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Introduction

Si l’histoire récente du progrès technologique est marquée par de très nombreux succès retentissants,
notamment dans le domaine de la conquête spatiale et des réseaux de communication, elle est aussi
jalonnée de célèbres échecs. Ainsi, le premier lancement de la fusée Ariane V, le 4 juin 1996, depuis
la base de Kourou en Guyane française, a été marqué par une explosion fatale, 36 secondes après le
décollage. Une commission d’expertise, dirigée par le mathématicien français Jacques-Louis Lions, a
conclu que cette explosion a été provoquée par un défaut du système informatique de pilotage de la
fusée : un dépassement d’entier dans les registres mémoire des calculateurs électroniques utilisés par le
pilote automatique aurait en effet provoqué la panne du système de navigation de la fusée, causant sa
destruction. Si cette explosion n’a causé que des dégâts matériels, elle a néanmoins conduit à une perte
financière très importante. On pourrait multiplier les exemples de catastrophes technologiques dues à
ce type d’erreur : l’affaire de la machine de radio-thérapie Therac 25 entre 1985 et 1987, la défaillance
du système antimissile Patriot en 1991, le dysfonctionnement du microprocesseur Pentium en 1994,
etc. La présence d’erreurs dans le fonctionnement des systèmes utilisés constitue le point commun de
ces différents échecs.

La vérification du bon fonctionnement des systèmes qui nous entourent représente donc un enjeu
majeur, pour de très nombreux secteurs de nos sociétés, comme les transports, la santé, l’informatique
ou l’industrie. La nécessaire vérification constitue aujourd’hui une étape longue et coûteuse du pro-
cessus de développement de nouveaux outils. L’élaboration de méthodes de vérification rigoureuses et
sûres, permettant de réduire au maximum le risque d’erreur, constitue un domaine de recherche scien-
tifique en informatique, qui s’appuie fortement sur la logique mathématique et les méthodes formelles.
Ce cours constitue une introduction à quelques techniques de vérification formelle de systèmes, qui
reposent sur la vérification de modèles de ces systèmes, méthode plus connue sous son nom anglais
Model Checking.

Naissance et fonctionnement du Model Checking

Le Model Checking est né au début des années 1980, quasi-simultanément en deux endroits :
en France, à Grenoble, avec Queille et Sifakis, qui ont développé le système CESAR et sa logique
temporelle [15], et aux USA avec Clarke et Emerson qui ont développé la logique temporelle CTL
(Computation Tree Logic). Ces travaux ont donné le prix Turing 2007 à Clarke, Emerson et Sifakis. Ils
s’appuyaient eux-mêmes sur les travaux de Pnueli (prix Turing en 1996) sur la logique temporelle. Le
Model Checking s’est considérablement développé ensuite, et constitue certainement la méthode for-
melle la plus utilisée dans l’industrie, en particulier dans la CAO (Conception Assistée par Ordinateur)
de circuits.

Le principe de base du Model Checking est que la vérification des propriétés d’un système est
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réalisée non pas sur le système lui-même, mais sur un modèle de ce système. La modélisation des
systèmes constitue donc une étape cruciale des méthodes de vérification. L’utilisation des structures
de Kripke ou des systèmes de transition est très largement répandue, notamment depuis les travaux de
Milner (prix Turing 1992) sur l’étude des processus dits parallèles. Puis, la spécification des propriétés à
vérifier, dans un certain langage formel, permet l’automatisation du processus de vérification, comme
illustré sur la figure 1. L’automatisation du Model Checking repose ensuite sur le développement
d’algorithmes, prenant en entrée un modèle de système et une propriété formalisée dans un certain
système logique, et décidant si oui ou non le système vérifie la propriété considérée. Dans le cas ou la
propriété n’est pas satisfaite, on souhaite de plus compléter la réponse de l’algorithme en donnant un
contre-exemple sous la forme d’une exécution du modèle, permettant de localiser précisément le point
où l’erreur se produit. Les modèles utilisés admettent très souvent un nombre raisonnable d’états et
de transitions, afin de garantir une complexité algorithmique réalisable. Récemment, le développement
de systèmes de transition hybrides, associant des modèles discrets et des modèles continus, ouvre une
nouvelle perspective de recherche pour la vérification de systèmes dont le comportement est difficile à
modéliser, notamment pour des systèmes issus des sciences du vivant.

Système

Modélisation

Modèle

Critères

Spécification

Propriété

Model Checking

Satisfaction Insatisfaction + contre-exemple

Figure 1. Description schématique du processus de Model Checking.

Un exemple simple de système technologique omniprésent dans notre entourage, et dont on souhaite
vivement assurer le bon fonctionnement, est celui de l’ascenseur. On peut facilement modéliser le
fonctionnement d’un ascenseur par un système de transition admettant un nombre fini d’états, puis
exprimer des propriétés dites de sûreté, comme � à aucun moment l’ascenseur ne peut voyager la
porte ouverte�, d’absence de blocage de l’exécution, ou de progrès, comme � l’ascenseur finira par
répondre à toutes les demandes des passagers �. Les méthodes du Model Checking permettent alors
une vérification de ces propriétés essentielles.

Il est important de noter que la validité du processus de vérification, qui peut lui-même contenir des
erreurs, produit une réponse sur le modèle du système et non pas sur le système lui-même. La qualité
et l’efficacité du processus de vérification sont donc limitées par celles de l’effort de modélisation qui
le précède.

Plan du cours

Ce cours d’introduction au Model Checking est divisé en quatre chapitres. Le premier chapitre est
consacré à la modélisation de systèmes réels par des systèmes de transition. On y présente le matériel
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de base nécessaire à la mise en œuvre à venir des algorithmes de Model Checking, avec la notion
d’exécution d’un système de transition, et les opérations de composition de tels systèmes, permettant
notamment de modéliser le comportement de systèmes concurrents.

Le deuxième chapitre concerne les propriétés linéaires, qui sont une classe importante de propriétés
permettant de décrire le comportement de systèmes de transition. On introduit la notion de trace d’un
système de transition et on construit une première méthode algorithmique de vérification de propriétés
dites invariantes, qui décrivent certains comportements d’un système de transition, et sur lesquelles
s’appuie la vérification d’autres propriétés. Quelques rappels essentiels sur les graphes et les langages
sont proposés, pour assurer un niveau d’autosuffisance raisonnable à ce document.

Dans le troisième chapitre, on présente une méthode algorithmique de vérification d’une classe
plus importante de propriétés linéaires, appelées propriétés de sûreté. On s’intéresse d’abord aux pro-
priétés de sûreté dites régulières, qui peuvent être reconnues par des automates finis. La complexité
du problème de décision correspondant à la vérification de telles propriétés est établie. Le chapitre se
termine par une ouverture vers la vérification d’autres types de propriétés.

Enfin, le quatrième chapitre est consacré à la logique temporelle linéaire, un système logique in-
troduit par Amir Pnueli en 1977 pour la vérification de programmes informatiques, ainsi qu’à une
extension de cette logique, adaptée à la vérification de modèles non nécessairement discrets. Une
méthode élémentaire de vérification statistique est finalement présentée, pour montrer un aperçu des
avancées très récentes dans ce domaine de recherche scientifique.
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CHAPITRE 1

Modèles de systèmes

Lorsque l’on souhaite étudier les propriétés d’un système réel, une étape préliminaire au processus
de vérification consiste à élaborer un modèle de ce système. Les méthodes de vérification mises en
œuvre à la suite de cette phase de modélisation, aussi robustes soient-elles, apportent une réponse
sur la validité des propriétés qui correspond alors au modèle du système, et non pas au système lui-
même. Il est donc primordial de construire un modèle qui puisse décrire aussi fidèlement que possible
le comportement du système que l’on souhaite analyser. Nous allons découvrir dans ce chapitre une
classe importante de modèles, utilisés dans différents contextes : les systèmes de transition.

1.1 Systèmes de transition
Les systèmes de transition sont souvent utilisés comme modèles pour étudier le comportement de

systèmes, issus notamment de l’informatique, de l’ingénierie, de l’industrie, mais aussi des sciences du
vivant.

Définition 1.1 (Système de transition). Un système de transition ST est déterminé par un sextuplet
(S,Act,→, I,Prop, L) dans lequel :

• S est un ensemble d’états,
• Act est un ensemble d’actions,
• →⊆ S ×Act × S est une relation de transition,
• I ⊆ S est un ensemble d’états initiaux,
• Prop est un ensemble de propositions atomiques,
• L : S −→ 2Prop est une fonction d’étiquetage.

Un système de transtion (ST ) est dit fini si les ensembles S, Act et Prop sont finis. �

Si (s, α, s′) ∈→, on écrit généralement s α−−→ s′.

Rappel. Si X est un ensemble, la notation 2X désigne l’ensemble des parties de X. Une autre notation
fréquemment utilisée est P(X). ◦

Remarque. Les systèmes de transition sont mal nommés, car ce sont des modèles de systèmes ! /

Exemple 1.1 (L’ascenseur). On considère un ascenseur qui dessert les trois niveaux N0, N1 et N2
d’un bâtiment. Cet ascenseur est modélisé par un système de transition illustré sur la figure 1.1. Les

5



CHAPITRE 1. MODÈLES DE SYSTÈMES

états de ce système correspondent aux trois niveaux du bâtiment :

S = {N0, N1, N2}.

L’ensemble des actions est :

Act = {m vide,m charge, d vide, d charge}.

Ces actions correspondent aux mouvements de montée ou de descente de l’ascenseur, qui peut effectuer
des déplacements en étant vide ou en étant chargé. La relation de transition → est composée des
transitions suivantes :

(N0,m vide, N1), (N0,m charge, N1),
(N1,m vide, N2), (N1,m charge, N2),
(N2, d vide, N1), (N2, d charge, N1),
(N1, d vide, N0), (N1, d charge, N0).

L’ensemble des états initiaux est arbitraire. On peut considérer par exemple

I = {N0}.

L’ensemble des propositions atomiques est lui aussi arbitraire. On peut supposer par exemple qu’il est
donné par :

Prop = {o, f,N0, N1, N2},

où les propositions o et f modélisent l’ascenseur avec portes ouvertes et portes fermées respectivement.
Enfin, la fonction d’étiquetage est définie par :

L(N0) = {o, f,N0},
L(N1) = {o, f,N1},
L(N2) = {o, f,N2}.

N0

N1

N2

m vide

m vided vide

d vide

m charge

m charge

d charge

d charge

{o, f,N0}

{o, f,N2}

{o, f,N1}

Figure 1.1. Système de transition modélisant le fonctionnement d’un ascenseur.

•
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1.1. SYSTÈMES DE TRANSITION

Remarque. L’exemple de l’ascenseur est l’exemple de référence dans le cours d’introduction sur le
Model Checking au Collège de France de Gérard Berry, accessible par le lien suivant.

https://www.college-de-france.fr/site/gerard-berry/course-2015-03-25-16h00.htm

/

Rappel (Logique propositionnelle). Soit P un ensemble de propositions. L’ensemble des formules
propositionnelles logiques sur P est défini par les 4 règles suivantes :
• � Vrai � est une formule ;
• toute proposition est une formule ;
• si Φ1, Φ2 et Φ sont des formules, alors ¬Φ est une formule (négation de Φ) et Φ1 ∧ Φ2 est aussi

une formule (conjonction de Φ1 et Φ2 : ∧ signifie � et �) ;
• rien d’autre n’est une formule.
L’opérateur unaire de négation ¬ est prioritaire sur l’opérateur binaire de conjonction ∧, ce qui

signifie :
¬a ∧ b = (¬a) ∧ b.

On a également les opérateurs binaires suivants :

Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) (disjonction),
Φ1 ⇒ Φ2 = ¬Φ1 ∨ Φ2 (implication),
Φ1 ⇔ Φ2 = (¬Φ1 ∧ ¬Φ2) ∨ (Φ1 ∧ Φ2) (équivalence),
Φ1 ⊕ Φ2 = (¬Φ1 ∧ Φ2) ∨ (Φ1 ∧ ¬Φ2) (parité).

L’opérateur de parité est également appelé � ou exclusif � et il est parfois noté XOR (exclusive or en
anglais). ◦

Le comportement d’un système de transition est décrit de la façon suivante. Le système démarre
dans un état initial s0 ∈ I puis évolue selon la relation de transition →. Les transitions peuvent être
sélectionnées de façon non déterministe. Cette situation peut se produire si un état admet plusieurs
transitions de sortie.

La fonction d’étiquetage L associe à chaque état s ∈ S un sous-ensemble L(s) ⊆ Prop. Ainsi, L(s)
correspond à l’ensemble des propositions p ∈ Prop qui peuvent être satisfaites par s. Si Φ est une
proposition logique, alors un état s ∈ S satisfait la formule Φ si l’évaluation induite par L(s) rend la
formule Φ vraie, c’est-à-dire :

s |= Φ⇔ L(s) |= Φ.

Exemple 1.2 (Le distributeur de boissons). On considère un distributeur de boissons, représenté sur
la figure 1.2. La machine délivre du café ou des sodas. Les états sont représentés par des rectangles aux
coins arrondis. Le nom des états est écrit à l’intérieur des rectangles. Les transitions sont représentées
par des flèches étiquetées. Les états initiaux sont indiqués par une flèche sans origine. Les propositions
de ce système de transition dépendent des propriétés étudiées. On peut supposer que les propriétés
intéressantes ne dépendent pas de la boisson choisie ; par exemple :

� le distributeur ne délivre une boisson qu’après insertion d’une pièce �.

Dans cet exemple, on définit donc Prop = {payé, délivré}.
•

Remarque. Cet exemple illustre le fait que l’ensemble Prop d’un système de transition peut varier
en fonction des propriétés que l’on souhaite étudier. Souvent, cet ensemble n’est pas défini de façon
explicite. Parfois, on considère même qu’il est donné par Prop ⊆ S et on pose alors

L(s) = {s} ∩ Prop.

/
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CHAPITRE 1. MODÈLES DE SYSTÈMES

paye

choixsoda café

inserer piece

choix internechoix interne

servir soda servir cafe

Figure 1.2. Exemple de système de transition : un distributeur de boissons.

Exemple 1.3 (Circuit séquentiel hardware). On considère un circuit séquentiel avec une variable
d’entrée x, une variable de sortie y et un enregistrement r. La fonction de contrôle pour la variable y
est donnée par

λy = ¬(x⊕ r),

où ⊕ désigne le � ou � exclusif (XOR ou encore fonction de parité). L’évaluation de l’enregistrement
est modifiée par la fonction de circuit

δr = x ∨ r.

On peut modéliser ce ciruit par un système de transition.

r

XOR NOT

OR

x y x = 0, r = 0 x = 1, r = 0

x = 0, r = 1 x = 1, r = 1

{y}

{r} {x, r, y}

{x}

Figure 1.3. Système de transition représentant un circuit séquentiel hardware.

•

Définition 1.2 (Prédécesseurs, successeurs). Soit ST = (S,Act,→, I,Prop, L) un système de transi-
tion. Pour s ∈ S et α ∈ Act, l’ensemble des α-successeurs directs de s est défini par

Post(s, α) = {s′ ∈ S | s α−−→ s′}.

L’ensemble des successeurs directs de s est défini par

Post(s) =
⋃

α∈Act
Post(s, α).

L’ensemble des α-prédécesseurs directs de s est défini par

Pre(s, α) = {s′ ∈ S | s′ α−−→ s}.

8



1.2. STRUCTURE DE KRIPKE

L’ensemble des prédécesseurs directs de s est défini par

Pre(s) =
⋃

α∈Act
Pre(s, α).

Pour C ⊆ S, on définit par analogie les ensembles :

Post(C,α) =
⋃
s∈C

Post(s, α), Post(C) =
⋃
s∈C

Post(s),

Pre(C,α) =
⋃
s∈C

Pre(s, α), Pre(C) =
⋃
s∈C

Pre(s).

�

Définition 1.3 (État final). Un état s d’un système de transition ST est dit final (ou terminal)
lorsque Post(s) = ∅. �

Définition 1.4 (Système de transition déterministe). Soit ST = (S,Act,→, I,Prop, L) un système de
transition.

On dit que ST est déterministe par actions si |I| ≤ 1 et |Post(s, α)| ≤ 1 pour tout état s ∈ S et
pour toute action α ∈ Act.

On dit que ST est déterministe par propositions si |I| ≤ 1 et |Post(s) ∩ {s′ ∈ S | L(s′) = A}| ≤ 1
pour tout état s ∈ S et pour tout sous-ensemble de propositions A ⊆ Prop. �

1.2 Structure de Kripke
Une structure proche du système de transition est donnée par la structure de Kripke. Si Prop

désigne un ensemble de propositions atomiques, une structure de Kripke sur Prop est déterminée par
un quadruplet M = (S, I,R, L) dans lequel

• S est un ensemble fini d’états ;
• I ⊆ S est un ensemble fini d’états initiaux ;
• R ⊆ S × S est une relation de transition vérifiant la propriété

∀s ∈ S, ∃s′ ∈ S ; (s, s′) ∈ R;

• L est une fonction d’étiquetage définie sur S, à valeurs dans 2Prop.
Les systèmes de transition admettent donc, en plus des structures de Kripke, un ensemble d’actions.

Selon les auteurs et les contextes, les définitions de système de transition et de structure de Kripke
peuvent varier. Par exemple, dans [7], les systèmes de transition sont définis par des triplets, alors que
dans [4], les structures de Kripke sont définies par des sextuplets.

1.3 Exécutions
On peut décrire formellement le comportement d’un système de transition avec la notion d’exécu-

tion.

Définition 1.5 (Fragment d’exécution). Soit ST = (S,Act,→, I,Prop, L) un système de transition.
Un fragment d’exécution fini ρ de ST est une suite finie de la forme

ρ = s0α1s1α2 . . . αnsn,

avec n ≥ 0 et telle que si
αi+1−−−−→ si+1 pour tout i ∈ {0, . . . , n − 1}. On dit que n est la longueur du

fragment d’exécution ρ.

9
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Un fragment d’exécution infini ρ de ST est une suite infinie de la forme

ρ = s0α1s1α2s2α3s3 . . . ,

telle que si
αi+1−−−−→ si+1 pour tout i ≥ 0. �

Dans un fragment d’exécution, on a donc une alternance d’états et d’actions. Les fragments
d’exécution finis sont souvent notés

ρ = s0
α1−−−→ . . .

αn−−−→ sn

et les fragments d’exécution infinis sont souvent notés

ρ = s0
α1−−−→ s1

α2−−−→ . . . .

Définition 1.6 (Fragment d’exécution initial, maximal). Un fragment d’exécution maximal est soit
un fragment d’exécution fini qui termine dans un état final, soit un fragment d’exécution infini.

Un fragment d’exécution initial est un fragment d’exécution qui commence dans un état initial
(s0 ∈ I). �

Définition 1.7 (Exécution). Une exécution d’un système de transition ST est un fragment d’exécution
initial et maximal. �

Définition 1.8 (État accessible). Soit ST = (S,Act,→, I,Prop, L) un système de transition. Un état
s ∈ S est dit accessible dans ST s’il existe un fragment d’exécution fini et initial qui termine en s. On
peut donc écrire

s0
α1−−−→ . . .

αn−−−→ sn,

avec s0 ∈ I et sn = s.
L’ensemble des états accessibles est noté Access(ST ). �

1.4 Graphes conditionnels
On utilise parfois des transitions conditionnelles pour définir un système de transition. On obtient

un graphe dont les arêtes sont étiquetées par des conditions. Ce graphe peut engendrer un système
de transition par un processus de déploiement. Pour cela, on utilise la notion de graphe conditionnel
(program graph en anglais).

On considère alors un ensemble Var de variables typées (par exemple, des entiers, des booléens ou
des caractères standard). Le type d’une variable x est appelé domaine de x et il est noté dom(x). On
note ensuite Eval(Var) l’ensemble des évaluations qui affectent des valeurs aux variables et Cond(Var)
l’ensemble des conditions booléennes sur Var .

Définition 1.9 (Graphe conditionnel). Un graphe conditionnel GC sur un ensemble de variables
typées Var est déterminé par un sextuplet (Loc,Act,Effet, ↪→,Loc0, g0) dans lequel :
• Loc est un ensemble de lieux ;
• Act est un ensemble d’actions ;
• Effet : Act × Eval(Var) −→ Eval(Var) est une fonction décrivant l’effet d’une action sur

l’évaluation des variables ;
• ↪→⊆ Loc × Cond(Var)×Act × Loc est une relation de transitions conditionnelles ;
• Loc0 ⊆ Loc est un ensemble de lieux initiaux ;
• g0 ∈ Cond(Var) est la condition initiale.

�

10



1.5. PARALLÉLISME

On note généralement l ↪ g:α−−−→ l′ à la place de (l, g, α, l′) ∈ ↪→. La condition g est appelée garde
de la transition conditionnelle l ↪ g:α−−−→ l′. Si le garde est une tautologie (par exemple, g = Vrai ou
g = (x < 1) ∨ (x ≥ 1)), alors on écrit plus simplement l ↪ α−−→ l′.

Chaque graphe conditionnel GC peut être interprété comme un système de transition ST , par un
processus de déploiement. Les états qui en résultent sont des couples de la forme < l, η > avec l ∈ Loc
et η ∈ Eval(Var).

Définition 1.10 (Système de transition engendré par un graphe conditionnel). On considère un graphe
conditionnel GC = (Loc,Act,Effet, ↪→,Loc0, g0) sur un ensemble de variables typées Var . Le système
de transition ST engendré par GC est déterminé par le sextuplet (S,Act,→, I,Prop, L) dans lequel :

• S = Loc × Eval(Var) ;
• l’ensemble d’actions Act est celui de GC ;
• →⊆ S ×Act × S est défini par la règle

l ↪
g:α−−−→ l′ ∧ η |= g

< l, η >
α−−→< l′,Effet(α, η) >

;

• I = {< l, η > | l ∈ Loc0, η |= g0} ;
• Prop = Loc ∪ Cond(Var) ;
• L(< l, η >) = {l} ∪ {g ∈ Cond(Var) | η |= g}.

�

La définition du système de transition ST engendré par le graphe conditionnel GC détermine a
priori un ensemble de propositions très grand. Mais, généralement, on réduit sa taille pour décrire
quelques propriétés du système.

1.5 Parallélisme
De nombreux systèmes évoluent en parallèle d’autres systèmes. Pour décrire ce type de situation,

nous allons définir un opérateur ‖ associatif et commutatif, tel que le comportement du système de
transition

ST = ST1 ‖ ST2 ‖ · · · ‖ STn
reflète la composition parallèle des systèmes de transition ST1, . . . , STn.

Avant de définir l’opérateur ‖, nous allons construire un opérateur d’entrelacement ||| (interlea-
ving en anglais). Nous verrons plus loin que l’opérateur d’entrelacement ||| est un cas particulier de
l’opérateur de composition ‖.

1.5.1 Entrelacement de systèmes de transition
Exemple 1.4 (Feux de circulation indépendants). On considère deux feux de circulation placés sur
des routes qui ne se coupent pas. Chaque feu est modélisé par un système de transition à 2 états
(rouge, vert). La composition parallèle des 2 systèmes de transition FC1 et FC2 détermine un système
de transition noté FC1 ||| FC2, où l’opérateur ||| est l’opérateur d’entrelacement.

•

L’entrelacement repose sur le fait que l’effet de deux actions concurrentes indépendantes α et β est
identique à l’effet produit lorsque α et β sont exécutées successivement et dans un ordre arbitraire.
Cela peut être noté formellement :

Effet(α ||| β, η) = Effet
(
(α;β) + (β;α), η

)
,

où le point-virgule � ; � représente l’exécution séquentielle et l’opérateur � + � un choix non détermi-
niste.
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FC1

rouge

vert

FC2

rouge

vert

FC1 ||| FC2

rouge rouge

rouge vertvert rouge

vert vert

Figure 1.4. Exemple d’entrelacement de 2 systèmes de transition.

Exemple 1.5. On considère deux actions α et β qui modifient la valeur de deux variables x et y
respectivement : l’action α est déterminée par x 7→ x + 1 et l’action β est déterminée par y 7→ y − 2.
Le système de transition obtenu, lorsqu’initialement x = 0 et y = 7, est représenté sur la figure 1.5.

x = 0

x = 1

α

y = 7

y = 5

β

x = 0, y = 7

x = 1, y = 5

x = 1, y = 7 x = 0, y = 5

βα

β α

Figure 1.5. Entrelacement de 2 actions indépendantes sur des variables distinctes.

•

On peut donc définir l’entrelacement de 2 systèmes de transition. On suppose ici que les deux
systèmes n’admettent pas de variable commune.

Définition 1.11 (Entrelacement de systèmes de transition). Soient ST1 = (S1,Act1,→1, I1,Prop1, L1)
et ST2 = (S2,Act2,→2, I2,Prop2, L2) deux systèmes de transition. Le système de transition ST1 ||| ST2
est défini par

ST1 ||| ST2 = (S1 × S2,Act1 ∪Act2,→, I1 × I2,Prop1 ∪ Prop2, L),

où la relation de transition → est définie par les règles

s1
α−−→1 s

′
1

< s1, s2 >
α−−→< s′1, s2 >

et s2
α−−→2 s

′
2

< s1, s2 >
α−−→< s1, s′2 >

,

et où la fonction d’étiquetage L est définie par

L(< s1, s2 >) = L1(s1) ∪ L2(s2).

�
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1.5.2 Entrelacement de graphes conditionnels
Lorsque deux systèmes partagent des variables, l’entrelacement ||| de systèmes de transition peut

conduire à des états paradoxaux.

Exemple 1.6. Considérons les actions α et β déterminées par x 7→ 2x et x 7→ x+ 1 respectivement.
L’entrelacement de ces 2 actions, à partir de l’état initial < x = 3, x = 3 >, produit l’état paradoxal
< x = 6, x = 4 >, illustré sur la figure 1.6.

x = 3

x = 6

α

x = 3

x = 4

β

x = 3, x = 3

x = 6, x = 4

x = 6, x = 3 x = 3, x = 4

βα

β α

Figure 1.6. État paradoxal produit par l’entrelacement de 2 systèmes qui admettent une variable en
commun.

•

On définit donc l’opérateur d’entrelacement ||| pour des graphes conditionnels.

Définition 1.12 (Entrelacement de graphes conditionnels). Soient deux graphes conditionnels GC1 =
(Loc1,Act1,Effet1, ↪→1,Loc0,1, g0,1) et GC2 = (Loc2,Act2,Effet2, ↪→2,Loc0,2, g0,2) sur des ensembles de
variables Var1 et Var2 respectivement. Le graphe conditionnel GC1 ||| GC2 est défini sur Var1 ∪Var2
par

GC1 ||| GC2 = (Loc1 × Loc2,Act1 ]Act2,Effet, ↪→,Loc0,1 × Loc0,2, g0,1 ∧ g0,2),

où la relation de transition conditionnelle ↪→ est définie par les règles

l1 ↪
g:α−−−→1 l

′
1

< l1, l2 >↪
g:<α,1>−−−−−−−→< l′1, l2 >

et l2 ↪
g:α−−−→2 l

′
2

< l1, l2 >↪
g:<α,2>−−−−−−−→< l1, l′2 >

,

et où la fonction d’effet Effet est définie par

Effet(α, η)(v) =
{

Effeti(< α, i >, η|Vari
)(v), si v ∈ Var i,

η(v) sinon,

où η|Vari
désigne la restriction de η à Var i. �

Les graphes conditionnels GC1 et GC2 ont les variables appartenant à Var1 ∩ Var2 en commun.
Ces variables communes sont dites globales. Les variables appartenant à Var1 \Var2 sont les variables
locales de GC1 et les variables appartenant à Var2\Var1 sont les variables locales de GC2. L’opérateur
] désigne l’union disjointe. Il n’y a donc pas d’action partagée dans le graphe conditionnel GC1 ||| GC2
obtenu par entrelacement.
Remarque. Soient GC1 et GC2 deux graphes conditionnels. On note ST (GC1) et ST (GC2) les systèmes
de transition engendrés par GC1 et GC2 respectivement. On ne doit pas confondre les systèmes de
transition

ST (GC1) ||| ST (GC2)

et
ST
(
GC1 ||| GC2

)
.
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Le système de transition ST (GC1) ||| ST (GC2) est défini pour des graphes conditionnels qui ne
partagent pas de variable, alors que le système de transition ST

(
GC1 ||| GC2

)
est défini même si les

graphes conditionnels admettent des variables communes. /

Remarque (Sur l’atomicité). L’opérateur d’entrelacement pour des graphes conditionnels nécessite que
les actions soient indivisibles. Par exemple, une action définie par

x 7→ x+ 1, y 7→ 2x+ 1 et z 7→ (x− z)2 × y si x < 12,

doit être exécutée complètement. Les sous-actions ne doivent pas être dissociées dans le processus
d’entrelacement. Une proposition est donc atomique lorsqu’elle peut être représentée par une seule
étiquette le long d’une arête. /

1.5.3 Opérateur de composition
On a défini un opérateur d’entrelacement ||| pour des systèmes de transition sans variable partagée,

et pour des graphes conditionnels qui peuvent admettre des variables en commun.
Nous allons maintenant définir un opérateur pour des processus concurrents qui interagissent par

échange de message. Ces échanges impliquent que les sous-systèmes sont (au moins partiellement)
synchronisés.

On considère alors un sous-ensemble d’actions partagées H ⊆ Act1∩Act2 et une action τ /∈ H. Les
actions qui ne sont pas dans H (par exemple, l’action τ) sont indépendantes et peuvent être exécutées
par le principe d’entrelacement.

Définition 1.13 (Opérateur d’échange synchrone). Soient ST1 = (S1,Act1,→1, I1,Prop1, L1) et
ST2 = (S2,Act2,→2, I2,Prop2, L2) deux systèmes de transition. Soit H ⊆ Act1 ∩ Act2 et τ /∈ H.
Le système de transition ST1 ‖H ST2 est défini par

ST1 ‖H ST2 = (S1 × S2,Act1 ∪Act2,→, I1 × I2,Prop1 ∪ Prop2, L),

où la fonction d’étiquetage L est définie par

L(< s1, s2 >) = L1(s1) ∪ L2(s2),

et où la relation de transition → est définie par les deux règles suivantes :
• règle d’entrelacement pour α /∈ H :

s1
α−−→1 s

′
1

< s1, s2 >
α−−→< s′1, s2 >

et s2
α−−→2 s

′
2

< s1, s2 >
α−−→< s1, s′2 >

,

• règle d’échange synchrone pour α ∈ H :

s1
α−−→1 s

′
1 ∧ s2

α−−→2 s
′
2

< s1, s2 >
α−−→< s′1, s

′
2 >

.

�
Remarques.

• La condition � τ /∈ H � signifie que H ne couvre pas totalement l’ensemble d’actions Act1∪Act2
(ce qui pourrait se produire dans le cas Act1 = Act2).
• Lorsque H = (Act1 ∩Act2) \ {τ}, on écrit ‖ à la place de ‖H .
• Lorsque H = ∅, on a

ST1 ‖∅ ST2 = ST1 ||| ST2.

/

14



1.6. EXPLOSION DE L’ESPACE DE PHASE

Remarque. L’opérateur ‖H est commutatif mais il n’est pas associatif lorsque l’ensemble H varie. Plus
précisément, on a en général

(ST1 ‖H ST2) ‖H′ ST3 6= ST1 ‖H (ST2 ‖H′ ST3)

si H 6= H ′. Cependant, l’associativité est obtenue en fixant H :

(ST1 ‖H ST2) ‖H ST3 = ST1 ‖H (ST2 ‖H ST3),

ce qui permet de définir la composition d’un nombre fini de systèmes de transition

ST1 ‖H ST2 ‖H · · · ‖H STn,

où H ⊆ Act1 ∩ · · · ∩Actn. /

Exemple 1.7 (Exclusion mutuelle par sémaphore). Considérons deux processus P1, P2 admettant
les états critiques respectifs crit1, crit2, et partageant le sémaphore binaire 1 y. Ces processus sont
représentés par des graphes conditionnels sur la figure 1.7.

noncrit1

pause1

crit1

(y > 0) :
y ← y − 1

y ← y + 1

noncrit2

pause2

crit2

(y > 0) :
y ← y − 1

y ← y + 1

Figure 1.7. Processus concurrents partageant le sémaphore binaire y.

Le graphe conditionnel P1 ||| P2 admet alors 9 lieux, dont le lieu indésirable < crit1, crit2 >. Le
système de transition STsem obtenu par déploiement de P1 ||| P2 admet 18 états, dont 8 seulement sont
accessibles. En particulier, les états < crit1, crit2, y = 0 > et < crit1, crit2, y = 1 > sont inaccessibles, ce
qui signifie que les processus P1 et P2 ne peuvent pas être en état critique simultanément. Le système
de transition STsem satisfait donc la propriété d’exclusion mutuelle. •

1.6 Explosion de l’espace de phase
Pour de nombreux systèmes, le nombre d’états est fini, mais très grand, ce qui constitue un obstacle

pour l’exécution des algorithmes de vérification qui explorent les états du système.
Il existe heureusement des méthodes pour réduire la taille de l’espace de phase, ou pour optimiser

l’exécution des algorithmes.
Ainsi, considérons un graphe conditionnel (Loc,Act,Effet, ↪→,Loc0, g0) sur un ensemble de variables

Var . Le nombre d’états du système de transition correspondant est alors

|Loc| ×
∏

x∈Var
|dom(x)| .

1. Un sémaphore est une variable partagée par différents processus, qui garantit que ceux-ci ne peuvent y accéder
que de façon séquentielle à travers des opérations atomiques.
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Le nombre d’états crôıt donc exponentiellement avec le nombre de variables. Pour N variables admet-
tant chacune k valeurs possibles, ce nombre est de l’ordre de kN .

Par exemple, si un graphe conditionnel admet 10 lieux, 3 variables booléennes et 5 variables entières
dont les valeurs sont comprises entre 0 et 9, alors le système admet 10 × 23 × 105 états, soit 8000000
états !

1.7 Exercices
Exercice 1. Le distributeur de boissons

On considère un distributeur de boissons, qui délivre du café et des sodas. Ce distributeur de
boissons détermine un système de transition DB qui est illustré sur la figure 1.8 ci-dessous.

paye

choixsoda café

inserer piece

choix internechoix interne

servir soda servir cafe

Figure 1.8. Système de transition modélisant un distributeur de boissons.

1. On considère l’ensemble de propositions atomiques Prop = {payé, délivré}. Détailler les éléments
du système de transition DB.

2. Le système de transition DB est-il déterministe ?
3. On considère les fragments d’exécution suivants :

ρ1 = paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café . . . ,

ρ2 = café servir cafe−−−−−−−−−→ paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café . . . ,

ρ3 = paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café servir cafe−−−−−−−−−→ paye .

Décrire ces trois fragments d’exécution. Ces fragments d’exécution sont-ils des exécutions ?
4. On considère ensuite une extension du système de transition DB, qui compte le nombre de

sodas et le nombre de cafés, et qui renvoie les pièces insérées si la machine est vide. On souhaite
modéliser ce distributeur par un graphe conditionnel GC. On pose alors Loc = {démarre, choix},
Loc0 = {démarre} et

Act = {inserer piece, retourne piece, recharge, servir soda, servir cafe}.

On considère de plus l’ensemble de variables Var = {nsoda,ncafe}, où le domaine de chaque
variable est {0, 1, . . . ,max}.
(a) Représenter les transitions du graphe conditionnel GC.
(b) Déterminer l’effet de chaque action sur une évaluation η des variables nsoda et ncafe.
(c) Représenter le système de transition obtenu par déploiement du graphe conditionnel GC

dans le cas max = 2.
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Exercice 2. Circuit séquentiel

On considère un circuit séquentiel, illustré sur la figure 1.9 ci-dessous, avec une variable d’entrée x,
une variable de sortie y et un enregistrement r. La fonction de contrôle pour la variable y est donnée
par λy = ¬(x⊕r), où ⊕ désigne le � ou � exclusif (XOR). L’évaluation de l’enregistrement est modifiée
par la fonction de circuit définie par δr = x ∨ r.

r

XOR NOT

OR

x y

Figure 1.9. Circuit séquentiel hardware.

1. Représenter ce circuit comme un système de transition.
2. Détailler les éléments constitutifs de ce système de transition.

Exercice 3. Feux de circulation

1. On considère deux feux de circulation placés sur des routes qui ne se coupent pas. Chaque feu
est modélisé par un système de transition à 2 états (rouge, vert), comme illustré sur la figure 1.10
ci-dessous.

FC1

rouge1

vert1

FC2

rouge2

vert2

Figure 1.10. Feux de circulation indépendants.

Décrire la composition par entrelacement FC1 ||| FC2 des 2 systèmes de transition FC1 et FC2.
2. On considère maintenant deux feux de circulation correctement synchronisés.

FC ′1

rouge1

vert1

αα

FC ′2

vert2

rouge2

αα

Figure 1.11. Feux de circulation totalement synchronisés.

Décrire la composition parallèle FC ′1 ‖ FC ′2 des 2 systèmes de transition FC ′1 et FC ′2.
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Exercice 4. Entrelacement de graphes conditionnels

On considère deux graphes conditionnels GC1 et GC2 partageant une même variable x, représentés
sur la figure 1.12 ci-dessous.

GC1

l1

l′1

x← 2x

GC2

l2

l′2

x← x+ 1

Figure 1.12. Graphes conditionnels GC1 et GC2 partageant une même variable x.

1. Construire le graphe conditionnel d’entrelacement GC1 ||| GC2.
2. Construire le système de transition obtenu par déploiement du graphe conditionnel GC1 ||| GC2,

avec comme condition initiale x = 3.

Exercice 5. Exclusion mutuelle par sémaphore

On considère deux processus P1, P2 admettant les états critiques respectifs crit1, crit2, et partageant
le sémaphore binaire y. Ces processus sont représentés par des graphes conditionnels sur la figure 1.13.

noncrit1

pause1

crit1

(y > 0) :
y ← y − 1

y ← y + 1

noncrit2

pause2

crit2

(y > 0) :
y ← y − 1

y ← y + 1

Figure 1.13. Processus concurrents partageant le sémaphore binaire y.

1. Construire le graphe conditionnel d’entrelacement P1 ||| P2.
2. Construire le système de transition STsem obtenu par déploiement de P1 ||| P2.
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CHAPITRE 2

Propriétés linéaires

Lorsqu’on étudie le comportement d’un système réel, après que l’étape de modélisation de ce
système a été réalisée, le processus de vérification de certaines des propriétés de son modèle peut être
entamé. Ce processus de vérification nécessite alors une spécification des propriétés intéressantes (c’est-
à-dire une description précise et non ambiguë de ce que ce système doit faire). Nous allons découvrir
dans le deuxième chapitre de ce cours une classe importante de propriétés : les propriétés linéaires.

2.1 Comportement linéaire
On peut analyser le comportement d’un système de transition en observant ses états ou en observant

ses actions (ou encore en combinant les deux approches). Dans cette partie, on choisit la première
approche, pour laquelle on privilégie l’observation des états et des propositions atomiques qui leur sont
associées.

2.1.1 Chemins et graphes d’états
Soit ST = (S,Act,→, I,Prop, L) un système de transition.

Définition 2.1 (Graphe d’états). Le graphe d’états de ST , noté G(ST ), est le graphe orienté (V,E)
avec pour ensemble de sommets V = S et pour ensemble d’arêtes

E = {(s, s′) ∈ S × S | s′ ∈ Post(s)}.

�

Le graphe d’états G(ST ) est donc obtenu en omettant les propositions atomiques associées aux
états de ST , et en ignorant quels sont les états initiaux possibles. D’éventuelles transitions multiples
entre 2 états du système de transition (associées à des actions différentes) sont représentées dans le
graphe d’états par une seule arête.

Pour un graphe d’états, on définit les ensembles de successeurs et de prédécesseurs : Post∗(s),
Post∗(C), Pre∗(s), Pre∗(C) pour s ∈ S et C ⊆ S. Ainsi, Post∗(s) est l’ensemble des états accessibles
dans G(ST ) depuis un état s. L’étoile permet de différencier les ensembles définis à partir du système
de transition des ensembles définis à partir de son graphe d’états. L’ensemble Access(ST ) des états
accessibles est égal à Post∗(I).
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Remarque. Dans les définitions des ensembles Post(s), Post(C), Pre(s), Pre(C) du premier chapitre, on
a considéré les successeurs et les prédécesseurs directs. Pour les ensembles Post∗(s), Post∗(C), Pre∗(s),
Pre∗(C), on considère cette fois tous les successeurs et tous les prédécesseurs. /

On décrit le comportement d’un système de transition par l’étude des chemins dans son graphe
d’états.

Définition 2.2 (Fragment de chemin). Un fragment de chemin fini π̂ de ST est une suite finie d’états

π̂ = s0s1 . . . sn,

telle que si ∈ Post(si−1) pour tout i ∈ {1, . . . , n}, avec n ∈ N.
Un fragment de chemin infini π de ST est une suite infinie d’états

π = s0s1s2 . . . ,

telle que si ∈ Post(si−1) pour tout i ≥ 1. �

Pour j ≥ 0, on note π̂[j] = sj et π[j] = sj . Le premier élément π̂[0] = s0 (ou π[0] = s0) est parfois
noté first(π̂) (ou first(π)). Les préfixes sont notés π̂[..j] = s0 . . . sj (ou π[..j] = s0 . . . sj) ; les suffixes
sont notés π̂[j..] (ou π[j..]). Pour un fragment de chemin fini π̂, on note le dernier élément last(π̂) = sn
et la longueur n = len(π̂). Pour un fragment de chemin infini, on note last(π) =⊥ (ce qui signifie
� indéfini �) et len(π) =∞.

Définition 2.3 (Fragment de chemin maximal, fragment de chemin initial, chemin). Un fragment de
chemin maximal est soit un fragment de chemin fini qui termine dans un état final, soit un fragment
de chemin infini.

Un fragment de chemin est dit initial s’il commence dans un état initial.
Un chemin est un fragment de chemin initial et maximal. �

Remarque. On ne doit pas confondre la notion de chemin dans un graphe avec la notion de chemin dans
un système de transition. Dans un système de transition, un chemin est maximal, pas nécessairement
pas dans un graphe. De plus, dans un système de transition, un chemin peut être infini, mais pas dans
un graphe. /

Si s est un état d’un système de transition ST , on note Paths(s) l’ensemble des fragments de
chemins maximaux qui commencent en s et Pathsfin(s) l’ensemble des fragments de chemins finis
qui commencent en s. Enfin, on note Paths(ST ) l’ensemble des chemins dans ST et Pathsfin(ST )
l’ensemble des fragments de chemins finis initiaux dans ST .

2.1.2 Rappels sur les graphes
Dans cette section, on propose quelques rappels sur la théorie des graphes.

Définition 2.4 (Graphe). Un graphe orienté (ou simplement un graphe) est une paire G = (V,E)
formée par un ensemble V de sommets et une relation E ⊆ V × V définissant un ensemble d’arêtes.
Les éléments de E sont appelés arcs (pour un graphe orienté) ou arêtes (par abus de langage). �

Matrice d’adjacence

Soit G = (V,E) un graphe, dont l’ensemble V est ordonné sous la forme d’une suite (s1, s2, . . . , sN ).
La matrice d’adjacence M du graphe G est la matrice carrée de taille N définie par :

Mi,j =
{

1 si (si, sj) est un arc,
0 sinon.
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Listes d’adjacence

On peut également représenter un graphe par listes d’adjacence, en associant à chaque sommet une
suite ordonnée de tous ses successeurs.

Algorithmes de balayage

L’exploration d’un graphe est souvent effectuée par l’exécution d’un algorithme de balayage de type
Depth-First Search (DFS) ou Breadth-First Search (BFS), qui reposent eux-mêmes sur l’algorithme 1,
permettant de déterminer les sommets accessibles depuis un sommet s0. Dans l’algorithme 1, l’ensemble
R donne les sommets qui ont été visités, et l’ensemble U garde une trace des sommets qui sont à explorer
(pourvu qu’ils ne soient pas dans R). Chaque sommet s′ peut être ajouté à U au plus |Pre(s′)| fois.
Donc l’algorithme 1 termine après au plus O

(
M
)

itérations, où M = |E| est le nombre d’arêtes.
Lorsque tous les sommets doivent être visités, la complexité temporelle est de l’ordre de O(N + M),
où N = |V |.

Algorithme 1 Analyse d’accessibilité

Entrée : graphe G = (V,E), sommet s0 ∈ V .
Sortie : ensemble Access(s0) des sommets accessibles depuis s0.

Ensemble de sommets R← ∅ // l’ensemble des états accessibles
Ensemble de sommets U ← {s0} // sommets à explorer
// initialement, aucune arête n’est marquée
Tant que U 6= ∅ faire

choisir s ∈ U // on choisit arbitrairement un état s dans U
Si ∃s′ ∈ Post(s) tel que (s, s′) n’est pas marquée alors

choisir un tel sommet s′ ∈ Post(s)
marquer l’arête (s, s′)
Si s′ /∈ R alors

U ← U ∪ {s′} // on s’assure que tous les successeurs
R← R ∪ {s′} // de s seront visités

Fin Si
Sinon

U ← U \ {s}
Fin Si

Fin Tant que
renvoyer R // R = Access(s0)

L’algorithme DFS effectue une exploration en � profondeur �, en structurant U comme une pile
(qui satisfait la règle � Last In First Out �). La pile U admet les opérations top(U), qui renvoie le
premier élément de U (celui qui se trouve au sommet de la pile), pop(U), qui efface le premier élément
de U , et push(s, U), qui dépose l’élément s au sommet de la pile U .

Au contraire, l’algorithme BFS effectue une exploration en � largeur �, en structurant U comme
une file (qui satisfait la règle � First In First Out �).

Exemple 2.1. On considère le graphe représenté sur la figure 2.1.
Les listes d’adjacence de ce graphe sont données dans le tableau 2.1.
Lorsqu’on exécute l’algorithme DFS sur le graphe de la figure 2.1, à partir du sommet 1, l’ensemble

R et la pile U prennent successivement les valeurs données dans le tableau 2.2. •

Rappel. Pour décrire la complexité temporelle d’un algorithme, on utilise les équivalents asympto-
tiques O, Ω et Θ. Si f et g sont deux fonctions définies sur N, alors g = O(f) signifie qu’il existe une
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1

2 3

4

56

1

3

5 6

Figure 2.1. Exemple de graphe et de l’arborescence obtenue en appliquant l’algorithme DFS en partant
du sommet 1.

Tableau 2.1. Listes d’adjacence du graphe représenté sur la figure 2.1.

Sommet Successeurs
1 {3, 5, 6}
2 {3, 4, 6}
3 {5, 6}
4 {5, 6}
5 ∅
6 ∅

Tableau 2.2. Valeurs successives de l’ensemble R et de la pile U pour un balayage du graphe de la
figure 2.1 par l’algorithme DFS à partir du sommet 1.

R = ∅ R = {3} R = {3, 5} R = {3, 5, 6} R = {3, 5, 6} R = {3, 5, 6} R = {3, 5, 6}

1
3
1

5
3
1

6
3
1

3
1 1 ∅

U U U U U U U

constante C > 0 et un entier N > 0 tels que g(n) ≤ C × f(n) pour n ≥ N . Inversement, g = Ω(f)
signifie qu’il existe une constante C > 0 et un entier N > 0 tels que g(n) ≥ C × f(n) pour n ≥ N .
Enfin, g = Θ(f) signifie que l’on a à la fois g = O(f) et g = Ω(f). ◦

2.1.3 Traces
Dans le premier chapitre, nous avons défini les exécutions d’un système de transition, qui sont des

suites avec une alternance d’états et d’actions. Dans la suite du cours, on s’intéresse surtout aux états
d’un système de transition. Comme ces états sont parfois difficilement observables, on s’intéresse plutôt
à leurs propositions atomiques. On considère ainsi des suites du type

L(s0)L(s1)L(s2) . . . .

De telles suites sont appelées traces. Les traces d’un système de transition sont alors vues comme des
mots sur l’alphabet 2Prop. Dans toute la suite, on supposera que le système de transition n’a pas d’état
final. Dans ce cas, les traces pourront être des mots infinis.
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Remarque. Un système de transition qui admet des états finaux peut toujours être modifié pour ne
plus en admettre ; il suffit pour cela d’ajouter des états à la suite des états finaux et de les équiper
d’une boucle. /

Définition 2.5 (Trace). Soit ST = (S,Act,→, I,Prop, L) un système de transition sans état final. La
trace d’un fragment de chemin infini π = s0s1s2 . . . est définie par

trace(π) = L(s0)L(s1)L(s2) . . . .

La trace d’un fragment de chemin fini π̂ = s0s1 . . . sn est définie par

trace(π̂) = L(s0)L(s1) . . . L(sn).

�

La trace d’un fragment de chemin est donc un mot fini ou infini sur l’alphabet Σ = 2Prop. Si Π est
un ensemble de chemins, on pose

trace(Π) = {trace(π) | π ∈ Π}.

Une trace (infinie) d’un état s ∈ S est la trace d’un fragment de chemin infini π tel que first(π) = s.
De la même façon, une trace finie d’un état s est la trace d’un fragment de chemin fini qui commence
en s. On note alors Traces(s) l’ensemble des traces d’un état s et finalement :

Traces(ST ) =
⋃
s∈I

Traces(s).

Remarques. Si Prop admet n éléments (n ≥ 1), alors l’alphabet Σ = 2Prop en admet 2n. Par exemple,
si Prop = {a, b, c}, alors

Σ =
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
.

Si s est un état, alors L(s) est un sous-ensemble de Prop, qui peut posséder plusieurs éléments.
Ainsi, les � lettres � L(s0), L(s1), L(s2), . . . d’une trace sont de � grosses lettres �. On peut avoir
par exemple :

L(s0) = {x, y, z}, L(s1) = {w, z}, L(s2) = {t, x, y},
ce qui donnerait

L(s0)L(s1)L(s2) · · · = {x, y, z} {w, z} {t, x, y} . . . .
/

On définit de la même façon les traces finies d’un système de transition, à partir de ses chemins
finis :

Tracesfin(ST ) =
⋃
s∈I

Tracesfin(s).

2.1.4 Rappels sur les langages
L’étude des traces d’un système de transition suppose une bonne connaissance des propriétés

élémentaires des langages et de leurs opérations. Nous rappelons ici quelques-unes de ces propriétés.
Un alphabet est un ensemble fini non vide Σ. Les éléments de Σ sont appelés symboles ou lettres.

Un mot sur Σ est une suite finie ou infinie de symboles de Σ. Un mot fini est donc de la forme

w = A1A2 . . . An,

avec n ∈ N et Ai ∈ Σ pour tout i ∈ {1, . . . , n}, et un mot infini est de la forme

σ = A1A2A3 . . . .
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Le mot obtenu avec n = 0 est appelé mot vide et est souvent noté ε. Un mot fini w = A1A2 . . . An a
pour longueur n. Un mot infini a une longueur infinie souvent notée ω. On note Σ∗ l’ensemble des mots
finis sur Σ, et Σω l’ensemble des mots infinis sur Σ. On a ε ∈ Σ∗. On note Σ+ = Σ∗ \ {ε} l’ensemble
des mots finis non vides. On appelle langage tout ensemble L de mots finis sur l’alphabet Σ. On a donc
L ⊆ Σ∗.
Remarque. Ne pas confondre le mot vide ε et le langage vide L = ∅. /

Un préfixe d’un mot fini w = A1A2 . . . An est un mot de la forme v = A1A2 . . . Ai avec 0 ≤ i ≤ n
(v = ε si i = 0). Un suffixe d’un mot fini w = A1A2 . . . An est un mot de la forme v = AiAi+1 . . . An
avec 1 ≤ i ≤ n+ 1 (v = ε si i = n+ 1). Le mot vide ε est donc préfixe et suffixe de tous les mots finis.
Un mot de la forme Ai . . . Aj avec 1 ≤ i ≤ j ≤ n est appelé sous-mot de w. On définit de même les
préfixes, suffixes et sous-mots d’un mot infini (un suffixe d’un mot infini est lui-même infini).

Opérations sur les mots

La concaténation et la répétition finie sont deux opérations importantes sur les mots.
La concaténation de 2 mots agit en � collant � deux mots l’un à la suite de l’autre. Par exemple,

la concaténation des mots BA et AAB est le mot BA.AAB = BAAAB. La concaténation d’un mot
w avec lui-même est notée w2. On généralise cette opération pour définir wn avec n entier naturel. On
a en particulier w0 = ε et w1 = w.

La répétition finie (également appelée Kleene star en anglais), notée avec une étoile ∗, d’un mot
fini w, produit le langage

w∗ = {wi | i ∈ N}.

Par exemple, on a
(AB)∗ = {ε,AB,ABAB,ABABAB, . . .}.

Le mot vide ε appartient à w∗ pour chaque mot w. On note également

w+ = {wi | i ≥ 1},

où de façon équivalente : w+ = w∗ \ {ε}.

Opérations sur les langages

On définit également la concaténation pour les langages. Pour L1,L2 ⊆ Σ∗, on pose ainsi

L1.L2 = {w1.w2 | w1 ∈ L1, w2 ∈ L2}.

Par exemple, si L1 = {A,AB} et L2 = {ε,BBB}, alors on a :

L1.L2 = {A,AB,ABBB,ABBBB},
L2

1 = {AA,AAB,ABAB,ABA}.

Pour L1,L2 ⊆ Σ∗, la réunion de L1 et L2 est définie par

L1 ∪ L2 = {w ∈ Σ∗ ; w ∈ L1 ou w ∈ L2}.

On a alors
L ∪∅ = L, L ∪ Σ∗ = Σ∗, L1 ∪ L2 = L2 si L1 ⊆ L2,

pour tous langages L, L1, L2 sur Σ. On peut également définir l’intersection de deux langages, leur
différence, le complémentaire d’un langage.
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La concaténation de deux langages n’est pas commutative en général. On a néanmoins les propriétés
suivantes :

L(L′L′′) = (LL′)L′′,
L(L′ ∪ L′′) = LL′ ∪ LL′′,
(L ∪ L′)L′′ = LL′′ ∪ L′L′′,
L{ε} = {ε}L = L,
∅L = L∅ = ∅,

pour tous langages L, L′, L′′ sur Σ.
On définit enfin les puissances et la répétition finie (étoile de Kleene) d’un langage L :

L∗ =
⋃
i≥0
Li, L+ =

⋃
i≥1
Li,

où Li désigne la concaténation de L répétée i fois.

2.1.5 Propriétés linéaires
Les propriétés linéaires sont une classe de propriétés qui déterminent les traces qu’un système de

transition doit admettre.

Définition 2.6 (Propriété linéaire). On appelle propriété linéaire sur un ensemble de propositions
atomiques Prop tout sous-ensemble (non vide) de (2Prop)ω. �

Dans cette définition, (2Prop)ω désigne l’ensemble des mots obtenus par concaténation infinie de
symboles dans 2Prop. Une propriété linéaire est donc un langage de mots infinis sur l’alphabet 2Prop.
On considère uniquement des mots infinis, car on étudie des systèmes de transition sans état final. On
définit ensuite la relation de satisfaction d’une propriété linéaire par un système de transition.

Définition 2.7 (Relation de satisfaction pour une propriété linéaire). Soit P une propriété linéaire
sur un ensemble de propositions atomiques Prop et soit ST = (S,Act,→, I,Prop, L) un système de
transition.

On dit que ST satisfait P , et l’on note ST |= P , si Traces(ST ) ⊆ P.
On dit qu’un état s ∈ S satisfait P , et l’on note s |= P , si Traces(s) ⊆ P. �

Exemple 2.2. Considérons deux feux de circulation correctement synchronisés. Le système de tran-
sition correspondant est illustré sur la figure 2.2. On considère de plus l’ensemble de propositions
atomiques

Prop = {rouge1, vert1, rouge2, vert2}.

On étudie alors les deux propriétés linéaires P1 et P2 définies par :
• P1 : � le premier feu est vert une infinité de fois �,
• P2 : � les deux feux ne sont jamais verts en même temps �.

La proposition P1 contient par exemple les mots

{rouge1, vert2}{vert1, rouge2}{rouge1, vert2}{vert1, rouge2} . . .
∅{vert1}∅{vert1}∅{vert1} . . .
{rouge1, vert1}{rouge1, vert1}{rouge1, vert1}{rouge1, vert1} . . .
{vert1, vert2}{vert1, vert2}{vert1, vert2}{vert1, vert2} . . . .

En revanche, le mot
{rouge1, vert1}{rouge1, vert1}∅∅∅∅ . . .
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FC1

vert1

rouge1

αα

FC2

rouge2

vert2

αα

FC1 ‖ FC2

vert1, rouge2

rouge1, vert2

αα

Figure 2.2. Feux de circulation totalement synchronisés.

n’est pas dans P1 car il ne contient pas une infinité de fois vert1.
Puis, la propriété P2 contient par exemple les mots

{rouge1, vert2}{vert1, rouge2}{rouge1, vert2}{vert1, rouge2} . . .
∅{vert1}∅{vert1}∅{vert1} . . .
{rouge1, vert1}{rouge1, vert1}{rouge1, vert1}{rouge1, vert1} . . . ,

mais le mot
{rouge1, vert1}{rouge1, vert1}∅∅∅∅ . . .

n’est pas dans P2.
Il est clair que le système de transition modélisant les deux feux totalement synchronisés satisfait

les propriétés P1 et P2. •

Remarque. Les propriétés linéaires (linear-time properties en anglais) intègrent de façon abstraite le
déroulement temporel du comportement d’un système réel, ce qui permet notamment de tenir compte
de l’ordre d’apparition des événements. Par exemple, une propriété comme � la voiture s’arrête une
fois que le conducteur a freiné � nécessite de considérer une chronologie des événements. En revanche,
l’aspect quantitatif du déroulement temporel est ignoré ici. Il peut être néanmoins pris en compte,
notamment en considérant des systèmes de transition temporisés, qui sont des systèmes de transition
équipés d’horloges. /

2.1.6 Traces équivalentes
Les propriétés linéaires décrivent les traces infinies qu’un système de transition doit admettre. Si

deux systèmes de transition ST et ST ′ admettent les mêmes traces, on s’attend à ce qu’elles vérifient
les mêmes propriétés. Le théorème suivant établit une caractérisation de l’inclusion de traces.

Théorème 2.1 (Inclusion de traces). Soient ST et ST ′ deux systèmes de transition sans état final
et admettant le même ensemble de propositions atomiques. Alors les deux assertions suivantes sont
équivalentes :
• Traces(ST ) ⊆ Traces(ST ′) ;
• pour toute propriété linéaire P , ST ′ |= P implique ST |= P .

Démonstration. (1) ⇒ (2). Soit P une propriété linéaire telle que ST ′ |= P . Alors par définition, on
a Traces(ST ′) ⊆ P . Puisque Traces(ST ) ⊆ Traces(ST ′), on en déduit que Traces(ST ) ⊆ P . Donc
ST |= P .
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(2)⇒ (1). Considérons la propriété P = Traces(ST ′). On a Traces(ST ′) ⊆ Traces(ST ′) = P , c’est-
à-dire ST ′ |= P ; donc ST |= P d’après l’hypothèse (2). On obtient par définition Traces(ST ) ⊆ P , ce
qui est équivalent à Traces(ST ) ⊆ Traces(ST ′).

On obtient le corollaire suivant.

Corollaire 2.1 (Traces équivalentes). Soient ST et ST ′ deux systèmes de transition sans état final
et admettant le même ensemble de propositions atomiques. Alors Traces(ST ) = Traces(ST ′) si et
seulement si ST et ST ′ vérifient les mêmes propriétés linéaires.

Exemple 2.3. Considérons deux systèmes de transition obtenus en modélisant des distributeurs de
boissons, représentés sur la figure 2.3.

paye

choixsoda caféττ

paye

choix1 choix2soda café

τ τ

Figure 2.3. Deux systèmes de transition modélisant des distributeurs de boissons.

Considérons de plus l’ensemble de propositions atomiques Prop = {paye, soda, café}. Bien que les
systèmes de transition soient différents, il est clair qu’ils admettent les mêmes traces. Ils vérifient donc
les mêmes propriétés linéaires. •

Déterminer si deux systèmes de transition admettent le même ensemble de traces est un problème de
décision PSPACE-complet (voir la section 4.1.4 pour la définition d’un problème de décision PSPACE-
complet). On peut cependant garantir que deux systèmes de transition admettent le même ensemble
de traces en prouvant qu’ils sont équivalents par la relation de bisimulation.

Définition 2.8. Soient ST1 = (S1,Act1,→1, I1,Prop, L1) et ST2 = (S2,Act2,→2, I2,Prop, L2) deux
systèmes de transition sur un même ensemble de propositions atomiques Prop. On dit que ST1 et ST2
sont équivalents par la relation de bisimulation, et on note ST1 ∼ ST2, s’il existe une relation binaire
R ⊆ S1 × S2 telle que :

• pour tout s1 ∈ S1, il existe s2 ∈ S2 tel que s1Rs2 ;
• pour tout s2 ∈ S2, il existe s1 ∈ S1 tel que s1Rs2 ;
• pour tout couple (s1, s2) ∈ S1 × S2 tel que s1Rs2, on a :

— L1(s1) = L2(s2),
— si s′1 ∈ Post(s1), alors il existe s′2 ∈ Post(s2) tel que s′1Rs′2,
— si s′2 ∈ Post(s2), alors il existe s′1 ∈ Post(s1) tel que s′1Rs′2.

�

On montre facilement que la relation de bisimulation est une relation d’équivalence. De plus, on
montre que si ST1 ∼ ST2, alors Traces(ST1) = Traces(ST2). Par conséquent, si deux systèmes de
transition sont équivalents par la relation de bisimulation, alors ils satisfont les mêmes propriétés
linéaires. Enfin, on peut déterminer par un procédé algorithmique si deux systèmes de transition sont
équivalents par la relation de bisimulation, avec une complexité en temps de l’ordre

O
((
|S1|+ |S2|

)
× |Prop|+ (M1 +M2)× log

(
|S1|+ |S2|

))
,

où M1, M2 désignent les nombres d’arêtes dans ST1 et ST2 respectivement.
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2.2 Invariants
Les invariants sont des propriétés linéaires particulières, qui sont déterminées par une condition Φ

portant sur les états d’un système de transition, et qui requiert que cette condition soit vérifiée pour
les états accessibles.

Définition 2.9 (Invariant). Soit Prop un ensemble de propositions atomiques. Une propriété linéaire
Pinv sur Prop est un invariant s’il existe une proposition logique Φ sur Prop telle que

Pinv = {A0A1A2 · · · ∈( 2Prop )ω | ∀j ≥ 0, Aj |= Φ} .

On dit que Φ est une condition invariante (ou un état invariant) de Pinv. �

On remarque que

ST |= Pinv ⇔ trace(π) ∈ Pinv pour tout chemin π de ST
⇔ L(s) |= Φ pour tout état s appartenant à un chemin de ST
⇔ L(s) |= Φ pour tout état s ∈ Access(ST ).

Ainsi, Φ doit être vérifiée par tous les états initiaux et la satisfaction de Φ est invariante le long des
fragments atteignant un état accessible. Si Φ est vérifiée pour un état s impliqué dans une transition
s

α−−→ s′, alors Φ est vérifiée pour s′ également.

Exemple 2.4. La propriété d’exclusion mutuelle de deux processus concurrents (toujours au plus un
processus en état critique), présentée dans l’exemple 1.7, peut être décrite comme un invariant, avec

Φ = ¬crit1 ∨ ¬crit2.

•

Vérification d’un invariant

La vérification d’un invariant Pinv pour un système de transition donné revient à vérifier la validité
d’une condition invariante Φ pour chaque état accessible depuis un état initial. On peut effectuer cette
vérification en adaptant un algorithme de balayage de graphe en profondeur. On obtient l’algorithme
2. Dans cet algorithme, ε désigne la pile vide ; l’instruction push(s, U) insère s au sommet de U ;
l’instruction top(U) renvoie le premier élément de U (qui se trouve au sommet) ; l’instruction pop(U)
efface le premier élément de U .

Si au moins un sommet s visité ne satisfait pas Φ, alors l’invariance de Pinv n’est pas vérifiée.
L’ensemble d’états R stocke tous les états visités ; si l’algorithme renvoie � OUI �, alors on a R =
Access(ST ). La pile U organise tous les états qui restent à visiter, pourvu qu’ils ne soient pas contenus
dans R. Lorsqu’un état qui ne satisfait pas Φ est rencontré, le contenu de la pile, lue de bas en haut,
fournit un contre-exemple sous la forme d’un fragment de chemin.

La complexité de l’algorithme 2 est donnée par le théorème suivant.

Théorème 2.2 (Complexité temporelle de la vérification d’invariant). La complexité temporelle de
l’algorithme 2 est de l’ordre de O

(
N × (1 + |Φ|) +M

)
, où N désigne le nombre d’états accessibles et

M =
∑
s∈S |Post(s)|.

Démonstration. On a rappelé précédemment que la complexité temporelle de l’algorithme d’analyse
d’accessibilité est de l’ordre de O(N +M). De plus, le temps nécessaire pour vérifier si s |= Φ pour un
état s donné est une fonction linéaire de la longueur de Φ. Pour couvrir le cas où Φ est une proposition
atomique (auquel cas |Φ| = 0), on ajoute 1 opération. Enfin, comme on vérifie Φ pour chaque état, le
nombre d’opérations est de l’ordre de O

(
(N +M) +N(1 + |Φ|)

)
.
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Algorithme 2 Vérification d’invariant

Entrée : système de transition fini ST et proposition logique Φ.
Sortie : � OUI � si ST satisfait toujours Φ, autrement � NON � et un contre-exemple.

Ensemble d’états R← ∅ // l’ensemble des états accessibles
Pile d’états U ← ε // ε désigne la pile vide
Booléen b← VRAI // tous les états de R vérifient Φ
Tant que I \R 6= ∅ ∧ b faire

choisir s ∈ I \R // on choisit arbitrairement un état initial qui n’est pas dans R
visiter(s) // on appelle la procédure de balayage

Fin Tant que
Si b alors

renvoyer � OUI � // ST satisfait toujours Φ
Sinon

renvoyer (� NON �, U) // la pile U fournit un contre-exemple
Fin Si

Procédure visiter(état s)
push(s, U) // on pose s sur la pile
R← R ∪ {s} // on marque s comme accessible
Répéter

s′ ← top(U) // s′ est le premier élément de la pile
Si Post(s′) ⊆ R alors

pop(U) // on retire le premier élément de la pile
b← b ∧ (s′ |= Φ) // on vérifie la validité de Φ en s′

Sinon
choisir s′′ ∈ Post(s′) \R
push(s′′, U)
R← R ∪ {s′′} // s′′ est un nouvel état accessible

Fin Si
Jusqu’à (U = ε) ∨ ¬b

Fin Procédure

2.3 Propriétés de sûreté

Les propriétés de sûreté (safety en anglais) peuvent être décrites par l’expression � rien de mauvais
ne devrait arriver �. Par exemple, la propriété d’exclusion mutuelle (toujours au plus un processus en
état critique) est une propriété typique de sûreté : la situation indésirable correspondant à au moins
deux processus en état critique simultanément ne se produit jamais.

Contrairement aux invariants, qui peuvent être vérifiés en examinant les états accessibles d’un
système de transition, certaines propriétés de sûreté ne peuvent pas être vérifiées en examinant seule-
ment les états accessibles, et imposent des conditions supplémentaires sur certains chemins finis.

Formellement, une propriété de sûreté Ps est définie comme une propriété linéaire sur un ensemble
de propositions atomiques, telle que tout mot infini σ qui ne satisfait pas Ps contient un mauvais
préfixe : il existe alors un préfixe (fini) σ̂ � mauvais �, tel qu’aucun mot infini qui commence par σ̂ ne
vérifie Ps.
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2.3.1 Mauvais préfixes
Définition 2.10 (Propriété de sûreté). Une propriété linéaire Ps sur un ensemble de propositions
atomiques Prop est appelée propriété de sûreté si pour chaque mot σ ∈

(
2Prop)ω \ Ps, il existe un

préfixe fini σ̂ de σ tel que

Ps ∩
{
σ′ ∈

(
2Prop)ω | σ̂ est un préfixe fini de σ′

}
= ∅.

Chaque mot fini σ̂ est appelé mauvais préfixe de Ps. Un mauvais préfixe σ̂ est minimal si aucun préfixe
strict de σ̂ n’est un mauvais préfixe de Ps. �

Ainsi, si σ 6|= Ps, alors σ peut s’écrire σ = σ̂ŵ, où σ̂ un est préfixe fini tel que pour tout mot infini
w, σ̂w 6|= Ps.

Pour σ ∈
(
2Prop)ω, on note pref (σ) l’ensemble des préfixes finis de σ. Ainsi, si σ = A0A1A2 . . . ,

alors
pref (σ) = {ε,A0, A0A1, A0A1A2, . . .}.

Par exemple, si σ = ABABABAB . . . , alors

pref (σ) = {ε,A,AB,ABA,ABAB, . . .},

que l’on peut décrire avec l’expression régulière 1 (AB)∗(A+ ε). Enfin, si P est une propriété linéaire
sur Prop, on note

pref (P ) =
⋃
σ∈P

pref (σ).

L’ensemble des mauvais préfixes de Ps sera noté MauvPre(Ps). L’ensemble des mauvais préfixes
minimaux de Ps sera noté MauvPreMin(Ps).

Définition 2.11 (Fermeture d’une propriété linéaire). Soit P une propriété linéaire sur Prop. La
fermeture de P est l’ensemble défini par

fermeture(P ) =
{
σ ∈

(
2Prop)ω | pref (σ) ⊆ pref (P )

}
.

�

Ainsi, les traces infinies contenues dans fermeture(P ) n’ont pas de préfixe qui ne soit pas déjà un
préfixe de P .

Pour toute propriété linéaire P , on a P ⊆ fermeture(P ). Le lemme suivant montre que l’inclusion
réciproque est vérifiée pour les propriétés de sûreté.

Lemme 2.1. Soit P une propriété linéaire sur Prop. Alors P est une propriété de sûreté si et seulement
si

P = fermeture(P ).

Démonstration. Supposons d’abord que P = fermeture(P ). Soit alors σ ∈
(
2Prop)ω \P . Montrons que

σ commence avec un mauvais préfixe pour P . Puisque σ /∈ P et que P = fermeture(P ), on a donc
σ /∈ fermeture(P ). Donc pref (σ) 6⊆ pref (P ) ; ainsi, il existe un préfixe fini σ̂ de σ tel que σ̂ /∈ pref (P ),
c’est-à-dire

∀σ ∈ P, σ̂ 6∈ pref (σ).

Ainsi, si σ′ ∈
(
2Prop)ω est tel que σ̂ ∈ pref (σ′), alors σ′ 6∈ P . Autrement dit, aucun mot σ′ ∈

(
2Prop)ω

tel que σ̂ ∈ pref (σ′) n’appartient à P . Donc σ̂ est un mauvais préfixe pour P . Donc P est une propriété
de sûreté.

Réciproquement, supposons que P soit une propriété de sûreté. L’inclusion P ⊆ fermeture(P ) est
évidente. Pour montrer l’autre inclusion, on raisonne par contradiction. Supposons que σ = A0A1A2 . . .

1. Les expressions régulières seront revues dans le troisième chapitre de ce cours.
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appartienne à fermeture(P )\P . Comme P est une propriété de sûreté et que σ /∈ P , σ admet un mauvais
préfixe σ̂ = A0A1 . . . An. Mais σ ∈ fermeture(P ), donc pref (σ) ⊆ pref (P ), d’où σ̂ ∈ pref (P ). Donc il
existe un mot σ′ ∈ P admettant σ̂ comme préfixe, ce qui est impossible puisque P est une propriété
de sûreté.

Le théorème suivant établit une relation entre invariants et propriétés de sûreté.

Théorème 2.3 (Relation entre invariants et propriétés de sûreté). Tout invariant est une propriété
de sûreté.

Démonstration. Soit Pinv un invariant et soit Φ une condition invariante de Pinv. Soit ensuite σ un
mot infini de

(
2Prop)ω \ Pinv. Alors σ contient un préfixe minimal du type

A0A1 . . . An ∈
(
2Prop)+ avec A0 |= Φ, . . . , An−1 |= Φ et An 6|= Φ. (2.1)

Donc Pinv est une propriété de sûreté et tous les mots finis de la forme (2.1) en constituent les mauvais
préfixes minimaux.

Exemple 2.5. Considérons un distributeur de boissons. La condition suivante est une condition requise
naturelle :

� le nombre de pièces insérées est toujours au moins égal au nombre de boissons distribuées �.

Pour formaliser cette condition, on introduit l’ensemble de propositions atomiques

Prop = {paye,distribue},

et la fonction d’étiquetage associée. La condition énoncée ci-dessus correspond à l’ensemble des mots
infinis A0A1A2 . . . tels que l’on ait pour tout i ≥ 0 :∣∣∣{j ∈ {0, . . . , i} | paye ∈ Aj

}∣∣∣ ≥ ∣∣∣{j ∈ {0, . . . , i} | distribue ∈ Aj
}∣∣∣ .

Cet ensemble de mots constitue alors une propriété de sûreté, dont les mots suivants sont des exemples
de mauvais préfixes :

∅{paye}{distribue}{distribue},
∅{paye}{distribue}∅{paye}{distribue}{distribue}.

On vérifie aisément que les distributeurs de boissons de la figure 2.3 satisfont cette propriété de sûreté.
•

2.3.2 Équivalence de traces pour les propriétés de sûreté
Nous avons vu avec le Théorème 2.1 qu’il existe une relation entre l’inclusion de traces pour

des systèmes de transition sans état final et la satisfaction de propriétés linéaires. Le Théorème 2.1
s’applique néanmoins à des traces infinies. Une relation analogue pour des traces finies est établie par
le théorème suivant.

Théorème 2.4 (Inclusion de traces finies et propriétés de sûreté). Soient ST et ST ′ deux systèmes
de transition sans état final et admettant le même ensemble de propositions atomiques. Les assertions
suivantes sont équivalentes :
• Tracesfin(ST ) ⊆ Tracesfin(ST ′) ;
• pour toute propriété de sûreté Ps, ST ′ |= Ps implique ST |= Ps.

La démonstration du Théorème 2.4 utilise le lemme suivant.
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Lemme 2.2. Soit ST un système de transition sans état final et soit Ps une propriété de sûreté. Alors

ST |= Ps ⇔ Tracesfin(ST ) ∩MauvPre(Ps) = ∅.

Preuve du Lemme 2.2. (1) ⇒ (2). Raisonnons par l’absurde. Supposons que ST |= Ps et qu’il existe
σ̂ ∈ Tracesfin(ST ) ∩MauvPre(Ps). Alors σ̂ est une trace finie de ST qui peut s’écrire

σ̂ = A1 . . . An,

et qui peut être prolongée en une trace infinie

σ = A1 . . . AnAn+1 . . .

qui ne satisfait pas Ps. Donc ST 6|= Ps.
(2) ⇒ (1). Raisonnons encore par l’absurde. Supposons que Tracesfin(ST ) ∩MauvPre(Ps) = ∅ et

que ST 6|= Ps. Alors il existe un chemin π de ST tel que trace(π) /∈ Ps. Cela signifie que trace(π)
commence avec un mauvais préfixe σ̂ pour Ps. Mais on a alors σ̂ ∈ Tracesfin(ST ) ∩MauvPre(Ps), ce
qui constitue une contradiction.

Preuve du Théorème 2.4. (1) ⇒ (2). Supposons que Tracesfin(ST ) ⊆ Tracesfin(ST ′) et soit Ps une
propriété de sûreté telle que ST ′ |= Ps. D’après le lemme 2.2, on a donc

Tracesfin(ST ′) ∩MauvPre(Ps) = ∅,

ce qui implique
Tracesfin(ST ) ∩MauvPre(Ps) = ∅.

D’après le lemme 2.2, on a donc ST |= Ps.
(2)⇒ (1). Considérons Ps = fermeture

(
Traces(ST ′)

)
. On montre aisément que Ps est une propriété

de sûreté telle que ST ′ |= Ps. Par hypothèse, on a donc ST |= Ps, c’est-à-dire

Traces(ST ) ⊆ fermeture
(
Traces(ST ′)

)
.

Sachant que pour toute propriété linéaire P , on a

pref (P ) = pref
(
fermeture(P )

)
,

on obtient :

Tracesfin(ST ) = pref
(
Traces(ST )

)
⊆ pref

(
fermeture

(
Traces(ST ′)

))
= pref

(
Traces(ST ′)

)
= Tracesfin(ST ′).

On obtient le corollaire suivant.

Corollaire 2.2 (Traces finies équivalentes). Soient ST et ST ′ deux systèmes de transition sans
état final sur le même ensemble de propositions atomiques Prop. Alors les assertions suivantes sont
équivalentes :
• Tracesfin(ST ) = Tracesfin(ST ′),
• pour toute propriété de sûreté Ps sur Prop, ST |= Ps ⇔ ST ′ |= Ps.
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Exemple 2.6. Considérons un feu de circulation avec trois phases � rouge �, � vert �, � orange �.
Nous allons montrer que la propriété Ps définie par

� chaque phase “rouge” est immédiatement précédée d’une phase “orange” � (2.2)

est une propriété de sûreté, mais pas un invariant.
Pour cela, on pose Prop = {rouge, orange, vert}. La propriété � il y a toujours au moins une lumière

allumée � peut s’écrire

{σ = A0A1 . . . | ∀j ≥ 0, Aj ⊆ Prop ∧Aj 6= ∅}.

Les mauvais préfixes de cette propriété sont les mots finis qui contiennent ∅. Un mauvais préfixe
minimal finit nécessairement par ∅. Puis, la propriété � deux lumières ne sont jamais allumées en
même temps � peut s’écrire

{σ = A0A1 . . . | ∀j ≥ 0, Aj ⊆ Prop ∧ |Aj | ≤ 1}.

Les mauvais préfixes de cette propriété sont les mots finis contenant {rouge, vert}, {rouge, orange} ou
{orange, vert}. Un mauvais préfixe minimal finit nécessairement par un tel ensemble.

Considérons maintenant l’ensemble de propositions atomiques Prop′ = {rouge, orange}. La propriété
Ps définie par 2.2 s’écrit{

σ = A0A1 . . . | ∀j ≥ 0, Aj ⊆ Prop′ ∧ (rouge ∈ Aj ⇒ j > 0 ∧ orange ∈ Aj−1)
}
.

Les mauvais préfixes de cette propriété sont les mots finis qui ne vérifient pas la condition

(rouge ∈ Aj ⇒ j > 0 ∧ orange ∈ Aj−1).

Le mot “∅∅{rouge}” est un mauvais préfixe minimal. Le mauvais préfixe

{orange}{orange}{rouge}{rouge}∅{rouge}

n’est pas minimal puisque qu’il admet le préfixe strict

{orange}{orange}{rouge}{rouge},

qui est aussi un mauvais préfixe.
Les mauvais préfixes minimaux de cette propriété de sûreté constituent un langage régulier. L’au-

tomate fini de la figure 2.4 accepte précisément ces mauvais préfixes minimaux (dans cet automate,
l’expression � ¬orange � signifie � soit ∅, soit “rouge” �). •

s0s1 s2
rouge

orange

¬orange

orange ∅

Figure 2.4. Automate fini acceptant les mauvais préfixes minimaux pour la propriété de sûreté Ps
définie par (2.2).
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2.4 Propriétés de vivacité
Pour terminer ce deuxième chapitre du cours, décrivons brièvement une autre catégorie remarquable

de propriétés linéaires : les propriétés de vivacité (liveness en anglais).
Les propriétés de vivacité peuvent être décrites par l’expression � quelque chose de bon devrait

arriver dans le futur �. Ces propriétés sont alors parfois appelées progrès, et sont complémentaires des
propriétés de sûreté. La définition formelle suivante d’une propriété de vivacité utilise encore la notion
de préfixe.

Définition 2.12 (Propriété de vivacité). Une propriété linéaire Pv sur un ensemble de propositions
atomiques Prop est appelée propriété de vivacité si pref (Pv) =

(
2Prop)∗. �

Ainsi, Pv est une propriété de vivacité si chaque mot fini peut être prolongé en un mot infini qui
vérifie Pv. On peut facilement montrer que la seule propriété linéaire qui soit à la fois une propriété
de sûreté et une propriété de vivacité est

(
2Prop)ω. Le théorème suivant montre l’importance conjointe

des propriétés de sûreté et de vivacité.

Théorème 2.5 (Théorème de décomposition). Pour toute propriété linéaire P , il existe une propriété
de sûreté Ps et une propriété de vivacité Pv telles que

P = Ps ∩ Pv.

Remarque. Il n’y a pas unicité de la décomposition P = Ps ∩ Pv. Cependant, on peut montrer que la
décomposition la plus � fine � est obtenue avec

Ps = fermeture(P ) et Pv = P ∪
((

2Prop)ω \ fermeture(P )
)
.

/

2.5 Exercices
Exercice 1 : le blocage

On considère 2 feux de circulation disposés sur des routes qui se croisent, modélisés par les systèmes
de transition FC1 et FC2 de la figure 2.5.

1. Décrire la composition parallèle synchrone FC1 ‖ FC2 des systèmes de transition FC1 et FC2.
2. Que remarque-t-on ?

FC1

rouge1

vert1

αβ

FC2

rouge2

vert2

βα

Figure 2.5. Feux de circulation.
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Exercice 2 : le distributeur de boissons

On considère un distributeur de boissons, modélisé par le système de transition illustré sur la figure
2.6, muni de la fonction d’étiquetage définie par L(s) = {s} pour tout état s.

1. Donner les fragments de chemins correspondant aux fragments d’exécution ρ1, ρ2 et ρ3 donnés
par

ρ1 = paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café . . . ,

ρ2 = café servir cafe−−−−−−−−−→ paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café . . . ,

ρ3 = paye inserer piece−−−−−−−−−−→ choix choix interne−−−−−−−−−−−→ café servir cafe−−−−−−−−−→ paye .

2. Décrire les propriétés de ces fragments de chemin et donner leur trace.

paye

choixsoda café

inserer piece

choix internechoix interne

servir soda servir cafe

Figure 2.6. Système de transition modélisant un distributeur de boissons.

Exercice 3 : exclusion mutuelle par sémaphore

On considère le système de transition STsem obtenu par déploiement du graphe P1 ||| P2, où les
processus P1, P2, illustrés sur la figure 2.7, partagent le sémaphore binaire y. On suppose que l’ensemble
de propositions atomiques est donné par Prop = {crit1, crit2}.

noncrit1

pause1

crit1

(y > 0) :
y ← y − 1

y ← y + 1

noncrit2

pause2

crit2

(y > 0) :
y ← y − 1

y ← y + 1

Figure 2.7. Processus concurrents partageant le sémaphore binaire y.

1. Décrire les fragments de chemins π et π̂ définis par :

π = < noncrit1, noncrit2, y = 1 >→< pause1, noncrit2, y = 1 >→< crit1, noncrit2, y = 0 >→
< noncrit1, noncrit2, y = 1 >→< noncrit1, pause2, y = 1 >→< noncrit1, crit2, y = 0 >→ . . .

π̂ = < noncrit1, noncrit2, y = 1 >→< pause1, noncrit2, y = 1 >→< pause1, pause2, y = 1 >→
< pause1, crit2, y = 0 >→< pause1, noncrit2, y = 1 >→< crit1, noncrit2, y = 0 >,

puis donner leur trace.
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2. Soit la propriété Φ1 : � toujours au plus un des deux processus est dans son état critique�.
Montrer que la propriété Φ1 est une propriété linéaire. Donner des exemples de mots infinis
appartenant à Φ1, puis un mot infini n’appartenant pas à Φ1. Montrer que Φ1 est un invariant
puis exécuter l’algorithme de vérification d’invariant pour décider si STsem satisfait Φ1 ou non.

3. Analyser de même la propriété Φ2 : � toujours aucun processus n’est en état critique�.
4. Que dire d’un algorithme qui interdit aux deux processus d’entrer dans leur état critique ?
5. On considère maintenant l’ensemble de propositions atomiques

Prop′ = {pause1, pause2, crit1, crit2}.

Décrire comme un ensemble de mots la propriété Φ3 sur Prop′ qui exprime que chaque processus
entre effectivement en état critique après un temps d’attente fini.

6. Décrire comme un ensemble de mots la propriété Φ4 sur Prop′ qui exprime que chaque processus
entre en état critique infiniment souvent, à condition d’attendre une infinité de fois.

7. Les propriétés Φ3, Φ4 sont-elles satisfaites par le système de transition STsem ?
8. Sont-elles des propriétés de sûreté ? de vivacité ?

Exercice 4

On considère un ensemble fini Prop de propositions atomiques.
1. Soit ST un système de transition sur Prop. Montrer que l’ensemble fermeture

(
Traces(ST )

)
est

une propriété de sûreté, qui est vérifiée par ST .
2. Soit P une propriété linéaire sur Prop. Montrer que pref (P ) = pref

(
fermeture(P )

)
.

3. Montrer que la seule propriété linéaire qui soit à la fois une propriété de sûreté et une propriété
de vivacité est

(
2Prop)ω.

Exercice 5 : l’algorithme d’exclusion de Peterson

On considère deux processus P1, P2 possédant un état critique noté crit, précédé d’un état d’attente
noté pause, lui-même précédé d’un état non critique noté noncrit. On suppose que P1 et P2 admettent
en commun les variables de type booléen b1, b2 et la variable x dont le domaine est dom(x) = {1, 2}.
Si les deux processus désirent entrer dans leur état critique, alors la valeur de la variable x effectue la
décision : si x = i, c’est Pi qui entre dans son état critique. De plus, si P1 (respectivement P2) entre
en état d’attente, alors la variable x prend la valeur 2 (respectivement 1). Les variables bi sont définies
par bi = pausei ∨ criti.

1. Représenter chaque processus par un graphe conditionnel et contruire le système de transition
STPeter obtenu par déploiement de leur composition.

2. Le système de transition STPeter vérifie-t-il la propriété d’exclusion mutuelle ? Quelle est sa
particularité ?

3. Le système de transition STPeter vérifie-t-il les propriétés Φ3, Φ4 de l’exercice 3 ?
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CHAPITRE 3

Vérification de propriétés de sûreté

Nous avons vu dans le chapitre précédent que la vérification des invariants peut être effectuée en
appliquant un algorithme d’analyse d’accessibilité dans le graphe d’états d’un système de transition.
Dans ce chapitre, nous allons présenter une méthode permettant de vérifier d’autres propriétés linéaires.
Nous considérons principalement des propriétés de sûreté régulières, c’est-à-dire des propriétés de sûreté
dont les mauvais préfixes constituent un langage régulier, qui peut donc être reconnu par un automate
fini. Nous allons alors décrire un algorithme de vérification d’une telle propriété de sûreté Ps pour un
système de transition ST , qui repose sur une réduction à un problème de vérification d’invariant, pour
un certain produit ST ⊗ A, où ST est le système de transition considéré et A un automate fini qui
reconnâıt les mauvais préfixes de Ps.

3.1 Automates finis et langages réguliers
Nous commençons par présenter quelques rappels sur les automates finis.

3.1.1 Automate fini non-déterministe
Définition 3.1 (Automate Fini Non-déterministe). Un automate fini non-déterministe A est entière-
ment déterminé par la donnée d’un quintuplet A = (Q,Σ, δ, Q0, F ) où

• Q est un ensemble fini d’états,
• Σ est un alphabet,
• δ : Q× Σ −→ 2Q est une fonction de transition,
• Q0 ⊆ Q est un ensemble d’états initiaux,
• F ⊆ Q est un ensemble d’états acceptants (ou finaux).

La taille de A, notée |A|, est le nombre d’états et de transitions dans A :

|A| = |Q|+
∑
q∈Q

∑
A∈Σ
|δ(q, A)| .

�

L’alphabet Σ détermine ainsi les symboles sur lesquels l’automate A est défini. L’ensemble Q0 (qui
peut être vide) détermine les états dans lesquels l’automate A peut débuter. La fonction de transition
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δ peut être identifiée avec la relation −→⊆ Q× Σ×Q définie par

q
A−−→ q′ ⇔ q′ ∈ δ(q, A).

Intuitivement, la notation q
A−−→ q′ décrit l’automate A qui se déplace de l’état q à l’état q′ lorsqu’il

lit le symbole A.

Exemple 3.1. Considérons l’automate illustré sur la figure 3.1. Dans cet exemple, on aQ = {q0, q1, q2},
Σ = {A,B}, Q0 = {q0}, F = {q2} et la fonction de transition δ est définie par

δ(q0, A) = {q0}, δ(q0, B) = {q0, q1},
δ(q1, A) = {q2}, δ(q1, B) = {q2},
δ(q2, A) = ∅, δ(q2, B) = ∅.

Les conventions de dessin pour les automates sont les mêmes que pour les systèmes de transition. Les
états acceptants sont distingués des autres par un double cercle.

q0 q1 q2
B

A

B

A

B

Figure 3.1. Exemple d’automate fini non-déterministe.

•

3.1.2 Langage accepté par un automate
Le comportement opérationnel d’un automate peut être décrit de la façon suivante. L’automate

débute dans un état q0 ∈ Q0. On lui donne un mot w ∈ Σ∗ à lire. L’automate lit alors ce mot w
caractère par caractère, de gauche à droite. Après lecture d’un caractère, l’automate change d’état
selon la fonction de transition δ. Si le symbole A lu à partir de l’état q est tel que δ(q,A) contient plus
d’un état (ce qui se produit pour δ(q0, B) dans l’exemple 3.1), alors la décision pour l’état suivant est
prise de façon non déterministe. Si δ(q, A) = ∅, alors l’automate est bloqué. Si l’automate est bloqué
avant la fin du mot w, on dit que le mot w est rejeté. Si au contraire le mot w est lu de façon complète,
l’automate s’arrête. On dit qu’il accepte le mot w s’il s’arrête dans un état acceptant. Autrement, on
dit qu’il rejette le mot w.

Définition 3.2 (Langage accepté par un automate). Soit A = (Q,Σ, δ, Q0, F ) un automate fini non-
déterministe et soit w = A1 . . . An ∈ Σ∗ un mot fini. On appelle exécution de l’automate A pour le
mot w toute suite finie d’états q0q1 . . . qn telle que

• q0 ∈ Q0,
• qi

Ai+1−−−−→ qi+1 pour tout i ∈ {0, . . . , n− 1}.
On dit que l’exécution q0q1 . . . qn est acceptante si qn ∈ F . Un mot w ∈ Σ∗ est dit accepté par l’automate
A s’il existe au moins une exécution acceptante pour w.

Le langage accepté par A, noté L(A), est l’ensemble des mots finis dans Σ∗ qui sont acceptés par
A. �
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Exemple 3.2. Pour l’automate illustré sur la figure 3.1, q0 est une exécution pour le mot vide ε,
q0q0q0q0 est une exécution pour les mots ABA et BBA et q0q1q2 est une exécution pour les mots
BA et BB. Les exécutions q0q1q2 pour BA et BB et q0q0q1q2 pour ABB, ABA, BBA et BBB sont
acceptantes. Donc ces mots appartiennent au langage L(A). En revanche, le mot AAA n’est pas accepté
par A, car il n’admet qu’une seule exécution, q0q0q0q0, qui n’est pas acceptante. Le langage L(A) est
ainsi déterminé par l’expression régulière (A+B)∗B(A+B). Autrement dit, L(A) est l’ensemble des
mots sur {A,B} admettant au moins 2 lettres, et dont l’avant-dernière lettre est B. •

Les cas Q0 = ∅ et F = ∅ sont possibles. Dans ces 2 cas, on a L(A) = ∅. Si F = ∅, alors il n’existe
aucune exécution acceptante. Si Q0 = ∅, alors il n’existe aucune exécution (intuitivement, l’automate
rejette d’emblée tout mot à lire).

3.1.3 Expressions régulières
Soit Σ un alphabet non vide. Les expressions régulières 1 sont construites à partir des symboles ∅

(pour désigner le langage vide, qui ne contient aucun mot), ε (pour désigner le langage neutre {ε}),
A, avec A ∈ Σ (pour le singleton {A}), et des opérateurs de langages : �+� pour l’union, �∗� pour la
répétition finie (étoile de Kleene) et �·� pour la concaténation. Les expressions régulières sont définies
de façon inductive par les règles suivantes :
• ∅ et ε sont des expressions régulières ;
• si A ∈ Σ, alors A est une expression régulière ;
• si E, E1 et E2 sont des expressions régulières, alors E1 + E2, E1 · E2 et E∗1 sont aussi des

expressions régulières ;
• rien d’autre n’est une expression régulière.
Si E est une expression régulière, on définit son langage L(E) à partir des règles de sémantique

suivantes :

L
(
∅
)

= ∅, L
(
ε
)

= {ε}, L
(
A
)

= {A},
L(E1 + E2) = L(E1) ∪ L(E2), L(E1 · E2) = L(E1) · L(E2), L

(
E∗
)

= L(E)∗.

On note souvent E+ pour désigner l’expression régulière E ·E∗. On montre alors que L
(
E+) = L(E)+.

Un langage L ⊆ Σ∗ est dit régulier s’il existe une expression régulière E sur Σ telle que L(E) = L.
Par exemple, l’expression E =

(
A + B

)∗ · B · B · (A + B
)

est une expression régulière sur l’alphabet
Σ = {A,B}, qui correspond au langage

L(E) = {wBBA | w ∈ Σ∗} ∪ {wB3 | w ∈ Σ∗}.

On allège très souvent les notations en omettant la barre inférieure et le point de concaténation.
Le théorème de Kleene [9] montre que l’ensemble des langages réguliers sur un alphabet Σ est

exactement l’ensemble des langages sur Σ reconnaissables par automate fini (voir la section 3.1.5 plus
bas). Étant donné un automate fini non-déterministe A, il existe même des algorithmes qui déterminent
une expression régulière E telle que L(E) = L(A). Réciproquement, pour toute expression régulière
E, on peut construire un automate fini non-déterministe A qui accepte L(E).

Un exemple de langage non régulier est donné par L = {AnBn | n ≥ 0}.

3.1.4 Propriétés remarquables
On peut caractériser le langage accepté par un automate fini non-déterministe de la façon suivante.

Soit A un tel automate. On étend la fonction de transition δ à Q× Σ∗ en posant

δ(q, ε) = {q}, δ(q,A1A2 . . . An) =
⋃

p∈δ(q,A1)

δ(p,A2 . . . An).

1. Regular expressions en anglais, parfois traduit expressions rationnelles en français.
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Autrement dit, δ(q, w) est l’ensemble des états qui sont accessibles depuis l’état q avec le mot w. En
particulier, ∪q0∈Q0δ(q0, w) est l’ensemble des états où une exécution pour w peut terminer. Si un de
ces états est acceptant, alors le mot w admet une exécution acceptante. Inversement, si w /∈ L(A),
alors aucun de ces états n’est acceptant. On obtient donc la caractérisation suivante.

Lemme 3.1 (Caractérisation du langage accepté par un automate fini non-déterministe). Soit A un
automate fini non-déterministe. Alors

L(A) =
{
w ∈ Σ∗ | ∃ q0 ∈ Q0 tel que δ(q0, w) ∩ F 6= ∅

}
.

Puisque les automates finis non-déterministes correspondent aux langages réguliers, on identifie
naturellement ceux qui admettent le même langage.

Définition 3.3 (Automates finis non-déterministes équivalents). Deux automates finis non-déterminis-
tes sont dits équivalents s’ils admettent le même langage accepté. �

Non vacuité du langage d’un automate

Une question importante dans l’étude d’un automate consiste à déterminer si son langage accepté
est vide ou non.

Théorème 3.1. Soit A = (Q,Σ, δ, Q0, F ) un automate fini non-déterministe. Alors L(A) 6= ∅ si et
seulement si il existe q0 ∈ Q0 et q ∈ F tels que q soit accessible depuis q0.

Démonstration. Supposons qu’il existe q0 ∈ Q0 et q ∈ F tels que q soit accessible depuis q0. Alors A
accepte le mot correspondant à cette exécution acceptante, donc L(A) 6= ∅.

Réciproquement, si L(A) 6= ∅, alors il existe w ∈ L(A) et une exécution acceptante pour w, qui
commence en q0 ∈ Q0 et qui termine en q ∈ F .

En adaptant un algorithme de balayage, on peut décider si L(A) est vide, avec un temps de l’ordre
de O(|A|).

Les langages réguliers vérifient de nombreuses propriétés de compatibilité avec les opérations sur
les langages. Ainsi, l’union de deux langages réguliers est un langage régulier. De même pour la
concaténation, l’intersection, le complémentaire et la répétition finie. On peut montrer ces propriétés
en utilisant la caractérisation des langages réguliers par des automates finis non-déterministes. En
particulier, la propriété de compatibilité avec l’intersection peut être établie en construisant, à partir
de deux automates A1 et A2, un automate produit A1 ⊗ A2. Cette construction est analogue à celle
de l’opérateur d’échange synchrone ‖ de deux systèmes de transition (Définition 1.13).

Définition 3.4 (Produit synchrone d’automates finis non-déterministes). Soient deux automates finis
non-déterministes A1 = (Q1,Σ, δ1, Q0,1, F1) et A2 = (Q2,Σ, δ2, Q0,2, F2) sur un même alphabet Σ.
L’automate produit A1 ⊗A2 est défini par

A1 ⊗A2 = (Q1 ×Q2,Σ, δ, Q0,1 ×Q0,2, F1 × F2),

où la fonction de transition δ est donnée par

q1
A−−→1 q

′
1 ∧ q2

A−−→2 q
′
2

(q1, q2) A−−→ (q′1, q′2)
.

�

On montre alors que L(A1 ⊗A2) = L(A1) ∩ L(A2).
Pour montrer la propriété de compatibilité par complémentaire, on introduit d’abord la notion

d’automate fini déterministe.
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Définition 3.5 (Automate fini déterministe). Soit A = (Q,Σ, δ, Q0, F ) un automate fini non-détermi-
niste. On dit que A est déterministe si |Q0| ≤ 1 et |δ(q, A)| ≤ 1 pour tout état q ∈ Q et pour tout
symbole A ∈ Σ. On dit que A est complet si |Q0| = 1 et |δ(q, A)| = 1 pour tout état q ∈ Q et pour
tout symbole A ∈ Σ. �

Un automate fini complet est souvent noté A = (Q,Σ, δ, q0, F ), où q0 est l’unique état initial. On
observe qu’un automate complet admet une unique exécution pour chaque mot donné en lecture. On
définit alors, pour un automate complet A = (Q,Σ, δ, q0, F ), l’automate Ā = (Q,Σ, δ, q0, Q \ F ). On
montre ensuite que L

(
Ā
)

= Σ∗ \ L(A).
Il reste enfin à montrer que pour chaque automate fini non déterministe A, il existe un automate

fini complet Ac équivalent. Pour cela, on pose

Ac =
(
2Q,Σ, δc, Q0, Fc

)
,

où l’ensemble des états acceptants Fc est défini par

Fc = {Q′ ⊆ Q | Q′ ∩ F 6= ∅}

et où la fonction de transition δc est définie sur 2Q × Σ par

δc(Q′, A) =
⋃
q∈Q′

δ(q, A).

La construction précédente est appelée powerset construction ou subset construction, car les états de
Ac sont des sous-ensembles de Q. Ainsi construit, l’automate Ac est complet et on a

δc(Q0, w) =
⋃

q0∈Q0

δ(q0, w),

pour chaque mot w ∈ Σ∗ (δ désigne la fonction de transition étendue). On a donc, d’après le Lemme
3.1, L(Ac) = L(A).

Exemple 3.3. L’automate complet obtenu par la méthode powerset construction à partir de l’auto-
mate fini non-déterministe de la figure 3.1 est donné sur la figure 3.2.

•

La méthode powerset construction produit un automate dont la taille est exponentielle par rapport
à la taille de l’automate de départ. Par exemple, le langage régulier déterminé par l’expression régulière
Ek = (A+B)∗B(A+B)k est accepté par un automate fini non-déterministe à k+ 2 états ; cependant,
on peut montrer qu’il n’existe pas d’automate complet à moins de 2k états acceptant le langage L(Ek).
En effet, intuitivement, un automate complet acceptant le langage L(Ek) doit � se souvenir � des
positions du symbole B parmi les k derniers caractères lus, ce qui produit au moins Ω(2k) états.

Enfin, on peut montrer que pour tout langage régulier L, il existe un unique automate complet A
tel que L(A) = L et admettant un nombre minimal d’états, à isomorphisme de renommage des états
près.

3.1.5 Le théorème de Kleene
Comme évoqué plus haut, le théorème de Kleene [9] affirme que l’ensemble des langages réguliers

sur un alphabet Σ est exactement l’ensemble des langages sur Σ reconnaissables par automate fini. De
plus, il existe des algorithmes permettant de construire un automate à partir d’une expression régulière
et inversement. L’algorithme de Thompson [18] permet ainsi d’aller de l’expression à l’automate, tout
comme la construction de Glushkov. La méthode de départ ou l’algorithme de McNaughton et Yamada
[13] permettent au contraire d’aller de l’automate à l’expression.
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{q0} {q0, q1}

{q0, q2} {q0, q1, q2}

B

A

BA
B

A

A

B

Figure 3.2. Automate complet obtenu par la méthode powerset construction à partir de l’automate
fini non-déterministe de la figure 3.1.

Algorithme de Thompson

L’algorithme de Thompson consiste à construire un automate fini non-déterministe à partir d’une
expression régulière, en utilisant des constructions pour l’union, la concaténation et l’étoile. Ces
constructions font apparâıtre des transitions portant sur le mot vide ε, qui sont ensuite éliminées.
À chaque expression régulière est associé un automate fini. Cet automate est construit par induction
sur la structure de l’expression.

Exemple 3.4. Considérons l’expression régulière E = ab+ c∗ sur l’alphabet Σ = {a, b, c}.
On construit d’abord trois automates reconnaissant respectivement les langages {a}, {b}, {c} (figure

3.3).

q0 qf
a q0 qf

b q0 qf
c

Figure 3.3. Automates finis non-déterministes reconnaissant les langages {a}, {b}, {c}.

Par concaténation des deux premiers automates, obtient un automate reconnaissant le langage {ab}
(figure 3.4).

q0 q1 qf
a b

Figure 3.4. Automate fini non-déterministe reconnaissant le langage {ab}.

À partir de l’automate reconnaissant le langage {c}, on obtient ensuite un automate reconnaissant
le langage c∗ (figure 3.5).

Le langage L(E) est alors reconnu par l’automate union des deux étapes précédentes (figure 3.6).
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q0 q1 q2 qf
ε c ε

ε

ε

Figure 3.5. Automate fini non-déterministe reconnaissant le langage c∗.

q0 q1 q2 q3

q4 q5 q6 q7 qf

ε a b

ε
ε

ε
c

ε ε

ε

ε

Figure 3.6. Automate fini non-déterministe reconnaissant le langage L(ab+ c∗).

Pour finir, on supprime certaines transitions portant sur le mot vide ε. On obtient alors l’automate
illustré sur la figure 3.7.

q0

q1 q2

q4

a

b

c

c

Figure 3.7. Automate fini non-déterministe sans ε-transitions, reconnaissant le langage L(ab+ c∗).

•

Méthode de départ et Lemme de Arden

On peut déterminer le langage d’un automate complet par la méthode de départ et le Lemme de
Arden. Pour simplifier, supposons ici que les états de l’automate A sont les entiers 1, 2, . . . , n et que
A admet l’état 1 comme unique état initial. Pour tout k ∈ {1, . . . , n}, on note Dk l’ensemble des mots
qui conduisent de l’état k à un état acceptant. Les ensembles Dk sont appelés langages de départ. Le
langage L(A) cöıncide alors avec l’ensemble D1. Notons ensuite Σ = {A,B, . . .}. Si k n’est pas un état
acceptant, on pose l’équation

(Ek) Dk = {A}Dδ(k,A) ∪ {B}Dδ(k,B) ∪ . . . .
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Si au contraire k est un état acceptant, on pose l’équation

(Ek) Dk = {ε} ∪ {A}Dδ(k,A) ∪ {B}Dδ(k,B) ∪ . . . .

On pose alors le système d’équations (E1), . . . , (En), qui exprime
D1 en fonction de D1, D2, . . . , Dn,

D2 en fonction de D1, D2, . . . , Dn,
...
Dn en fonction de D1, D2, . . . , Dn.

Le Lemme de Arden permet de résoudre ce système.

Lemme 3.2 (Lemme de Arden). Soient L1 et L2 deux langages. Le langage L = L∗1L2 est le plus
petit langage (pour l’inclusion ensembliste) qui est solution de l’équation X = (L1 ·X) ∪ L2. De plus,
si L1 ne contient pas le mot vide ε, alors le langage L = L∗1L2 est l’unique solution de cette équation.

Dans le système d’équations de la méthode de départ, certaines des équations permettent souvent
d’effectuer des simplifications. Par exemple :

• si le second membre est le même dans la ligne Di = . . . et la ligne Dj = . . . , alors on peut en
déduire la relation Di = Dj ;

• si l’une des équations est de la forme Di = ΣDi, on déduit du lemme de Arden que Di = ∅ (en
effet, si L est un langage, alors L = L ∪ ∅ et L∅ = ∅ 2). On dit alors que i est un état piège,
ou puits).

Exemple 3.5. Considérons l’automate A sur Σ = {a, b}, illustré sur la figure 3.8. Le système

1

2

3

a

b

a

b

ba

Figure 3.8. Exemple d’automate fini dont on détermine le langage accepté par la méthode de départ.

d’équations de la méthode de départ s’écrit :
D1 = {a}D2 ∪ {b}D3,

D2 = {a}D2 ∪ {b}D3,

D3 = {ε} ∪ {a}D2 ∪ {b}D3.

2. Le langage vide est absorbant pour la concaténation des langages (voir le cours Langages et automates de 3è année
de Licence).
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On a donc D3 = {ε} ∪ D2, d’où D2 = {a}D2 ∪ {b}({ε} ∪ D2), ce qui donne D2 = {b} ∪ {a, b}D2.
D’après le Lemme de Arden, on obtient D2 = {a, b}∗{b}. Or, on a L(A) = D1 et D1 = D2, d’où

L(A) = {a, b}∗{b}.

•

3.2 Vérification de propriétés de sûreté régulières
Dans cette section, nous allons montrer comment les automates finis peuvent être utilisés pour

vérifier une classe importante de propriétés de sûreté. Ces propriétés de sûreté particulières sont ca-
ractérisées par le fait que leurs mauvais préfixes constituent un langage régulier, qui est donc reconnais-
sable par un automate fini non-déterministe. On les nomme donc naturellement propriétés de sûreté
régulières. Le résultat principal de cette section est que la vérification d’une telle propriété de sûreté
régulière sur un système de transition fini ST peut se ramener à une vérification d’invariant sur le
produit de ST avec un automate fini non-déterministe A pour les mauvais préfixes. Autrement dit, si
l’on souhaite vérifier une propriété de sûreté régulière pour un système de transition fini ST , il suffit de
réaliser une analyse d’accessibilité sur le produit ST ⊗A pour vérifier un invariant associé sur ST ⊗A.

3.2.1 Propriétés de sûreté régulières
Soit Prop un ensemble de propositions atomiques. Rappelons que les propriétés de sûreté sont des

propriétés linéaires, c’est-à-dire des ensembles de mots infinis sur 2Prop, telles que chaque trace qui
ne satisfait pas une telle propriété de sûreté admet un mauvais préfixe qui cause une réfutation. Les
mauvais préfixes sont finis, donc l’ensemble des mauvais préfixes constitue un langage de mots finis sur
l’alphabet Σ = 2Prop. Les entrées A ∈ Σ de l’automate fini non-déterministe sont donc des ensembles
de propositions atomiques (ce sont donc des sous-ensembles de Prop).

Par exemple, si Prop = {a, b}, alors on a

Σ = {A1, A2, A3, A4},

avec A1 = { }, A2 = {a}, A3 = {b} et A4 = {a, b} (on note A1 = { } pour désigner le sous-ensemble
vide de Prop et ainsi le distinguer de l’expression régulière ∅ qui représente le langage vide).

Définition 3.6 (Propriété de sûreté régulière). Soit Prop un ensemble de propositions atomiques et
Ps une propriété de sûreté sur Prop. On dit que Ps est une propriété de sûreté régulière si son ensemble
de mauvais préfixes constitue un langage régulier sur 2Prop. �

Chaque invariant est une propriété de sûreté régulière. Si Φ est une formule propositionnelle d’un
invariant, alors Φ doit être vérifiée par tous les états accessibles, et le langage des mauvais préfixes est
constitué des mots finis A0A1 . . . An tels que Ai 6|= Φ pour un certain i ∈ {1, . . . , n}. Un tel langage
est régulier, puisqu’il est caractérisé par l’expression régulière

E = Φ̃∗(¬Φ̃)true∗,

où Φ̃ correspond à l’ensemble des parties A de Prop telles que A |= Φ, ¬Φ̃ à l’ensemble des parties A
de Prop telles que A 6|= Φ, et true représente l’ensemble de toutes les parties de Prop.

Le langage des mauvais préfixes d’une propriété invariante Pinv peut être représenté par un auto-
mate fini non-déterministe à deux états, tel que donné sur la figure 3.9. Dans cette figure, une arête
du type

q
Ψ−−→ q′

représente toutes les transitions q A−−→ q′ avec A |= Ψ.
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q0 q1
¬Φ

Φ true

Figure 3.9. Automate fini non-déterministe acceptant tous les mauvais préfixes de la propriété inva-
riante associée à la formule Φ.

L’ensemble des mauvais préfixes minimaux consitute également un langage régulier, caractérisé par
l’expression régulière

F = Φ̃∗(¬Φ̃),

et reconnu par l’automate fini non-déterministe obtenu à partir de la figure 3.9 en supprimant la boucle
true sur l’état q1.

q0 q1
¬Φ

Φ

Figure 3.10. Automate fini non-déterministe acceptant tous les mauvais préfixes minimaux de la
propriété invariante associée à la formule Φ.

Le lemme suivant montre que les propriétés de sûreté régulières peuvent être définies à partir des
mauvais préfixes minimaux uniquement.

Lemme 3.3. Soit Ps une propriété de sûreté. Alors Ps est régulière si et seulement si l’ensemble de
ses mauvais préfixes minimaux est régulier.

Démonstration. Supposons que l’ensemble M des mauvais préfixes minimaux de Ps est régulier. Soit
alors A =

(
Q, 2Prop, δ, Q0, F

)
un automate fini non-déterministe pour M . On construit un automate

fini non-déterministe A′ en ajoutant à A des boucles de type

q
A−−→ q,

pour tous les états q ∈ F et pour toute partie A de l’ensemble Prop. On vérifie facilement que le
langage accepté par A′ est constitué de l’ensemble M ′ de tous les mauvais préfixes de Ps. Ainsi, M ′
est un langage régulier. Donc la propriété de sûreté Ps est bien régulière.

Supposons ensuite que Ps est une propriété de sûreté régulière. Soit alors A′ =
(
Q, 2Prop, δ, Q0, F

)
un automate fini déterministe pour l’ensemble M ′ des mauvais préfixes de Ps. Pour l’ensemble M des
mauvais préfixes minimaux de Ps, on construit un automate fini déterministe A en supprimant toutes
les transitions issues des états acceptants de A′. Vérifions que L(A) = M .

Soit w = A1 . . . An ∈ L(A) ; alors l’exécution q0q1 . . . qn dans A acceptant w, est aussi une exécution
acceptante de w dans A′. Donc w ∈ L(A′). Donc w est un mauvais préfixe pour Ps. Supposons que w
n’est pas un mauvais préfixe minimal. Alors il existe un préfixe A1 . . . Ai de w, avec i < n, qui est aussi
un mauvais préfixe de Ps. Donc A1 . . . Ai ∈ L(A′). Puisque A′ est déterministe, l’unique exécution
pour A1 . . . Ai dans A′ est q0 . . . qi et qi ∈ F . Comme i < n et qi ne possède pas de transition sortante
dans A, alors q0 . . . qi . . . qn ne peut pas être une exécution pour A1 . . . Ai . . . An dans A. Cela contredit
l’hypothèse et montre que w est un mauvais préfixe minimal pour Ps.
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Supposons enfin que w est un mauvais préfixe minimal pour Ps, et notons q0 . . . qn l’unique exécution
pour w dans A′. On a A1 . . . An ∈M ′ = L(A′) et pour tout i ∈ {1, . . . , n−1}, A1 . . . Ai /∈M ′ = L(A′).
Donc qi /∈ F pour 0 ≤ i < n, alors que qn ∈ F . Par conséquent, q0 . . . qn est une exécution acceptante
pour w dans A. Donc w ∈ L(A).

Exemple 3.6. Soit Prop = {a, b} ; considérons la formule Φ = a∨¬b. Alors Φ̃ correspond à l’expression
régulière { }+{a}+{a, b}, ¬Φ̃ correspond à l’expression régulière {b}, et true correspond à l’expression
régulière { }+ {a}+ {b}+ {a, b}. Ainsi, les mauvais préfixes de la propriété invariante correspondant
à la formule a ∨ ¬b sont donnés par l’expression régulière

E =
(
{ }+ {a}+ {a, b}

)∗ ¬{b} ({ }+ {a}+ {b}+ {a, b}
)∗
.

Le langage L(E) est donc constitué des mots finis A0A1 . . . An tels que Ai = {b} pour un certain
i ∈ {1, . . . , n}.

L’automate fini non-déterministe donné sur la figure 3.9 est une représentation d’un automate à
deux états q0, q1, avec pour transitions

q0
{ }−−−→ q0, q0

{a}−−−→ q0, q0
{a,b}−−−−→ q0,

q0
{b}−−−→ q1,

q1
{ }−−−→ q1, q1

{a}−−−→ q1, q1
{b}−−−→ q1, q1

{a,b}−−−−→ q1.

Les mauvais préfixes minimaux sont décrits par l’expression régulière

F =
(
{ }+ {a}+ {a, b}

)∗ ¬{b}.
•

Exemple 3.7. Considérons à nouveau le modèle d’exclusion mutuelle par sémaphore de deux proces-
sus, et la propriété de sûreté Ps : � il y a au plus un processus en état critique �. Les mauvais préfixes
de Ps forment le langage constitué de tous les mots finis A1 . . . An pour lesquels il existe (au moins)
un indice i ∈ {1, . . . , n} tel que

{crit1, crit2} ⊆ Ai.

Si n est le plus petit indice vérifiant cette propriété, c’est-à-dire

{crit1, crit2} ⊆ An et {crit1, crit2} 6⊆ Aj pour 1 ≤ j < n,

alors A1 . . . An est un mauvais préfixe minimal. Le langage de tous les mauvais préfixes minimaux est
régulier et peut être reconnu par l’automate fini non-déterministe donné sur la figure 3.11. La propriété
d’exclusion mutuelle Ps est donc bien une propriété de sûreté régulière. •

q0 q1
crit1 ∧ crit2

¬
(
crit1 ∧ crit2

)
Figure 3.11. Automate fini non-déterministe acceptant tous les mauvais préfixes minimaux de la
propriété d’exclusion mutuelle.
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Exemple 3.8. Considérons à nouveau un feu de circulation avec trois couleurs possibles : rouge,
orange, vert. Soit la propriété Ps : � une phase rouge est toujours précédée immédiatement par une
phase orange�. Cette propriété correspond à l’ensemble des mots infinis σ = A0A1 . . . avec Ai ⊆
{rouge, orange}, tels que pour tout i ≥ 0, on ait

rouge ∈ Ai implique i > 0 et orange ∈ Ai−1

(si le feu est dans une phase verte à l’indice i, alors Ai = { }). Les mauvais préfixes de Ps sont les mots
finis qui ne respectent pas cette condition. Par exemple, le mot { }{ }{rouge} est un mauvais préfixe.
Plus généralement, les mauvais préfixes minimaux de Ps sont les mots finis de la forme A1 . . . An tels
que n > 1, rouge ∈ An et orange /∈ An−1. Ces mauvais préfixes minimaux sont reconnus par l’automate
fini non-déterministe donné sur la figure 3.12.

q0q1 q2

¬rouge ∧ orange

¬orange

orange ¬rouge ∧ ¬orange

rouge

Figure 3.12. Automate fini non-déterministe acceptant tous les mauvais préfixes minimaux d’une
propriété d’un feu de circulation.

Sur cette figure, les arêtes sont étiquetées sur l’alphabet Σ = 2Prop avec Prop = {rouge, orange}.
On a donc

Σ =
{
{ }, {rouge}, {orange}, {rouge, orange}

}
.

Par exemple, l’étiquette orange sur la boucle de l’état q1 correspond à toutes les parties A ⊆ Prop
contenant orange, c’est-à-dire {orange} ou {orange, rouge} (certains types de feux peuvent être de deux
couleurs en même temps). Autrement dit, la boucle de l’état q1 résume deux transitions :

q1
{orange}−−−−−−→ q1 et q1

{orange,rouge}−−−−−−−−−−→ q1.

De même, l’arête ¬orange de q1 vers q0 représente les transitions

q1
{rouge}−−−−−−→ q0 et q1

{ }−−−→ q0.

Enfin, l’arête rouge de q0 vers q2 correspond aux étiquettes {rouge} et {rouge, orange} ; l’arête ¬rouge∧
orange de q0 vers q1 correspond à l’étiquette {orange} ; la boucle ¬rouge∧¬orange de l’état q0 correspond
à l’étiquette { }.

Ainsi, la propriété Ps est bien une propriété de sûreté régulière. •

Donnons enfin un exemple de propriété de sûreté qui n’est pas régulière.

Exemple 3.9. Considérons à nouveau un distributeur de boissons. Soit la propriété de sûreté Ps :
� le nombre de pièces insérées est toujours au moins égal au nombre de boissons distribuées �. Posons
Prop = {paye, distribue}. Les mauvais préfixes de Ps forment le langage{

σ ∈
(
2Prop)ω | occ(σ, distribue) > occ(σ, paie)

}
,

où occ(σ, a) désigne le nombres d’occurences de a dans σ. On peut montrer que ce langage n’est pas
régulier. •
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3.2.2 Algorithme de vérification d’une propriété de sûreté régulière
Soit Ps une propriété de sûreté régulière sur un ensemble Prop de propositions atomiques, et soit

A un automate fini non-déterministe reconnaissant les mauvais préfixes minimaux de Ps.
Si le mot vide ε appartient à L(A), alors tous les mots finis sur 2Prop sont des mauvais préfixes,

donc Ps = ∅. On suppose donc que ε /∈ L(A).
Soit de plus ST un système de transition fini sans état terminal sur l’ensemble Prop. On souhaite

établir une méthode algorithmique pour vérifier si ST satisfait la propriété Ps ou non.
D’après le Lemme 2.2, on sait que ST |= Ps si et seulement si Tracesfin(ST ) ∩MauvPre(Ps) = ∅,

soit encore Tracesfin(ST ) ∩ L(A) = ∅. Il suffit donc de vérifier que Tracesfin(ST ) ∩ L(A) = ∅ pour
établir que ST |= Ps.

Pour cela, on s’inspire de la méthode utilisée pour vérifier si deux langages de deux automates finis
non-déterministes A1 et A2 ont une intersection vide. En effet, on a

L(A1) ∩ L(A2) = ∅⇔ L(A1 ⊗A2) = ∅.

Or, déterminer si L(A1 ⊗ A2) = ∅ se réduit à une recherche d’accessibilité dans l’automate produit
A1 ⊗A2.

Nous allons donc définir un produit de ST et A, qui déterminera un système de transition noté
ST ⊗A. Pour ce nouveau système de transition ST ⊗A, nous allons de plus construire une propriété
invariante PΦ, associée à une formule Φ obtenue à partir des états acceptants deA, telle que la condition
Tracesfin(ST ) ∩ L(A) = ∅ soit équivalente à ST ⊗ A |= PΦ. L’algorithme 2 pourra alors être utilisé
pour vérifier si ST ⊗A |= PΦ.

Posons donc ST = (S,Act,→, I,Prop, L) et A = (Q, 2Prop, δ, Q0, F ) avec Q0 ∩ F = ∅ ; l’alphabet
de A est donc constitué d’ensembles de propositions atomiques. Le système de transitions ST ⊗ A a
pour ensemble d’états le produit S′ = S×Q, et sa relation de transition→′ est telle que tout fragment
de chemin initial π = s0s1 . . . sn dans ST peut être prolongé en un fragment de chemin

< s0, q1 >< s1, q2 > · · · < sn, qn+1 >

dans ST ⊗A, tel qu’il existe un état initial q0 ∈ Q0 pour lequel la suite

q0
L(s0)−−−−−→ q1

L(s1)−−−−−→ q2
L(s2)−−−−−→ . . .

L(sn)−−−−−→ qn+1

est une exécution (non nécessairement acceptante) de A qui engendre le mot

trace(π) = L(s0)L(s1) . . . L(sn).

Enfin, les étiquettes des états de ST⊗A sont les noms des états de A. On obtient la définition suivante.

Définition 3.7 (Produit d’un système de transition et d’un automate fini non-déterministe). Soit
ST = (S,Act,→, I,Prop, L) un système de transition fini sans état terminal sur un ensemble Prop
de propositions atomiques, et soit A = (Q, 2Prop, δ, Q0, F ) un automate fini non-déterministe sur
l’alphabet Σ = 2Prop, tel que Q0 ∩ F = ∅. Le système de transition produit ST ⊗A est défini par

ST ⊗A = (S′, Act,→′, I ′,Prop′, L′),

avec :
• S′ = S ×Q,
• →′ est la plus petite relation de transition définie par la règle

s
α−−→ t ∧ q

L(t)−−−−→ p

< s, q >
α−−→
′
< t, p >

,

• I ′ =
{
< s0, q >∈ S′ ; s0 ∈ I ∧ (∃q0 ∈ Q0) tel que q0

L(s0)−−−−−→ q
}

,
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• Prop′ = Q,
• L′(< s, q >) = {q} pour tout < s, q >∈ S′.

�

Pour définir correctement les propriétés linéaires (en particulier les propriétés invariantes), on a
considéré des systèmes de transition sans état terminal. Or, même si ST ne possède pas d’état terminal,
il se peut que ST ⊗ A en possède. Cela peut se produire s’il existe dans A un état q qui n’a pas de
successeur direct pour un ensemble A de propositions atomiques, soit δ(q, A) = ∅. On peut éviter
cette situation en supposant que δ(q, A) 6= ∅ pour tout état q ∈ Q et pour toute partie A ⊆ Prop.
Cette hypothèse ne représente pas une restriction, car tout automate fini non-déterministe peut être
transformé en un automate équivalent qui satisfait cette condition, en ajoutant un état qtrap et des
transitions q A−−→ qtrap à chaque fois que l’on a δ(q, A) = ∅. On peut aussi étendre la notion d’invariant
aux systèmes de transition possédant des états terminaux.

Exemple 3.10. Considérons à nouveau un feu de circulation avec trois couleurs possibles : rouge,
orange, vert. La propriété � chaque phase rouge est immédiatement précédée d’une phase orange � est
une propriété de sûreté régulière, dont l’ensemble des mauvais préfixes minimaux est accepté par
l’automate fini non-déterministe A donné sur la figure 3.12.

Supposons que ce feu de circulation soit de type Allemand, avec la possibilité d’indiquer les couleurs
rouge et orange simultanément, afin de signifier que le feu va bientôt passer au vert.

Soit alors Prop = {rouge, orange}. On définit une fonction d’étiquetage L en posant

L(rouge) = {rouge}, L(orange) = {orange}, L(vert) = L(rouge/orange) = ∅.

Le système de transition ST correspondant à un tel feu de circulation est indiqué sur la figure 3.13,
ainsi que le système de transition ST ⊗A, où A est donné sur la figure 3.12. On doit noter que l’état
rouge/orange est bien compatible avec la transition

q0
¬rouge∧¬orange−−−−−−−−−−−→ q0

de A. Le produit ST ⊗A admet 4 états accessibles. •

orange

rouge

rouge/orange

vert

stop prépare

avanceattention
< orange, q1 > < rouge, q0 >

< rouge/orange, q0 >< vert, q0 >

stop

prépare

avance

attention

Figure 3.13. Système de transition ST modélisant le fonctionnement d’un feu de circulation de type
Allemand (à gauche), et système de transition produit ST ⊗A (à droite).

Le théorème suivant montre que la vérification d’une propriété de sûreté régulière peut se ramener
à la vérification d’une propriété invariante dans le système de transition produit.

Théorème 3.2. Soit ST = (S,Act,→, I,Prop, L) un système de transition fini sans état terminal sur
un ensemble Prop de propositions atomiques, et soit A = (Q, 2Prop, δ, Q0, F ) un automate fini non-
déterministe sur l’alphabet Σ = 2Prop, tel que Q0 ∩ F = ∅. Soit Ps une propriété de sûreté régulière
sur Prop, telle que L(A) soit constitué des mauvais préfixes (minimaux) de Ps. Alors les assertions
suivantes sont équivalentes :
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• ST |= Ps,
• Tracesfin(ST ) ∩ L(A) = ∅,
• ST ⊗A |= Pinv(A),

où Pinv(A) est la propriété invariante associée à la formule∧
q∈F
¬q.

Démonstration. Notons ¬F =
∧
q∈F ¬q ; ¬F correspond donc aux états non acceptants de A. Comme

nous l’avons remarqué au début de cette section, on a déjà l’équivalence entre (a) et (b) d’après le
Lemme 2.2. Il suffit donc de montrer que (c) implique (a) et que (b) implique (c).

Montrons (par contraposée) que (c) implique (a). Si ST 6|= Ps, alors il existe un fragment de chemin
initial fini π̂ = s0s1 . . . sn dans ST tel que

trace(π̂) = L(s0)L(s1) . . . L(sn) ∈ L(A).

Donc il existe dans A une exécution acceptante q0q1 . . . qn+1 pour trace(π̂), avec q0 ∈ Q0, qn+1 ∈ F et
qi

L(si)−−−−→ qi+1 pour 0 ≤ i ≤ n. Mais alors, la suite

< s0, q1 >< s1, q2 > · · · < sn, qn+1 >

est un fragment de chemin initial dans ST ⊗A tel que < sn, qn+1 > 6|= ¬F . Donc ST ⊗A 6|= Pinv(A).
Montrons enfin (à nouveau par contraposée) que (c) implique (a). Supposons pour cela que

ST ⊗A 6|= Pinv(A).

Alors il existe dans ST ⊗A un fragment de chemin initial

< s0, q1 >< s1, q2 > · · · < sn, qn+1 >

avec qn+1 ∈ F . Ainsi, s0s1 . . . sn est un fragment de chemin initial dans ST , avec qi
L(si)−−−−→ qi+1 pour

1 ≤ i ≤ n. Or, < s0, q1 > est un état initial de ST ⊗A, donc il existe q0 ∈ Q0 tel que

q0
L(s0)−−−−−→ q1.

Donc trace(s0s1 . . . sn) ∈ Tracesfin(ST ) ∩ L(A), ce qui prouve

Tracesfin(ST ) ∩ L(A) 6= ∅.

Le théorème 3.2 montre que pour vérifier si ST satisfait bien la propriété de sûreté régulière Ps, il
suffit de vérifier qu’il n’existe pas d’état accessible < s, q > dans le produit ST ⊗A, où q serait un état
acceptant deA. La propriété invariante � ne jamais visiter un état acceptant dans A � est donnée par la
condition invariante Φ = ¬F et peut être vérifiée en exécutant l’algorithme 2 de vérification d’invariant
par recherche en profondeur. De plus, si la propriété de sûreté régulière Ps est réfutée, alors un contre-
exemple est obtenu, sous la forme d’un fragment de chemin fini < s0, q1 >< s1, q2 > · · · < sn, qn+1 >
dans ST ⊗ A menant à un état acceptant de A, et qui à son tour détermine un fragment de chemin
initial fini s0s1 . . . sn dans ST , dont la trace est acceptée par A. Cette trace est finalement un mauvais
préfixe de la propriété Ps.

On obtient le corollaire suivant.
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Algorithme 3 Vérification d’une propriété de sûreté régulière

Entrée : système de transition fini ST et propriété de sûreté régulière Ps.
Sortie : � OUI � si ST satisfait Ps, autrement � NON � et un contre-exemple.

Déterminer un automate fini non-déterministe A tel que L(A) corresponde aux mauvais préfixes
(minimaux) de Ps
Construire le système de transition ST ⊗A
Vérifier sur ST ⊗A l’invariant Pinv(A) avec la proposition ¬F =

∧
q∈F ¬q

Si ST ⊗A |= Pinv(A) alors
renvoyer VRAI

Sinon
Déterminer un fragment de chemin initial < s0, q1 > · · · < sn, qn+1 > dans ST ⊗ A avec

qn+1 ∈ F
renvoyer (FAUX, s0s1 . . . sn)

Fin Si

Corollaire 3.1. Soit ST = (S,Act,→, I,Prop, L) un système de transition fini sans état terminal sur
un ensemble Prop de propositions atomiques, et soit A = (Q, 2Prop, δ, Q0, F ) un automate fini non-
déterministe sur l’alphabet Σ = 2Prop, tel que Q0∩F = ∅. Soit Ps une propriété de sûreté régulière sur
Prop, telle que L(A) soit constitué des mauvais préfixes (minimaux) de Ps. Alors, pour tout fragment
de chemin initial < s0, q1 >< s1, q2 > · · · < sn, qn+1 > dans ST ⊗A :

q1, . . . , qn /∈ F et qn+1 ∈ F implique trace(s0s1 . . . sn) ∈ L(A).

L’algorithme 3 montre comment mettre en œuvre cette méthode.

Exemple 3.11. Considérons à nouveau un feu de circulation de type Allemand et la propriété de
sûreté régulière Ps spécifiant que chaque phase rouge doit être immédiatement précédée d’une phase
orange. Le système de transition ST ⊗A est donné sur la figure 3.13. On observe qu’aucun état dans
ST ⊗A de la forme < . . . , q2 > n’est accessible. Donc l’invariant ¬q2 est satisfait dans tous les états
de ST ⊗A. Par conséquent, le feu de circulation satisfait bien Ps.

Si le système de transition modélisant le feu de circulation est modifié, de sorte que l’état rouge est
l’état initial, alors la propriété Ps n’est plus satisfaite. En effet, dans ce cas, l’invariant ¬q2 n’est pas
satisfait dans l’état initial. •

Pour conclure cette partie, nous donnons une borne de la complexité en temps et en espace de
l’algorithme de vérification de propriétés de sûreté régulières.

Théorème 3.3. La complexité en temps et en espace de l’algorithme 3 est d’ordre O
(
|ST | × |A|

)
,

où |ST | et |A| donnent le nombre d’états et de transitions dans ST et A respectivement.

Démonstration. La complexité en temps et en espace de l’algorithme 2 de vérification d’invariant sur
ST ⊗A est d’ordre O(|ST ⊗A|). De plus, le nombre |ST ⊗A| d’états et de transitions dans ST ⊗A
est d’ordre O(|ST | × |A|

)
. D’où l’ordre de complexité annoncé.

3.3 Vérification de propriétés de sûreté non régulières
L’algorithme 3 de vérification de propriétés de sûreté régulières repose sur le fait que les auto-

mates finis acceptent des mots finis. On peut néanmoins étendre la méthode à des propriétés linéaires
plus générales, qui décrivent de façon pertinente le comportement de systèmes réels. Certaines de ces
propriétés peuvent être décrites avec des expressions dites ω-régulières. Pour cela, on considère une
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variante des automates finis non-déterministes, appelés automates de Büchi. La syntaxe d’un automate
de Büchi est identique à celle d’un automate fini non-déterministe. En revanche, le langage accepté
d’un automate de Büchi, noté Lω(B), est infini ; le critère d’acceptance pour un tel automate est que
l’ensemble des états acceptants doit être visité une infinité de fois.

Un automate de Büchi B reconnâıt alors les � mauvaises traces � d’une propriété P à vérifier ;
une analyse de graphe dans le produit de B avec le système de transition considéré, sur une propriété
associée, dite de persistance, suffit alors pour vérifier si la propriété P est satisfaite ou non.

3.4 Exercices
Exercice 1

Sur l’alphabet Σ = {a, b}, on définit les langages L = {a, ab} et L′ = {a, b, ba}.
1. Déterminer les langages L ∪ L′, LL′, L′L, LL′L, L3.
2. Montrer qu’un mot de L∗ ne contient jamais deux lettres b qui se suivent.
3. Soit L′′ le langage sur l’alphabet Σ formé des mots qui ne contiennent jamais deux lettres b qui

se suivent. Trouver des mots de L′′ qui n’appartiennent pas à L∗.
4. Le langage L′′ est-il régulier ?

Exercice 2

On considère l’automate A défini par Q = {1, 2, 3, 4}, Σ = {a, b}, Q0 = {1}, F = {4} et dont la
fonction de transition δ est donnée par le tableau suivant.

a b
1 2 3
2 4 4
3 3 3
4 3 3

Représenter cet automate et déterminer son langage.

Exercice 3

Soit Prop = {a, b, c}. On considère le système de transition ST sur Prop et l’automate fini non-
déterministe A sur 2Prop, représentés sur la figure 3.14 ci-dessous. Construire leur produit ST ⊗A.
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s1ST s2

s3s4

∅

{b, c}

{a}{b}

α

β

γ

α

γ

γ

β

q0A q1

q2

q3
a

¬a ¬b ∧ ¬c

c

b ∧ ¬cb ∧ ¬c

¬b ∧ ¬c
c

Figure 3.14. Un système de transition ST sur Prop = {a, b, c} et un automate fini non-déterministe
A.

Exercice 4

Soit Prop = {rouge, vert}. On considère le système de transition ST sur Prop et l’automate fini
non-déterministe A sur 2Prop, représentés sur la figure 3.15 ci-dessous. Construire leur produit ST ⊗A.

s0ST s1

{rouge} {vert}

q0A q1 q2
¬vert vert

true ¬vert true

Figure 3.15. Un système de transition ST sur Prop = {rouge, vert} et un automate fini non-
déterministe A.

Exercice 5

On considère le système de transition STsem modélisant l’exclusion mutuelle par sémaphore binaire
de deux processus P1, P2, et le système de transition STPeter modélisant l’algorithme d’exclusion de
Peterson.

1. Soit Prop = {pause1, crit1} et Φ1 la propriété � le processus P1 n’entre jamais en état critique
directement depuis son état non-critique�.

(a) Pourquoi la propriété Φ1 est-elle une propriété de sûreté régulière ?
(b) Construire un automate fini non-déterministe pour les mauvais préfixes minimaux de Φ1.
(c) Le système de transition STsem vérifie-t-il la propriété Φ1 ?

2. Soit Prop′ = {crit1, x = 2}, et Φ2 la propriété � le processus P1 n’entre jamais en état critique
depuis un état où x = 2�.

(a) Pourquoi la propriété Φ2 est-elle aussi une propriété de sûreté régulière ?
(b) Construire un automate fini non-déterministe pour les mauvais préfixes minimaux de Φ2.
(c) Prouver que le système de transition STPeter ne vérifie pas la propriété Φ2 et donner un

contrexemple.
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Exercice 6

On considère un écosystème biologique admettant trois états : un état de persistance noté P, un état
d’extinction noté E et un état transitoire noté T. Soit Prop = {T,E}. En l’absence d’événement clima-
tique extrême, l’écosystème présente une dynamique biologique modélisée par le système de transition
STnat de la figure 3.16.

TE P

{T} ∅{E}

Figure 3.16. Système de transition modélisant la dynamique biologique d’un écosystème.

On considère la propriété Φ : � si le système atteint l’état de persistance, alors il ne peut plus entrer
en état d’extinction �.

1. Que dire de la propriété Φ ?
2. Le système de transition STnat vérifie-t-il la propriété Φ ?
3. On suppose que l’écosystème est perturbé par des événements climatiques extrêmes, qui sont

intégrés au modèle en ajoutant une transition possible de l’état P vers l’état T. Le système de
transition obtenu vérifie-t-il la propriété Φ ?
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CHAPITRE 4

Logique Temporelle Linéaire

Ce chapitre est une introduction à la Logique Temporelle Linéaire (LTL, Linear Temporal Logic
en anglais), un formalisme logique adapté à la spécification des propriétés linéaires. La syntaxe et la
sémantique de ce système logique sont présentées et illustrées par des exemples repris des chapitres
précédents, afin de montrer son niveau d’expressivité. La deuxième partie du chapitre est consacrée
à la Logique Temporelle Linéaire Bornée (BLTL, Bounded Linear Temporal Logic en anglais), une
variante de la logique LTL adaptée à la spécification de propriétés de systèmes temporisés dont le
comportement est observé sur un ensemble fini d’instants.

4.1 Syntaxe, sémantique et propriétés de la logique LTL
La logique LTL est une extension de la logique propositionnelle, proposée par Amir Pnueli en

1977 pour la vérification de programmes informatiques [14]. Cette logique permet plus généralement
d’exprimer des propriétés de systèmes dont le comportement est réactif au cours du temps. Le terme
temporel suggère donc un lien entre le comportement du système et le déroulement du temps. Ce lien
permet d’intégrer l’ordre chronologique des événements observés, mais ne tient pas compte de leurs
aspects quantitatifs, notamment de leurs durées.

4.1.1 Syntaxe LTL
Les ingrédients de base permettant de construire les formules de la logique LTL sont :
• un ensemble de propositions atomiques Prop,
• les connecteurs booléens de conjonction ∧ et de négation ¬,
• deux opérateurs temporels notés © (“next”) et U (“until”).

L’opérateur © est unaire ; si ϕ est une formule LTL, alors ©ϕ est vraie à l’instant présent lorsque ϕ
est vraie à l’instant suivant. L’opérateur U est binaire ; si ϕ1, ϕ2 sont deux formules LTL, alors ϕ1Uϕ2
est vraie à l’instant présent lorsqu’il existe un instant futur pour lequel ϕ2 sera vraie, et que ϕ1 est
vraie (au moins) jusqu’à cet instant futur.

Définition 4.1 (Syntaxe LTL). Soit Prop un ensemble de propositions atomiques. Les formules LTL
sur Prop sont construites à partir des quatre règles suivantes :

• true est une formule LTL,
• toute proposition atomique a ∈ Prop est une formule LTL,
• si ϕ est une formule LTL, alors ¬ϕ et ©ϕ sont aussi des formules LTL,
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• si ϕ1, ϕ2 sont des formules LTL, alors ϕ1 ∧ ϕ2 et ϕ1Uϕ2 sont aussi des formules LTL.
�

On convient que les opérateurs unaires sont prioritaires sur les opérateurs binaires. Ainsi, on a
par exemple ¬ϕ1U © ϕ2 = (¬ϕ1)U(©ϕ2). Les opérateurs binaires de disjonction ∨, d’implication →,
d’équivalence ↔ et de parité ⊕ (ou exclusif) sont définis par

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2),
ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2,

ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
ϕ1 ⊕ ϕ1 = (ϕ1 ∧ ¬ϕ2) ∨ (ϕ2 ∧ ¬ϕ1),

pour toutes formules LTL ϕ1, ϕ2.
On définit également deux opérateurs temporels ♦ et �, pour toute formule LTL ϕ, par

♦ϕ = trueUϕ, �ϕ = ¬♦¬ϕ.

La formule ♦ϕ signifie qu’il existe un moment futur où ϕ sera vraie. L’opérateur ♦ est lu eventually en
anglais, ce qui ne doit pas être traduit par éventuellement en français (l’adverbe �éventuellement� n’im-
plique aucune obligation future, contrairement à “eventually”). On peut lire ♦ en prononçant � à un
moment, il y aura �. La formule �ϕ signifie que ϕ sera toujours vraie dans le futur.

La figure 4.1 illustre quelques éléments constitutifs essentiels de la logique LTL.

. . .a ∈ Prop

a ? ? ? ?

. . .© a

? a ? ? ?

. . .aU b

a ∧ ¬b a ∧ ¬b a ∧ ¬b b ?

. . .♦a

¬a ¬a ¬a a ?

. . .�a

a a a a a

Figure 4.1. Illustration de quelques éléments constitutifs essentiels de la logique LTL.

On peut également associer les opérateurs ♦ et �. Ainsi, la formule �♦ϕ signifie que ϕ sera vraie
infiniment souvent, et la formule ♦�ϕ signifie que ϕ sera toujours vraie à partir d’un certain moment
futur.

Exemple 4.1. Considérons la propriété d’exclusion mutuelle de deux processus P1, P2 admettant des
états d’attente pause1, pause2 et des états critiques crit1, crit2 respectivement. La propriété de sûreté
exprimant que P1 et P2 ne sont jamais simultanément en état critique correspond à la formule LTL

�(¬crit1 ∨ ¬crit2).
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Puis, la propriété de vivacité exprimant que chaque processus est infiniment souvent en état critique
correspond à la formule LTL

(�♦crit1) ∧ (�♦crit2).

La formule LTL suivante exprime le fait que chaque processus en état d’attente entre effectivement en
état critique dans le futur :

(�♦pause1 → �♦crit1) ∧ (�♦pause2 → �♦crit2).

Enfin, si le protocole d’exclusion implique un sémaphore binaire y, alors la formule LTL

�
(
(y = 0)→ crit1 ∨ crit2

)
décrit le fait que si le sémaphore y admet la valeur 0, alors un des deux processus entre en état
critique. •

Exemple 4.2. Considérons un feu de circulation classique. La formule LTL �♦vert correspond à la
propriété de vivacité � le feu est vert infiniment souvent �. La condition � si le feu est vert, alors il ne
peut pas devenir rouge immédiatement � peut s’exprimer par la formule LTL

�(vert→ ¬© rouge).

•

Remarques. Il existe dans la littérature scientifique des notations différentes pour les opérateurs de la
logique LTL. Ainsi, les opérateurs ©, ♦, � sont parfois notés respectivement X (pour neXt), F (pour
Finally), G (pour Globally).

On peut aussi définir des opérateurs temporels©−1, ♦−1 et �−1, opérateurs inverses des opérateurs
temporels ©, ♦ et � respectivement, pour décrire des événements du passé. /

4.1.2 Sémantique LTL
Les formules LTL sont des formules qui décrivent des traces. Pour déterminer précisément si une

trace satisfait une propriété LTL, on commence par définir une interprétation pour les mots infinis
sur l’alphabet 2Prop ; on définit ensuite une interprétation sur les chemins et les états d’un système de
transition.

Définition 4.2 (Sémantique LTL sur les mots). Soit ϕ une formule LTL sur un ensemble Prop de
propositions atomiques. La propriété linéaire induite par ϕ est définie par

Mots(ϕ) =
{
σ ∈

(
2Prop)ω | σ |= ϕ

}
,

où la relation de satisfaction |= est définie pour tout mot σ = A0A1A2 . . . par les règles suivantes :

σ |= true,
σ |= a ⇔ A0 |= a (⇔ a ∈ A0),
σ |= ϕ1 ∧ ϕ2 ⇔ σ |= ϕ1 et σ |= ϕ2,
σ |= ¬ϕ ⇔ σ 6|= ϕ,
σ |=©ϕ ⇔ A1A2A3 . . . |= ϕ,
σ |= ϕ1 U ϕ2 ⇔ ∃j ≥ 0, AjAj+1Aj+2 . . . |= ϕ2 et AiAi+1Ai+2 . . . |= ϕ1, 0 ≤ i < j,

avec a ∈ Prop et ϕ, ϕ1, ϕ2 des formules LTL. �

Remarque. Dans la règle définissant la sémantique de ϕ1Uϕ2, on ne peut pas remplacer le suffixe infini
AjAj+1Aj+2 . . . par Aj . /
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Pour les opérateurs temporels ♦ et �, on obtient

σ |= ♦ϕ, ⇔ ∃j ≥ 0, AjAj+1Aj+2 . . . |= ϕ
σ |= �ϕ ⇔ ∀j ≥ 0, AjAj+1Aj+2 . . . |= ϕ.

Après avoir défini la sémantique LTL sur les mots, on définit la sémantique LTL pour un système
de transition. La définition suivante s’appuie sur la définition 2.7 de la relation de satisfaction pour
une propriété linéaire. Rappelons que si s est un état d’un système de transition ST , alors Paths(s)
désigne l’ensemble des fragments de chemins maximaux qui commencent en s.

Définition 4.3 (Sémantique LTL sur les chemins et les états). Soit ST = (S,Act,→, I,Prop, L) un
système de transition sans état final et soit ϕ une formule LTL sur Prop.

Si π est un fragment de chemin infini de ST , on pose :

π |= ϕ⇔ trace(π) |= ϕ.

Si s ∈ S, on pose :
s |= ϕ⇔ ∀π ∈ Paths(s), π |= ϕ.

Enfin, on dit que ST satisfait ϕ, et on note ST |= ϕ, si

Traces(ST ) ⊆ Mots(ϕ).

�

D’après la définition 2.7, on a

Traces(ST ) ⊆ Mots(ϕ)⇔ ST |= Mots(ϕ),

ce qui, d’après la définition de la propriété linéaire Mots(ϕ), équivaut à

π |= ϕ,∀π ∈ Paths(ST ).

Enfin, d’après la définition de la relation de satisfaction |= pour les états, on obtient :

ST |= ϕ⇔ s0 |= ϕ,∀s0 ∈ I.

Exemple 4.3. Considérons le système de transition ST sur Prop = {a, b}, représenté sur la figure 4.2.
On a de façon évidente s1 |= �a, s2 |= �a et s3 |= �a, donc ST |= �a.
Puis, on a s1 |= ©(a ∧ b), car s2 |= a ∧ b et s2 est le seul successeur de s1 ; cependant, on a

s2 6|=©(a ∧ b) car s3 est un successeur de s2 tel que s3 6|= a ∧ b ; de même, on a s3 6|=©(a ∧ b). Ainsi,
s3 est un état initial tel que s3 6|=©(a ∧ b). Donc ST 6|=©(a ∧ b).

De la même façon, on a ST |= �
(
¬b→ �(a∧¬b)

)
, puisque s3 est le seul état initial tel que s3 |= ¬b,

s3 est absorbant et s3 vérifie a ∧ ¬b.
Enfin, on a ST 6|= bU (a∧¬b), car le chemin initial (s1s2)ω ne visite aucun état pour lequel a∧¬b

est vraie. On remarque néanmoins que tout chemin initial de la forme (s1s2)∗sω3 satisfait la propriété
bU (a ∧ ¬b).

•

Remarque. Pour un chemin π et une formule LTL, on a

π |= ϕ⇔ π 6|= ¬ϕ.

Toutefois, on doit prendre garde que les assertions ST |= ϕ et ST 6|= ¬ϕ ne sont pas équivalentes en
général. En effet, considérons le système de transition ST sur Prop = {a}, représenté sur la figure 4.3.
Pour ce système de transition, on a ST 6|= ♦a, puisque le chemin initial s0(s2)ω ne satisfait pas ♦a, et
ST 6|= ¬♦a, puisque le chemin initial s0(s1)ω ne satisfait pas ¬♦a.

Pour un système de transition ST , on peut seulement affirmer que ST |= ¬ϕ implique ST 6|= ϕ. /
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s1 s2 s3

{a, b} {a, b} {a}

Figure 4.2. Système de transition dont les traces peuvent être décrites par des formules LTL.

s0s1 s2

∅{a} ∅

Figure 4.3. Système de transition ST tel que ST 6|= ♦a et ST 6|= ¬♦a.

Remarque (Spécification de propriétés temporisées). Pour décrire le comportement de systèmes réactifs
au cours du temps, on peut considérer les itérations successives de l’opérateur temporel©, en posant :

©kϕ =©© · · ·©︸ ︷︷ ︸
k fois

ϕ,

où ϕ est une propriété LTL et k un entier naturel non nul. La formule ©kϕ signifie alors �ϕ est vraie
après (exactement) k pas de temps �.

On étend également la portée des opérateurs temporels ♦ et � en posant :

♦≤kϕ =
∨

0≤i≤k
©iϕ, �≤kϕ =

∧
0≤i≤k

©iϕ.

La formule ♦≤kϕ signifie alors �ϕ sera vraie à un moment, dans les k pas de temps suivant l’instant
présent �, et la formule �≤kϕ signifie �ϕ sera toujours vraie pendant les k pas de temps suivant
l’instant présent �. /

4.1.3 Équivalence de formules LTL
Soit Prop un ensemble de propositions atomiques. On souhaite ici déterminer des règles d’équivalence

de formules LTL sur Prop.
Définition 4.4 (Équivalence de formules LTL). Deux formules LTL ϕ, ψ sur Prop sont dites équivalentes
si les propriétés linéaires qu’elles induisent vérifient

Mots(ϕ) = Mots(ψ).

Dans ce cas, on note ϕ ≡ ψ. �

Puisque la logique LTL étend la logique propositionnelle, les équivalences de la logique proposition-
nelle sont aussi vérifiées pour la logique LTL. On a par exemple ¬¬ϕ ≡ ϕ et ϕ ∧ ϕ ≡ ϕ, pour toute
formule LTL ϕ.

On peut montrer de nombreuses lois d’équivalence de formules LTL faisant intervenir les opérateurs
temporels ©, ♦ et �. On a notamment les lois de distributivité suivantes :

©(ϕU ψ) ≡ (©ϕ)U (©ψ),
♦(ϕ ∨ ψ) ≡ (♦ϕ) ∨ (♦ψ),
�(ϕ ∧ ψ) ≡ (�ϕ) ∧ (�ψ),
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pour toutes formules LTL ϕ, ψ. Les lois de distributivité précédentes sont analogues aux lois de
distributivité des symboles ∃ et ∨, ou ∀ et ∧ dans le calcul des prédicats.

On doit prendre garde que l’opérateur temporel ♦ n’est pas distributif par rapport à l’opérateur
de conjonction ∧, et que l’opérateur temporel � n’est pas distributif par rapport à l’opérateur de
disjonction ∨ :

♦(ϕ ∧ ψ) 6≡ (♦ϕ) ∧ (♦ψ), �(ϕ ∨ ψ) 6≡ (�ϕ) ∨ (�ψ).

Le système de transition illustré sur la figure 4.4 permet de montrer la première affirmation pour des
propositions atomiques.

s0 s1

{a} {b}

Figure 4.4. Système de transition ST sur {a, b} tel que ST 6|= ♦(a ∧ b) et ST |= ♦a ∧ ♦b.

4.1.4 Le problème du Model-Checking LTL
Soit Prop un ensemble de propositions atomiques, ST un système de transition et ϕ une formule

LTL sur Prop. Le problème du Model-Checking LTL est un problème de décision : a-t-on oui ou non
ST |= ϕ ? Si ST 6|= ϕ, peut-on de plus obtenir un contrexemple sous la forme d’une trace de ST
qui ne satisfait pas ϕ ? Pour un système de transition de grande taille, une étude manuelle n’est pas
envisageable ; d’où la nécessité d’une méthode algorithmique qui peut être rendue automatique.

Supposons que le système de transition ST soit fini et sans état final. Pour vérifier si le système de
transition ST satisfait la formule LTL ϕ, on exécute l’algorithme 4, dont la structure est très proche
de l’algorithme 3 de vérification d’une propriété de sûreté régulière.

Algorithme 4 Algorithme du Model-Checking LTL

Entrée : système de transition fini ST et formule LTL ϕ sur Prop.
Sortie : � OUI � si ST satisfait ϕ, autrement � NON � et un contre-exemple.

Déterminer un automate de Büchi B tel que Lω(B) = Mots(¬ϕ)
Construire le système de transition ST ⊗ B

Si il existe un chemin π dans ST ⊗ B qui satisfait la condition d’acceptance de B alors
renvoyer (NON, π)

Sinon
renvoyer OUI

Fin Si

Dans l’algorithme 4, la première étape consiste à construire un automate de Büchi B dont le
langage infini Lω(B) cöıncide avec la propriété Mots(¬ϕ) induite par la formule LTL ϕ. L’existence et
la construction d’un tel automate sont assurées par le théorème suivant, dont la preuve est admise.

Théorème 4.1. Pour toute formule LTL ϕ sur Prop, il existe un automate de Büchi B tel que
Lω(B) = Mots(ϕ), qui peut être construit avec une complexité de l’ordre de 2O(|ϕ|) en temps et en
espace, où |ϕ| est une mesure la taille de ϕ.

Exemple 4.4. Soit a une proposition atomique et Prop = {a}. L’automate illustré sur la figure 4.5
est un automate de Büchi dont le langage infini cöıncide avec la propriété induite par la formule LTL
♦�a. •
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q0 q1 q2
a ¬a

true a true

Figure 4.5. Automate de Büchi dont le langage cöıncide avec la propriété induite par la formule LTL
♦�a.

Le théorème suivant établit finalement la classe de complexité du problème de décision du Model-
Checking LTL. Une étape importante de sa démonstration, qui est admise, consiste à prouver que le
problème du chemin Hamiltonien est polynomialement réductible au complémentaire du problème de
décision du Model-Checking LTL (un chemin hamiltonien d’un graphe est un chemin qui passe par
tous ses sommets une fois et une seule ; le problème du chemin hamiltonien est un problème de décision
NP-complet qui consiste, étant donné un graphe, à décider s’il admet un chemin hamiltonien).

Théorème 4.2. Le problème du Model-Checking LTL est PSPACE-complet.

Rappelons que PSPACE désigne la classe des problèmes de décision qui peuvent être résolus par
un algorithme déterministe polynomial en espace ; PTIME correspond aux problèmes de décision
qui peuvent être résolus par un algorithme déterministe polynomial en temps ; NP correspond aux
problèmes de décision qui peuvent être résolus par un algorithme non-déterministe polynomial en
temps. On a de plus

PTIME ⊆ NP ⊆ PSPACE.

On ne sait toujours pas en 2022 si PTIME = NP ou si PTIME  NP (cette question constitue un des
sept fameux problèmes du millénaire). Enfin, un problème de décision P est dit PSPACE-difficile si
tout problème de décision Q dans PSPACE peut être réduit polynomialement à P ; on dit que P est
PSPACE-complet si P appartient à PSPACE et P est PSPACE-difficile. Pour plus de détails sur ce
sujet, on pourra consulter [10].
Remarque. La logique LTL repose sur une vision linéaire du déroulement temporel. Il existe néanmoins
de nombreux systèmes logiques autres que la logique LTL. Par exemple, la logique CTL (Computation
Tree Logic en anglais) permet de décrire des propriétés de systèmes de transition et repose sur une
vision arborescente du déroulement temporel. Certaines logiques, comme PLTL et PCTL, ajoutent
une dimension probabiliste. D’autres logiques, par exemple la logique CSL [1], ont été proposées afin
de décrire les propriétés de systèmes stochastiques continus. /

4.2 Logique BLTL
La logique BLTL a été proposée très récemment (en 2019) par Liu, Gyori et Thiagarajan [12] ;

cette logique temporelle est une adaptation de la logique LTL qui permet de spécifier certaines pro-
priétés de trajectoires continues ; ces trajectoires, observées sur un intervalle de temps borné, décrivent
l’évolution de systèmes continus, issus notamment des sciences du vivant ; elles peuvent par exemple
être déterminées par des équations différentielles, par des processus probabilistes, ou encore par des
modèles hybrides associant les deux formalismes.

4.2.1 Trajectoires continues
Considérons un système issu du vivant, dont l’évolution est observée sur un intervalle de temps

borné [0, T ] avec T > 0. Ce système dépend de certains paramètres et définit des trajectoires continues,
que nous supposons entièrement déterminées par les courbes représentatives de fonctions continues,
définies sur [0, T ], à valeurs dans R. Notons Traj l’ensemble de ces trajectoires ; on suppose que si
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σ ∈ Traj, alors σ est la courbe représentative d’une fonction continue, également notée σ, définie sur
[0, T ] à valeurs dans R.

0 1 2 3 4 ... T
0

2

4

t

σ1
σ2
σ3
σ4
U
L

Figure 4.6. Quelques trajectoires continues décrivant l’évolution d’un système issu du vivant.

On suppose de plus que l’ensemble Traj est un ensemble borné, c’est-à-dire qu’il existe deux
constantes réelles L < U telles que pour toute trajectoire σ ∈ Traj, on ait

L ≤ σ(t) ≤ U, ∀t ∈ [0, T ].

Quelques trajectoires sont illustrées sur la figure 4.6. Elles peuvent par exemple modéliser la crois-
sance d’une population d’individus biologiques, la propagation d’un caractère au sein d’une espèce, la
concentration d’une substance chimique, etc.

4.2.2 Syntaxe et sémantique de la logique BLTL
Pour définir la syntaxe et la sémantique de la logique BLTL, on construit d’abord une discrétisation

T de l’intervalle [0, T ]. Pour simplifier, on suppose que T est entier et on pose

T = {0, 1, 2, 3, . . . , T}. (4.1)

On considère ensuite un ensemble fini Prop ⊂ R2 de n propositions atomiques de la forme (l, u) avec
L ≤ l < u ≤ U (n est un entier naturel non nul). On note alors

Prop =
{

(li, ui), 1 ≤ i ≤ n
}
. (4.2)

Syntaxe

Définition 4.5 (Syntaxe BLTL). Soit T l’ensemble d’instants défini par (4.1) et Prop l’ensemble de
propositions atomiques défini par (4.2). Les formules BLTL sur Prop sont définies par les quatre règles
suivantes :

• true est une formule BLTL,
• toute proposition atomique (l, u) ∈ Prop est une formule BLTL,
• si ϕ est une formule BLTL, alors ¬ϕ est aussi une formule BLTL,
• si ϕ1, ϕ2 sont des formules BLTL, alors ϕ1 U≤t ϕ2 et ϕ1 U t ϕ2 sont aussi des formules BLTL,

pour tout t ∈ T .
�

Pour k ∈ T et ϕ une propriété BLTL, on définit également les formules BLTL ♦kϕ, ♦≤kϕ et �≤kϕ :

♦kϕ = trueUkϕ, ♦≤kϕ = trueU≤kϕ, �≤kϕ = ¬♦≤k¬ϕ.

En particulier, la formule ♦kϕ permet d’accéder à ϕ à l’instant k ∈ T .

64



4.2. LOGIQUE BLTL

Sémantique

On définit ensuite la sémantique de la logique BLTL. L’interprétation d’une proposition atomique
(l, u) pour une trajectoire σ à l’instant t s’énonce de la façon suivante : � à l’instant présent, la valeur
de σ est comprise entre l et u� (voir figure 4.7).

0 1 t . . . T

l

u

σInstant
présent

σ, t |= (l, u)

0 1 t . . . T

l

u σ

Instant
présent

σ, t 6|= (l, u)

Figure 4.7. Interprétation d’une proposition atomique pour la logique BLTL.

Définition 4.6 (Sémantique BLTL). La relation de satisfaction (σ, t) |= ϕ, où σ ∈ Traj, t ∈ T et ϕ
est une formule BLTL est définie par les règles suivantes :

(σ, t) |= true,
(σ, t) |= (l, u) ⇔ l ≤ σ(t) ≤ u,
(σ, t) |= ϕ1 ∧ ϕ2 ⇔ (σ, t) |= ϕ1 et (σ, t) |= ϕ2,
(σ, t) |= ¬ϕ ⇔ (σ, t) 6|= ϕ,
(σ, t) |= ϕ1 U≤k ϕ2 ⇔ ∃k′ ≤ k tel que t+ k′ ≤ T, (σ, t+ k′) |= ϕ2, (σ, t+ k′′) |= ϕ1,∀k′′ ∈ [0, k′[,
(σ, t) |= ϕ1 Uk ϕ2 ⇔ (σ, t+ k) |= ϕ2, (σ, t+ k′) |= ϕ1,∀k′ ∈ [0, k[.

Enfin, si ϕ est une formule BLTL, on définit

models(ϕ) =
{
σ ∈ Traj | (σ, 0) |= ϕ

}
.

�

Exemple 4.5 (Adéquation à des données d’observation). On considère encore un système issu du
vivant. On suppose qu’on dispose d’un modèle qui décrit son comportement au cours du temps, et qui
détermine comme précédemment un ensemble de trajectoires Traj. On suppose de plus qu’on dispose
d’un ensemble Γ = {γ0, γ1, . . . , γT } de données d’observation de ce système, relevées à chaque instant
de l’ensemble T . On construit alors un tunnel θα de rayon α autour de ces données :

θα = [γ0 − α, γ0 + α]× [γ1 − α, γ1 + α]× · · · × [γT − α, γT + α],

et on s’intéresse à la propriété ϕα : � la trajectoire σ est toujours dans le tunnel θα �.
La logique BLTL permet d’exprimer la propriété ϕα de la façon suivante :

ϕα =
∧

0≤k≤T
♦k(γk − α, γk + α).

La figure 4.8 montre deux trajectoires σ1, σ2 et un ensemble de données Γ ; on constate que σ1 |= ϕα
alors que σ2 6|= ϕα.

•
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0 1 2 3 4 ... T

3

4

5

t

Γ
σ1
σ2

Figure 4.8. Propriété d’adéquation d’une trajectoire à des données d’observation.

4.2.3 Vérification statistique de propriétés

La vérification des propriétés de certains systèmes est parfois difficile à effectuer. Plutôt que de
rechercher si une propriété donnée est satisfaite ou non, on peut alors calculer ou estimer la probabilité
que cette propriété soit satisfaite.

Considérons donc un système qui détermine un ensemble de trajectoires Traj sur un intervalle de
temps du type (4.1), et soit ψ une propriété BLTL sur un ensemble fini de propositions atomiques Prop
de la forme (4.2). On supose que les formules BLTL forment un ensemble de probabilité, et on note
p = P(ψ) la probabilité qu’une trajectoire σ ∈ Traj vérifie la propriété ψ. Pour estimer la valeur de
p, on peut appliquer une méthode de Monte-Carlo. Pour cela, on réalise N simulations indépendantes
du système considéré. Chaque simulation produit une trace σi ∈ Traj, 1 ≤ i ≤ N , qui vérifie ou non
la propriété ψ ; on note Xi la variable qui prend pour valeur 1 si σi |= ψ, et la valeur 0 si σi 6|= ψ. Le
théorème suivant donne une estimation par intervalle de confiance de la probabilité p.

Théorème 4.3. Soient ε > 0 et δ ∈]0, 1[. On note Y = 1
N

∑
1≤i≤N

Xi. Si N ≥ 4 log
( 2
δ

)
/ε2, alors on a

P
(
|Y − p| ≤ ε

)
≥ δ.

La démonstration de ce théorème est présentée dans [8]. Sa mise en œuvre constitue une méthode
de vérification statistique appelée Statistic Model Checking, qui repose sur la possibilité de simuler le
système étudié afin d’en produire une trace, puis d’attribuer à cette trace un score, égal à 0 ou à 1
selon qu’elle vérifie ou non la propriété ψ considérée. Le coefficient δ représente le risque d’erreur dans
le procédé d’estimation, et le coefficient ε représente la précision de l’estimation. Par exemple, si l’on
souhaite une précision de 10% avec un risque d’erreur de 10%, il suffit de réaliser N = 1200 simulations
indépendantes du système. En augmentant le nombre N de simulations, on obtient plus de précision
ε ou on diminue le risque d’erreur δ.

Exemple 4.6. La méthode de vérification statistique qui repose sur le théorème 4.3 a été appliquée
très récemment dans [16] pour réaliser une estimation de paramètres sur un modèle de croissance
d’espèce océanique. •

4.3 Exercices

Exercice 1

1. Donner la sémantique des formules LTL ♦�ϕ et �♦ϕ.
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2. Montrer les lois de dualité LTL suivantes :

¬© ϕ ≡ ©¬ϕ,
¬♦ϕ ≡ �¬ϕ,
¬�ϕ ≡ ♦¬ϕ.

3. Montrer les lois de distributivité LTL suivantes :

©(ϕU ψ) ≡ (©ϕ)U (©ψ),
♦(ϕ ∨ ψ) ≡ (♦ϕ) ∨ (♦ψ),
�(ϕ ∧ ψ) ≡ (�ϕ) ∧ (�ψ).

4. Montrer la loi d’expansion LTL suivante :

ϕU ψ ≡ ψ ∨
(
ϕ ∧©(ϕU ψ)

)
.

En déduire des lois d’expansion similaires pour ♦ϕ et �ϕ.

Exercice 2

On considère le système de transition STsem représentant l’algorithme d’exclusion mutuelle par
sémaphore de deux processus P1, P2, admettant des états d’attente pause1, pause2 et des états critiques
crit1, crit2 respectivement.

Ce système de transition vérifie-t-il les formules LTL suivantes ?

�(¬crit1 ∨ ¬crit2),
(�♦crit1) ∨ (�♦crit2),
(�♦crit1) ∧ (�♦crit2),
(�♦pause1 → �♦crit1) ∧ (�♦pause2 → �♦crit2).

Exercice 3

On considère le système de transition sur l’ensemble de propositions atomiques Prop = {a, b}
représenté sur la figure 4.9 ci-dessous.

s4

s2s1 s3{a}

{a}

{a, b}

{b}

Figure 4.9. Un système de transition sur l’ensemble de propositions atomiques Prop = {a, b}.

Indiquer l’ensemble des états vérifiant les formules LTL suivantes :

(1) © a, (4) �♦a,

(2) ©©© a, (5) �(bU a),
(3) � b, (6) ♦(aU b).
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Exercice 4

L’opérateur LTL weak until, noté W, est défini par

ϕWψ = (ϕU ψ) ∨�ϕ.

1. Montrer que l’opérateur W vérifie les propriétés suivantes :

¬(ϕU ψ) ≡ (ϕ ∧ ¬ψ)W(¬ϕ ∧ ¬ψ),
¬(ϕWψ) ≡ (ϕ ∧ ¬ψ)U (¬ϕ ∧ ¬ψ).

2. Déterminer une loi d’expansion pour l’opérateur W.
3. Montrer que W est la solution la moins fine de cette loi d’expansion.
4. Quelle en est la solution la plus fine ?

Exercice 5

On considère un système (S) qui détermine un ensemble borné de trajectoires Traj, définies sur un
intervalle [0, T ] avec T entier. On discrétise cet intervalle en posant T = {0, 1, 2, 3, . . . , T}.

Soit m > 0. Exprimer en logique BLTL les propriétés suivantes :
1. les trajectoires de (S) restent toujours dans un intervalle de rayon δ > 0 autour de 0 ;
2. les trajectoires de (S) restent toujours dans un intervalle de rayon δ′ > 0 autour de m ;
3. les trajectoires de (S) sont attirées dans un intervalle de rayon δ′ > 0 autour de m ;
4. les trajectoires de (S) sont attirées définitivement dans un intervalle de rayon δ′ > 0 autour de
m ;

5. les trajectoires de (S) oscillent entre un intervalle de rayon δ > 0 autour de 0 et un intervalle de
rayon δ′ > 0 autour de m.
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