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Introduction

Si I'histoire récente du progres technologique est marquée par de trés nombreux succes retentissants,
notamment dans le domaine de la conquéte spatiale et des réseaux de communication, elle est aussi
jalonnée de célebres échecs. Ainsi, le premier lancement de la fusée Ariane V, le 4 juin 1996, depuis
la base de Kourou en Guyane francaise, a été marqué par une explosion fatale, 36 secondes apres le
décollage. Une commission d’expertise, dirigée par le mathématicien francais Jacques-Louis Lions, a
conclu que cette explosion a été provoquée par un défaut du systeme informatique de pilotage de la
fusée : un dépassement d’entier dans les registres mémoire des calculateurs électroniques utilisés par le
pilote automatique aurait en effet provoqué la panne du systéme de navigation de la fusée, causant sa
destruction. Si cette explosion n’a causé que des dégats matériels, elle a néanmoins conduit a une perte
financiere treés importante. On pourrait multiplier les exemples de catastrophes technologiques dues a
ce type d’erreur : I'affaire de la machine de radio-thérapie Therac 25 entre 1985 et 1987, la défaillance
du systéme antimissile Patriot en 1991, le dysfonctionnement du microprocesseur Pentium en 1994,
etc. La présence d’erreurs dans le fonctionnement des systemes utilisés constitue le point commun de
ces différents échecs.

La wvérification du bon fonctionnement des systémes qui nous entourent représente donc un enjeu
majeur, pour de trés nombreux secteurs de nos sociétés, comme les transports, la santé, 'informatique
ou l'industrie. La nécessaire vérification constitue aujourd’hui une étape longue et cotiteuse du pro-
cessus de développement de nouveaux outils. L’élaboration de méthodes de vérification rigoureuses et
stires, permettant de réduire au maximum le risque d’erreur, constitue un domaine de recherche scien-
tifique en informatique, qui s’appuie fortement sur la logique mathématique et les méthodes formelles.
Ce cours constitue une introduction a quelques techniques de vérification formelle de systémes, qui
reposent sur la vérification de modéles de ces systémes, méthode plus connue sous son nom anglais

Model Checking.

Naissance et fonctionnement du Model Checking

Le Model Checking est né au début des années 1980, quasi-simultanément en deux endroits :
en France, a Grenoble, avec Queille et Sifakis, qui ont développé le systeme CESAR et sa logique
temporelle [15], et aux USA avec Clarke et Emerson qui ont développé la logique temporelle CTL
(Computation Tree Logic). Ces travaux ont donné le prix Turing 2007 & Clarke, Emerson et Sifakis. Ils
s’appuyaient eux-mémes sur les travaux de Pnueli (prix Turing en 1996) sur la logique temporelle. Le
Model Checking s’est considérablement développé ensuite, et constitue certainement la méthode for-
melle la plus utilisée dans I'industrie, en particulier dans la CAO (Conception Assistée par Ordinateur)
de circuits.

Le principe de base du Model Checking est que la vérification des propriétés d’un systéme est
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réalisée non pas sur le systéme lui-méme, mais sur un modele de ce systéeme. La modélisation des
systemes constitue donc une étape cruciale des méthodes de vérification. L’utilisation des structures
de Kripke ou des systémes de transition est trés largement répandue, notamment depuis les travaux de
Milner (prix Turing 1992) sur I’étude des processus dits paralléles. Puis, la spécification des propriétés a
vérifier, dans un certain langage formel, permet ’automatisation du processus de vérification, comme
illustré sur la figure 1. L’automatisation du Model Checking repose ensuite sur le développement
d’algorithmes, prenant en entrée un modele de systéme et une propriété formalisée dans un certain
systeme logique, et décidant si oui ou non le systéme vérifie la propriété considérée. Dans le cas ou la
propriété n’est pas satisfaite, on souhaite de plus compléter la réponse de I'algorithme en donnant un
contre-exemple sous la forme d’une exécution du modele, permettant de localiser précisément le point
ou lerreur se produit. Les modeles utilisés admettent trés souvent un nombre raisonnable d’états et
de transitions, afin de garantir une complexité algorithmique réalisable. Récemment, le développement
de systémes de transition hybrides, associant des modeles discrets et des modeles continus, ouvre une
nouvelle perspective de recherche pour la vérification de systemes dont le comportement est difficile a
modéliser, notamment pour des systémes issus des sciences du vivant.

Systéme Criteres

4

Modélisation Spécification

Y Y

@@ Propriété

Model Checking

Satisfaction [Insatisfaction + contre—exemple]

Figure 1. Description schématique du processus de Model Checking.

Un exemple simple de systeme technologique omniprésent dans notre entourage, et dont on souhaite
vivement assurer le bon fonctionnement, est celui de l’ascenseur. On peut facilement modéliser le
fonctionnement d’un ascenseur par un systéme de transition admettant un nombre fini d’états, puis
exprimer des propriétés dites de streté, comme < d aucun moment l’ascenseur ne peut voyager la
porte ouverte>, d’absence de blocage de 'exécution, ou de progrés, comme < [’ascenseur finira par
répondre a toutes les demandes des passagers>. Les méthodes du Model Checking permettent alors
une vérification de ces propriétés essentielles.

Il est important de noter que la validité du processus de vérification, qui peut lui-méme contenir des
erreurs, produit une réponse sur le modele du systeme et non pas sur le systeme lui-méme. La qualité
et lefficacité du processus de vérification sont donc limitées par celles de I'effort de modélisation qui
le précede.

Plan du cours

Ce cours d’introduction au Model Checking est divisé en quatre chapitres. Le premier chapitre est
consacré a la modélisation de systemes réels par des systemes de transition. On y présente le matériel
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de base nécessaire a la mise en ceuvre a venir des algorithmes de Model Checking, avec la notion
d’exécution d’un systeme de transition, et les opérations de composition de tels systémes, permettant
notamment de modéliser le comportement de systémes concurrents.

Le deuxiéme chapitre concerne les propriétés linéaires, qui sont une classe importante de propriétés
permettant de décrire le comportement de systémes de transition. On introduit la notion de trace d’'un
systeme de transition et on construit une premiere méthode algorithmique de vérification de propriétés
dites invariantes, qui décrivent certains comportements d’un systeme de transition, et sur lesquelles
s’appuie la vérification d’autres propriétés. Quelques rappels essentiels sur les graphes et les langages
sont proposés, pour assurer un niveau d’autosuffisance raisonnable a ce document.

Dans le troisieme chapitre, on présente une méthode algorithmique de vérification d’une classe
plus importante de propriétés linéaires, appelées propriétés de sireté. On s’intéresse d’abord aux pro-
priétés de siireté dites régulieres, qui peuvent étre reconnues par des automates finis. La complexité
du probléeme de décision correspondant a la vérification de telles propriétés est établie. Le chapitre se
termine par une ouverture vers la vérification d’autres types de propriétés.

Enfin, le quatrieme chapitre est consacré a la logique temporelle linéaire, un systeéme logique in-
troduit par Amir Pnueli en 1977 pour la vérification de programmes informatiques, ainsi qu’a une
extension de cette logique, adaptée a la vérification de modeéles non nécessairement discrets. Une
méthode élémentaire de vérification statistique est finalement présentée, pour montrer un apercu des
avancées tres récentes dans ce domaine de recherche scientifique.
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CHAPITRE 1

Modeles de systemes

Lorsque 'on souhaite étudier les propriétés d’un systéme réel, une étape préliminaire au processus
de vérification consiste a élaborer un modéle de ce systéme. Les méthodes de vérification mises en
ceuvre a la suite de cette phase de modélisation, aussi robustes soient-elles, apportent une réponse
sur la validité des propriétés qui correspond alors au modeéle du systeme, et non pas au systéme lui-
méme. Il est donc primordial de construire un modéle qui puisse décrire aussi fideélement que possible
le comportement du systeme que I'on souhaite analyser. Nous allons découvrir dans ce chapitre une
classe importante de modeles, utilisés dans différents contextes : les systémes de transition.

1.1 Systémes de transition

Les systémes de transition sont souvent utilisés comme modéles pour étudier le comportement de
systemes, issus notamment de 'informatique, de 'ingénierie, de 'industrie, mais aussi des sciences du
vivant.

Définition 1.1 (Systéme de transition). Un systéme de transition ST est déterminé par un sextuplet
(S, Act,—, I, Prop, L) dans lequel :
e S est un ensemble d’états,
Act est un ensemble d’actions,
— C S x Act x S est une relation de transition,
I C S est un ensemble d’états initiaux,
Prop est un ensemble de propositions atomiques,
o L : S — 2P est une fonction d’étiquetage.
Un systéme de transtion (ST) est dit fini si les ensembles S, Act et Prop sont finis. O

. 7 . 7 7 @
Si (s,, ') € =, on écrit généralement s — '

Rappel. Si X est un ensemble, la notation 2% désigne I’ensemble des parties de X. Une autre notation
fréquemment utilisée est P (X). o

Remarque. Les systémes de transition sont mal nommés, car ce sont des modéles de systéemes ! N

Exemple 1.1 (L’ascenseur). On considére un ascenseur qui dessert les trois niveaux Ny, N7 et No
d’un batiment. Cet ascenseur est modélisé par un systéme de transition illustré sur la figure 1.1. Les
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états de ce systeme correspondent aux trois niveaux du batiment :
S = {Ny, N1, Na}.
L’ensemble des actions est :
Act = {m_vide, m_charge, d_vide, d_charge}.

Ces actions correspondent aux mouvements de montée ou de descente de I’ascenseur, qui peut effectuer
des déplacements en étant vide ou en étant chargé. La relation de transition — est composée des

transitions suivantes :
No, m_vide, N7), (No, m_charge, Ny
)

(

(N1, m_vide, N3), (N1, m_charge, No
(N27d7Vide7N1)7 (N27d7Charge7Nl)a
(N1, dovide, Ng), (N1, d_charge, Np).

);
)

)

L’ensemble des états initiaux est arbitraire. On peut considérer par exemple
I={Np}.

L’ensemble des propositions atomiques est lui aussi arbitraire. On peut supposer par exemple qu’il est
donné par :
P?"Op = {07 f7N0aN17N2}7

ou les propositions o et f modélisent 1’ascenseur avec portes ouvertes et portes fermées respectivement.
Enfin, la fonction d’étiquetage est définie par :

L(NO) = {07f7NO}7
L(Nl) :{vale}a
L(Nz) = {o, f, N2}

{Oa fa NZ}

m_charge

m_vide

{vale}

m_charge

{Oa fv NO}

Figure 1.1. Systéme de transition modélisant le fonctionnement d’un ascenseur.
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Remarque. L’exemple de Iascenseur est ’exemple de référence dans le cours d’introduction sur le
Model Checking au Collége de France de Gérard Berry, accessible par le lien suivant.

https://www.college-de-france.fr/site/gerard-berry/course-2015-03-25-16h00.htm
N

Rappel (Logique propositionnelle). Soit P un ensemble de propositions. L’ensemble des formules
propositionnelles logiques sur P est défini par les 4 régles suivantes :

e < Vrai » est une formule;
e toute proposition est une formule;

o si 1, Py et @ sont des formules, alors =P est une formule (négation de @) et 1 A Py est aussi
une formule (conjonction de ®; et @5 : A signifie < et »);

e rien d’autre n’est une formule.

L’opérateur unaire de négation — est prioritaire sur I'opérateur binaire de conjonction A, ce qui
signifie :
—aAb=(-a)Ab.

On a également les opérateurs binaires suivants :

D1V Dy = (=D A =Dy) (disjonction),
Dy = Py =D V Dy (implication),
Dy & Oy = (=P A =Dy) V (P A Dy)  (équivalence),
Cpl D '1)2 = (_\(I)l A @2) V (@1 A _\(1)2) (parlté)

L’opérateur de parité est également appelé < ou exclusif » et il est parfois noté XOR (exclusive or en
anglais). o

Le comportement d’un systéme de transition est décrit de la fagon suivante. Le systéeme démarre
dans un état initial sy € I puis évolue selon la relation de transition —. Les transitions peuvent étre
sélectionnées de fagon non déterministe. Cette situation peut se produire si un état admet plusieurs
transitions de sortie.

La fonction d’étiquetage L associe & chaque état s € S un sous-ensemble L(s) C Prop. Ainsi, L(s)
correspond a l'ensemble des propositions p € Prop qui peuvent étre satisfaites par s. Si ® est une
proposition logique, alors un état s € S satisfait la formule ® si I’évaluation induite par L(s) rend la
formule ® vraie, c’est-a-dire :

sE® < L(s) = 9.

Exemple 1.2 (Le distributeur de boissons). On considére un distributeur de boissons, représenté sur
la figure 1.2. La machine délivre du café ou des sodas. Les états sont représentés par des rectangles aux
coins arrondis. Le nom des états est écrit a 'intérieur des rectangles. Les transitions sont représentées
par des fleches étiquetées. Les états initiaux sont indiqués par une fleche sans origine. Les propositions
de ce systeme de transition dépendent des propriétés étudiées. On peut supposer que les propriétés
intéressantes ne dépendent pas de la boisson choisie ; par exemple :

< le distributeur ne délivre une boisson qu’apres insertion d’une piéce >.

Dans cet exemple, on définit donc Prop = {payé, délivré}.
[ ]

Remarque. Cet exemple illustre le fait que ’ensemble Prop d’'un systéme de transition peut varier
en fonction des propriétés que 'on souhaite étudier. Souvent, cet ensemble n’est pas défini de fagon
explicite. Parfois, on considére méme qu’il est donné par Prop C S et on pose alors

L(s) = {s} N Prop.


https://www.college-de-france.fr/site/gerard-berry/course-2015-03-25-16h00.htm
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paye)

servir_soda servir_cafe

inserer_piece

Y
— choi — ~ café
choix_interne choix_interne

Figure 1.2. Exemple de systéme de transition : un distributeur de boissons.

Exemple 1.3 (Circuit séquentiel hardware). On considére un circuit séquentiel avec une variable
d’entrée z, une variable de sortie y et un enregistrement r. La fonction de contréle pour la variable y
est donnée par

Ay =-(z®r),

ou @ désigne le < ou » exclusif (XOR ou encore fonction de parité). L’évaluation de l'enregistrement
est modifiée par la fonction de circuit
6 =axVr.

On peut modéliser ce ciruit par un systéme de transition.

XOR L NoT}-v W @
{r} /\‘ r=1r=1] {zry}
LT

Figure 1.3. Systéme de transition représentant un circuit séquentiel hardware.

Définition 1.2 (Prédécesseurs, successeurs). Soit ST = (S, Act,—, I, Prop, L) un systéme de transi-
tion. Pour s € S et a € Act, 'ensemble des a-successeurs directs de s est défini par

Post(s,a) ={s' € S| s == s'}.
L’ensemble des successeurs directs de s est défini par

Post(s) = U Post(s, ).
a€Act

L’ensemble des a-prédécesseurs directs de s est défini par

Pre(s,a) = {s' € S| s’ - s}.
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L’ensemble des prédécesseurs directs de s est défini par

Pre(s) = U Pre(s, ).

a€cAct

Pour C' C S, on définit par analogie les ensembles :

Post(C,a) = U Post(s,a), Post(C) = U Post(s),
seC seC

Pre(C,a) = U Pre(s, a), Pre(C) = U Pre(s).
seC seC

O

Définition 1.3 (Etat final). Un état s d’un systéme de transition ST est dit final (ou terminal)
lorsque Post(s) = @. O

Définition 1.4 (Systéme de transition déterministe). Soit ST = (S, Act, —, I, Prop, L) un systéme de
transition.

On dit que ST est déterministe par actions si |I| < 1 et |Post(s,a)| < 1 pour tout état s € S et
pour toute action a € Act.

On dit que ST est déterministe par propositions si [I| < 1 et |Post(s)N{s' € S| L(s') = A}| <1
pour tout état s € S et pour tout sous-ensemble de propositions A C Prop. O

1.2 Structure de Kripke

Une structure proche du systeme de transition est donnée par la structure de Kripke. Si Prop
désigne un ensemble de propositions atomiques, une structure de Kripke sur Prop est déterminée par
un quadruplet M = (S, I, R, L) dans lequel

e S est un ensemble fini d’états;
e | C S est un ensemble fini d’états initiaux;
e RC S x S est une relation de transition vérifiant la propriété

Vs€ S,3s' € S5 (s,8) € R;

e L est une fonction d’étiquetage définie sur S, & valeurs dans 2°7°P.
Les systémes de transition admettent donc, en plus des structures de Kripke, un ensemble d’actions.
Selon les auteurs et les contextes, les définitions de systéme de transition et de structure de Kripke
peuvent varier. Par exemple, dans [7], les systémes de transition sont définis par des triplets, alors que
dans [4], les structures de Kripke sont définies par des sextuplets.

1.3 Exécutions

On peut décrire formellement le comportement d’un systeme de transition avec la notion d’ezécu-
tion.

Définition 1.5 (Fragment d’exécution). Soit ST = (.S, Act,—, I, Prop, L) un systéme de transition.
Un fragment d’exécution fini p de ST est une suite finie de la forme

P = So15102 ... 0pSy,

avec n > 0 et telle que s; SAEIN $i+1 pour tout ¢ € {0,...,n — 1}. On dit que n est la longueur du
fragment d’exécution p.
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Un fragment d’exécution infini p de ST est une suite infinie de la forme
P = Sotx1512S2(¢383 . . .,
telle que s; SRAET Si+1 pour tout ¢ > 0. O

Dans un fragment d’exécution, on a donc une alternance d’états et d’actions. Les fragments
d’exécution finis sont souvent notés

[e5] [0 72%%
p=8) —> ... —— Sy
et les fragments d’exécution infinis sont souvent notés
[e5]) a9
p — 50 _ 31 R S

Définition 1.6 (Fragment d’exécution initial, maximal). Un fragment d’exécution mazimal est soit
un fragment d’exécution fini qui termine dans un état final, soit un fragment d’exécution infini.

Un fragment d’exécution initial est un fragment d’exécution qui commence dans un état initial
(80 S I) O

Définition 1.7 (Exécution). Une ezécution d'un systéme de transition ST est un fragment d’exécution
initial et maximal. O

Définition 1.8 (Etat accessible). Soit ST = (5, Act,—, I, Prop, L) un systéme de transition. Un état
s € S est dit accessible dans ST §’il existe un fragment d’exécution fini et initial qui termine en s. On
peut donc écrire

(e 5] [a7%%
89— ... —= 8p,

avec sg € I et s, = s.
L’ensemble des états accessibles est noté Access(ST). O

1.4 Graphes conditionnels

On utilise parfois des transitions conditionnelles pour définir un systéme de transition. On obtient
un graphe dont les arétes sont étiquetées par des conditions. Ce graphe peut engendrer un systéeme
de transition par un processus de déploiement. Pour cela, on utilise la notion de graphe conditionnel
(program graph en anglais).

On consideére alors un ensemble Var de variables typées (par exemple, des entiers, des booléens ou
des caracteres standard). Le type d’une variable = est appelé domaine de z et il est noté dom(z). On
note ensuite Eval( Var) ensemble des évaluations qui affectent des valeurs aux variables et Cond( Var)
I’ensemble des conditions booléennes sur Var.

Définition 1.9 (Graphe conditionnel). Un graphe conditionnel GC sur un ensemble de variables
typées Var est déterminé par un sextuplet (Loc, Act, Effet, —, Locy, go) dans lequel :

e Loc est un ensemble de lieux ;

e Act est un ensemble d’actions ;

o FEffet : Act x Ewval(Var) — Ewal(Var) est une fonction décrivant l'effet d’une action sur

I’évaluation des variables ;

e — C Loc x Cond(Var) x Act x Loc est une relation de transitions conditionnelles ;

e Locog C Loc est un ensemble de lieux initiaux ;

e go € Cond(Var) est la condition initiale.

10
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On note généralement | —=~ [’ & la place de (I,9,a,l') €. La condition g est appelée garde
de la transition conditionnelle I <£%+ [’. Si le garde est une tautologie (par exemple, g = Vrai ou
g = (x < 1)V (x >1)), alors on écrit plus simplement [ = [’.

Chaque graphe conditionnel GC peut étre interprété comme un systéme de transition ST, par un
processus de déploiement. Les états qui en résultent sont des couples de la forme < I, > avec | € Loc
et n € Eval( Var).

Définition 1.10 (Systeme de transition engendré par un graphe conditionnel). On considére un graphe
conditionnel GC = (Loc, Act, Effet, —, Locg, go) sur un ensemble de variables typées Var. Le systéme
de transition ST engendré par GC' est déterminé par le sextuplet (S, Act,—, I, Prop, L) dans lequel :

e S = Loc x Eval(Var);

e l'ensemble d’actions Act est celui de GC';

e —» C S x Act x S est défini par la regle

1L A=y
<l,n>25< U, Effet(a,n) >

I'={<ln> [l€ Loco,n = go};
Prop = Loc U Cond(Var);

L(<l,n>)={l} U{g € Cond(Var) | n = g}.

0

La définition du systeme de transition ST engendré par le graphe conditionnel GC' détermine a
priori un ensemble de propositions tres grand. Mais, généralement, on réduit sa taille pour décrire
quelques propriétés du systeme.

1.5 Parallélisme

De nombreux systémes évoluent en parallele d’autres systemes. Pour décrire ce type de situation,
nous allons définir un opérateur || associatif et commutatif, tel que le comportement du systeme de
transition

ST = STy || ST, || -+ || ST,

reflete la composition parallele des systémes de transition STy, ... , ST),.

Avant de définir 'opérateur ||, nous allons construire un opérateur d’entrelacement ||| (interlea-
ving en anglais). Nous verrons plus loin que l'opérateur d’entrelacement ||| est un cas particulier de
lopérateur de composition ||.

1.5.1 Entrelacement de systéemes de transition

Exemple 1.4 (Feux de circulation indépendants). On considére deux feux de circulation placés sur
des routes qui ne se coupent pas. Chaque feu est modélisé par un systeme de transition a 2 états
(rouge, vert). La composition paralléle des 2 systémes de transition F'Cy et F'Cy détermine un systéme
de transition noté F'Cy ||| FCq, ou Popérateur ||| est 'opérateur d’entrelacement.

[}

L’entrelacement repose sur le fait que l'effet de deux actions concurrentes indépendantes « et 3 est
identique a l'effet produit lorsque « et 8 sont exécutées successivement et dans un ordre arbitraire.
Cela peut étre noté formellement :

Effet(a ||| B,m) = Effet((a; B) + (B; ), 1),

ou le point-virgule < ; > représente I'exécution séquentielle et I'opérateur < + > un choix non détermi-
niste.
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CHAPITRE 1. MODELES DE SYSTEMES

FCy FC,y FCy ||| FC,

Figure 1.4. Exemple d’entrelacement de 2 systémes de transition.

rouge vert

vert rouge

Exemple 1.5. On considére deux actions « et S qui modifient la valeur de deux variables z et y
respectivement : 'action « est déterminée par x — x + 1 et laction [ est déterminée par y — y — 2.
Le systéme de transition obtenu, lorsqu’initialement x = 0 et y = 7, est représenté sur la figure 1.5.

| l

z=0 Y=

Figure 1.5. Entrelacement de 2 actions indépendantes sur des variables distinctes.

On peut donc définir entrelacement de 2 systémes de transition. On suppose ici que les deux
systemes n’admettent pas de variable commune.

Définition 1.11 (Entrelacement de systémes de transition). Soient STy = (S1, Act1, —1, I1, Prop;, L1)
et STy = (Sa, Acta, —>9, I, Prop,, Lo) deux systémes de transition. Le systéme de transition ST; ||| ST
est défini par

STy ||| STz = (S1 x Sa, Acty U Acty, —, I X Iz, Prop, U Prop,, L),

ol la relation de transition — est définie par les regles

o / o /

S1 —1 81 " So —9 82
e

o Y )

< 81,89 >——< 81,80 > < 81,852 >—>< S1, 54 >

et ou la fonction d’étiquetage L est définie par

L(< S1, 82 >) = Ll(Sl) U LQ(SQ).

12
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1.5.2 Entrelacement de graphes conditionnels

Lorsque deux systémes partagent des variables, Uentrelacement ||| de systémes de transition peut
conduire a des états paradoxaux.

Exemple 1.6. Considérons les actions « et 8 déterminées par x +— 2z et x — = + 1 respectivement.
L’entrelacement de ces 2 actions, a partir de I’état initial < x = 3,2 = 3 >, produit 1’état paradoxal
< x =6, =4 >, illustré sur la figure 1.6.

l

=3 x=3

1;;6 a:‘:4

Figure 1.6. Etat paradozal produit par Uentrelacement de 2 systémes qui admettent une variable en
commun.

On définit donc 'opérateur d’entrelacement ||| pour des graphes conditionnels.

Définition 1.12 (Entrelacement de graphes conditionnels). Soient deux graphes conditionnels GC; =
(Locy, Acty, Effety, 1, Loco 1, go,1) et GCo = (Loca, Acta, Effety, <2, Locg 2, go,2) sur des ensembles de
variables Vary et Vary respectivement. Le graphe conditionnel GC ||| GCs est défini sur Vary U Vars
par

GC1 ||| GCq = (Locy x Loca, Acty W Acta, Effet, —, Loco 1 x Loco 2, 90,1 N go,2),

ou la relation de transition conditionnelle < est définie par les régles

g« g«
] —— l/l ot lg =9 1/2
g:<a,1> ’ g:<a,2> ’ ’
<l lpg >—""=<1],ls > <l lpg >—"=< 13,5 >

et ou la fonction d’effet Effet est définie par

Effet;(< a,i >y, )(v), siv € Var,

Effet(a,n)(v) = {

n(v) sinon,
ou 7 Var, désigne la restriction de n a Var;. 0

Les graphes conditionnels GCy et GC5 ont les variables appartenant a Vary; N Vars en commun.
Ces variables communes sont dites globales. Les variables appartenant & Vary \ Vary sont les variables
locales de GC et les variables appartenant a Vary\ Vary sont les variables locales de GCy. L’opérateur
W désigne I'union disjointe. Il n’y a donc pas d’action partagée dans le graphe conditionnel GC; ||| GCy
obtenu par entrelacement.

Remarque. Soient GCy et GC5 deux graphes conditionnels. On note ST(GC) et ST(GC5) les systémes
de transition engendrés par GC7 et GC5 respectivement. On ne doit pas confondre les systémes de
transition

ST(GC) [|| ST(GCy)

et
ST(GCl il GCQ).

13



CHAPITRE 1. MODELES DE SYSTEMES

Le systeme de transition ST(GC1) ||| ST(GC2) est défini pour des graphes conditionnels qui ne
partagent pas de variable, alors que le systéme de transition ST(GCl ll] GCQ) est défini méme si les
graphes conditionnels admettent des variables communes. <

Remarque (Sur Iatomicité). L’opérateur d’entrelacement pour des graphes conditionnels nécessite que
les actions soient indivisibles. Par exemple, une action définie par

s r+ly—2r4letzm (x—2)2 xysiz <12,

doit étre exécutée completement. Les sous-actions ne doivent pas étre dissociées dans le processus
d’entrelacement. Une proposition est donc atomique lorsqu’elle peut étre représentée par une seule
étiquette le long d’une aréte. N

1.5.3 Opérateur de composition

On a défini un opérateur d’entrelacement ||| pour des systémes de transition sans variable partagée,
et pour des graphes conditionnels qui peuvent admettre des variables en commun.

Nous allons maintenant définir un opérateur pour des processus concurrents qui interagissent par
échange de message. Ces échanges impliquent que les sous-systémes sont (au moins partiellement)
synchronisés.

On considére alors un sous-ensemble d’actions partagées H C Act; N Acty et une action 7 ¢ H. Les
actions qui ne sont pas dans H (par exemple, Paction 7) sont indépendantes et peuvent &tre exécutées
par le principe d’entrelacement.

Définition 1.13 (Opérateur d’échange synchrone). Soient ST} = (Si, Acty,—1,11, Prop;, L1) et
STy = (S, Acta, —9, Is, Propy, Lo) deux systémes de transition. Soit H C Acty N Acty et 7 ¢ H.
Le systéme de transition ST ||z ST» est défini par

STy ||H ST, = (Sl X So, Acty U Acto, —, I X Ig,P?”Opl U P’I‘OpQ,L),
ou la fonction d’étiquetage L est définie par
L(< S1, 82 >) = Ll(sl) U LQ(SQ),

et ou la relation de transition — est définie par les deux regles suivantes :

e régle d’entrelacement pour « ¢ H
@ / @ !
S1 —>1 87 ¢ So ——2 Sy
e
(03 « I’
< §1,82 >——< s, 82 > < 81,82 >—>< §1, 85 >

e regle d’échange synchrone pour a € H

@ / @ /

81 —>1 S1 N 8o —9 So
= .

< 81,82 >—>< 8,85 >

O
Remarques.
e La condition < 7 ¢ H > signifie que H ne couvre pas totalement l'ensemble d’actions ActUActy
(ce qui pourrait se produire dans le cas Act; = Acts).
e Lorsque H = (Acty N Acto) \ {7}, on écrit || & la place de ||g.
e Lorsque H =9, on a
STl ||@ ST2 = ST1 ||| ST2
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Remarque. L’opérateur | g est commutatif mais il n’est pas associatif lorsque I’ensemble H varie. Plus
précisément, on a en général

(STy ||u ST2) ||mr ST3 # STy || (ST2 |[ar STs)
si H # H'. Cependant, ’associativité est obtenue en fixant H :
(STy |u ST2) || STs = ST ||u (ST || ST3),
ce qui permet de définir la composition d’'un nombre fini de systemes de transition
STy ||la STz | -+ o ST,
ou H C Acty N ---N Act,,. q

Exemple 1.7 (Exclusion mutuelle par sémaphore). Considérons deux processus P;, P, admettant
les états critiques respectifs crity, crity, et partageant le sémaphore binaire! y. Ces processus sont
représentés par des graphes conditionnels sur la figure 1.7.

J }
noncrity noncrity

Figure 1.7. Processus concurrents partageant le sémaphore binaire y.

Le graphe conditionnel P; ||| P> admet alors 9 lieux, dont le lieu indésirable < crity, crita >. Le
systéme de transition ST, obtenu par déploiement de Py ||| P> admet 18 états, dont 8 seulement sont
accessibles. En particulier, les états < crity, crita,y = 0 > et < crity, crity,y = 1 > sont inaccessibles, ce
qui signifie que les processus P; et P» ne peuvent pas étre en état critique simultanément. Le systeme
de transition STs.,, satisfait donc la propriété d’exclusion mutuelle. °

1.6 Explosion de ’espace de phase

Pour de nombreux systémes, le nombre d’états est fini, mais tres grand, ce qui constitue un obstacle
pour 'exécution des algorithmes de vérification qui explorent les états du systeme.

Il existe heureusement des méthodes pour réduire la taille de I'espace de phase, ou pour optimiser
I’exécution des algorithmes.

Ainsi, considérons un graphe conditionnel (Loc, Act, Effet, —, Locg, go) sur un ensemble de variables
Var. Le nombre d’états du systéme de transition correspondant est alors

[Loc| x ] Idom(z)|.

z€ Var

1. Un sémaphore est une variable partagée par différents processus, qui garantit que ceux-ci ne peuvent y accéder
que de fagon séquentielle & travers des opérations atomiques.
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CHAPITRE 1. MODELES DE SYSTEMES

Le nombre d’états croit donc exponentiellement avec le nombre de variables. Pour N variables admet-
tant chacune k valeurs possibles, ce nombre est de I'ordre de k7.

Par exemple, si un graphe conditionnel admet 10 lieux, 3 variables booléennes et 5 variables entieres
dont les valeurs sont comprises entre 0 et 9, alors le systéme admet 10 x 23 x 10° états, soit 8000000
états !

1.7 Exercices

Exercice 1. Le distributeur de boissons

On considére un distributeur de boissons, qui délivre du café et des sodas. Ce distributeur de
boissons détermine un systéeme de transition DB qui est illustré sur la figure 1.8 ci-dessous.

paye

servir_soda servir_cafe

inserer_piece

Y

choix_interne choix_interne

Figure 1.8. Systéme de transition modélisant un distributeur de boissons.

1. On considére ’ensemble de propositions atomiques Prop = {payé, délivré}. Détailler les éléments
du systeme de transition DB.

2. Le systeme de transition DB est-il déterministe ?

3. On considere les fragments d’exécution suivants :

inserer_piece choix_interne

p1 = paye —— > choix café... |

, servir_cafe inserer_piece . choix_interne ,
po = café paye choix café... |
inserer_piece . choix_interne , servir_cafe
p3 = paye ——— > choix café paye .

Décrire ces trois fragments d’exécution. Ces fragments d’exécution sont-ils des exécutions ?

4. On considére ensuite une extension du systéme de transition DB, qui compte le nombre de
sodas et le nombre de cafés, et qui renvoie les pieces insérées si la machine est vide. On souhaite
modéliser ce distributeur par un graphe conditionnel GC. On pose alors Loc = {démarre, choix},
Locy = {démarre} et

Act = {inserer_piece, retourne_piece, recharge, servir_soda, servir_cafe}.

On considére de plus I'ensemble de variables Var = {nsoda, ncafe}, ot le domaine de chaque
variable est {0,1,..., maz}.

(a) Représenter les transitions du graphe conditionnel GC.
(b) Déterminer effet de chaque action sur une évaluation n des variables nsoda et ncafe.

(c) Représenter le systéme de transition obtenu par déploiement du graphe conditionnel GC
dans le cas max = 2.
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Exercice 2. Circuit séquentiel

On considére un circuit séquentiel, illustré sur la figure 1.9 ci-dessous, avec une variable d’entrée x,
une variable de sortie y et un enregistrement r. La fonction de controle pour la variable y est donnée
par Ay, = =(z®r), ol & désigne le <« ou » exclusif (XOR). L’évaluation de I'enregistrement est modifiée
par la fonction de circuit définie par §,. = x V 7.

Figure 1.9. Circuit séquentiel hardware.

1. Représenter ce circuit comme un systeme de transition.

2. Détailler les éléments constitutifs de ce systeme de transition.

Exercice 3. Feux de circulation

1. On considere deux feux de circulation placés sur des routes qui ne se coupent pas. Chaque feu
est modélisé par un systéme de transition a 2 états (rouge, vert), comme illustré sur la figure 1.10
ci-dessous.

FC FCy

rouge; rouges

Figure 1.10. Feuz de circulation indépendants.

Décrire la composition par entrelacement F'Cy ||| F'Cy des 2 systémes de transition F'C; et FCs.

2. On considére maintenant deux feux de circulation correctement synchronisés.

FC| FC}

verty

i Q

c '
09

®

~ R

Figure 1.11. Feux de circulation totalement synchronisés.

Décrire la composition parallele FC; || FCS des 2 systémes de transition FC| et FCY.
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CHAPITRE 1. MODELES DE SYSTEMES

Exercice 4. Entrelacement de graphes conditionnels

On considéere deux graphes conditionnels GCy et GC5 partageant une méme variable z, représentés
sur la figure 1.12 ci-dessous.

GCy GCy
1 i
T+ 2z r+—x+1
1 l

Figure 1.12. Graphes conditionnels GCy et GCy partageant une méme variable x.

1. Construire le graphe conditionnel d’entrelacement GC ||| GCs.

2. Construire le systéme de transition obtenu par déploiement du graphe conditionnel GCy ||| GCs,
avec comme condition initiale x = 3.
Exercice 5. Exclusion mutuelle par sémaphore

On considere deux processus P;, P, admettant les états critiques respectifs crity, crits, et partageant
le sémaphore binaire y. Ces processus sont représentés par des graphes conditionnels sur la figure 1.13.

| l

noncrity noncrits

y—y+1 y—y+1

(y>0):
y+—y—1

Figure 1.13. Processus concurrents partageant le sémaphore binaire y.

1. Construire le graphe conditionnel d’entrelacement Py ||| Ps.

2. Construire le systéme de transition STse, obtenu par déploiement de Py ||| Pa.
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CHAPITRE 2

Propriétés linéaires

Lorsqu’on étudie le comportement d’un systéme réel, apres que 1’étape de modélisation de ce
systeme a été réalisée, le processus de vérification de certaines des propriétés de son modele peut étre
entamé. Ce processus de vérification nécessite alors une spécification des propriétés intéressantes (c’est-
a-dire une description précise et non ambigué de ce que ce systéme doit faire). Nous allons découvrir
dans le deuxieme chapitre de ce cours une classe importante de propriétés : les propriétés linéaires.

2.1 Comportement linéaire

On peut analyser le comportement d’un systéme de transition en observant ses états ou en observant
ses actions (ou encore en combinant les deux approches). Dans cette partie, on choisit la premiére
approche, pour laquelle on privilégie I'observation des états et des propositions atomiques qui leur sont
associées.

2.1.1 Chemins et graphes d’états
Soit ST = (S, Act,—, I, Prop, L) un systéme de transition.

Définition 2.1 (Graphe d’états). Le graphe d’états de ST, noté G(ST), est le graphe orienté (V, E)
avec pour ensemble de sommets V' = S et pour ensemble d’arétes

E={(s,s') € Sx8|s € Post(s)}.
0

Le graphe d’états G(ST) est donc obtenu en omettant les propositions atomiques associées aux
états de ST, et en ignorant quels sont les états initiaux possibles. D’éventuelles transitions multiples
entre 2 états du systéme de transition (associées a des actions différentes) sont représentées dans le
graphe d’états par une seule aréte.

Pour un graphe d’états, on définit les ensembles de successeurs et de prédécesseurs : Post™(s),
Post*(C), Pre*(s), Pre*(C) pour s € S et C C S. Ainsi, Post™(s) est 'ensemble des états accessibles
dans G(ST) depuis un état s. L’étoile permet de différencier les ensembles définis & partir du systéme
de transition des ensembles définis a partir de son graphe d’états. L'ensemble Access(ST) des états
accessibles est égal & Post™(I).
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Remarque. Dans les définitions des ensembles Post(s), Post(C), Pre(s), Pre(C) du premier chapitre, on
a considéré les successeurs et les prédécesseurs directs. Pour les ensembles Post™(s), Post*(C), Pre*(s),
Pre*(C), on considére cette fois tous les successeurs et tous les prédécesseurs. N

On décrit le comportement d’un systéme de transition par ’étude des chemins dans son graphe
d’états.

Définition 2.2 (Fragment de chemin). Un fragment de chemin fini 7+ de ST est une suite finie d’états
ﬁ28081...8n,

telle que s; € Post(s;—1) pour tout i € {1,...,n}, avec n € N.
Un fragment de chemin infini 7 de ST est une suite infinie d’états

T = 508182 ...,
telle que s; € Post(s;—1) pour tout i > 1. O

Pour j > 0, on note 7[j] = s; et w[j] = s;. Le premier élément #[0] = so (ou 7[0] = s¢) est parfois
noté first(w) (ou first(m)). Les préfixes sont notés 7[..j] = so...s; (ou w[..j] = so...s;); les suffixes
sont notés 7[j..] (ou 7[j..]). Pour un fragment de chemin fini #, on note le dernier élément last(7) = s,
et la longueur n = len(#). Pour un fragment de chemin infini, on note last(w) =L (ce qui signifie
< indéfini >) et len(w) = oo.

Définition 2.3 (Fragment de chemin maximal, fragment de chemin initial, chemin). Un fragment de
chemin mazimal est soit un fragment de chemin fini qui termine dans un état final, soit un fragment
de chemin infini.

Un fragment de chemin est dit initial s’il commence dans un état initial.

Un chemin est un fragment de chemin initial et maximal. O

Remarque. On ne doit pas confondre la notion de chemin dans un graphe avec la notion de chemin dans
un systéme de transition. Dans un systéme de transition, un chemin est maximal, pas nécessairement
pas dans un graphe. De plus, dans un systéme de transition, un chemin peut étre infini, mais pas dans
un graphe. q

Si s est un état d’un systéme de transition ST, on note Paths(s) ’ensemble des fragments de
chemins maximaux qui commencent en s et Pathss,(s) I'ensemble des fragments de chemins finis
qui commencent en s. Enfin, on note Paths(ST) l'ensemble des chemins dans ST et Pathsg,(ST)
I’ensemble des fragments de chemins finis initiaux dans ST

2.1.2 Rappels sur les graphes

Dans cette section, on propose quelques rappels sur la théorie des graphes.

Définition 2.4 (Graphe). Un graphe orienté (ou simplement un graphe) est une paire G = (V, E)
formée par un ensemble V' de sommets et une relation £ C V x V définissant un ensemble d’arétes.
Les éléments de E sont appelés arcs (pour un graphe orienté) ou arétes (par abus de langage). O

Matrice d’adjacence

Soit G = (V, E) un graphe, dont I’ensemble V' est ordonné sous la forme d’une suite (s1, $2,...,Sn).
La matrice d’adjacence M du graphe G est la matrice carrée de taille N définie par :

1 si (s4,5;) est un arc,
M, ;= )
0 sinon.
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Listes d’adjacence

On peut également représenter un graphe par listes d’adjacence, en associant & chaque sommet une
suite ordonnée de tous ses successeurs.

Algorithmes de balayage

L’exploration d’un graphe est souvent effectuée par ’exécution d’un algorithme de balayage de type
Depth-First Search (DFS) ou Breadth-First Search (BFS), qui reposent eux-mémes sur 'algorithme 1,
permettant de déterminer les sommets accessibles depuis un sommet sg. Dans I’algorithme 1, I’ensemble
R donne les sommets qui ont été visités, et ’ensemble U garde une trace des sommets qui sont a explorer
(pourvu qu’ils ne soient pas dans R). Chaque sommet s’ peut étre ajouté & U au plus |Pre(s’)| fois.
Donc l'algorithme 1 termine apres au plus (’)(M ) itérations, ot M = |E| est le nombre d’arétes.
Lorsque tous les sommets doivent étre visités, la complexité temporelle est de 'ordre de O(N + M),
ou N = |V|.

Algorithme 1 Analyse d’accessibilité

Entrée : graphe G = (V, E), sommet sg € V.
Sortie : ensemble Access(sg) des sommets accessibles depuis s.

Ensemble de sommets R + & // Vensemble des états accessibles
Ensemble de sommets U «+ {sp} // sommets & explorer
// initialement, aucune aréte n’est marquée
Tant que U # & faire
choisir s € U // on choisit arbitrairement un état s dans U
Si Js’ € Post(s) tel que (s, s’) n’est pas marquée alors
choisir un tel sommet s’ € Post(s)
marquer l'aréte (s, s’)
Si s’ ¢ R alors

U+ UU{s'} // on s’assure que tous les successeurs
R+ RU{s'} // de s seront visités
Fin Si
Sinon
U+ U\{s}
Fin Si
Fin Tant que
renvoyer R /] R = Access(sp)

L’algorithme DFS effectue une exploration en < profondeur >, en structurant U comme une pile
(qui satisfait la régle < Last In First Out »). La pile U admet les opérations top(U), qui renvoie le
premier élément de U (celui qui se trouve au sommet de la pile), pop(U), qui efface le premier élément
de U, et push(s,U), qui dépose ’élément s au sommet de la pile U.

Au contraire, I'algorithme BFS effectue une exploration en < largeur », en structurant U comme
une file (qui satisfait la régle < First In First Out >).

Exemple 2.1. On considére le graphe représenté sur la figure 2.1.

Les listes d’adjacence de ce graphe sont données dans le tableau 2.1.

Lorsqu’on exécute I'algorithme DFS sur le graphe de la figure 2.1, a partir du sommet 1, ’ensemble
R et la pile U prennent successivement les valeurs données dans le tableau 2.2. °

Rappel. Pour décrire la complexité temporelle d’un algorithme, on utilise les équivalents asympto-
tiques O, Q et O. Si f et g sont deux fonctions définies sur N, alors g = O(f) signifie qu’il existe une
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Figure 2.1. Exemple de graphe et de l’arborescence obtenue en appliquant lalgorithme DFS en partant
du sommet 1.

Tableau 2.1. Listes d’adjacence du graphe représenté sur la figure 2.1.

Sommet Successeurs
1 {3,5,6}
2 {3,4,6}
3 {5,6}
4 {5,6}
5 o]
6 o]

Tableau 2.2. Valeurs successives de l’ensemble R et de la pile U pour un balayage du graphe de la
figure 2.1 par l'algorithme DFS a partir du sommet 1.

R=2 R={3} R={3,5} R=1{356} R=1{3506 R={3,56 R=/{356}

U U

;
1 2

U U U U

T || w| ot

constante C' > 0 et un entier N > 0 tels que g(n) < C x f(n) pour n > N. Inversement, g = Q(f)
signifie qu’il existe une constante C' > 0 et un entier N > 0 tels que g(n) > C x f(n) pour n > N.
Enfin, g = O(f) signifie que 'on a a la fois g = O(f) et g = Q(f). o

2.1.3 Traces

Dans le premier chapitre, nous avons défini les exécutions d’'un systéme de transition, qui sont des
suites avec une alternance d’états et d’actions. Dans la suite du cours, on s’intéresse surtout aux états
d’un systeme de transition. Comme ces états sont parfois difficilement observables, on s’intéresse plutdt
a leurs propositions atomiques. On consideére ainsi des suites du type

L(SQ)L(Sl)L(Sg) e

De telles suites sont appelées traces. Les traces d’un systeme de transition sont alors vues comme des
mots sur I’alphabet 2°7°P. Dans toute la suite, on supposera que le systéme de transition n’a pas d’état
final. Dans ce cas, les traces pourront étre des mots infinis.
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Remarque. Un systéme de transition qui admet des états finaux peut toujours étre modifié pour ne
plus en admettre; il suffit pour cela d’ajouter des états a la suite des états finaux et de les équiper
d’une boucle. <

Définition 2.5 (Trace). Soit ST = (S, Act,—, I, Prop, L) un systéme de transition sans état final. La
trace d'un fragment de chemin infini 7 = sgs1s3 ... est définie par

trace(m) = L(so)L(s1)L(s2) .. ..
La trace d’un fragment de chemin fini # = sgs; ... s, est définie par
trace(7t) = L(so)L(s1) ... L(sn).
O

La trace d'un fragment de chemin est donc un mot fini ou infini sur I'alphabet ¥ = 2777, Si II est
un ensemble de chemins, on pose

trace(I1) = {trace(w) | m € 1I}.

Une trace (infinie) d’un état s € S est la trace d’un fragment de chemin infini 7 tel que first(m) = s.
De la méme facon, une trace finie d’un état s est la trace d’un fragment de chemin fini qui commence
en s. On note alors Traces(s) I'ensemble des traces d’un état s et finalement :

Traces(ST) = U Traces(s).
sel

Remarques. Si Prop admet n éléments (n > 1), alors I'alphabet ¥ = 277°P en admet 2". Par exemple,
si Prop = {a,b, c}, alors

% = {@,{a}, {b}, {c}. {a.b}, {a.c}, {b,c}. {a,b,c}}.

Si s est un état, alors L(s) est un sous-ensemble de Prop, qui peut posséder plusieurs éléments.
Ainsi, les < lettres » L(sg), L(s1), L(s2), ... d’une trace sont de < grosses lettres ». On peut avoir
par exemple :

L(SO) = {x’ya Z}7 L(Sl) = {’LU,Z}, L(SQ) = {tazay}a
ce qui donnerait
L(so)L(s1)L(s2) -+ ={z,y,z} {w, 2z} {t,x,y}....
<

On définit de la méme fagon les traces finies d’un systeme de transition, a partir de ses chemins
finis :
Tracesfn(ST) = U Tracesfin(s)-
sel

2.1.4 Rappels sur les langages

L’étude des traces d’un systéme de transition suppose une bonne connaissance des propriétés
élémentaires des langages et de leurs opérations. Nous rappelons ici quelques-unes de ces propriétés.

Un alphabet est un ensemble fini non vide X. Les éléments de ¥ sont appelés symboles ou lettres.
Un mot sur X est une suite finie ou infinie de symboles de ¥. Un mot fini est donc de la forme

’UJ:AlAQ...An,
avec n € N et A; € ¥ pour tout 7 € {1,...,n}, et un mot infini est de la forme
U:A1A2A3....
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Le mot obtenu avec n = 0 est appelé mot vide et est souvent noté €. Un mot fini w = A1A5... A, a
pour longueur n. Un mot infini a une longueur infinie souvent notée w. On note ¥* I’ensemble des mots
finis sur X, et X 'ensemble des mots infinis sur 3. On a ¢ € ¥*. On note ¥+ = X* \ {€} I'ensemble
des mots finis non vides. On appelle langage tout ensemble £ de mots finis sur I’alphabet ¥. On a donc
L C ¥*

Remarque. Ne pas confondre le mot vide € et le langage vide £ = @. N

Un préfize d’'un mot fini w = A1 A, ... A, est un mot de la forme v = A1 Ay... A; avec 0 < i <n
(v=-c¢sii=0). Un suffize d’'un mot fini w = A1 As... A, est un mot de la forme v = A;A;11... A,
avec 1 <i<m+1 (v=-esii=n+1). Le mot vide ¢ est donc préfixe et suffixe de tous les mots finis.
Un mot de la forme A;...A; avec 1 < i < j < n est appelé sous-mot de w. On définit de méme les
préfixes, suffixes et sous-mots d’un mot infini (un suffixe d’'un mot infini est lui-méme infini).

Opérations sur les mots

La concaténation et la répétition finie sont deux opérations importantes sur les mots.

La concaténation de 2 mots agit en < collant > deux mots 'un a la suite de 'autre. Par exemple,
la concaténation des mots BA et AAB est le mot BA.AAB = BAAAB. La concaténation d’un mot
w avec lui-méme est notée w?. On généralise cette opération pour définir w™ avec n entier naturel. On
a en particulier w® = ¢ et w! = w.

La répétition finie (également appelée Kleene star en anglais), notée avec une étoile
fini w, produit le langage

* d’un mot

w* = {w' | i € N}.

Par exemple, on a
(AB)" ={e,AB,ABAB,ABABAB,...}.

Le mot vide € appartient & w* pour chaque mot w. On note également
wt = {w'|i>1},
ou de fagon équivalente : w = w* \ {e}.
Opérations sur les langages
On définit également la concaténation pour les langages. Pour £1, L5 C ¥*, on pose ainsi
L1.Ly = {wi.we | w1 € L1, wy € La}.
Par exemple, si £1 = {4, AB} et L5 = {¢, BBB}, alors on a :

Ly.Lo ={A, AB,ABBB, ABBBB},
L2 ={AA AAB,ABAB, ABA}.

Pour L1, Ly C ¥*, la réunion de £ et Lo est définie par
LrULy={weX*; weLouwe Ly}

On a alors
EU@:,C, EUE*:E*, £1U£2:£281£1§£2,

pour tous langages £, L1, Lo sur ¥. On peut également définir I'intersection de deux langages, leur
différence, le complémentaire d’un langage.
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La concaténation de deux langages n’est pas commutative en général. On a néanmoins les propriétés
suivantes :

Le'e’y =L,

L uL"y=ceuce”
(cuche’ =cc'uc'c,
Lie} ={e}L =L,
OL=LD =0,

pour tous langages £, L', L” sur X.
On définit enfin les puissances et la répétition finie (étoile de Kleene) d’un langage L :

co=\Jc, =,

i>0 i>1

ou L' désigne la concaténation de L répétée ¢ fois.

2.1.5 Propriétés linéaires

Les propriétés linéaires sont une classe de propriétés qui déterminent les traces qu’un systeme de
transition doit admettre.

Définition 2.6 (Propriété linéaire). On appelle propriété linéaire sur un ensemble de propositions
atomiques Prop tout sous-ensemble (non vide) de (2£7P)~. O

Dans cette définition, (277°P)« désigne I’ensemble des mots obtenus par concaténation infinie de
symboles dans 277°P. Une propriété linéaire est donc un langage de mots infinis sur I’alphabet 27707,
On considére uniquement des mots infinis, car on étudie des systémes de transition sans état final. On
définit ensuite la relation de satisfaction d’une propriété linéaire par un systéme de transition.

Définition 2.7 (Relation de satisfaction pour une propriété linéaire). Soit P une propriété linéaire
sur un ensemble de propositions atomiques Prop et soit ST = (S, Act,—, I, Prop, L) un systéme de
transition.

On dit que ST satisfait P, et on note ST = P, si Traces(ST) C P.

On dit qu'un état s € S satisfait P, et l’on note s |= P, si Traces(s) C P. O

Exemple 2.2. Considérons deux feux de circulation correctement synchronisés. Le systeme de tran-
sition correspondant est illustré sur la figure 2.2. On considére de plus ’ensemble de propositions
atomiques

Prop = {rouge,, verty, rouge,, verts }.

On étudie alors les deux propriétés linéaires P et P, définies par :
e P; : < le premier feu est vert une infinité de fois >,
e Py : < les deux feur ne sont jamais verts en méme temps >.
La proposition P; contient par exemple les mots

{rouge,, verts }{verty, rouge, } {rouge; , verts }{vert;, rouge, } . ..
o{verty & {vert; }&{vert; } ...
{rouge,, vert; }{rouge,, vert; }{rouge, vert; }{rouge,,vert; } ...

{verty, verty }{verty, verts } {verty, verto }{verty, verta } .. ..

En revanche, le mot
{rouge,, vert; }{rouge,, vert; } 302D ...
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FCl FCQ FC1 ||F02

verty, rouges

rouge; verts

Figure 2.2. Feuz de circulation totalement synchronisés.

rougey, verty

n’est pas dans P; car il ne contient pas une infinité de fois vert;.
Puis, la propriété P, contient par exemple les mots

{rouge,, verto }{verty, rouge, } {rouge, , verts }{vert;, rouge, } . ..
o {vert; }&{vert; }@{vert; } ...

{rouge,, vert; }{rouge,, verty }{rouge,, vert; } {rouge;,vert } ...,

mais le mot
{rouge,, vert; }{rouge,, vert, } 002D . ..

n’est pas dans Ps.
Il est clair que le systéme de transition modélisant les deux feux totalement synchronisés satisfait
les propriétés P; et Ps. °

Remarque. Les propriétés linéaires (linear-time properties en anglais) intégrent de fagon abstraite le
déroulement temporel du comportement d’un systéme réel, ce qui permet notamment de tenir compte
de l'ordre d’apparition des événements. Par exemple, une propriété comme < la voiture s’arréte une
fois que le conducteur a freiné > nécessite de considérer une chronologie des événements. En revanche,
I’aspect quantitatif du déroulement temporel est ignoré ici. Il peut étre néanmoins pris en compte,
notamment en considérant des systémes de transition temporisés, qui sont des systéemes de transition
équipés d’horloges. N

2.1.6 Traces équivalentes

Les propriétés linéaires décrivent les traces infinies quun systéme de transition doit admettre. Si
deux systémes de transition ST et ST’ admettent les mémes traces, on s’attend & ce qu’elles vérifient
les mémes propriétés. Le théoreme suivant établit une caractérisation de l'inclusion de traces.

Théoréme 2.1 (Inclusion de traces). Soient ST et ST’ deux systémes de transition sans état final
et admettant le méme ensemble de propositions atomiques. Alors les deux assertions suivantes sont
équivalentes :

o Traces(ST) C Traces(ST');
e pour toute propriété linéaire P, ST’ = P implique ST = P.
Démonstration. (1) = (2). Soit P une propriété linéaire telle que ST’ |= P. Alors par définition, on

a Traces(ST') C P. Puisque Traces(ST) C Traces(ST'), on en déduit que Traces(ST) C P. Donc
ST = P.
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(2) = (1). Considérons la propriété P = Traces(ST"). On a Traces(ST') C Traces(ST') = P, c’est-
a-dire ST’ = P; donc ST | P d’aprés 'hypothése (2). On obtient par définition Traces(ST) C P, ce
qui est équivalent & Traces(ST) C Traces(ST"). O

On obtient le corollaire suivant.

Corollaire 2.1 (Traces équivalentes). Soient ST et ST’ deux systémes de transition sans état final
et admettant le méme ensemble de propositions atomiques. Alors Traces(ST) = Traces(ST’) si et
seulement si ST et ST’ vérifient les mémes propriétés linéaires.

Exemple 2.3. Considérons deux systémes de transition obtenus en modélisant des distributeurs de
boissons, représentés sur la figure 2.3.

paye

(choix ) pe ~(café M—' soda
Figure 2.3. Deux systemes de transition modélisant des distributeurs de boissons.

Considérons de plus ’ensemble de propositions atomiques Prop = {paye,soda, café}. Bien que les
systemes de transition soient différents, il est clair qu’ils admettent les mémes traces. Ils vérifient donc
les mémes propriétés linéaires. °

Déterminer si deux systémes de transition admettent le méme ensemble de traces est un probleme de
décision PSPACE-complet (voir la section 4.1.4 pour la définition d’un probléme de décision PSPACE-
complet). On peut cependant garantir que deux systémes de transition admettent le méme ensemble
de traces en prouvant qu’ils sont équivalents par la relation de bisimulation.

Définition 2.8. Soient ST} = (S, Act1, —1, 11, Prop, Ly) et STy = (Sa, Acta, —9, I, Prop, Ly) deux
systemes de transition sur un méme ensemble de propositions atomiques Prop. On dit que ST} et ST»
sont équivalents par la relation de bisimulation, et on note ST ~ ST, s’il existe une relation binaire
R C 51 x S5 telle que :
e pour tout s; € 51, il existe so € Sy tel que s1Rso;
e pour tout sy € S, il existe s; € S tel que s1Rso;
e pour tout couple (s1,82) € S1 x Sy tel que s;Rs2, on a :
— Li(s1) = La(s2),
— si s} € Post(s1), alors il existe s € Post(sz) tel que siRsh,
— si s}, € Post(sz), alors il existe s} € Post(s1) tel que s]Rsh.
O

On montre facilement que la relation de bisimulation est une relation d’équivalence. De plus, on
montre que si ST} ~ STy, alors Traces(STy) = Traces(ST»). Par conséquent, si deux systémes de
transition sont équivalents par la relation de bisimulation, alors ils satisfont les mémes propriétés
linéaires. Enfin, on peut déterminer par un procédé algorithmique si deux systémes de transition sont
équivalents par la relation de bisimulation, avec une complexité en temps de 'ordre

O((IS1]+ 1S2]) x | Prop| + (My + Ma) x log (IS1] + 1521 ) ),

ou M7, My désignent les nombres d’arétes dans ST; et ST5 respectivement.
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2.2 Invariants

Les invariants sont des propriétés linéaires particuliéres, qui sont déterminées par une condition ®
portant sur les états d’un systéme de transition, et qui requiert que cette condition soit vérifiée pour
les états accessibles.

Définition 2.9 (Invariant). Soit Prop un ensemble de propositions atomiques. Une propriété linéaire
Py, sur Prop est un invariant s’il existe une proposition logique ® sur Prop telle que

Py = {AoA1 Az -+ €(277P) | V] > 0, 4; | @}
On dit que ® est une condition invariante (ou un état invariant) de Pjy,,. Il
On remarque que

ST |= Pipy < trace(w) € Py, pour tout chemin 7w de ST
< L(s) = ® pour tout état s appartenant & un chemin de ST
< L(s) = ® pour tout état s € Access(ST).

Ainsi, ® doit étre vérifiée par tous les états initiaux et la satisfaction de ® est invariante le long des
fragments atteignant un état accessible. Si ® est vérifiée pour un état s impliqué dans une transition
s =5 &, alors ® est vérifiée pour s’ également.

Exemple 2.4. La propriété d’exclusion mutuelle de deux processus concurrents (toujours au plus un
processus en état critique), présentée dans I’exemple 1.7, peut étre décrite comme un invariant, avec

& = —crity V —erits.

Vérification d’un invariant

La vérification d’un invariant Pj,, pour un systéme de transition donné revient a vérifier la validité
d’une condition invariante ® pour chaque état accessible depuis un état initial. On peut effectuer cette
vérification en adaptant un algorithme de balayage de graphe en profondeur. On obtient ’algorithme
2. Dans cet algorithme, ¢ désigne la pile vide; linstruction push(s,U) insére s au sommet de U ;
linstruction top(U) renvoie le premier élément de U (qui se trouve au sommet) ; 'instruction pop(U)
efface le premier élément de U.

Si au moins un sommet s visité ne satisfait pas ®, alors l'invariance de P,, n’est pas vérifiée.
L’ensemble d’états R stocke tous les états visités; si I’algorithme renvoie <« OUI >, alors on a R =
Access(ST'). La pile U organise tous les états qui restent a visiter, pourvu qu’ils ne soient pas contenus
dans R. Lorsqu’un état qui ne satisfait pas ® est rencontré, le contenu de la pile, lue de bas en haut,
fournit un contre-exemple sous la forme d’'un fragment de chemin.

La complexité de 'algorithme 2 est donnée par le théoréme suivant.

Théoréme 2.2 (Complexité temporelle de la vérification d’invariant). La complexité temporelle de
I’algorithme 2 est de l'ordre de O(N x (14 |®|) + M), ot N désigne le nombre d’états accessibles et

M =3 g |Post(s)].

Démonstration. On a rappelé précédemment que la complexité temporelle de 1'algorithme d’analyse
d’accessibilité est de 'ordre de O(N 4+ M). De plus, le temps nécessaire pour vérifier si s = ® pour un
état s donné est une fonction linéaire de la longueur de ®. Pour couvrir le cas ot ® est une proposition
atomique (auquel cas |®| = 0), on ajoute 1 opération. Enfin, comme on vérifie & pour chaque état, le
nombre d’opérations est de I'ordre de O((N + M) + N(1 + [®])). O
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Algorithme 2 Vérification d’invariant

Entrée : systeme de transition fini ST et proposition logique .
Sortie : < OUI > si ST satisfait toujours ®, autrement <« NON > et un contre-exemple.

Ensemble d’états R < & // Vensemble des états accessibles
Pile d’états U + ¢ // € désigne la pile vide
Booléen b + VRAI // tous les états de R vérifient
Tant que I\ R # @ A b faire

choisir s € I\ R // on choisit arbitrairement un état initial qui n’est pas dans R

visiter(s) // on appelle la procédure de balayage
Fin Tant que
Si b alors

renvoyer < OUI » // ST satisfait toujours @
Sinon

renvoyer (« NON =, U) // la pile U fournit un contre-exemple
Fin Si

Procédure visiter(état s)

push(s,U) // on pose s sur la pile
R <+ RU{s} // on marque s comme accessible
Répéter
s« top(U) // s est le premier élément de la pile
Si Post(s') C R alors
pop(U) // on retire le premier élément de la pile
b+ bA (s ED) // on vérifie la validité de ® en s’
Sinon

choisir s” € Post(s') \ R
push(s”,U)
R+ RU{s"} // §” est un nouvel état accessible
Fin Si
Jusqu’a (U =¢)V b
Fin Procédure

2.3 Propriétés de siireté

Les propriétés de slireté (safety en anglais) peuvent étre décrites par expression < rien de mauvais
ne devrait arriver ». Par exemple, la propriété d’exclusion mutuelle (toujours au plus un processus en
état critique) est une propriété typique de stireté : la situation indésirable correspondant & au moins
deux processus en état critique simultanément ne se produit jamais.

Contrairement aux invariants, qui peuvent étre vérifiés en examinant les états accessibles d’un
systéme de transition, certaines propriétés de siireté ne peuvent pas étre vérifiées en examinant seule-
ment les états accessibles, et imposent des conditions supplémentaires sur certains chemins finis.

Formellement, une propriété de streté P, est définie comme une propriété linéaire sur un ensemble
de propositions atomiques, telle que tout mot infini ¢ qui ne satisfait pas Ps; contient un mauvais
préfize : il existe alors un préfixe (fini) 6 < mauvais >, tel qu’aucun mot infini qui commence par & ne
vérifie Pi.
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2.3.1 Mauvais préfixes

Définition 2.10 (Propriété de stireté). Une propriété linéaire Py sur un ensemble de propositions
atomiques Prop est appelée propriété de sireté si pour chaque mot o € (2P "’p)w \ P, il existe un
préfixe fini 6 de o tel que

PN {U’ € (277P)* | & est un préfixe fini de a'} =0.

Chaque mot fini ¢ est appelé mauvais préfize de P;. Un mauvais préfixe ¢ est minimal si aucun préfixe
strict de & n’est un mauvais préfixe de Ps. O

Alnsi, si o £ Pg, alors o peut s’écrire o = 60, o 6 un est préfixe fini tel que pour tout mot infini
w, 6w = Ps.
Pour o € (QPTOP)w, on note pref(o) 'ensemble des préfixes finis de o. Ainsi, si 0 = AgA14s...,

alors
p’l"@f(O') = {6, Ao, AoAl, AOA1A2, .. }

Par exemple, si 0 = ABABABAB..., alors
pref(c) ={e, A,AB,ABA, ABAB, ...},

que l'on peut décrire avec 'expression réguliere! (AB)*(A + ¢). Enfin, si P est une propriété linéaire
sur Prop, on note
pref(P) = | pref(o).
ceP
L’ensemble des mauvais préfixes de Py sera noté MauvPre(Ps). L’ensemble des mauvais préfixes
minimaux de Ps sera noté MauvPreMin(P;).

Définition 2.11 (Fermeture d’une propriété linéaire). Soit P une propriété linéaire sur Prop. La
fermeture de P est 'ensemble défini par

fermeture(P) = {0 € (2Pmp)w | pref(o) C pref(P)} .
O

Ainsi, les traces infinies contenues dans fermeture(P) n’ont pas de préfixe qui ne soit pas déja un
préfixe de P.

Pour toute propriété linéaire P, on a P C fermeture(P). Le lemme suivant montre que I'inclusion
réciproque est vérifiée pour les propriétés de siireté.

Lemme 2.1. Soit P une propriété linéaire sur Prop. Alors P est une propriété de stireté si et seulement
si
P = fermeture(P).

Démonstration. Supposons d’abord que P = fermeture(P). Soit alors o € (2Pmp)w \ P. Montrons que
o commence avec un mauvais préfixe pour P. Puisque o ¢ P et que P = fermeture(P), on a donc
o ¢ fermeture(P). Donc pref(o) € pref(P); ainsi, il existe un préfixe fini 6 de o tel que & ¢ pref(P),
c’est-a-dire

Yo € P, & & pref(o).

Ainsi, si 0’ € (QPTOP)w est tel que 6 € pref(o’), alors ¢’ & P. Autrement dit, aucun mot o’ € (QP”’p)w
tel que & € pref(c’) n’appartient & P. Donc & est un mauvais préfixe pour P. Donc P est une propriété
de siireté.

Réciproquement, supposons que P soit une propriété de streté. L’inclusion P C fermeture(P) est
évidente. Pour montrer 'autre inclusion, on raisonne par contradiction. Supposons que 0 = AgA1As ...

1. Les expressions réguliéres seront revues dans le troisiéme chapitre de ce cours.
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appartienne & fermeture(P)\ P. Comme P est une propriété de stireté et que o ¢ P, o admet un mauvais
préfixe 6 = ApA; ... A,. Mais o € fermeture(P), donc pref(o) C pref(P), d’ou 6 € pref(P). Donc il
existe un mot o’ € P admettant & comme préfixe, ce qui est impossible puisque P est une propriété
de streté. O

Le théoréme suivant établit une relation entre invariants et propriétés de siireté.

Théoréme 2.3 (Relation entre invariants et propriétés de siireté). Tout invariant est une propriété
de stireté.

Démonstration. Soit Py, un invariant et soit ® une condition invariante de Pj,,. Soit ensuite o un
mot infini de (2P ’""P)w \ Piny. Alors o contient un préfixe minimal du type

AgAy ... A, € (27°P) avec Ag = @, ..., Ay_y = D et A, [ O (2.1)

Donc P, est une propriété de siireté et tous les mots finis de la forme (2.1) en constituent les mauvais
préfixes minimaux. O

Exemple 2.5. Considérons un distributeur de boissons. La condition suivante est une condition requise
naturelle :

< le nombre de piéces insérées est toujours au moins égal au nombre de boissons distribuées >.

Pour formaliser cette condition, on introduit I’ensemble de propositions atomiques
Prop = {paye, distribue},

et la fonction d’étiquetage associée. La condition énoncée ci-dessus correspond a l’ensemble des mots
infinis AgA;1As ... tels que 'on ait pour tout ¢ > 0 :

Hj € {0,...,i}| payeeAjH > H] € {0,...,i}| distribueeAjH.

Cet ensemble de mots constitue alors une propriété de siireté, dont les mots suivants sont des exemples
de mauvais préfixes :

{paye}{distribue}{distribue},
@{paye}{distribue}@{paye}{distribue}{distribue}.

On vérifie aisément que les distributeurs de boissons de la figure 2.3 satisfont cette propriété de stireté.
[}

2.3.2 Equivalence de traces pour les propriétés de siireté

Nous avons vu avec le Théoreme 2.1 qu’il existe une relation entre l'inclusion de traces pour
des systémes de transition sans état final et la satisfaction de propriétés linéaires. Le Théoreme 2.1
s’applique néanmoins a des traces infinies. Une relation analogue pour des traces finies est établie par
le théoréme suivant.

Théoréme 2.4 (Inclusion de traces finies et propriétés de sireté). Soient ST et ST’ deux systémes
de transition sans état final et admettant le méme ensemble de propositions atomiques. Les assertions
suivantes sont équivalentes :

o Tracessn(ST) C Tracesfin(ST');
e pour toute propriété de sireté Ps, ST’ |= Ps implique ST = Ps.

La démonstration du Théoréme 2.4 utilise le lemme suivant.
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Lemme 2.2. Soit ST un systéme de transition sans état final et soit Ps une propriété de siireté. Alors
ST = P; < Tracesfin,(ST) N MauvPre(Ps) = @.

Preyve du Lemme 2.2. (1) = (2). Raisonnons par l'absurde. Supposons que ST |= P, et qu’il existe
G € Tracesfn(ST) N MauvPre(Ps). Alors 6 est une trace finie de ST qui peut s’écrire

6=A,...A,,
et qui peut étre prolongée en une trace infinie
U:Al...AnAn+1...

qui ne satisfait pas Ps. Donc ST }£ Ps.

(2) = (1). Raisonnons encore par I'absurde. Supposons que Tracesg,(ST) N MauvPre(P;) = & et
que ST [~ P,. Alors il existe un chemin 7 de ST tel que trace(w) ¢ Ps. Cela signifie que trace(m)
commence avec un mauvais préfixe & pour Ps. Mais on a alors & € Tracess,(ST) N MauvPre(Ps), ce
qui constitue une contradiction. O

Preuve du Théoréme 2.4. (1) = (2). Supposons que Tracessn(ST) C Tracessn(ST') et soit Ps une
propriété de stireté telle que ST’ = P;. D’aprés le lemme 2.2, on a donc

Tracesf, (ST') N MauvPre(Ps) = &,

ce qui implique
Tracesfn(ST) N MauvPre(Ps) = @.

D’aprés le lemme 2.2, on a donc ST = Ps.
(2) = (1). Considérons P; = fermeture( Traces(ST”)). On montre aisément que P est une propriété
de siireté telle que ST’ |= Ps. Par hypothése, on a donc ST | P, c’est-a-dire

Traces(ST) C fermeture( Traces(ST")).

Sachant que pour toute propriété linéaire P, on a

pref(P) = pref (fermeture(P)),
on obtient :
Tracesin(ST) = pref ( Traces(ST))
C pref (fermeture( Traces(ST")))

= pref (Traces(ST"))
= Tracesfi, (ST').

On obtient le corollaire suivant.

Corollaire 2.2 (Traces finies équivalentes). Soient ST et ST’ deux systémes de transition sans
état final sur le méme ensemble de propositions atomiques Prop. Alors les assertions suivantes sont
équivalentes :

o Tracessn(ST) = Tracesfin(ST'),
e pour toute propriété de sireté P; sur Prop, ST | P; < ST’ |= Ps.
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Exemple 2.6. Considérons un feu de circulation avec trois phases < rouge », < vert », < orange >.
Nous allons montrer que la propriété P; définie par

< chaque phase “rouge” est immédiatement précédée d’une phase “orange” > (2.2)
est une propriété de siireté, mais pas un invariant.
Pour cela, on pose Prop = {rouge, orange, vert}. La propriété < il y a toujours au moins une lumiére
allumée > peut s’écrire
{O':A()Al... |VJ ZO,AJ' g P?"Op/\Aj #@}
Les mauvais préfixes de cette propriété sont les mots finis qui contiennent @. Un mauvais préfixe
minimal finit nécessairement par @. Puis, la propriété < deuz lumiéres ne sont jamais allumées en
méme temps > peut s’écrire
{O':A()Al... | VJ 207Aj Q P?"Op/\|Aj| S ].}
Les mauvais préfixes de cette propriété sont les mots finis contenant {rouge, vert}, {rouge, orange} ou
{orange, vert}. Un mauvais préfixe minimal finit nécessairement par un tel ensemble.
Considérons maintenant I’ensemble de propositions atomiques Prop’ = {rouge, orange}. La propriété
P, définie par 2.2 s’écrit
{o=A0A,... |Vj>0,A; C Prop’ A(rouge € A; = j >0 Aorange € A;_1)}.
Les mauvais préfixes de cette propriété sont les mots finis qui ne vérifient pas la condition
(rouge € A; = j > 0Aorange € A;_1).
Le mot “@@{rouge}” est un mauvais préfixe minimal. Le mauvais préfixe
{orange}{orange}{rouge}{rouge}@{rouge}
n’est pas minimal puisque qu’il admet le préfixe strict
{orange}{orange}{rouge}{rouge},
qui est aussi un mauvais préfixe.
Les mauvais préfixes minimaux de cette propriété de siireté constituent un langage régulier. L’au-

tomate fini de la figure 2.4 accepte précisément ces mauvais préfixes minimaux (dans cet automate,
Pexpression < —orange » signifie < soit &, soit “rouge” ). °

e rouge
orange

orange 7]

—orange

Figure 2.4. Automate fini acceptant les mauvais préfizes minimaux pour la propriété de streté P
définie par (2.2).
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2.4 Propriétés de vivacité

Pour terminer ce deuxieme chapitre du cours, décrivons brievement une autre catégorie remarquable
de propriétés linéaires : les propriétés de vivacité (liveness en anglais).

Les propriétés de vivacité peuvent étre décrites par ’expression < quelque chose de bon devrait
arriver dans le futur >. Ces propriétés sont alors parfois appelées progreés, et sont complémentaires des
propriétés de stireté. La définition formelle suivante d’une propriété de vivacité utilise encore la notion
de préfixe.

Définition 2.12 (Propriété de vivacité). Une propriété linéaire P, sur un ensemble de propositions
atomiques Prop est appelée propriété de vivacité si pref (P,) = (QP"’I’)*. O

Ainsi, P, est une propriété de vivacité si chaque mot fini peut étre prolongé en un mot infini qui
vérifie P,. On peut facilement montrer que la seule propriété linéaire qui soit & la fois une propriété
de stireté et une propriété de vivacité est (2P mp)w. Le théoreme suivant montre I’importance conjointe

des propriétés de siireté et de vivacité.

Théoréme 2.5 (Théoréme de décomposition). Pour toute propriété linéaire P, il existe une propriété
de stireté P et une propriété de vivacité P, telles que

P=P,NP,.

Remarque. 1l n’y a pas unicité de la décomposition P = P; N P,. Cependant, on peut montrer que la
décomposition la plus < fine > est obtenue avec

P, = fermeture(P) et P,=PU ((ZPTOP)UJ \fermeture(P)).

2.5 Exercices

Exercice 1 : le blocage

On considere 2 feux de circulation disposés sur des routes qui se croisent, modélisés par les systémes
de transition F'Cy et FCs de la figure 2.5.

1. Décrire la composition paralléle synchrone F'C; || FCy des systéemes de transition F'Cy et F'Cs.

2. Que remarque-t-on ?
FCy FCs

Bl | al B

verty verto

Figure 2.5. Feuz de circulation.
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Exercice 2 : le distributeur de boissons

On considéere un distributeur de boissons, modélisé par le systéeme de transition illustré sur la figure
2.6, muni de la fonction d’étiquetage définie par L(s) = {s} pour tout état s.

1. Donner les fragments de chemins correspondant aux fragments d’exécution pi, ps et ps donnés
par

inserer_piece . choix_interne ,
p1 = paye —— choix ——— café... s

, servir_cafe inserer_piece . choix_interne ,
po = café paye choix café. ..

)

inserer_piece . choix_interne , servir_cafe
p3 = paye ——————— choix café paye .

2. Décrire les propriétés de ces fragments de chemin et donner leur trace.

paye)

servir_soda servir_cafe

inserer_piece

(choix)

choix_interne choix_interne

Figure 2.6. Systéme de transition modélisant un distributeur de boissons.

Exercice 3 : exclusion mutuelle par sémaphore

On considére le systéme de transition ST, obtenu par déploiement du graphe P; ||| P, ot les
processus Py, Py, illustrés sur la figure 2.7, partagent le sémaphore binaire y. On suppose que ’ensemble
de propositions atomiques est donné par Prop = {crity, crita}.

| |

noncrity noncrity

yey+1 y<y+1

pau@ pau@

(y>0: (y>0):
y<y—1 yey-1

Figure 2.7. Processus concurrents partageant le sémaphore binaire y.

1. Décrire les fragments de chemins 7 et 7 définis par :

m = < noncrity, noncritg, y = 1 >—< pausey, noncrity,y = 1 >—< crity, noncrite, y = 0 >—
< noncrity, noncrity, y = 1 >—< noncrity, pause,, y = 1 >—< noncrity, crita,y =0 >— ...
T = < noncrity, noncrite, y = 1 >—< pause, noncrite, y = 1 >—< pause;, pause,,y = 1 >—
< pausey, crita, y = 0 >—< pause;, noncrita, y = 1 >—< crity, noncrity,y = 0 >,

puis donner leur trace.
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. Soit la propriété ®; : < toujours au plus un des deux processus est dans son état critique>.

Montrer que la propriété ®; est une propriété linéaire. Donner des exemples de mots infinis
appartenant a ®, puis un mot infini n’appartenant pas a ®;. Montrer que ®; est un invariant
puis exécuter I'algorithme de vérification d’invariant pour décider si ST, satisfait ®; ou non.

Analyser de méme la propriété @, : < toujours aucun processus n’est en état critique .

4. Que dire d’un algorithme qui interdit aux deux processus d’entrer dans leur état critique ?

5. On consideére maintenant I’ensemble de propositions atomiques

Prop’ = {pause,, pause,, crity, crity }.

Décrire comme un ensemble de mots la propriété ®5 sur Prop’ qui exprime que chaque processus
entre effectivement en état critique aprés un temps d’attente fini.

7 . < /42 / . .
Décrire comme un ensemble de mots la propriété &4 sur Prop’ qui exprime que chaque processus
entre en état critique infiniment souvent, a condition d’attendre une infinité de fois.

7. Les propriétés @3, @, sont-elles satisfaites par le systéeme de transition STse, 7

8. Sont-elles des propriétés de streté ? de vivacité?

Exercice 4

On considére un ensemble fini Prop de propositions atomiques.

1.

Soit ST un systéme de transition sur Prop. Montrer que I’ensemble fermeture(Tmces(ST)) est
une propriété de stireté, qui est vérifiée par ST

2. Soit P une propriété linéaire sur Prop. Montrer que pref(P) = pref ( fermeture(P)).

3. Montrer que la seule propriété linéaire qui soit a la fois une propriété de siireté et une propriété

de vivacité est (2Pmp)w.

Exercice 5 : ’algorithme d’exclusion de Peterson

On considere deux processus Py, P, possédant un état critique noté crit, précédé d’un état d’attente
noté pause, lui-méme précédé d’un état non critique noté noncrit. On suppose que P; et P, admettent
en commun les variables de type booléen by, by et la variable x dont le domaine est dom(z) = {1,2}.
Si les deux processus désirent entrer dans leur état critique, alors la valeur de la variable x effectue la
décision : si & = i, c’est P; qui entre dans son état critique. De plus, si P, (respectivement P) entre
en état d’attente, alors la variable  prend la valeur 2 (respectivement 1). Les variables b; sont définies
par b; = pause; V crit;.

1.
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Représenter chaque processus par un graphe conditionnel et contruire le systéme de transition
STpeter obtenu par déploiement de leur composition.

Le systeme de transition STpete, vérifie-t-il la propriété d’exclusion mutuelle? Quelle est sa
particularité ?

Le systeme de transition ST pee, vérifie-t-il les propriétés @3, @4 de 'exercice 37



CHAPITRE 3

Vérification de propriétés de siireté

Nous avons vu dans le chapitre précédent que la vérification des invariants peut étre effectuée en
appliquant un algorithme d’analyse d’accessibilité dans le graphe d’états d’un systéme de transition.
Dans ce chapitre, nous allons présenter une méthode permettant de vérifier d’autres propriétés linéaires.
Nous considérons principalement des propriétés de stireté réguliéres, c’est-a-dire des propriétés de stireté
dont les mauvais préfixes constituent un langage régulier, qui peut donc étre reconnu par un automate
fini. Nous allons alors décrire un algorithme de vérification d’une telle propriété de siireté P; pour un
systeme de transition ST, qui repose sur une réduction a un probléme de vérification d’invariant, pour
un certain produit ST ® A, ou ST est le systéme de transition considéré et A un automate fini qui
reconnait les mauvais préfixes de Ps.

3.1 Automates finis et langages réguliers

Nous commencons par présenter quelques rappels sur les automates finis.

3.1.1 Automate fini non-déterministe

Définition 3.1 (Automate Fini Non-déterministe). Un automate fini non-déterministe A est entiére-
ment déterminé par la donnée d’un quintuplet A = (Q, %, 6, Qo, F') ou
@ est un ensemble fini d’états,
Y est un alphabet,
5 Q x ¥ — 29 est une fonction de transition,
Qo C @ est un ensemble d’états initiaux,
e F' C @ est un ensemble d’états acceptants (ou finaux).
La taille de A, notée |A|, est le nombre d’états et de transitions dans A :

A =101+ > > 16(a. A)].

qeEQ AcxY

O

L’alphabet ¥ détermine ainsi les symboles sur lesquels 'automate A4 est défini. L’ensemble @y (qui
peut étre vide) détermine les états dans lesquels 'automate A4 peut débuter. La fonction de transition
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6 peut étre identifiée avec la relation —C @Q x ¥ x @) définie par
A ’ /
qg—q & ¢ €i(q,A).

Intuitivement, la notation ¢ A, q' décrit 'automate A qui se déplace de 'état ¢ & I’état ¢’ lorsqu’il
lit le symbole A.

Exemple 3.1. Considérons 'automate illustré sur la figure 3.1. Dans cet exemple, on a @ = {qo, q1, G2},
Y ={A,B}, Qo ={q}, F = {gz2} et la fonction de transition § est définie par

(g0, 4) = {qo}, 8(qo, B) = {q0, a1},
6(q17A) = {q?}u 5(q1uB) = {q2}7
6((]2,14) =4, 5((]2,3) =dJ.

Les conventions de dessin pour les automates sont les mémes que pour les systemes de transition. Les
états acceptants sont distingués des autres par un double cercle.

A
A
~(w )——(2)
B
B

Figure 3.1. Exemple d’automate fini non-déterministe.

3.1.2 Langage accepté par un automate

Le comportement opérationnel d’'un automate peut étre décrit de la fagon suivante. L’automate
débute dans un état gy € Qg. On lui donne un mot w € ¥* a lire. L’automate lit alors ce mot w
caractére par caractere, de gauche a droite. Apres lecture d’'un caractere, ’automate change d’état
selon la fonction de transition §. Si le symbole A lu & partir de I'état ¢ est tel que d(gq, A) contient plus
d’un état (ce qui se produit pour §(qo, B) dans 'exemple 3.1), alors la décision pour I’état suivant est
prise de fagon non déterministe. Si (g, A) = &, alors 'automate est bloqué. Si automate est bloqué
avant la fin du mot w, on dit que le mot w est rejeté. Si au contraire le mot w est lu de fagon complete,
I’automate s’arréte. On dit qu’il accepte le mot w §’il s’arréte dans un état acceptant. Autrement, on
dit qu’il rejette le mot w.

Définition 3.2 (Langage accepté par un automate). Soit A = (Q, X%, d, Qo, F') un automate fini non-
déterministe et soit w = A;... A, € X* un mot fini. On appelle exécution de 'automate A pour le
mot w toute suite finie d’états qoq1 . . . g, telle que

® g € Qo,

° g h gi+1 pour tout ¢ € {0,...,n —1}.
On dit que 'exécution qoqs - . . g, est acceptante siq, € F. Unmot w € X* est dit accepté par 'automate
A ¢l existe au moins une exécution acceptante pour w.

Le langage accepté par A, noté L(A), est I’ensemble des mots finis dans ¥* qui sont acceptés par

A. O
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Exemple 3.2. Pour 'automate illustré sur la figure 3.1, go est une exécution pour le mot vide &,
G0q090q0 est une exécution pour les mots ABA et BBA et qpq1g2 est une exécution pour les mots
BA et BB. Les exécutions qoq1q2 pour BA et BB et qyqoqi1q2 pour ABB, ABA, BBA et BBB sont
acceptantes. Donc ces mots appartiennent au langage £(.A). En revanche, le mot AAA n’est pas accepté
par A, car il n’admet qu’une seule exécution, goqogogo, qui n’est pas acceptante. Le langage £(.A) est
ainsi déterminé par P’expression réguliere (A + B)*B(A + B). Autrement dit, £(A) est ’ensemble des
mots sur {A, B} admettant au moins 2 lettres, et dont 'avant-derniére lettre est B. .

Les cas Qo = @ et F' = & sont possibles. Dans ces 2 cas, on a L(A) = @. Si F' = &, alors il n’existe
aucune exécution acceptante. Si Qg = &, alors il n’existe aucune exécution (intuitivement, 'automate
rejette d’emblée tout mot & lire).

3.1.3 Expressions réguliéres

Soit ¥ un alphabet non vide. Les expressions réguliéres ! sont construites & partir des symboles @
(pour désigner le langage vide, qui ne contient aucun mot), & (pour désigner le langage neutre {¢}),
A, avec A € ¥ (pour le singleton {A}), et des opérateurs de langages : <+> pour I'union, <*» pour la
répétition finie (étoile de Kleene) et <> pour la concaténation. Les expressions réguliéres sont définies
de fagon inductive par les régles suivantes :

e O et ¢ sont des expressions régulieres ;

e si A € X alors A est une expression réguliére;

e si B, E] et Ey sont des expressions régulieres, alors Ey + Ey, E; - E2 et EY sont aussi des
expressions régulieres ;

e rien d’autre n’est une expression réguliére.

Si E est une expression réguliere, on définit son langage L£(F) a partir des régles de sémantique
suivantes :

L(g) =2, L(g)={e}, L(4)={4},
L(Ey + By) = L(Ey) UL(E,), L(Ey-Ep) =L(F)-L(E2), L(E*)=L(E)"

On note souvent E™ pour désigner I’expression réguliére E- E*. On montre alors que LI(E*) =L(E)T.

Un langage £ C ¥* est dit régulier s'il existe une expression réguliere E sur ¥ telle que L(E) = L.
Par exemple, 'expression F = (A + E)* -B-B- (A + E) est une expression réguliere sur I’alphabet
¥ = {A, B}, qui correspond au langage

L(E)={wBBA |we Y} U{wB® | we %*}.

On allege tres souvent les notations en omettant la barre inférieure et le point de concaténation.

Le théoréme de Kleene [9] montre que l'ensemble des langages réguliers sur un alphabet ¥ est
exactement ’ensemble des langages sur ¥ reconnaissables par automate fini (voir la section 3.1.5 plus
bas). Etant donné un automate fini non-déterministe A, il existe méme des algorithmes qui déterminent
une expression réguliere E telle que L(E) = L(A). Réciproquement, pour toute expression réguliere
E, on peut construire un automate fini non-déterministe A qui accepte L(E).

Un exemple de langage non régulier est donné par £ = {A"B" | n > 0}.

3.1.4 Propriétés remarquables

On peut caractériser le langage accepté par un automate fini non-déterministe de la fagon suivante.
Soit A un tel automate. On étend la fonction de transition § & @ X 3* en posant

d(q.e) ={q}, O(q,A1Az... Ap) = U 0(p, Ag ... Ay).

PES(q,A1)

1. Regular expressions en anglais, parfois traduit expressions rationnelles en frangais.
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Autrement dit, 6(g, w) est ensemble des états qui sont accessibles depuis ’état g avec le mot w. En
particulier, Ug,eg,0(qo, w) est 'ensemble des états ol une exécution pour w peut terminer. Si un de
ces états est acceptant, alors le mot w admet une exécution acceptante. Inversement, si w ¢ L(A),
alors aucun de ces états n’est acceptant. On obtient donc la caractérisation suivante.

Lemme 3.1 (Caractérisation du langage accepté par un automate fini non-déterministe). Soit A un
automate fini non-déterministe. Alors

L(A) ={weX"|Iq € Qo tel que §(g0,w) N F # &}.

Puisque les automates finis non-déterministes correspondent aux langages réguliers, on identifie
naturellement ceux qui admettent le méme langage.

Définition 3.3 (Automates finis non-déterministes équivalents). Deux automates finis non-déterminis-
tes sont dits équivalents s’ils admettent le méme langage accepté. O

Non vacuité du langage d’un automate

Une question importante dans I’étude d’'un automate consiste a déterminer si son langage accepté
est vide ou non.

Théoréme 3.1. Soit A = (Q,%,0,Qo, F') un automate fini non-déterministe. Alors L(A) # @ si et
seulement si il existe gg € Qo et ¢ € F tels que ¢ soit accessible depuis qp.

Démonstration. Supposons qu’il existe gg € Qg et ¢ € F tels que ¢ soit accessible depuis gg. Alors A
accepte le mot correspondant & cette exécution acceptante, donc L(A) # .

Réciproquement, si £(A) # @, alors il existe w € L(A) et une exécution acceptante pour w, qui
commence en qg € Qo et qui termine en q € F. O

En adaptant un algorithme de balayage, on peut décider si £(.A) est vide, avec un temps de ’ordre
de O(|A]).

Les langages réguliers vérifient de nombreuses propriétés de compatibilité avec les opérations sur
les langages. Ainsi, I'union de deux langages réguliers est un langage régulier. De méme pour la
concaténation, 'intersection, le complémentaire et la répétition finie. On peut montrer ces propriétés
en utilisant la caractérisation des langages réguliers par des automates finis non-déterministes. FEn
particulier, la propriété de compatibilité avec 'intersection peut étre établie en construisant, a partir
de deux automates A; et Ay, un automate produit A; ® As. Cette construction est analogue a celle
de Popérateur d’échange synchrone || de deux systémes de transition (Définition 1.13).

Définition 3.4 (Produit synchrone d’automates finis non-déterministes). Soient deux automates finis
non-déterministes A; = (Q1,%,91,Q0,1, F1) et Ay = (Q2,%, 02, Qo 2, F2) sur un méme alphabet X.
L’automate produit A; ® A, est défini par

A1 ®@ Ay = (Q1 X Q2,%,0,Q0,1 X Qo,2, F1 x Fy),

ou la fonction de transition ¢ est donnée par

A A
@ ——1q N G2 —2
. .
(q1,92) — (41, 45)
O

On montre alors que L£(A; ® As) = L(A1) N L(Az).
Pour montrer la propriété de compatibilité par complémentaire, on introduit d’abord la notion
d’automate fini déterministe.
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Définition 3.5 (Automate fini déterministe). Soit A = (Q, %, J, Qo, F') un automate fini non-détermi-
niste. On dit que A est déterministe si |Qo| < 1 et |d(g, A)| < 1 pour tout état ¢ € Q et pour tout
symbole A € ¥. On dit que A est complet si |Qo| = 1 et |6(g, A)| = 1 pour tout état ¢ € Q et pour
tout symbole A € X.. O

Un automate fini complet est souvent noté A = (Q, %, d, go, '), ot qo est 'unique état initial. On
observe qu'un automate complet admet une unique exécution pour chaque mot donné en lecture. On
définit alors, pour un automate complet A = (Q, %, 4, go, F), Pautomate A = (Q, %, 6, qo,Q \ F). On
montre ensuite que £(A) = X*\ L(A).

Il reste enfin & montrer que pour chaque automate fini non déterministe A, il existe un automate
fini complet A, équivalent. Pour cela, on pose

Ac = (2Q7 Ea 507 Q07 FC)?
ou l'ensemble des états acceptants F, est défini par

F.={QCQ|QnF+a}

et ou la fonction de transition 8. est définie sur 29 x 3 par

0:(Q', A) = | 8(a, 4).

qeQ’

La construction précédente est appelée powerset construction ou subset construction, car les états de
A, sont des sous-ensembles de Q). Ainsi construit, 'automate A, est complet et on a

5e(Qo,w) = | 6(q0,w),

q0€Qo

pour chaque mot w € ¥* (4 désigne la fonction de transition étendue). On a done, d’aprés le Lemme

3.1, L(A.) = L(A).

Exemple 3.3. L’automate complet obtenu par la méthode powerset construction a partir de ’auto-
mate fini non-déterministe de la figure 3.1 est donné sur la figure 3.2.
[}

La méthode powerset construction produit un automate dont la taille est exponentielle par rapport
a la taille de 'automate de départ. Par exemple, le langage régulier déterminé par I’expression réguliere
Ey = (A+ B)*B(A+ B)* est accepté par un automate fini non-déterministe & k + 2 états ; cependant,
on peut montrer quil n’existe pas d’automate complet & moins de 2 états acceptant le langage L(E}y).
En effet, intuitivement, un automate complet acceptant le langage L(F)) doit < se souvenir > des
positions du symbole B parmi les k derniers caractéres lus, ce qui produit au moins Q(2%) états.

Enfin, on peut montrer que pour tout langage régulier £, il existe un unique automate complet A
tel que L(A) = L et admettant un nombre minimal d’états, a isomorphisme de renommage des états
pres.

3.1.5 Le théoréme de Kleene

Comme évoqué plus haut, le théoréme de Kleene [9] affirme que I'ensemble des langages réguliers
sur un alphabet ¥ est exactement I’ensemble des langages sur ¥ reconnaissables par automate fini. De
plus, il existe des algorithmes permettant de construire un automate a partir d’une expression réguliere
et inversement. L’algorithme de Thompson [18] permet ainsi d’aller de I'expression & 'automate, tout
comme la construction de Glushkov. La méthode de départ ou I’algorithme de McNaughton et Yamada
[13] permettent au contraire d’aller de 'automate & ’expression.
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A

{q(h q1, QZ}

B

Figure 3.2. Automate complet obtenu par la méthode powerset construction a partir de l’automate
fini non-déterministe de la figure 3.1.

Algorithme de Thompson

L’algorithme de Thompson consiste a construire un automate fini non-déterministe a partir d’une
expression réguliere, en utilisant des constructions pour l'union, la concaténation et 1’étoile. Ces
constructions font apparaitre des transitions portant sur le mot vide €, qui sont ensuite éliminées.
A chaque expression réguliere est associé un automate fini. Cet automate est construit par induction
sur la structure de I’expression.

Exemple 3.4. Considérons l'expression réguliére E = ab + ¢* sur 'alphabet ¥ = {a, b, c}.
On construit d’abord trois automates reconnaissant respectivement les langages {a}, {b}, {c} (figure
3.3).

Figure 3.3. Automates finis non-déterministes reconnaissant les langages {a}, {b}, {c}.

Par concaténation des deux premiers automates, obtient un automate reconnaissant le langage {ab}
(figure 3.4).

OanO=
do q1
Figure 3.4. Automate fini non-déterministe reconnaissant le langage {ab}.

A partir de I'automate reconnaissant le langage {c}, on obtient ensuite un automate reconnaissant
le langage ¢* (figure 3.5).
Le langage L(E) est alors reconnu par 'automate union des deux étapes précédentes (figure 3.6).
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Figure 3.5. Automate fini non-déterministe reconnaissant le langage c*.

9

Figure 3.6. Automate fini non-déterministe reconnaissant le langage L(ab + c*).

Pour finir, on supprime certaines transitions portant sur le mot vide . On obtient alors 'automate
illustré sur la figure 3.7.

Figure 3.7. Automate fini non-déterministe sans e-transitions, reconnaissant le langage L(ab + c*).

Méthode de départ et Lemme de Arden

On peut déterminer le langage d’un automate complet par la méthode de départ et le Lemme de
Arden. Pour simplifier, supposons ici que les états de 'automate A sont les entiers 1,2,...,n et que
A admet I’état 1 comme unique état initial. Pour tout k € {1,...,n}, on note Dy 'ensemble des mots
qui conduisent de I’état k a un état acceptant. Les ensembles Dy sont appelés langages de départ. Le
langage £(.A) coincide alors avec I’ensemble D;. Notons ensuite ¥ = {A, B, ...}. Si k n’est pas un état
acceptant, on pose 1’équation

(Ex) Di = {A}Ds(,a) U{B}Ds(. ) U . ...
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Si au contraire k est un état acceptant, on pose I’équation
(Ek) Dy ={e} U{A}Dsx,a) U{B} D5y U - ...
On pose alors le systéme d’équations (F1),..., (E,), qui exprime

D, en fonction de Dy, D3, ..., Dy,
D5 en fonction de Dy, D3, ..., Dy,

D,, en fonction de D1, Do, ..., D,.

Le Lemme de Arden permet de résoudre ce systéme.

Lemme 3.2 (Lemme de Arden). Soient L; et Lo deux langages. Le langage L = LjLs est le plus
petit langage (pour I'inclusion ensembliste) qui est solution de 1’équation X = (L; - X) U La. De plus,
si L1 ne contient pas le mot vide ¢, alors le langage L = L Lo est 'unique solution de cette équation.

Dans le systeme d’équations de la méthode de départ, certaines des équations permettent souvent
d’effectuer des simplifications. Par exemple :
e si le second membre est le méme dans la ligne D; = ... et la ligne D; = ..., alors on peut en
déduire la relation D; = Dj;
e si I'une des équations est de la forme D; = ¥D;, on déduit du lemme de Arden que D; = & (en
effet, si L est un langage, alors L = LU @ et L@ = @2). On dit alors que i est un état picge,
ou puits).

Exemple 3.5. Considérons lautomate A sur ¥ = {a,b}, illustré sur la figure 3.8. Le systéme

Figure 3.8. Ezemple d’automate fini dont on détermine le langage accepté par la méthode de départ.

d’équations de la méthode de départ s’écrit :
D, = {a}Dg @] {b}D3,

D2 = {G}Dg U {b}Dg,
D3 = {e} U{a}Ds U {b}Ds.

2. Le langage vide est absorbant pour la concaténation des langages (voir le cours Langages et automates de 3¢ année
de Licence).
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On a donc D3 = {e} U Dy, dott Dy = {a}Dy U {b}({e} U D3), ce qui donne Dy = {b} U {a,b}Ds.
D’aprés le Lemme de Arden, on obtient Dy = {a,b}*{b}. Or, on a L(A) = Dy et D; = Do, d’ot

L(A) = {a, b}"{b}.

3.2 Vérification de propriétés de siireté régulieres

Dans cette section, nous allons montrer comment les automates finis peuvent étre utilisés pour
vérifier une classe importante de propriétés de stlireté. Ces propriétés de siireté particulieres sont ca-
ractérisées par le fait que leurs mauvais préfixes constituent un langage régulier, qui est donc reconnais-
sable par un automate fini non-déterministe. On les nomme donc naturellement propriétés de sireté
régulieres. Le résultat principal de cette section est que la vérification d’une telle propriété de stireté
réguliere sur un systéme de transition fini ST peut se ramener a une vérification d’invariant sur le
produit de ST avec un automate fini non-déterministe A pour les mauvais préfixes. Autrement dit, si
I’on souhaite vérifier une propriété de siireté réguliere pour un systéme de transition fini ST, il suffit de
réaliser une analyse d’accessibilité sur le produit ST ® A pour vérifier un invariant associé sur ST ® A.

3.2.1 Propriétés de siireté régulieres

Soit Prop un ensemble de propositions atomiques. Rappelons que les propriétés de stireté sont des
propriétés linéaires, c’est-a-dire des ensembles de mots infinis sur 2°7°P, telles que chaque trace qui
ne satisfait pas une telle propriété de siireté admet un mauvais préfixe qui cause une réfutation. Les
mauvais préfixes sont finis, donc ’ensemble des mauvais préfixes constitue un langage de mots finis sur
l'alphabet ¥ = 2797, Les entrées A € ¥ de 'automate fini non-déterministe sont donc des ensembles
de propositions atomiques (ce sont donc des sous-ensembles de Prop).

Par exemple, si Prop = {a, b}, alors on a

X= {A17A2a A37 A4}a

avec Ay = {}, Ay = {a}, A3 = {b} et Ay = {a,b} (on note A; = {} pour désigner le sous-ensemble
vide de Prop et ainsi le distinguer de expression réguliére @ qui représente le langage vide).

Définition 3.6 (Propriété de stireté réguliere). Soit Prop un ensemble de propositions atomiques et
P une propriété de siireté sur Prop. On dit que Ps est une propriété de sireté réguliére si son ensemble
de mauvais préfixes constitue un langage régulier sur 2°7°P. O

Chaque invariant est une propriété de stireté réguliere. Si ¢ est une formule propositionnelle d’un
invariant, alors ® doit étre vérifiée par tous les états accessibles, et le langage des mauvais préfixes est
constitué des mots finis AgA; ... A, tels que A; £ ® pour un certain ¢ € {1,...,n}. Un tel langage
est régulier, puisqu’il est caractérisé par I’expression réguliere

E = &% (—=®)true*,

ot @ correspond a lensemble des parties A de Prop telles que A E o, —® & l'ensemble des parties A
de Prop telles que A }£ @, et true représente 'ensemble de toutes les parties de Prop.

Le langage des mauvais préfixes d’une propriété invariante Pj,, peut étre représenté par un auto-
mate fini non-déterministe a deux états, tel que donné sur la figure 3.9. Dans cette figure, une aréte
du type

34 /
q——>4q
représente toutes les transitions ¢ i> q avec A= .
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~(my——()

P true

Figure 3.9. Automate fini non-déterministe acceptant tous les mauvais préfizes de la propriété inva-
riante associée a la formule ®.

L’ensemble des mauvais préfixes minimaux consitute également un langage régulier, caractérisé par
I’expression réguliere
F=o"(—d),

et reconnu par 'automate fini non-déterministe obtenu a partir de la figure 3.9 en supprimant la boucle

true sur I'état q;.
(o0 )—

P

Figure 3.10. Automate fini non-déterministe acceptant tous les mauvais préfizes minimauz de la
propriété invariante associée d la formule .

Le lemme suivant montre que les propriétés de stireté réguliéres peuvent étre définies a partir des
mauvais préfixes minimaux uniquement.

Lemme 3.3. Soit P; une propriété de stireté. Alors Ps est réguliere si et seulement si 'ensemble de
ses mauvais préfixes minimaux est régulier.

Démonstration. Supposons que 'ensemble M des mauvais préfixes minimaux de P est régulier. Soit
alors A = (Q, 2Fmop 5. Qo, F ) un automate fini non-déterministe pour M. On construit un automate
fini non-déterministe A’ en ajoutant a A des boucles de type

A
q—4q,

pour tous les états ¢ € F' et pour toute partie A de I’ensemble Prop. On vérifie facilement que le
langage accepté par A’ est constitué de I’ensemble M’ de tous les mauvais préfixes de P,. Ainsi, M’
est un langage régulier. Donc la propriété de siireté P est bien réguliere.

Supposons ensuite que Ps est une propriété de stireté réguliere. Soit alors A’ = (Q7 2Pmop 5 Qo, F )
un automate fini déterministe pour I’ensemble M’ des mauvais préfixes de P,. Pour ’ensemble M des
mauvais préfixes minimaux de P;, on construit un automate fini déterministe A en supprimant toutes
les transitions issues des états acceptants de A’. Vérifions que £(A) = M.

Soit w = A; ... A, € L(A); alors 'exécution qoq; . . . ¢, dans A acceptant w, est aussi une exécution
acceptante de w dans A’. Donc w € L(A"). Donc w est un mauvais préfixe pour Ps. Supposons que w
n’est pas un mauvais préfixe minimal. Alors il existe un préfixe A; ... A; de w, avec i < n, qui est aussi
un mauvais préfixe de Ps. Donc A; ... A; € L(A"). Puisque A’ est déterministe, 'unique exécution
pour A;...A; dans A’ est qo...q; et ¢; € F. Comme ¢ < n et ¢; ne possede pas de transition sortante
dans A, alors qq ... q; . . . ¢, ne peut pas étre une exécution pour Ay ... A4;... A, dans A. Cela contredit
I’hypotheése et montre que w est un mauvais préfixe minimal pour P.
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Supposons enfin que w est un mauvais préfixe minimal pour Ps, et notons qq . . . ¢, 'unique exécution
pour w dans A". Ona Ay ... A, € M' = L(A") et pour tout i € {1,...,n—1}, Ay ... A; ¢ M' = L(A).
Donc ¢; ¢ F pour 0 < ¢ < n, alors que ¢, € F. Par conséquent, qq . ..g, est une exécution acceptante
pour w dans A. Donc w € L(A). O

Exemple 3.6. Soit Prop = {a, b} ; considérons la formule & = a\V—b. Alors ® correspond & expression
réguliere { } +{a}+{a, b}, =® correspond & I'expression réguliére {b}, et true correspond & I’expression
réguliere { } + {a} + {b} + {a,b}. Ainsi, les mauvais préfixes de la propriété invariante correspondant
a la formule a V —b sont donnés par I’expression réguliere

E= ({}+{a} +{a,0})" ~{0} ({} +{a} + {0} + {a,;0})".

Le langage L(E) est donc constitué des mots finis AgA; ... A, tels que A; = {b} pour un certain
ie{l,...,n}.

L’automate fini non-déterministe donné sur la figure 3.9 est une représentation d’un automate a
deux états qg, g1, avec pour transitions

b
g0 25 a0, g0~ g0, g0 —22 g,

{b}
qo — q1,

b b
q1 —{i% q1, Q1 ﬁ) qi, Q1 L) qi, q1 ﬁ) qi-

Les mauvais préfixes minimaux sont décrits par I’expression réguliere
F=({}+{a} +{ab}) ~{b}
L]
Exemple 3.7. Considérons a nouveau le modele d’exclusion mutuelle par sémaphore de deux proces-
sus, et la propriété de stireté P, : < il y a au plus un processus en état critique >. Les mauvais préfixes
de P; forment le langage constitué de tous les mots finis A; ... A, pour lesquels il existe (au moins)

un indice ¢ € {1,...,n} tel que
{critl, Critz} - Az

Si n est le plus petit indice vérifiant cette propriété, c’est-a-dire
{crity, crita} € Ay, et {crity, crita} € A; pour 1 < j <n,
alors Ap ... A, est un mauvais préfixe minimal. Le langage de tous les mauvais préfixes minimaux est

régulier et peut étre reconnu par ’automate fini non-déterministe donné sur la figure 3.11. La propriété
d’exclusion mutuelle Py est donc bien une propriété de sfireté réguliere. °

@ crity A crity
—

- (Cl’itl AN Critz)

Figure 3.11. Automate fini non-déterministe acceptant tous les mauvais préfives minimauz de la
propriété d’exclusion mutuelle.
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Exemple 3.8. Considérons a nouveau un feu de circulation avec trois couleurs possibles : rouge,
orange, vert. Soit la propriété Ps : < une phase rouge est toujours précédée immédiatement par une
phase orange>. Cette propriété correspond a l’ensemble des mots infinis 0 = AgA; ... avec A; C
{rouge, orange}, tels que pour tout i > 0, on ait

rouge € A; implique ¢ > 0 et orange € A;_1

(si le feu est dans une phase verte a l'indice ¢, alors A; = { }). Les mauvais préfixes de Ps sont les mots
finis qui ne respectent pas cette condition. Par exemple, le mot { }{ }{rouge} est un mauvais préfixe.
Plus généralement, les mauvais préfixes minimaux de P; sont les mots finis de la forme A; ... A, tels
que n > 1, rouge € A,, et orange ¢ A,,_;. Ces mauvais préfixes minimaux sont reconnus par 'automate
fini non-déterministe donné sur la figure 3.12.

—orange i

rouge Q
q2

—rouge A orange

orange —rouge A —orange

Figure 3.12. Automate fini non-déterministe acceptant tous les mauvais préfizes minimauz d’une
propriété d’un feu de circulation.

Sur cette figure, les arétes sont étiquetées sur I'alphabet ¥ = 277°P avec Prop = {rouge, orange}.
On a donc

¥ = {{}, {rouge}, {orange}, {rouge, orange} }.

Par exemple, I’étiquette orange sur la boucle de 'état ¢, correspond & toutes les parties A C Prop
contenant orange, c’est-a-dire {orange} ou {orange, rouge} (certains types de feux peuvent étre de deux
couleurs en méme temps). Autrement dit, la boucle de ’état ¢ résume deux transitions :

{orange} {orange,rouge}
%

G ——qaetq
De méme, I'aréte —orange de ¢; vers gy représente les transitions

{rouge} {}
g1 — qo et 1 —— qo.

Enfin, l'aréte rouge de gg vers g2 correspond aux étiquettes {rouge} et {rouge, orange} ; aréte —rouge A
orange de qq vers g correspond a I’étiquette {orange} ; la boucle —rougeA—orange de I’état gy correspond
a l'étiquette { }.

Ainsi, la propriété P est bien une propriété de streté réguliére. .

Donnons enfin un exemple de propriété de stireté qui n’est pas réguliere.

Exemple 3.9. Considérons a nouveau un distributeur de boissons. Soit la propriété de stireté P; :
< le nombre de piéces insérées est toujours au moins égal au nombre de boissons distribuées >. Posons
Prop = {paye, distribue}. Les mauvais préfixes de Ps forment le langage

{O’ € (2P”’p)w | occ(o, distribue) > oce(o, paie)},

ol occ(o, a) désigne le nombres d’occurences de a dans 0. On peut montrer que ce langage n’est pas
régulier. °
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3.2.2 Algorithme de vérification d’une propriété de siireté réguliere

Soit Ps une propriété de siireté réguliere sur un ensemble Prop de propositions atomiques, et soit
A un automate fini non-déterministe reconnaissant les mauvais préfixes minimaux de P;.

Si le mot vide e appartient & £(A), alors tous les mots finis sur 277°P sont des mauvais préfixes,
donc P; = @. On suppose donc que € ¢ L(A).

Soit de plus ST un systeme de transition fini sans état terminal sur I’ensemble Prop. On souhaite
établir une méthode algorithmique pour vérifier si ST satisfait la propriété Ps ou non.

D’apres le Lemme 2.2, on sait que ST |= P; si et seulement si Tracesg, (ST) N MauvPre(P;) = @,
soit encore Tracesfi,(ST) N L(A) = @. 11 suffit donc de vérifier que Tracess,(ST) N L(A) = @ pour
établir que ST |= P.

Pour cela, on s’inspire de la méthode utilisée pour vérifier si deux langages de deux automates finis
non-déterministes A; et As ont une intersection vide. En effet, on a

LA)NL(A) =2 < L(A @A) =0.

Or, déterminer si £(A; ® Az) = @ se réduit a une recherche d’accessibilité dans I’automate produit
Al ® As.

Nous allons donc définir un produit de ST et A, qui déterminera un systéme de transition noté
ST ® A. Pour ce nouveau systéme de transition ST ® A, nous allons de plus construire une propriété
invariante Pg, associée & une formule ® obtenue & partir des états acceptants de A, telle que la condition
Tracessn(ST) N L(A) = @ soit équivalente & ST ® A |= Pp. L’algorithme 2 pourra alors étre utilisé
pour vérifier si ST ® A |= Ps.

Posons donc ST = (S, Act,—, I, Prop, L) et A = (Q,2F™?.6,Qo, F) avec Qo N F = & ; I'alphabet
de A est donc constitué d’ensembles de propositions atomiques. Le systéme de transitions ST ® A a
pour ensemble d’états le produit S’ = S X Q, et sa relation de transition —' est telle que tout fragment
de chemin initial 7 = sps7 ...s, dans ST peut étre prolongé en un fragment de chemin

< 80,01 >< 81,92 > -+ < Sp,Qny1 >

dans ST ® A, tel qu’il existe un état initial gy € Qo pour lequel la suite

L(so0) L(s1) L(s2) L(sn)
qo q1 q2 e dn+1

est une exécution (non nécessairement acceptante) de A qui engendre le mot
trace(m) = L(so)L(s1) ... L(sp).
Enfin, les étiquettes des états de ST ® .4 sont les noms des états de .A. On obtient la définition suivante.

Définition 3.7 (Produit d’un systéme de transition et d’un automate fini non-déterministe). Soit
ST = (S, Act,—, I, Prop, L) un systéme de transition fini sans état terminal sur un ensemble Prop
de propositions atomiques, et soit A = (Q,2F7P,§, Qo, F) un automate fini non-déterministe sur
I'alphabet ¥ = 2777 tel que Qo N F = @. Le systéme de transition produit ST ® A est défini par

ST® A= (5", Act,—', I, Prop’, L"),

avec :
e S =5x0Q,
e —/ est la plus petite relation de transition définie par la régle

L
s 25t A q—>(t) P

a ! ’
<8, q>— <t,p>
L(s
o I'={<s9,g>€85 ;s0€l A (quer)telquer&q},
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o Prop’ =Q,
o L'(< s,q>)={q} pour tout < s,q > 5’.
O

Pour définir correctement les propriétés linéaires (en particulier les propriétés invariantes), on a
considéré des systemes de transition sans état terminal. Or, méme si ST ne possede pas d’état terminal,
il se peut que ST ® A en possede. Cela peut se produire s’il existe dans A un état ¢ qui n’a pas de
successeur direct pour un ensemble A de propositions atomiques, soit d(g, A) = &. On peut éviter
cette situation en supposant que d(q, 4) # & pour tout état ¢ € @ et pour toute partie A C Prop.
Cette hypothese ne représente pas une restriction, car tout automate fini non-déterministe peut étre
transformé en un automate équivalent qui satisfait cette condition, en ajoutant un état g, et des

.- A N . . . . .
transitions ¢ — ¢urap & chaque fois que l'on a 6(g, A) = @. On peut aussi étendre la notion d’invariant
aux systeémes de transition possédant des états terminaux.

Exemple 3.10. Considérons & nouveau un feu de circulation avec trois couleurs possibles : rouge,
orange, vert. La propriété < chaque phase rouge est immédiatement précédée d’une phase orange > est
une propriété de stireté régulieére, dont ’ensemble des mauvais préfixes minimaux est accepté par
Pautomate fini non-déterministe .A donné sur la figure 3.12.

Supposons que ce feu de circulation soit de type Allemand, avec la possibilité d’indiquer les couleurs
rouge et orange simultanément, afin de signifier que le feu va bientot passer au vert.

Soit alors Prop = {rouge, orange}. On définit une fonction d’étiquetage L en posant

L(rouge) = {rouge}, L(orange) = {orange}, L(vert) = L(rouge/orange) = &.

Le systéme de transition ST correspondant a un tel feu de circulation est indiqué sur la figure 3.13,
ainsi que le systeme de transition ST ® A, ou A est donné sur la figure 3.12. On doit noter que 1’état
rouge/orange est bien compatible avec la transition

—rouge/A—orange
Go —— Qo

de A. Le produit ST ® A admet 4 états accessibles. °

rouge

, avance
prepare < vert, gg > <—[< rouge/ orange, qo >]
A

rouge/orange

attention prépare

avance

attention

Y
stop

Figure 3.13. Systéme de transition ST modélisant le fonctionnement d’un feu de circulation de type
Allemand (d gauche), et systéme de transition produit ST @ A (d droite).

Le théoreme suivant montre que la vérification d’une propriété de siireté réguliére peut se ramener
a la vérification d’une propriété invariante dans le systeme de transition produit.

Théoréme 3.2. Soit ST = (S, Act,—, I, Prop, L) un systéme de transition fini sans état terminal sur
un ensemble Prop de propositions atomiques, et soit A = (Q,277°P, 6, Qo, F) un automate fini non-
déterministe sur I'alphabet ¥ = 2777 tel que Qo N F = @. Soit P, une propriété de siireté réguliere
sur Prop, telle que £(A) soit constitué des mauvais préfixes (minimaux) de Ps. Alors les assertions
suivantes sont équivalentes :
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o ST = Ps,
o Tracespn(ST)NL(A) =2,
o ST & A ': Pinv(.A)a

ol Pipy(a) est la propriété invariante associée a la formule

A

qeF

Démonstration. Notons ~F = A ger 4 F correspond donc aux états non acceptants de A. Comme
nous l'avons remarqué au début de cette section, on a déja 1'équivalence entre (a) et (b) d’apres le
Lemme 2.2. Il suffit donc de montrer que (c) implique (a) et que (b) implique (c).

Montrons (par contraposée) que (c) implique (a). Si ST }= P, alors il existe un fragment de chemin
initial fini & = sgs7 ..., dans ST tel que

trace(wt) = L(sg)L(s1) ... L(s,) € L(A).

Donc il existe dans A une exécution acceptante qoqi - . . gn+1 pour trace(ft), avec qo € Qo, qn+1 € F et

L(s; . . .
a & ¢i+1 pour 0 <4 < n. Mais alors, la suite

< 80,91 >< 81,92 >+ < Sp,Qny1 >

est un fragment de chemin initial dans ST ® A tel que < s,,, gn1 > —~F. Donc ST ®@ A = Py (a)-
Montrons enfin (& nouveau par contraposée) que (c) implique (a). Supposons pour cela que

ST® A b& Pim;(A)-
Alors il existe dans ST ® A un fragment de chemin initial

< 80,91 >< 81,92 > -+ < Sp,Qny1 >

L(s;
avec qn+1 € F. Ainsi, sp$7 ... s, est un fragment de chemin initial dans ST, avec ¢; & Qi+1 pour

1 <i<mn. Or, <sp,q1 > est un état initial de ST ® A, donc il existe gy € Qo tel que

L(so0)
qgo — q1-

Donc trace(sosi ... sn) € Tracess,(ST) N L(A), ce qui prouve
Tracess,(ST) N L(A) # @.
O

Le théoreme 3.2 montre que pour vérifier si ST satisfait bien la propriété de stireté réguliere P, il
suffit de vérifier qu’il n’existe pas d’état accessible < s, ¢ > dans le produit ST ® A, ou ¢ serait un état
acceptant de A. La propriété invariante < ne jamais visiter un état acceptant dans A > est donnée par la
condition invariante ® = —F et peut étre vérifiée en exécutant ’algorithme 2 de vérification d’invariant
par recherche en profondeur. De plus, si la propriété de stireté réguliére Py est réfutée, alors un contre-
exemple est obtenu, sous la forme d’'un fragment de chemin fini < sg,q1 >< s1,q2 > -+ < Sp, Gng1 >
dans ST ® A menant & un état acceptant de A, et qui a son tour détermine un fragment de chemin
initial fini sgs; ... s, dans ST, dont la trace est acceptée par A. Cette trace est finalement un mauvais
préfixe de la propriété Ps.

On obtient le corollaire suivant.
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Algorithme 3 Vérification d’une propriété de stireté réguliere

Entrée : systeme de transition fini ST et propriété de stureté réguliére P;.
Sortie : < OUI > si ST satisfait Py, autrement <« NON > et un contre-exemple.

Déterminer un automate fini non-déterministe A tel que £(.A) corresponde aux mauvais préfixes
(minimaux) de Ps

Construire le systéme de transition ST ® A

Vérifier sur ST ® A l'invariant P;y,4) avec la proposition =F = A ger 4

Si ST ® A |= Piyy(a) alors
renvoyer VRAI

Sinon

Déterminer un fragment de chemin initial < sg,q1 > -+ < Sp,qne1 > dans ST ® A avec
Gn+1 € F

renvoyer (FAUX, sgs1...85)
Fin Si

Corollaire 3.1. Soit ST = (S, Act,—, I, Prop, L) un systéme de transition fini sans état terminal sur
un ensemble Prop de propositions atomiques, et soit A = (Q,277°P 4, Qo, F) un automate fini non-
déterministe sur 'alphabet ¥ = 2777 tel que QyNF = @. Soit P, une propriété de siireté réguliere sur
Prop, telle que L(A) soit constitué des mauvais préfixes (minimaux) de Ps. Alors, pour tout fragment
de chemin initial < sg,q1 >< $1,q2 > -+ < Sp,Gns1 > dans ST @ A :

q1s---,qn & F et gu1 € F implique trace(sgsy ... sn) € L(A).
L’algorithme 3 montre comment mettre en ceuvre cette méthode.

Exemple 3.11. Considérons a nouveau un feu de circulation de type Allemand et la propriété de
stireté réguliere Py spécifiant que chaque phase rouge doit étre immédiatement précédée d’'une phase
orange. Le systéme de transition ST ® A est donné sur la figure 3.13. On observe qu’aucun état dans
ST ® A de la forme < ..., g2 > n’est accessible. Donc l'invariant —¢qo est satisfait dans tous les états
de ST ® A. Par conséquent, le feu de circulation satisfait bien Pi.

Si le systeme de transition modélisant le feu de circulation est modifié, de sorte que 1’état rouge est
I’état initial, alors la propriété Py n’est plus satisfaite. En effet, dans ce cas, I'invariant —gs n’est pas
satisfait dans I’état initial. .

Pour conclure cette partie, nous donnons une borne de la complexité en temps et en espace de
I’algorithme de vérification de propriétés de stireté régulieres.

Théoréme 3.3. La complexité en temps et en espace de ’algorithme 3 est d’ordre (’)( |ST| x |A| ),
ot |ST| et |A| donnent le nombre d’états et de transitions dans ST et A respectivement.

Démonstration. La complexité en temps et en espace de 'algorithme 2 de vérification d’invariant sur
ST ® A est d’ordre O(|ST ® A|). De plus, le nombre |ST ® A| d’états et de transitions dans ST ® A
est d'ordre O(|ST| x |A]). D’ou 'ordre de complexité annoncé. O

3.3 Vérification de propriétés de siireté non régulieres

L’algorithme 3 de vérification de propriétés de stireté régulieres repose sur le fait que les auto-
mates finis acceptent des mots finis. On peut néanmoins étendre la méthode a des propriétés linéaires
plus générales, qui décrivent de fagon pertinente le comportement de systémes réels. Certaines de ces
propriétés peuvent étre décrites avec des expressions dites w-réguliéres. Pour cela, on considére une
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variante des automates finis non-déterministes, appelés automates de Biichi. La syntaxe d’un automate
de Biichi est identique a celle d'un automate fini non-déterministe. En revanche, le langage accepté
d’un automate de Biichi, noté L, (B), est infini; le critére d’acceptance pour un tel automate est que
I’ensemble des états acceptants doit étre visité une infinité de fois.

Un automate de Biichi B reconnait alors les « mauvaises traces > d’une propriété P a vérifier;
une analyse de graphe dans le produit de B avec le systéme de transition considéré, sur une propriété
associée, dite de persistance, suffit alors pour vérifier si la propriété P est satisfaite ou non.

3.4 Exercices

Exercice 1
Sur lalphabet ¥ = {a, b}, on définit les langages £ = {a, ab} et L' = {a,b,ba}.
1. Déterminer les langages LU L', LL', L'L, LL' L, L3.
2. Montrer qu'un mot de £* ne contient jamais deux lettres b qui se suivent.

3. Soit £L” le langage sur l'alphabet ¥ formé des mots qui ne contiennent jamais deux lettres b qui
se suivent. Trouver des mots de £” qui n’appartiennent pas & L£*.

4. Le langage L” est-il régulier ?

Exercice 2

On considére Pautomate A défini par Q = {1,2,3,4}, £ = {a,b}, Qo = {1}, F = {4} et dont la
fonction de transition § est donnée par le tableau suivant.

Représenter cet automate et déterminer son langage.

Exercice 3

Soit Prop = {a,b,c}. On considére le systéme de transition ST sur Prop et 'automate fini non-
déterministe A sur 2777, représentés sur la figure 3.14 ci-dessous. Construire leur produit ST ® A.
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-a =-b A —c

%
ST @ = {b, ¢} A 0 a 0
B bA—c bA—c
v
C
oEsos! osls

p
v
{0} g {a}
Figure 3.14. Un systéme de transition ST sur Prop = {a,b,c} et un automate fini non-déterministe
A.

Exercice 4

Soit Prop = {rouge,vert}. On considére le systéme de transition ST sur Prop et 'automate fini
non-déterministe A sur 2777 représentés sur la figure 3.15 ci-dessous. Construire leur produit ST ® A.

true —vert true
{rouge} {vert}
OB ONIPRNGEROENG
Figure 3.15. Un systéme de transition ST sur Prop = {rouge, vert} et un automate fini non-

déterministe A.

Exercice 5

On consideére le systéme de transition ST, modélisant I’exclusion mutuelle par sémaphore binaire
de deux processus Pj, P», et le systeme de transition ST peter modélisant 'algorithme d’exclusion de
Peterson.

1. Soit Prop = {pausey,crit;} et ®; la propriété < le processus Py n'entre jamais en état critique
directement depuis son état non-critique >.

(a) Pourquoi la propriété ®; est-elle une propriété de stireté réguliere ?
(b) Construire un automate fini non-déterministe pour les mauvais préfixes minimaux de ;.
(c) Le systeéme de transition ST, vérifie-t-il la propriété &, 7

2. Soit Prop’ = {crit;,» = 2}, et ®3 la propriété < le processus Py n'entre jamais en état critique
depuis un état ot x = 2 >.

(a) Pourquoi la propriété @, est-elle aussi une propriété de stireté réguliere ?
(b) Construire un automate fini non-déterministe pour les mauvais préfixes minimaux de .

(c) Prouver que le systéme de transition ST'peser ne vérifie pas la propriété ®o et donner un
contrexemple.
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Exercice 6

On considere un écosysteme biologique admettant trois états : un état de persistance noté P, un état
d’extinction noté E et un état transitoire noté T. Soit Prop = {T,E}. En l'absence d’événement clima-
tique extréme, ’écosysteme présente une dynamique biologique modélisée par le systeme de transition
SThat de la figure 3.16.

|
{E} @

Figure 3.16. Systéme de transition modélisant la dynamique biologique d’un écosystéme.

On consideére la propriété ® : < si le systéme atteint I’état de persistance, alors il ne peut plus entrer
en état d’extinction >.

1. Que dire de la propriété & ?
2. Le systeme de transition ST, vérifie-t-il la propriété & ?

3. On suppose que 1’écosystéme est perturbé par des événements climatiques extrémes, qui sont
intégrés au modele en ajoutant une transition possible de ’état P vers 1’état T. Le systeéme de
transition obtenu vérifie-t-il la propriété ¢ ?
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CHAPITRE 4

Logique Temporelle Linéaire

Ce chapitre est une introduction & la Logique Temporelle Linéaire (LTL, Linear Temporal Logic
en anglais), un formalisme logique adapté a la spécification des propriétés linéaires. La syntaxe et la
sémantique de ce systéme logique sont présentées et illustrées par des exemples repris des chapitres
précédents, afin de montrer son niveau d’expressivité. La deuxieme partie du chapitre est consacrée
a la Logique Temporelle Linéaire Bornée (BLTL, Bounded Linear Temporal Logic en anglais), une
variante de la logique LTL adaptée a la spécification de propriétés de systémes temporisés dont le
comportement est observé sur un ensemble fini d’instants.

4.1 Syntaxe, sémantique et propriétés de la logique LTL

La logique LTL est une extension de la logique propositionnelle, proposée par Amir Pnueli en
1977 pour la vérification de programmes informatiques [14]. Cette logique permet plus généralement
d’exprimer des propriétés de systémes dont le comportement est réactif au cours du temps. Le terme
temporel suggeére donc un lien entre le comportement du systéme et le déroulement du temps. Ce lien
permet d’intégrer ’ordre chronologique des événements observés, mais ne tient pas compte de leurs
aspects quantitatifs, notamment de leurs durées.

4.1.1 Syntaxe LTL

Les ingrédients de base permettant de construire les formules de la logique LTL sont :

e un ensemble de propositions atomiques Prop,

e les connecteurs booléens de conjonction A et de négation —,

e deux opérateurs temporels notés O (“next”) et U (“until”).
L’opérateur () est unaire; si ¢ est une formule LTL, alors ()¢ est vraie a I'instant présent lorsque ¢
est vraie a 'instant suivant. L’opérateur U est binaire; si ¢1, @2 sont deux formules LTL, alors ¢1Uy2
est vraie a l'instant présent lorsqu’il existe un instant futur pour lequel ¢o sera vraie, et que ¢; est
vraie (au moins) jusqu’a cet instant futur.

Définition 4.1 (Syntaxe LTL). Soit Prop un ensemble de propositions atomiques. Les formules LTL
sur Prop sont construites a partir des quatre regles suivantes :

e true est une formule LTL,

e toute proposition atomique a € Prop est une formule LTL,

e si ¢ est une formule LTL, alors =y et () sont aussi des formules LTL,

57



CHAPITRE 4. LOGIQUE TEMPORELLE LINEAIRE

o si @1, @o sont des formules LTL, alors @1 A w2 et o1l sont aussi des formules LTL.
O

On convient que les opérateurs unaires sont prioritaires sur les opérateurs binaires. Ainsi, on a
par exemple ~1U O w2 = (—¢1)U(Owp2). Les opérateurs binaires de disjonction V, d’implication —,
d’équivalence «+ et de parité & (ou exclusif) sont définis par

1V 2 = (=1 A mpa),
P1 = P2 =71 V2,
P14 o2 = (1 = 2) A (P2 = $1),
1D p1 = (1 A —p2) V(2 A —p1),

pour toutes formules LTL 1, ¢s.
On définit également deux opérateurs temporels ¢ et [J, pour toute formule LTL ¢, par

O = trueldp, Op = =0—¢.

La formule Q¢ signifie qu’il existe un moment futur ot ¢ sera vraie. L’opérateur ¢ est lu eventually en
anglais, ce qui ne doit pas étre traduit par éventuellement en francais (’adverbe <éventuellement> n’im-
plique aucune obligation future, contrairement & “eventually”). On peut lire { en prononcant < d un
moment, il y aura >. La formule O signifie que ¢ sera toujours vraie dans le futur.

La figure 4.1 illustre quelques éléments constitutifs essentiels de la logique LTL.

et OOy
. DO

Figure 4.1. [llustration de quelques éléments constitutifs essentiels de la logique LTL.

On peut également associer les opérateurs ¢ et . Ainsi, la formule OO signifie que ¢ sera vraie
infiniment souvent, et la formule ¢y signifie que ¢ sera toujours vraie a partir d’un certain moment
futur.

Exemple 4.1. Considérons la propriété d’exclusion mutuelle de deux processus P;, P, admettant des
états d’attente pause;, pause, et des états critiques crit;, crita respectivement. La propriété de stireté
exprimant que P; et P, ne sont jamais simultanément en état critique correspond a la formule LTL

D(ﬁcritl V ﬁCI’itg).
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Puis, la propriété de vivacité exprimant que chaque processus est infiniment souvent en état critique
correspond a la formule LTL

(Odcrity) A (Ocrita).

La formule LTL suivante exprime le fait que chaque processus en état d’attente entre effectivement en
état critique dans le futur :

(O0pause; — Odcrity) A (OOpause, — Ocrita).
Enfin, si le protocole d’exclusion implique un sémaphore binaire y, alors la formule LTL
O((y = 0) — crity V crit)

décrit le fait que si le sémaphore y admet la valeur 0, alors un des deux processus entre en état
critique. °

Exemple 4.2. Considérons un feu de circulation classique. La formule LTL O¢Qvert correspond a la
propriété de vivacité < le feu est vert infiniment souvent >. La condition < si le feu est vert, alors il ne
peut pas devenir rouge immédiatement > peut s’exprimer par la formule LTL

O(vert — = O rouge).
[ ]

Remarques. 11 existe dans la littérature scientifique des notations différentes pour les opérateurs de la
logique LTL. Ainsi, les opérateurs (), ¢, O sont parfois notés respectivement X (pour neXt), F' (pour
Finally), G (pour Globally).

On peut aussi définir des opérateurs temporels O)~!, ¢! et 17!, opérateurs inverses des opérateurs
temporels O), ¢ et O respectivement, pour décrire des événements du passé. q

4.1.2 Sémantique LTL

Les formules LTL sont des formules qui décrivent des traces. Pour déterminer précisément si une
trace satisfait une propriété LTL, on commence par définir une interprétation pour les mots infinis
sur 'alphabet 277°P ; on définit ensuite une interprétation sur les chemins et les états d’'un systéme de
transition.

Définition 4.2 (Sémantique LTL sur les mots). Soit ¢ une formule LTL sur un ensemble Prop de
propositions atomiques. La propriété linéaire induite par ¢ est définie par

Mots(p) = {0 € (27"")" | o |= ¢},

ou la relation de satisfaction |= est définie pour tout mot o = AgA; Ay ... par les régles suivantes :
o [ true,
0":0, =4 Ao'za (@aer),
CEPIAp: & oFEpretoEp,
oy & olFo,
ok Oyp & A1AAsz... F o,
g |:go11/{302 54 3] ZO,AjAj+1Aj+2... ’:QDQ et AiAiJrlAiJrQ... ':@1,0 SZ <j,
avec a € Prop et ¢, @1, @2 des formules LTL. g

Remarque. Dans la régle définissant la sémantique de o184, on ne peut pas remplacer le suffixe infini
AjAjJrlAjJrz ... par Ag <
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Pour les opérateurs temporels ¢ et [, on obtient

o ':OSD, = 3] > 0,AjAj+1Aj+2... 'ZQO
o ': D(p = V] > O,AjAj+1Aj+2 ca ': Q.

Apres avoir défini la sémantique LTL sur les mots, on définit la sémantique LTL pour un systeme
de transition. La définition suivante s’appuie sur la définition 2.7 de la relation de satisfaction pour
une propriété linéaire. Rappelons que si s est un état d’un systéme de transition ST, alors Paths(s)
désigne ’ensemble des fragments de chemins maximaux qui commencent en s.

Définition 4.3 (Sémantique LTL sur les chemins et les états). Soit ST = (5, Act,—, I, Prop, L) un
systeme de transition sans état final et soit ¢ une formule LTL sur Prop.
Si 7 est un fragment de chemin infini de ST, on pose :

T = @ & trace(m) = .

Sise S, on pose:
s |E ¢ &V € Paths(s),m | .

Enfin, on dit que ST satisfait ¢, et on note ST = ¢, si

Traces(ST) C Mots(p).

D’apres la définition 2.7, on a
Traces(ST) C Mots(p) < ST = Mots(p),
ce qui, d’apres la définition de la propriété linéaire Mots(p), équivaut a
7 = ¢,V € Paths(ST).
Enfin, d’apres la définition de la relation de satisfaction = pour les états, on obtient :
ST E ¢ < so =y, Vs €1

Exemple 4.3. Considérons le systéme de transition ST sur Prop = {a, b}, représenté sur la figure 4.2.

On a de fagon évidente s1 = Oa, so = Oa et sg = Oa, donc ST = Oa.

Puis, on a s1 = O(a Ab), car s3 = a A b et sy est le seul successeur de s1; cependant, on a
s2 = O(a A b) car s3 est un successeur de sq tel que s3 = a A b; de méme, on a s3 = O(a Ab). Ainsi,
s3 est un état initial tel que s3 = O(a Ab). Donc ST = O(a A D).

De la méme fagon, on a ST = D(ﬁb — D(a/\—\b)), puisque s3 est le seul état initial tel que s3 = —b,
s3 est absorbant et s3 vérifie a A —b.

Enfin, on a ST (= bU (a A —b), car le chemin initial (s152)“ ne visite aucun état pour lequel a A —b
est vraie. On remarque néanmoins que tout chemin initial de la forme (s152)*s% satisfait la propriété
bU (a A —d).

Remarque. Pour un chemin 7 et une formule LTL, on a
T e e

Toutefois, on doit prendre garde que les assertions ST = ¢ et ST [~ —¢ ne sont pas équivalentes en
général. En effet, considérons le systéme de transition ST sur Prop = {a}, représenté sur la figure 4.3.
Pour ce systéme de transition, on a ST [~ Qa, puisque le chemin initial so(s2)“ ne satisfait pas Qa, et
ST £ —Qa, puisque le chemin initial sg(s1)“ ne satisfait pas =Qa.

Pour un systéme de transition ST, on peut seulement affirmer que ST |= —¢ implique ST £ ¢. <
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{a,b} {a, b} {a}

Figure 4.2. Systéeme de transition dont les traces peuvent étre décrites par des formules LTL.

{a} I o

Figure 4.3. Systéme de transition ST tel que ST = Qa et ST = —Qa.

Remarque (Spécification de propriétés temporisées). Pour décrire le comportement de systémes réactifs
au cours du temps, on peut considérer les itérations successives de opérateur temporel (), en posant :

Of¢=00"-Qv,
—_—
k fois
ol ¢ est une propriété LTL et k un entier naturel non nul. La formule ¥ signifie alors < ¢ est vraie

aprés (exactement) k pas de temps .
On étend également la portée des opérateurs temporels ¢ et [ en posant :

0=\ O, O%p= A O

0<i<k 0<i<k

La formule (=F signifie alors < ¢ sera vraie a un moment, dans les k pas de temps suivant Uinstant
présent >, et la formule (O5F¢ signifie <@ sera touwjours vraie pendant les k pas de temps suwivant
l'instant présent >. q

4.1.3 Equivalence de formules LTL

Soit Prop un ensemble de propositions atomiques. On souhaite ici déterminer des regles d’équivalence
de formules LTL sur Prop.

Définition 4.4 (Equivalence de formules LTL). Deux formules LTL ¢, ¢ sur Prop sont dites équivalentes
si les propriétés linéaires qu’elles induisent vérifient

Mots(yp) = Mots(v).
Dans ce cas, on note ¢ = 1. O

Puisque la logique LTL étend la logique propositionnelle, les équivalences de la logique proposition-
nelle sont aussi vérifiées pour la logique LTL. On a par exemple == = ¢ et o A ¢ = ¢, pour toute
formule LTL .

On peut montrer de nombreuses lois d’équivalence de formules LTL faisant intervenir les opérateurs
temporels (), ¢ et (0. On a notamment les lois de distributivité suivantes :

OlpU ) = (Op) U (OY),
Ol V) = (0p) v (OY),
O(e Any) = (Op) A (),
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pour toutes formules LTL ¢, 9. Les lois de distributivité précédentes sont analogues aux lois de
distributivité des symboles 3 et V, ou V et A dans le calcul des prédicats.

On doit prendre garde que l'opérateur temporel ¢ n’est pas distributif par rapport a 'opérateur
de conjonction A, et que l'opérateur temporel [J n’est pas distributif par rapport a 'opérateur de
disjonction V :

Olp n) # (0p) A (OY), Dl V) # (Cp) V (L)

Le systeme de transition illustré sur la figure 4.4 permet de montrer la premiére affirmation pour des

propositions atomiques.

{a} {6}

Figure 4.4. Systéme de transition ST sur {a,b} tel que ST = O(a Ab) et ST = Qa A Ob.

4.1.4 Le probléeme du Model-Checking LTL

Soit Prop un ensemble de propositions atomiques, ST un systeme de transition et ¢ une formule
LTL sur Prop. Le probleme du Model-Checking LTL est un probléme de décision : a-t-on oui ou non
ST E ¢? Si ST £ ¢, peut-on de plus obtenir un contrexemple sous la forme d’une trace de ST
qui ne satisfait pas ¢ 7 Pour un systeme de transition de grande taille, une étude manuelle n’est pas
envisageable ; d’ou la nécessité d’'une méthode algorithmique qui peut étre rendue automatique.

Supposons que le systéeme de transition ST soit fini et sans état final. Pour vérifier si le systéme de
transition ST satisfait la formule LTL ¢, on exécute l'algorithme 4, dont la structure est trés proche
de l'algorithme 3 de vérification d’une propriété de siireté réguliere.

Algorithme 4 Algorithme du Model-Checking LTL

Entrée : systéme de transition fini ST et formule LTL ¢ sur Prop.
Sortie : <« OUI » si ST satisfait v, autrement <« NON > et un contre-exemple.

Déterminer un automate de Biichi B tel que L, (B) = Mots(—p)
Construire le systeme de transition ST ® B

Si il existe un chemin 7 dans ST ® B qui satisfait la condition d’acceptance de B alors
renvoyer (NON, 7)

Sinon
renvoyer OUI

Fin Si

Dans l'algorithme 4, la premiére étape consiste a construire un automate de Biichi B dont le
langage infini £, (B) coincide avec la propriété Mots(—¢) induite par la formule LTL ¢. L existence et
la construction d’un tel automate sont assurées par le théoréme suivant, dont la preuve est admise.

Théoréme 4.1. Pour toute formule LTL ¢ sur Prop, il existe un automate de Biichi B tel que
L., (B) = Mots(), qui peut étre construit avec une complexité de 'ordre de 2€U#!) en temps et en
espace, ol || est une mesure la taille de .

Exemple 4.4. Soit a une proposition atomique et Prop = {a}. L’automate illustré sur la figure 4.5

est un automate de Biichi dont le langage infini coincide avec la propriété induite par la formule LTL
¢a. .
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true a true

—( qo a @ —a @
N

Figure 4.5. Automate de Biichi dont le langage coincide avec la propriété induite par la formule LTL
O0a.

Le théoréme suivant établit finalement la classe de complexité du probleme de décision du Model-
Checking LTL. Une étape importante de sa démonstration, qui est admise, consiste a prouver que le
probléeme du chemin Hamiltonien est polynomialement réductible au complémentaire du probléme de
décision du Model-Checking LTL (un chemin hamiltonien d’un graphe est un chemin qui passe par
tous ses sommets une fois et une seule ; le probleme du chemin hamiltonien est un probléme de décision
NP-complet qui consiste, étant donné un graphe, a décider s’il admet un chemin hamiltonien).

Théoréme 4.2. Le probléme du Model-Checking LTL est PSPACE-complet.

Rappelons que PSPACE désigne la classe des problémes de décision qui peuvent étre résolus par
un algorithme déterministe polynomial en espace; PTIME correspond aux probléemes de décision
qui peuvent étre résolus par un algorithme déterministe polynomial en temps; NP correspond aux
problémes de décision qui peuvent étre résolus par un algorithme non-déterministe polynomial en
temps. On a de plus

PTIME C NP C PSPACE.

On ne sait toujours pas en 2022 si PTIME = NP ou si PTIME & NP (cette question constitue un des
sept fameux problémes du millénaire). Enfin, un probléme de décision P est dit PSPACE-difficile si
tout probleme de décision @ dans PSPACE peut étre réduit polynomialement a P; on dit que P est
PSPACE-complet si P appartient & PSPACE et P est PSPACE-difficile. Pour plus de détails sur ce
sujet, on pourra consulter [10].

Remarque. La logique LTL repose sur une vision linéaire du déroulement temporel. Il existe néanmoins
de nombreux systémes logiques autres que la logique LTL. Par exemple, la logique CTL (Computation
Tree Logic en anglais) permet de décrire des propriétés de systémes de transition et repose sur une
vision arborescente du déroulement temporel. Certaines logiques, comme PLTL et PCTL, ajoutent
une dimension probabiliste. D’autres logiques, par exemple la logique CSL [1], ont été proposées afin
de décrire les propriétés de systemes stochastiques continus. q

4.2 Logique BLTL

La logique BLTL a été proposée trés récemment (en 2019) par Liu, Gyori et Thiagarajan [12];
cette logique temporelle est une adaptation de la logique LTL qui permet de spécifier certaines pro-
priétés de trajectoires continues ; ces trajectoires, observées sur un intervalle de temps borné, décrivent
I’évolution de systemes continus, issus notamment des sciences du vivant ; elles peuvent par exemple
étre déterminées par des équations différentielles, par des processus probabilistes, ou encore par des
modeles hybrides associant les deux formalismes.

4.2.1 Trajectoires continues

Considérons un systeme issu du vivant, dont 1’évolution est observée sur un intervalle de temps
borné [0, T] avec T' > 0. Ce systéme dépend de certains parametres et définit des trajectoires continues,
que nous supposons entierement déterminées par les courbes représentatives de fonctions continues,
définies sur [0,7], & valeurs dans R. Notons Traj Pensemble de ces trajectoires; on suppose que si
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o € Traj, alors o est la courbe représentative d’une fonction continue, également notée o, définie sur
[0,T] & valeurs dans R.

— 01
————————————————————————————— — 09
i \/\/ i
04
---U
....... L
2 |
| | | | | |
0 0 1 2 3 4 T
t

Figure 4.6. Quelques trajectoires continues décrivant ’évolution d’un systeme issu du vivant.

On suppose de plus que 'ensemble Traj est un ensemble borné, c’est-a-dire qu’il existe deux
constantes réelles L < U telles que pour toute trajectoire o € Traj, on ait

L<o(t)<U, Ytelo,T).

Quelques trajectoires sont illustrées sur la figure 4.6. Elles peuvent par exemple modéliser la crois-
sance d’'une population d’individus biologiques, la propagation d’un caractere au sein d’une espece, la
concentration d’une substance chimique, etc.

4.2.2 Syntaxe et sémantique de la logique BLTL

Pour définir la syntaxe et la sémantique de la logique BLTL, on construit d’abord une discrétisation
T de lintervalle [0, T]. Pour simplifier, on suppose que T est entier et on pose

7 =1{0,1,2,3,..., T} (4.1)

On considére ensuite un ensemble fini Prop C R? de n propositions atomiques de la forme (I,u) avec
L <l <u<U (n est un entier naturel non nul). On note alors

Prop = {(l;;u;),1 <i < nj}. (4.2)

Syntaxe

Définition 4.5 (Syntaxe BLTL). Soit 7 l’ensemble d’instants défini par (4.1) et Prop ensemble de
propositions atomiques défini par (4.2). Les formules BLTL sur Prop sont définies par les quatre régles
suivantes :

true est une formule BLTL,

toute proposition atomique (I,u) € Prop est une formule BLTL,

si @ est une formule BLTL, alors —¢ est aussi une formule BLTL,

si 1, o sont des formules BLTL, alors oy USt g et oy Ut o sont aussi des formules BLTL,
pour tout t € T.

O
Pour k € T et o une propriété BLTL, on définit également les formules BLTL 0¥, 0=Fp et O5F¢p -

OFp =truelffy, OFp =truetd=Fp, Ok = 0SF—p.

En particulier, la formule ¢*¢ permet d’accéder & ¢ a l'instant k € 7.
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Sémantique

On définit ensuite la sémantique de la logique BLTL. L’interprétation d’une proposition atomique
(I, u) pour une trajectoire o a l'instant ¢ s’énonce de la facon suivante : < d l’instant présent, la valeur
de o est comprise entre | et u> (voir figure 4.7).

A A

ot = (lu) o,t F~ (I,u)
U / u :[/ o
l l

I

Instant Instant
présent présent

| |

1 1 1 1 1 1 1 1

0 1 t T 0 1 t T

Figure 4.7. Interprétation d’une proposition atomique pour la logique BLTL.

Définition 4.6 (Sémantique BLTL). La relation de satisfaction (0,t) = ¢, on o € Traj, t € T et ¢
est une formule BLTL est définie par les regles suivantes :

(0,t) [ true,

@)@y e 1<) <u

(0,0) = p1 A p2 & (0,t) E et (0,t) ): P2,

(0,1) E o & (o,t) o,

(o) EprUSF gy = FK <ktelquet+ k' <T, (o,t+k)E 2, (0, t+ k") =@, VE" € [0, k],
(o, ) EprUF oy & (0,t+k) = oo, (0,t +K) | o1, VK €0,k

Enfin, si ¢ est une formule BLTL, on définit

models(p) = {o € Traj | (0,0) = ¢}.
U

Exemple 4.5 (Adéquation a des données d’observation). On considére encore un systéme issu du
vivant. On suppose qu’on dispose d’un modele qui décrit son comportement au cours du temps, et qui
détermine comme précédemment un ensemble de trajectoires Traj. On suppose de plus qu’on dispose
d’un ensemble I' = {~9,71,...,77} de données d’observation de ce systéme, relevées a chaque instant
de ’ensemble 7. On construit alors un tunnel 6, de rayon « autour de ces données :

0o = [0 —, 0+ 0] X [y1 —a, 1 +a] X X [yr —a,y7 + o,

et on s’intéresse a la propriété ¢, : < la trajectoire o est toujours dans le tunnel 6, >.
La logique BLTL permet d’exprimer la propriété ¢, de la facon suivante :

va= \ OF(m— v +a)
0<k<T

La figure 4.8 montre deux trajectoires o1, oo et un ensemble de données I'; on constate que o1 | ¢4
alors que oy £ ©q.
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o0 1]l x T
—0
4t 1=
3, |
| | | | | |
0 1 2 3 4 T
t

Figure 4.8. Propriété d’adéquation d’une trajectoire o des données d’observation.

4.2.3 Vérification statistique de propriétés

La vérification des propriétés de certains systémes est parfois difficile a effectuer. Plutot que de
rechercher si une propriété donnée est satisfaite ou non, on peut alors calculer ou estimer la probabilité
que cette propriété soit satisfaite.

Considérons donc un systeme qui détermine un ensemble de trajectoires Traj sur un intervalle de
temps du type (4.1), et soit 1) une propriété BLTL sur un ensemble fini de propositions atomiques Prop
de la forme (4.2). On supose que les formules BLTL forment un ensemble de probabilité, et on note
p = P(¢) la probabilité qu'une trajectoire o € Traj vérifie la propriété . Pour estimer la valeur de
p, on peut appliquer une méthode de Monte-Carlo. Pour cela, on réalise N simulations indépendantes
du systeme considéré. Chaque simulation produit une trace o; € Traj, 1 < i < N, qui vérifie ou non
la propriété 1 ; on note X; la variable qui prend pour valeur 1 si o; |= %, et la valeur 0 si o; [~ 9. Le
théoreéme suivant donne une estimation par intervalle de confiance de la probabilité p.

1
Théoréme 4.3. Soient € > 0 et § €]0,1[. On note ¥ = N Z X;. Si N > 4log (2) /&2, alors on a
1<i<N

P(|Y —p| <¢) >4

La démonstration de ce théoréme est présentée dans [8]. Sa mise en ceuvre constitue une méthode
de vérification statistique appelée Statistic Model Checking, qui repose sur la possibilité de simuler le
systeme étudié afin d’en produire une trace, puis d’attribuer a cette trace un score, égal a 0 ou a 1
selon qu’elle vérifie ou non la propriété ¢ considérée. Le coefficient ¢ représente le risque d’erreur dans
le procédé d’estimation, et le coefficient € représente la précision de l'estimation. Par exemple, si ’on
souhaite une précision de 10% avec un risque d’erreur de 10%, il suffit de réaliser N = 1200 simulations
indépendantes du systéeme. En augmentant le nombre N de simulations, on obtient plus de précision
€ ou on diminue le risque d’erreur §.

Exemple 4.6. La méthode de vérification statistique qui repose sur le théoreme 4.3 a été appliquée

trés récemment dans [16] pour réaliser une estimation de paramétres sur un modeéle de croissance
d’espece océanique. °

4.3 Exercices

Exercice 1

1. Donner la sémantique des formules LTL ¢Op et O0p.
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2. Montrer les lois de dualité LTL suivantes :

“Oe=0y,
—Op = 0.

3. Montrer les lois de distributivité LTL suivantes :

OlplU ) = (Op)U (OY),
e V) = (0p) vV (O9),
Ol A9) = (Te) A ().

4. Montrer la loi d’expansion LTL suivante :
U =PV (9 AOpUY)).

En déduire des lois d’expansion similaires pour Q¢ et Clp.

Exercice 2

On considere le systeme de transition ST, représentant 'algorithme d’exclusion mutuelle par
sémaphore de deux processus P1, Py, admettant des états d’attente pause;, pause, et des états critiques
crity, crito respectivement.

Ce systeme de transition vérifie-t-il les formules LTL suivantes ?

O(—crity V —erita),

(Odcrity) v (Odcrita),

(Ocrity) A (OOcrits),

(OCpause; — OOcrity) A (OOpause, — Oocrita).

Exercice 3

On considére le systéme de transition sur l’ensemble de propositions atomiques Prop = {a,b}

représenté sur la figure 4.9 ci-dessous.
ol
@ (s (o (5 ) ta)
{a}

Figure 4.9. Un systéme de transition sur l’ensemble de propositions atomiques Prop = {a,b}.

Indiquer I’ensemble des états vérifiant les formules LTL suivantes :

(1) Oa’ (4) ‘:l<>(1,
(2) OOOa, (5) O(Ua),
(3) Ob, (6) O(aldb).
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Exercice 4

L’opérateur LTL weak until, noté W, est défini par

1.

2.
3.
4.

eWip = (pU ) v .
Montrer que 'opérateur W vérifie les propriétés suivantes :

(eUY) = (p A P)W(=p A =),
(W) = (e A ) U (—p A ).

Déterminer une loi d’expansion pour l'opérateur W.
Montrer que W est la solution la moins fine de cette loi d’expansion.

Quelle en est la solution la plus fine ?

Exercice 5

68

On considére un systéme (S) qui détermine un ensemble borné de trajectoires Traj, définies sur un
intervalle [0,T] avec T entier. On discrétise cet intervalle en posant 7 ={0,1,2,3,...,T}.
Soit m > 0. Exprimer en logique BLTL les propriétés suivantes :

1
2. les trajectoires de (S
3.
4

. les trajectoires de (S) sont attirées définitivement dans un intervalle de rayon §’ > 0 autour de

. les trajectoires de (S) restent toujours dans un intervalle de rayon § > 0 autour de O ;

(S) restent toujours dans un intervalle de rayon §’ > 0 autour de m ;
les trajectoires de (S) sont attirées dans un intervalle de rayon ¢’ > 0 autour de m ;
(

m
les trajectoires de (.S) oscillent entre un intervalle de rayon § > 0 autour de 0 et un intervalle de
rayon ¢’ > 0 autour de m.
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