structural composition on NAA. For simplicity
we assume CSP-style synchronisation of labels, but the construction can easily
be generalised to other types of label synchronisation.

Finally, we provide a solution to the open problem of the general quotient.
We extend the quotient constructions for deterministic modal transition systems
(MTS) and acceptance automata [34] to define the quotient for the full class of
(possibly nondeterministic) NAA. We also provide a more efficient procedure for
(possibly nondeterministic) MTS. These constructions are the technically most
demanding parts of the paper.

With the operations of structural composition and quotient, NAA, and hence
also DMTS and νHML, are fully compositional behavioural specification theories
and form a commutative residuated lattice [20, 38] up to equivalence. This makes
a rich algebraic theory available for compositional reasoning about specifications.
Most of the constructions we introduce are implemented in a prototype tool [7].
Due to space constraints, some of the proofs had to be omitted from the paper.

Related work Hennessy-Milner logic with recursion [28] is a popular logical
specification formalism which has the same expressive power as µ-calculus [24]. It
is obtained from Hennessy-Milner logic (HML) [22] by introducing variables and
greatest and least fixed points. Hennessy-Milner logic with greatest fixed points
(νHML) is equivalent to ν-calculus, i.e. µ-calculus with greatest fixed points only.

DMTS have been proposed as solutions to algebraic process equations in [25]
and further investigated also as a specification formalism [5, 27]. The DMTS
formalism is a member of the modal transition systems (MTS) family and as
such has also received attention recently. The MTS formalisms have proven to be
useful in practice. Industrial applications started as early as [10] where MTS have
been used for an air-traffic system at Heathrow airport. Besides, MTS classes are
advocated as an appropriate base for interface theories in [35] and for product
line theories in [30]. Further, an MTS based software engineering methodology
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for design via merging partial descriptions of behaviour has been established
in [37] and methods for supervisory control of MTS shown in [14]. Tool support
is quite extensive, e.g. [2, 5, 8, 15].

Over the years, many extensions of MTS have been proposed. While MTS
can only specify whether or not a particular transition is required, some ex-
tensions equip MTS with more general abilities to describe what combinations
of transitions are possible. These include DMTS [25], 1-MTS [16] allowing to
express exclusive disjunction, OTS [3] capable of expressing positive Boolean
combinations, and Boolean MTS [4] covering all Boolean combinations. The last
one is closely related to our NAA, the acceptance automata of [21,34], as well as
hybrid modal logic [6, 32].

Larsen has shown in [26] that any finite MTS is equivalent to a HML formula
(without recursion or fixed points), the characteristic formula of the given MTS.
Conversely, Boudol and Larsen show in [9] that any consistent and prime HML
formula is equivalent to a MTS. Here we extend these results to νHML formulae,
and show that any such formula is equivalent to a DMTS, solving a problem left
open in [25]. Hence νHML supports full compositionality and decomposition in
the sense of [27]. This finishes some of the work started in [9, 26,27].

Quotients are related to decomposition of processes and properties, an issue
which has received considerable attention through the years. In [25], a solution
to bisimulation C(X) ∼ P for a given process P and context C is provided (as
a DMTS). This solves the quotienting problem P/C for the special case where both
P and C are processes. This is extended in [29] to the setting where the context
C can have several holes and C(X1, . . . , Xn) must satisfy a property Q of νHML.
However, C remains to be a process context, not a specification context. Our
specification context allows for arbitrary specifications, representing infinite sets of
processes and process equations. Another extension uses infinite conjunctions [18],
but similarly to the other approaches, generates partial specifications from an
overall specification and a given set of processes. This is subsumed by a general
quotient.

Quotient operators, or guarantee or multiplicative implication as they are
called there, are also well-known from various logical formalisms. Indeed, the
algebraic properties of our parallel composition ‖ and quotient / resemble closely
those of multiplicative conjunction & and implication ( in linear logic [19],
and of spatial conjunction and implication in spatial logic [12] and separation
logic [31,36]. For these and other logics, proof systems have been developed which
allow one to reason about expressions containing these operators.

In spatial and separation logic, & and ( (or the operators corresponding to
these linear-logic symbols) are first-class operators on par with the other logical
operators, and their semantics are defined as certain sets of processes. In contrast,
for NAA and hence, via the translations, also for νHML, ‖ and / are derived
operators, and we provide constructions to reduce any expression which contains
them, to one which does not. This is important from the perspective of reuse of
components and useful in industrial applications.



Hennessy-Milner Logic with Greatest Fixed Points 5

2 Specification Formalisms

In this section, we define the specification formalisms νHML, DMTS and NAA
and show that they are equivalent.

For the rest of the paper, we fix a finite alphabet Σ. In each of the formalisms,
the semantics of a specification is a set of implementations, in our case always
a set of labelled transition systems (LTS) over Σ, i.e. structures (S, s0,−→)
consisting of a set S of states, an initial state s0 ∈ S, and a transition relation
−→ ⊆ S × Σ × S. We assume that the transition relation of LTS is always
image-finite, i.e. that for every a ∈ Σ and s ∈ S the set {s′ ∈ S | s a−→ s′} is
finite.

2.1 Hennessy-Milner Logic with Greatest Fixed Points

We recap the syntax and semantics of HML with variables developed in [28].
A HML formula φ over a set X of variables is given by the abstract syntax
φ ::= tt | ff | x | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ, where x ranges over X and a over Σ.
The set of such formulae is denoted H(X). Notice that instead of including fixed
point operators in the logic, we choose to use declarations with a greatest fixed
point semantics, as explained below.

A declaration is a mapping ∆ : X → H(X). We shall give a greatest fixed
point semantics to declarations. Let (S, s0,−→) be an LTS, then an assignment
is a mapping σ : X → 2S . The set of assignments forms a complete lattice with
σ1 v σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and

(⊔
i∈I σi

)
(x) =

⋃
i∈I σi(x).

The semantics of a formula is a subset of S, given relative to an assignment σ,
defined as follows: LttMσ = S, LffMσ = ∅, LxMσ = σ(x), Lφ ∧ ψMσ = LφMσ ∩ LψMσ,
Lφ ∨ ψMσ = LφMσ ∪ LψMσ, L〈a〉φMσ = {s ∈ S | ∃s a−→ s′ : s′ ∈ LφMσ}, and
L[a]φMσ = {s ∈ S | ∀s a−→ s′ : s′ ∈ LφMσ}. The semantics of a declaration ∆ is then
the assignment defined by L∆M =

⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ L∆(x)Mσ}:

the greatest (pre)fixed point of ∆.
An initialised HML declaration, or νHML formula, is a structure (X,X0, ∆),

with X0 ⊆ X finite sets of variables and ∆ : X → H(X) a declaration. We say
that an LTS (S, s0,−→) implements (or models) the formula, and write S |= ∆,
if it holds that there is x0 ∈ X0 such that s0 ∈ L∆M(x0). We write J∆K for the
set of implementations (models) of a νHML formula ∆.

2.2 Disjunctive Modal Transition Systems

A DMTS is essentially a labelled transition system (LTS) with two types of
transitions, may transitions which indicate that implementations are permitted
to implement the specified behaviour, and must transitions which proclaim that
any implementation is required to implement the specified behaviour. Additionally,
must transitions may be disjunctive, in the sense that they can require that at
least one out of a number of specified behaviours must be implemented. We
now recall the syntax and semantics of DMTS as introduced in [25]. We modify
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the syntax slightly to permit multiple initial states and, in the spirit of later
work [5, 17], ensure that all required behaviour is also allowed:

A disjunctive modal transition system (DMTS) over the alphabet Σ is a struc-
ture (S, S0, 99K,−→) consisting of a set of states S, a finite subset S0 ⊆ S of
initial states, a may-transition relation 99K ⊆ S ×Σ × S, and a disjunctive must-
transition relation −→ ⊆ S×2Σ×S . It is assumed that for all (s,N) ∈ −→ and all
(a, t) ∈ N , (s, a, t) ∈ 99K. We usually write s

a
99K t instead of (s, a, t) ∈ 99K and

s −→ N instead of (s,N) ∈ −→. We also assume that the may transition relation
is image-finite. Note that the two assumptions imply that −→ ⊆ S× 2Σ×SFin where
2XFin denotes the set of all finite subsets of X.

A DMTS (S, S0, 99K,−→) is an implementation if S0 = {s0} is a singleton
and −→ = {(s, {(a, t)} | s a

99K t}, hence if N is a singleton for each s −→ N
and there are no superfluous may-transitions. Thus DMTS implementations are
precisely LTS.

We proceed to define the semantics of DMTS. First, a relation R ⊆ S1×S2 is
a modal refinement between DMTS (S1, S

0
1 , 99K1,−→1) and (S2, S

0
2 , 99K2,−→2)

if it holds for all (s1, s2) ∈ R that

– for all s1
a

99K t1 there is s2
a

99K t2 for some t2 ∈ S2 with (t1, t2) ∈ R, and
– for all s2 −→ N2 there is s1 −→ N1 such that for each (a, t1) ∈ N1 there is

(a, t2) ∈ N2 with (t1, t2) ∈ R.

Such a modal refinement is initialised if it is the case that, for each s01 ∈ S0
1 ,

there is s02 ∈ S0
2 for which (s01, s

0
2) ∈ R. In that case, we say that S1 refines S2

and write S1 ≤m S2. We write S1 ≡m S2 if S1 ≤m S2 and S2 ≤m S1.
We say that an LTS I implements a DMTS S if I ≤m S and write JSK for

the set of implementations of S. Notice that the notions of implementation and
modal refinement agree, capturing the essence of DMTS as a specification theory :
A DMTS may be gradually refined, until an LTS, in which all behaviour is fully
specified, is obtained.

For DMTS S1, S2 we say that S1 thoroughly refines S2, and write S1 ≤t S2,
if JS1K ⊆ JS2K. We write S1 ≡t S2 if S1 ≤t S2 and S2 ≤t S1. By transitivity,
S1 ≤m S2 implies S1 ≤t S2.

Example 1. Figs. 2 and 3 show examples of important basic properties expressed
both as νHML formulae, NAA (see below) and DMTS. For DMTS, may transitions
are drawn as dashed arrows and disjunctive must transitions as branching arrows.
States with a short incoming arrow are initial (the DMTS in Fig. 3 has two initial
states).

X = 〈a〉tt ∧ [a]X ∧ [b]X

({s0}, {s0},Tran)

Tran(s0) =
{
{(a, s0)}, {(a, s0), (b, s0)}

} a

b

Fig. 2. νHML formula, NAA and DMTS for the invariance property “there is always
an ‘a’ transition available”, with Σ = {a, b}
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X = 〈b〉tt ∨
(
〈a〉tt ∧ [a]X ∧ [b]X ∧ [c]X

)
({s0, s1}, {s0},Tran)

Tran(s0) =
{
{(b, s1)}, {(b, s1), (a, s1)}, {(b, s1), (c, s1)},

{(b, s1), (a, s1), (c, s1))}, {(a, s0)}, {(a, s0), (c, s0)}
}

Tran(s1) = 2{s1}×{a,b,c}

a

a

b
a, c

b, c

b, c

a, b, c

Fig. 3. νHML formula, NAA and DMTS for the (“weak until”) property “there is always
an ‘a’ transition available, until a ‘b’ transition becomes enabled”, with Σ = {a, b, c}

a

b

Modal Transition Systems An interesting subclass
of DMTS are modal transition systems (MTS) [26]. A
DMTS (S, S0, 99K,−→) is said to be a MTS if (1)
S0 = {s0} is a singleton, (2) for every s −→ N , the set N is a singleton. Hence,
for each transition, we specify whether it must, may, or must not be present; no
disjunctions can be expressed. It is easy to see that MTS are less expressive than
DMTS, i.e. there are DMTS S for which no MTS S′ exists so that JSK = JS′K.
One example is provided on the right. Here any implementation must have an a
or a b transition from the initial state, but then any MTS which permits all such
implementations will also allow implementations without any transition from the
initial state.

2.3 NAA

We now define NAA, the nondeterministic extension to the formalism of accep-
tance automata [34]. We shall use this formalism to bridge the gap between
νHML and DMTS. A nondeterministic acceptance automaton over the alphabet
Σ is a structure (S, S0,Tran) where S and S0 are the states and initial states as
previously, and Tran : S → 22Σ×SFin assigns admissible transition sets.

A NAA (S, S0,Tran) is an implementation if S0 = {s0} is a singleton and
Tran(s) = {M} is a singleton for every s ∈ S; clearly, NAA implementations are
precisely LTS. We also define the inconsistent NAA to be ⊥ = (∅, ∅, ∅) and the
universal NAA by > = ({s}, {s}, 22Σ×{s}).

A relation R ⊆ S1 × S2 is a modal refinement between NAA (S1, S
0
1 ,Tran1),

(S2, S
0
2 ,Tran2) if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1) that there

exists M2 ∈ Tran2(s2) such that

– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

We define and use the notions of initialised modal refinement, ≤m, ≡m, imple-
mentation, ≤t, and ≡t the same way as for DMTS.

Proposition 2. The class of NAA is preordered by modal refinement ≤m, with
bottom element ⊥ and top element >.
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Note that as implementations of all our three formalisms νHML, DMTS and
NAA are LTS, it makes sense to use thorough refinement ≤t and equivalence ≡t

across formalisms, so that we e.g. can write S ≤t ∆ for a NAA S and a νHML
formula ∆.

2.4 Equivalences

We proceed to show that νHML, DMTS and NAA are equally expressive:

Theorem 3. For any set S of LTS, the following are equivalent:

1. There exists a νHML formula ∆ with J∆K = S.
2. There exists a finite NAA S with JSK = S.
3. There exists a finite DMTS S with JSK = S.

Furthermore, the latter two statements are equivalent even if we drop the finiteness
constraints.

Note that we could drop the finiteness assumption about the set of variables
of νHML formulae, while retaining the fact that ∆(x) is a finite HML formula.
The result of Theorem 3 could then be extended with the statement that these
possibly infinite νHML formulae are equivalent to general DMTS/NAA.

For a DMTS S = (S, S0, 99K,−→), let Tran(s) = {M ⊆ Σ × S | ∃N : s −→
N,N ⊆M ;∀(a, t) ∈M : s

a
99K t} and define the NAA dn(S) = (S, S0,Tran).

Conversely, for an NAA (S, S0,Tran), define the DMTS nd(S) = (T, T 0, 99K,
−→) as follows:

– T = {M ∈ Tran(s) | s ∈ S}, T 0 = {M ∈ Tran(s0) | s0 ∈ S0},
– −→ = {(M, {(a,M ′) |M ′ ∈ Tran(s′)} | (a, s′) ∈M},
– 99K = {(t, a, t′) | t ∈ T, ∃(t,N) ∈ −→ : (a, t′) ∈ N}.

Note that both nd and dn preserve finiteness. Both translation are exponential
in their respective arguments.

Lemma 4. For every DMTS S, S ≡t dn(S). For every NAA S, S ≡t nd(S).

For a set of pairs of actions and states M we use Ma to denote the set
{s | (a, s) ∈M}. Let (S, S0,Tran) be a finite NAA and let s ∈ S, we then define

∆Tran(s) =
∨

M∈Tran(s)

( ∧
(a,t)∈M

〈a〉t ∧
∧
a∈Σ

[a]
( ∨
u∈Ma

u
))

We then define the νHML formula nh(S) = (S, S0, ∆Tran). Notice that vari-
ables in nh(S) are states of S.

Lemma 5. For all NAA S, S ≡t nh(S).

Our translation from νHML to DMTS is based on the constructions in [9].
First, we need a variant of a disjunctive normal form for HML formulae:
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Lemma 6. For any νHML formula (X1, X
0
1 , ∆1), there exists another formula

(X2, X
0
2 , ∆2) with J∆1K = J∆2K and such that any formula ∆2(x), for x ∈ X2, is

tt or of the form ∆2(x) =
∨
i∈I
(∧

j∈Ji〈aij〉xij ∧
∧
a∈Σ [a]yi,a

)
for finite (possibly

empty) index sets I and Ji, i ∈ I, and all xij , yi,a ∈ X2. Additionally we can
assume that for all i ∈ I, j ∈ Ji, a ∈ Σ, aij = a implies JxijK ⊆ Jyi,aK.

Let now (X,X0, ∆) be a νHML formula in the form introduced above, then
we define a DMTS hd(∆) = (S, S0, 99K,−→) as follows:

– S = {(x, k) | x ∈ X,∆(x) =
∨
i∈I φi, k ∈ I 6= ∅} ∪ {⊥,>},

– S0 = {(x0, k) | x0 ∈ X0}.
– For each (x, k) ∈ S with ∆(x) =

∨
i∈I(

∧
j∈Ji〈aij〉xij ∧

∧
a∈Σ [a]yi,a) and

I 6= ∅,
• for each j ∈ Ji, let Mustj(x, k) = {(aij , (xij , i′)) ∈ Σ × S},
• for each a ∈ Σ, let Maya(x, k) = {(x′, i′) ∈ S | Jx′K ⊆ Jyi,aK}.

– Let 99K = {(s, a, s′) | s ∈ S, a ∈ Σ, s′ ∈ Maya(s)} ∪ {(>, a,>) | a ∈ Σ} and
−→ = {(s,Mustj(s)) | s = (x, i) ∈ S, j ∈ Ji} ∪ {(⊥, ∅)}.

Lemma 7. For all νHML formulae ∆, ∆ ≡t hd(∆).

Further, we remark that the overall translation from DMTS to νHML is
quadratic and in the other direction inevitably exponential.

Example 8. Consider the νHML formula X = (〈a〉(〈b〉X ∧ [a]ff) ∧ [b]ff) ∨ [a]ff .
Changing the formula into the normal form of Lemma 6 introduces a new variable
Y as illustrated below; X remains the sole initial variable. The translation hd
then gives a DMTS with two initial states (the inconsistent state ⊥ and redundant

may transitions such as x1
a

99K x2, x2
b

99K x1, etc. have been omitted):

X = (

x1︷ ︸︸ ︷
〈a〉Y ∧ [a]tt ∧ [b]ff)
∨ ([a]ff ∧ [b]tt︸ ︷︷ ︸

x2

)

Y = 〈b〉X ∧ [a]ff ∧ [b]tt︸ ︷︷ ︸
y1

x1

>x2

y1

a
a

b

b

b

b

a, b

3 Specification Theory

In this section, we introduce operations of conjunction, disjunction, structural
composition and quotient for NAA, DMTS and νHML. Together, these opera-
tions yield a complete specification theory in the sense of [1], which allows for
compositional design and verification using both logical and structural operations.
We remark that conjunction and disjunction are straightforward for logical for-
malisms such as νHML, whereas structural composition is more readily defined
on behavioural formalisms such as (D)MTS. For the mixed formalism of NAA,
disjunction is trivial as we permit multiple initial states, but conjunction requires
some work. Note that our construction of conjunction works for nondeterministic
systems in contrast to all the work in this area except for [5, 25].
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3.1 Disjunction

The disjunction of NAA S1 = (S1, S
0
1 ,Tran1) and S2 = (S2, S

0
2 ,Tran2) is S1 ∨

S2 = (S1 ∪ S2, S
0
1 ∪ S0

2 ,Tran1 ∪ Tran2). Similarly, the disjunction of two DMTS
S1 = (S1, S

0
1 , 99K1,−→1) and S2 = (S2, S

0
2 , 99K2,−→2) is S1∨S2 = (S1∪S2, S

0
1 ∪

S0
2 , 99K1 ∪ 99K2,−→1 ∪−→2). It follows that disjunction respects the translation

mappings dn and nd from the previous section.

Theorem 9. Let S1, S2, S3 be NAA or DMTS. Then JS1 ∨ S2K = JS1K ∪ JS2K.
Further, S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3.

s01 s02

a a

b bWe point out one important distinction
between NAA and DMTS: NAA with a single
initial state are equally expressive as general
NAA, while for DMTS, this is not the case. The
example on the right shows a DMTS (S, S0, 99K,−→), with S = S0 = {s01, s02},
s01 −→ {(a, s01), (a, s02)} and s01 −→ {(b, s01), (b, s02)} (and the corresponding may-
transitions). Two initial states are necessary for capturing JSK.

Lemma 10. For any NAA S there is a NAA T = (T, T 0, Ψ) with T 0 = {t0}
a singleton and S ≡m T .

3.2 Conjunction

Conjunction for DMTS is an extension of the construction from [5] for multiple
initial states. Given two DMTS (S1, S

0
1 , 99K1,−→1), (S2, S

0
2 , 99K2,−→2), we define

S1 ∧ S2 = (S, S0, 99K,−→) with S = S1 × S2, S0 = S0
1 × S0

2 , and

– (s1, s2)
a

99K (t1, t2) iff s1
a

99K1 t1 and s2
a

99K2 t2,
– for all s1 −→ N1, (s1, s2) −→ {(a, (t1, t2)) | (a, t1) ∈ N1, (s1, s2)

a
99K (t1, t2)},

– for all s2 −→ N2, (s1, s2) −→ {(a, (t1, t2)) | (a, t2) ∈ N2, (s1, s2)
a

99K (t1, t2)}.
To define conjunction for NAA, we need auxiliary projection functions πi :

Σ × S1 × S2 → Σ × Si. These are defined by

π1(M) ={(a, s1) | ∃s2 ∈ S2 : (a, s1, s2) ∈M}
π2(M) ={(a, s2) | ∃s1 ∈ S1 : (a, s1, s2) ∈M}

Given NAA (S1, S
0
1 ,Tran1), (S2, S

0
2 ,Tran2), define S1 ∧ S2 = (S, S0,Tran), with

S = S1 × S2, S0 = S0
1 × S0

2 and Tran((s1, s2)) = {M ⊆ Σ × S1 × S2 | π1(M) ∈
Tran1(s1), π2(M) ∈ Tran2(s2)}.
Lemma 11. For DMTS S1, S2, dn(S1 ∧ S2) = dn(S1) ∧ dn(S2).

For the translation from NAA to DMTS, nd(S1 ∧ S2) = nd(S1) ∧ nd(S2)
does not necessarily hold, as the translation changes the state space. However,
Theorem 12 below will ensure that nd(S1 ∧ S2) ≡t nd(S1) ∧ nd(S2).

Theorem 12. Let S1, S2, S3 be NAA or DMTS. Then JS1 ∧ S2K = JS1K ∩ JS2K.
Further, S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3.

Theorem 13. With operations ∧ and ∨, the sets of DMTS and NAA form
bounded distributive lattices up to ≡m.
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3.3 Structural Composition

We define structural composition for NAA. For NAA S1 = (S1, S
0
1 ,Tran1), S2 =

(S2, S
0
2 ,Tran2), we define S1‖S2 = (S, S0,Tran) with S = S1×S2, S0 = S0

1 ×S0
2 ,

and for all (s1, s2) ∈ S, Tran((s1, s2)) = {M1‖M2 | M1 ∈ Tran1(s1),M2 ∈
Tran2(s2)}, where M1‖M2 = {(a, (t1, t2)) | (a, t1) ∈M1, (a, t2) ∈M2}.

Lemma 14. Up to ≡m, the operator ‖ on NAA is associative and commutative,
distributes over ∨, and has unit U, where U is the LTS ({s}, s,−→) with s a−→ s
for all a ∈ Σ.

Theorem 15. For all NAA S1, S2, S3, S4, S1 ≤m S3 and S2 ≤m S4 imply
S1‖S2 ≤m S3‖S4.

We remark that structural composition on MTS [26] coincides with our
NAA composition, so that for MTS S1, S2, dn(S1)‖dn(S2) = dn(S1‖S2). On
the other hand, structural composition for DMTS (with single initial states)
as defined in [5] is weaker than NAA composition, i.e. for DMTS S1, S2, and
denoting by ‖′ the composition from [5], only dn(S1)‖dn(S2) ≤t dn(S1‖′S2)
holds. Consider for example the DMTS S and S′ in the figure below. When
considering their NAA composition, the initial state is the pair (s0, t0) with
Tran((s0, t0)) = {∅, {(a, (s2, t1)), (a, (s2, t2))}. Since this constraint cannot be
represented as a disjunctive must, there is no DMTS with a single initial state
which can represent the NAA composition precisely.

s0

s1

s2a

b

t0

t1

t2a

a

Hence the DMTS composition of [5] is a DMTS over-approximation of the
NAA composition, and translating from DMTS to NAA before composing (and
back again) will generally give a tighter specification. However, as noted already
in [23], MTS composition itself is an over-approximation, in the sense that there
will generally be implementations I ∈ JS1‖S2K which cannot be written I = I1‖I2
for I1 ∈ JS1K and I2 ∈ JS2K; the same is the case for NAA and DMTS.

3.4 Quotient

We now present one of the central contributions of this paper, the construction
of quotient. The quotient S/T is to be the most general specification that, when
composed with T , refines S. In other words, it must satisfy the property that
for all specifications X, X ≤m S/T iff X ‖ T ≤m S. Quotient has been defined
for deterministic MTS and for deterministic acceptance automata in [34]; here
we extend it to the nondeterministic case (i.e. NAA). The construction incurs
an exponential blow-up, which however is local and depends on the degree of
nondeterminism. We also provide a quotient construction for nondeterministic
MTS; this is useful because MTS encodings for NAA can be very compact.
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Let (S, S0,TranS), (T, T 0,TranT ) be two NAA. We define the quotient S/T =
(Q, {q0},TranQ). Let Q = 2S×TFin and q0 = {(s0, t0) | s0 ∈ S0, t0 ∈ T 0}. States in
Q will be written {s1/t1, . . . , sn/tn} instead of {(s1, t1), . . . , (sn, tn)}.

In the following, we use the notation x ∈∈ z as a shortcut for the fact that there
exists y with x ∈ y ∈ z. We first define TranQ(∅) = 2Σ×{∅}. This means that the
empty set of pairs is the universal state>. Now let q = {s1/t1, . . . , sn/tn} ∈ Q. We
first define the auxiliary set of possible transitions pt(q) as follows. For x ∈ S ∪T ,
let α(x) = {a ∈ Σ | ∃y : (a, y) ∈∈ Tran(x)} and γ(q) =

⋂
i

(
α(si) ∪ (Σ \ α(ti))

)
.

Let further πa(X) = {x | (a, x) ∈ X}.
Let now a ∈ γ(q). For all i ∈ {1, . . . , n}, let {ti,1, . . . , ti,mi} = πa(

⋃
TranT (ti))

be the possible next states from ti after an a-transition, and define

pta(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : (a, si,j) ∈∈ TranS(si)
}

and pt(q) =
⋃
a∈Σ({a} × pta(q)). Hence pta(q) contains sets of possible next

quotient states after an a-transition, each obtained by combining the ti,j with
some permutation of possible next a-states in S. We then define

TranQ(q) = {X ⊆ pt(q) | ∀i : ∀Y ∈ TranT (ti) : X . Y ∈ TranS(si)},

where the operator . is defined by {s1/t1, . . . , sk/tk} . t` = s` and X . Y =
{(a, x . y) | (a, x) ∈ X, (a, y) ∈ Y }. Hence TranQ(q) contains all sets of (possible)
transitions which are compatible with all ti in the sense that (the projection of)
their parallel composition with any set Y ∈ TranT (ti) is in TranS(si).

Theorem 16. For all NAA S, T and X, X‖T ≤m S iff X ≤m S/T .

Theorem 17. With operations ∧, ∨, ‖ and /, the set of NAA forms a commu-
tative residuated lattice up to ≡m.

This theorem makes clear the relation of NAA to linear logic [19]: except for
completeness of the lattice induced by ∧ and ∨ (cf. Theorem 13), NAA form
a commutative unital Girard quantale [39], the standard algebraic setting for
linear logic. Completeness of the lattice can be obtained by allowing infinite
conjunctions and disjunctions (and infinite NAA).

3.5 Quotient for MTS

We now give a quotient algorithm for the important special case of MTS, which
results in a much more compact quotient than the NAA construction in the
previous section. However, MTS are not closed under quotient; cf. [27, Thm. 5.5].
We show that the quotient of two MTS will generally be a DMTS.

Let (S, s0, 99KS ,−→S) and (T, t0, 99KT ,−→T ) be nondeterministic MTS. We
define the quotient S/T = (Q, {q0}, 99KQ,−→Q). We let Q = 2S×TFin as before,
and q0 = {(s0, t0)}. The state ∅ ∈ Q is again universal, so we define ∅ a

99K ∅ for
all a ∈ Σ. There are no must transitions from ∅.



Hennessy-Milner Logic with Greatest Fixed Points 13

s0
s1a

s2a

•b

t0
t1a

t2a

•b

•
c s0/t0

{s1/t1, s2/t2}
a

{s2/t1, s2/t2}
a

>

b

a

a
b, c

a, b, c

Fig. 4. Two nondeterministic MTS and their quotient

Let α(s), γ(q) be as in the previous section. For convenience, we work with
sets Maya(s), for a ∈ Σ and states s, instead of may transitions, i.e. we have
Maya(s) = {t | s a

99K t}.
Let q = {s1/t1, . . . , sn/tn} ∈ Q and a ∈ Σ. First we define the may transitions.

If a ∈ γ(q) then for each i ∈ {1, . . . , n}, write Maya(ti) = {ti,1, . . . , ti,mi}, and
define

Maya(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : si,j ∈ Maya(si)
}
.

For the (disjunctive) must-transitions, we let, for every si
a−→ s′,

q −→ {(a,M) ∈ {a} ×Maya(q) | ∃t′ : s′/t′ ∈M, ti
a−→ t′}.

Example 18. We illustrate the construction on an example. Let S and T be the
MTS in the left part of Fig. 4. We construct S/T ; the end result is displayed in
the right part of the figure.

First we construct the may-successors of s0/t0. Under b and c there are
no constraints, hence we go to >. For a, we have all permutations of assign-
ments of successors of s to successors of t, namely {s1/t1, s1/t2}, {s1/t1, s2/t2},
{s2/t1, s1/t2} and {s2/t1, s2/t2}. Since there is a must-transition from s (to s1),
we create a disjunctive must-transition to all successors that can be used to
yield a must-transition when composed with the must-transition from t to t1.
These are all successors where t1 is mapped to s1, hence the first two. However,
{s1/t1, s1/t2} will turn out inconsistent, as it requires to refine s1 by a composi-
tion with t2. As t2 has no must under b, the composition has none either, hence
the must of s1 can never be matched. As a result, after pruning, the disjunctive
must from {s0/t0} leads only to {s1/t1, s2/t2}. Further, {s2/t1, s1/t2} is incon-
sistent for the same reason, so that we only have one other may-transition under
a from {s0/t0}.

Now {s1/t1, s2/t2} is obliged to have a must under b so that it refines s1 when
composed with t1, but cannot have any c in order to match s2 when composed
with t2. Similarly, {s2/t1, s2/t2} has neither c nor b. One can easily verify that
T‖(S/T ) ≡m S in this case.

Note that the constructions may create inconsistent states, which have no
implementation. In order to get a consistent system, it needs to be pruned. This
is standard and the details can be found in Appendix ??. The pruning can be
done in polynomial time.
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Theorem 19. For all MTS S, T and X, X ≤m S/T iff T‖X ≤m S.

4 Conclusion and Future Work

In this paper we have introduced a general specification framework whose basis
consists of three different but equally expressive formalisms: one of a graphical
behavioural kind (DMTS), one logic-based (νHML) and one an intermediate
language between the former two (NAA). We have shown that the framework
possesses a rich algebraic structure that includes logical (conjunction, disjunction)
and structural operations (parallel composition and quotient). Moreover, the
construction of the quotient solves an open problem in the area of MTS. As
for future work, we hope to establish the exact complexity of the quotient
constructions. We conjecture that the exponential blow-up of the construction is
in general unavoidable.
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