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Abstract— The presence of Type 2 singularities in parallel
robots severely affects their performances, mainly because the
platform motion control is partially lost. It also leads to a size
reduction of the operational workspace. Moreover, the dynamic
model of the parallel mechanism degenerates and locally, the
robot becomes underactuated in the singularity. It has been
proven that it is possible to cross Type 2 singularities by
respecting a dynamic criterion. Nevertheless, the controllers
designed up to now require a pre-planned optimized trajectory
including this criterion, and as a result, this strategy can only
be used by qualified users. In order to avoid this drawback
and to cross these types of singularities even if the trajectory
is not pre-planned, this paper proposes a controller based on
virtual constraints. Furthermore, the controller is integrated
in a multi-control architecture in order to switch between a
classical computed torque control far from the singularity and
the virtual-constraint-based control law near to the singularity
locus. Experimental results on a five-bar mechanism validated
the automatic Type 2 singularity crossing.

I. INTRODUCTION

Parallel robots have several advantages compared to serial
robots, such as higher stiffness, higher payload, lowest
inertia and higher speed and acceleration. However, due to
their geometric and kinematic complexity, singularity issues
appear, which lead to the division of their workspace into
several aspects corresponding to different assembly modes
[1][2]. For a general overview on the classification of the
singularities in parallel robots the reader can refer to [3][4].
The literature review shows that some designers have over-
come the problems of workspace reachability by designing
mechanisms without singularities [5], but this usually leads
to robots with small workspace or parallel robots with low
practicability. One can also use redundancy [6] but the
use of additional actuators is costly. Another approach was
presented in [7] in which it has been shown that it is possible
to pass through Type 2 singularities by planning a trajectory
respecting a physical criterion defined from the analysis of
the degeneracy conditions of the dynamic model. This last
approach is promising since it has shown its efficiency to
cross the Type 2 singularities and to increase the reachable
workspace thanks to a modification of the robot trajectory.
However, the trajectory planning approach should be set
more robust by combining a dedicated controller with it.
Thus, a recent solution [8] proposed the implementation of
a Multi-Model Controller in order to track the trajectory that
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respects the physical criterion, and by switching between
two different dynamic models. Nevertheless, the main issue
with the current approach is that the definition of the optimal
trajectory for crossing is required to be done by a well-
skilled user, having some advanced knowledge in parallel
robot dynamics. This is a brake towards automatizing the
singularity crossing. The aim of this paper is to propose
an advanced feedback control law dedicated to ensure un-
planned singularity crossing allowing for an unskilled user
to design a trajectory without specific knowledge in parallel
robot dynamics. In order to solve this problem, we need to
find a strategy which is able to control the underactuation of
the end-effector of the parallel robot which occurs locally in
Type 2 singularity [3].
In control of underactuated systems, several approaches
exist [9], however, one of the most powerful tools is the
enforcement of virtual constraints through feedback control.
Virtual constraints are geometrical relations defined between
controlled and uncontrolled variables that can be enforced
through control action. Virtual constraints strategy has been
applied to several applications, e.g. humanoid walking in
[10], inverted pendulums in [11], aerial systems in [12].
Moreover, rigorous mathematical formulations have been
presented in [11][13]. Thus, the use of virtual constraints for
solving the problem of Type 2 singularity crossing seems to
be a promising solution for dealing with the underactuated
behavior of the robot at singularity given that at this specific
singular posture, controlled and uncontrolled variables can
be identified.
Thus, in this paper, we develop a controller based on virtual
constraint approach in order to cross the singularity without
pre-planned trajectory. Our main contributions are listed
below:
• Separation of the controlled and free dynamics, locally,

in the singularity locus;
• Feedback control law based on virtual constraints that

respects the dynamic criterion/free dynamics, even if the
trajectory is not pre-planned, avoiding the degeneracy of
the dynamic model;

• Multi-control architecture in order to continuously per-
form a trajectory tracking far from the singularity and
in the neighborhood of the singularity.

II. PHYSICAL BACKGROUND

A. Dynamic modeling of parallel robots

Let us briefly recall the dynamic modeling of parallel
robots presented in [14]. We will assume a parallel robot



composed of n degrees of freedom. The actuation is given
by n active joints. The position and velocity of the parallel
robot can be described by using:
• q and q̇ representing the n-dimensional vectors of active

joint variables and of active joint velocities, respectively.
• x and ẋ representing the n-dimensional vectors of

platform pose and of its time derivatives, respectively.
The input-output kinematic constraint that relates ẋ with the
active joint velocities q̇ is:

Aẋ+Bq̇ = 0 (1)

where A and B are the (n×n) parallel and serial kinematic
Jacobian matrices, respectively [1]. Then, by using the La-
grange formalism, the dynamic model of the robot can be
written as follows:

τ = τ ta −BTλ (2)

wp = ATλ (3)

where:
• τ is the n-dimensional vector of the robot input efforts;
• λ is the n-dimensional vector of Lagrange multipliers;
• τ ta and wp are the n-dimensional vectors related to the

Lagrangian L of the system:

τ ta =
d
dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)T
(4)

wp =
d
dt

(
∂L

∂ẋ

)T
−
(
∂L

∂x

)T
(5)

B. General solution for the inverse dynamic model and
degeneracy conditions of the dynamic model

This section seeks to give the general solution for the in-
verse dynamic model and to recall its degeneracy conditions
due to the loss of rank of the kinematic Jacobian matrix A.
Based on the classification of the singularities in [3], the
parallel robots can encounter three singular configurations:
Type 1 singularities occur when the mechanism loses its
ability to move along one given direction. In such singular
configurations the kinematic matrix B becomes rank defi-
cient.
Type 2 singularities occur when the mechanism gains some
uncontrollable motions. In such singularities the kinematic
matrix A becomes rank deficient.
Type 3 singularities are configurations when matrices A and
B are simultaneously rank deficient.
The general solution for the inverse dynamic model of
a parallel robot assuming the matrix A can be inverted,
meaning that the lagrange multipliers λ from (3) can be
substituted into (2), is given by:

τ = τ ta −BTA−Twp (6)

The solution of the dynamic model under the form (6)
assumes that the kinematic matrix A is a full rank matrix.
Furthermore, for a prescribed trajectory in the Cartesian
space, the values of the vectors q̈, q̇ and q can be calculated

from the inverse kinematics. Thus, considering that the
parallel robot is not in a Type 1 singularity, the terms τ ta and
wp can be computed. Nevertheless, for a trajectory passing
through a Type 2 singularity, the matrix A is rank deficient
[3]. In such singular configurations, the parallel mechanism
gains one or more uncontrollable degrees of freedom making
the system locally underactuated. An example of a Type 2
singularity is shown in Fig. 1 on a five-bar mechanism.
The degeneracy studied in the present research work will
be limited to one uncontrollable degree of freedom at the
singularity locus. The case of parallel robots with more
degrees of degeneracy rarely appears.

Fig. 1. A five-bar mechanism gains an uncontrollable motion perpendicular
to
−−−−−→
A12A13 and

−−−−−→
A22A13. The vector ts represents the direction of the

uncontrollable motion, which makes the robot underactuated. f1 and f2 are
two forces applied by the actuators on the platform through the passive legs.

III. MODELING OF THE FREE AND CONTROLLED
DYNAMICS

A. Separation of the free and controlled dynamics in the
singularity locus

Locally in the singularity locus it is possible to separate
the controlled and free dynamics. In order to do that let us
express the term wp in (3), (5) under the following form
given in [14]:

wp = Mrẍ+ cr = ATλ (7)

where Mr is an (n × n) definite positive matrix of inertia
depending on the platform coordinates [14], and cr is an n-
dimensional vector of Coriolis, centrifugal and gravitational
effects and its value depends on the platform coordinates x
and their time derivatives ẋ. Knowing that the matrix A is
rank deficient in Type 2 singularity, there exists a unit vector
ts in its kernel, such that:

Ats = 0 (8)

We take advantage of this property in order to build an
orthonormal matrix V described as follows:

V =

 tTs

−−−−−
Vc

 (9)

whose first row is the transpose of ts and Vc is an
((n− 1)× n) matrix grouping the other rows of V in
order to fill the orthonormal basis. Then, multiplying (7) by
the orthonormal matrix V, and decomposing the resulting
equations, we obtain:

tTs wp = tTs (Mrẍ+ cr) = 0 (10)



Vcwp = AT
s λ (11)

where As is an ((n− 1)× n) reduced kinematic Jacobian
matrix, as follows:

AT
s = VcA

T (12)

Expression (10) represents the local free dynamics of the
robot in singularity, and equation (11) represents the con-
trolled dynamics, given that the control inputs appear by
substituting λ, computed from expression (2), into (11):

Vcwp = AT
s (B

−T (τ − τ ta)) (13)

Expression (13) is valid since matrix B is not singular in a
Type 2 singularity as disclosed in the singularity conditions
of Section II-B.

B. Controlled and uncontrolled variables in the singularity
locus

Based on the separation of the free and controlled dynam-
ics, let us identify the controlled and uncontrolled variables
in the singularity locus by performing a change of variable
as follows:

ξ = VMrx (14)

where VMr is an invertible matrix considered locally con-
stant since the underactuated behavior occurs restrictively
only in the singularity locus. Then, the platform dynamics
can be expressed with the new variable ξ by computing the
following expression:

ξ̈ = VMrẍ (15)

where ξ̈ is the acceleration of the variable change. By
introducing the change of variable (14) into equations (10)
and (11), the free and controlled dynamics in the coordinate
ξ become:

ξ̈1 + tTs cr = 0 (16)

ξ̈c +Vccr = AT
s λ (17)

where ξ1 is the first term of ξ and is the uncontrolled variable
and ξc = [ξ2, ξ3, ..., ξn]

T is the (n−1)-dimensional vector of
controlled variables, grouping all the remaining components
of ξ.

IV. DYNAMIC MODEL IN THE SINGULARITY
LOCUS

The inverse dynamic model can be expressed as a function
of the acceleration of the controlled variables only. Accord-
ing to [14], equation (4) can be obtained under the form:

τ ta = Maq̈+ ca (18)

with Ma as an (n × n) matrix and ca as an n-dimensional
vector. Let us now substitute (18) into (2) and compute wp in
the coordinate ξ, then the dynamic model can be expressed:

τ = Maq̈+ ca −BTλ (19)

wp = ξ̈ +Vcr (20)

The expression (20) can be split into the free and controlled
dynamics by the equations (16) and (17). In order to find an
exact solution for the inverse dynamic model under the form
(19) and (20), it is possible to multiply (19) by AT

s B
−T :

AT
s B
−T τ = AT

s B
−T (Maq̈+ ca)−AT

s λ (21)

Then, AT
s λ from (21) can be substituted by using the

expression of the controlled dynamics (17), and equation (21)
becomes:

AT
s B
−T τ = AT

s B
−T (Maq̈+ ca)− ξ̈c −Vccr (22)

In order to express the dynamic model in the Cartesian
space, q̈ is mapped into the Cartesian space by using the
second order inverse kinematic model, obtained from the
differentiation with respect to time of equation (1):

q̈ = Jinvẍ+ b (23)

where Jinv = −B−1A and b = −B−1(Ȧẋ+ Ḃq̇).
We can perform the change of variable from ẍ into ξ̈ by
using expression (15), as follows:

ẍ = M−1r VT ξ̈ (24)

Then, to separate the controlled and uncontrolled variables
from (24), the following computations are performed:

VT ξ̈ = tsξ̈1 +VT
c ξ̈c (25)

By introducing expression (25) into equation (24), and sub-
stituting into the second order inverse kinematic model (23),
the model (22) becomes:

AT
s B
−T τ = AT

s B
−T (MaJinvM

−1
r (tsξ̈1 +VT

c ξ̈c)

+Mab+ ca)− ξ̈c −Vccr
(26)

The expression of the free dynamics (16) can be rewritten
as follows:

ξ̈1 = −tTs cr (27)

Therefore, by substituting (27) into (26) and grouping the
controlled dynamics, the following expression is obtained:

JTs τ = Msξ̈c + cs (28)

with the matrix Js = −B−1As, a generalized inertia matrix
reduced to the controllable degrees of freedom Ms =
JTsMaJinvM

−1
r VT

c + I(n−1) and the term that contains
the Coriolis, centrifugal, gravity and friction effects cs =
JTs (Mab+ ca −MaJinvM

−1
r cr) +Vccr.

From the properties of the Moore-Penrose pseudo-inverse,
the inverse dynamic model that minimizes the input torques
at the singularity locus is expressed by:

τ = JT+
s (Msξ̈c + cs) (29)

Since the uncontrolled variable has been removed from
expression (29), the matrix JTs is full row rank and the
obtained inverse dynamic model does not degenerate in the
singularity locus.



V. MODELING OF THE VIRTUAL CONSTRAINTS
AND CONTROL LAW IN THE SINGULARITY

In sections III-B and IV, we showed that locally in a
Type 2 singularity, the dynamic model of a parallel robot
can be separated in a free dynamics, associated to the
local uncontrolled direction, and a controlled dynamics in
the other directions. Virtual-constraint-based controllers have
been shown to be efficient in the control of underactuated
systems. In this section, we will apply this tool to maintain
the controllable variables on a trajectory defined by the
virtual constraints while the uncontrolled dynamics of the
system remains free. The controller developed naturally
respects the controlled and uncontrolled dynamics of the
robot, avoiding model degeneracy issues obtained with a
classic dynamic controller as Computed Torque Control.
In [13], the authors have defined the theoretical framework
in the modeling of virtual constraints. They defined virtual
constraints as geometrical relations among the generalized
coordinates that virtually constrain the system through the
application of control inputs for keeping those constraints
invariant. Recalling that the controlled and uncontrolled
variables at the singularity locus are
• ξ1: the uncontrolled variable;
• ξc = [ξ2, ξ3, ..., ξn]

T : the controlled variables.
It is thus possible to define a relation between the controlled
and uncontrolled variables in order to define the virtual
constraint to be enforced around the Type 2 singularity as
follows:

ξc = h(ξ1) (30)

In order to enforce the constraints, outputs are defined as

y = ξc − h(ξ1) (31)

The controller will drive the outputs y towards zero through
feedback linearization. To perform this linearization, the
outputs are differentiated with respect to time twice

ÿ = ξ̈c − (ξ̈1h
′(ξ1) + ξ̇21h

′′(ξ1)) (32)

where h′ and h′′ represent the first and second derivatives
with respect to the passive variable ξ1 of the function h(ξ1),
respectively. The uncontrolled dynamics, known by equation
(27) are introduced in equation (32).

ÿ = ξ̈c − (−tTs crh′(ξ1) + ξ̇21h
′′(ξ1)) (33)

The objective of the controller is to obtain a convergence
of the output y towards 0 as a second order ordinary
differential equation. To obtain it, an auxiliary input υ
corresponding to the acceleration of the controlled variables
ξc is introduced, and defined to ensure the convergence of
the virtual constraints

υ = (−tTs crh′(ξ1) + ξ̇21h
′′(ξ1))− Kpy − Kdẏ (34)

where Kp and Kd are positive definite matrices of propor-
tional and derivative gains to be tuned. Imposing torques
such that ξ̈c = υ will lead to the closed-loop equation

ÿ + Kdẏ + Kpy = 0 (35)

ensuring the convergence of y towards zero. The auxiliary
input is obtained by an input-output linearization through the
dynamic model of the controlled variables (29).

τ = JT+
s (Msυ + cs) (36)

The designed virtual-constraint-based control law (Fig. 2)
only applies for the situation when the robot becomes un-
deractuated in the singularity locus. Nevertheless, the goal
is to continuously and automatically track a trajectory in
the workspace far from the singularity and in the singularity
locus. Thus, the present paper proposes the use of a multi-
control architecture that switches between two control laws.
In [8] it has been shown that in order to track a given
trajectory out of the singularity locus, a classical computed
torque control can be implemented. The second control law
is the virtual-constraint-based controller for tracking in the
singularity locus.
In order to design a Multi-Controller scheme, a supervisory
control architecture is implemented (for a global overview
on Supervisory Control the reader can refer to [15]). Fig.
3 shows the Multi-Controller scheme integrating the control
law based on virtual constraints u1 and the classical com-
puted torque control u2.

Parallel

Robot

Linearized System

PD

Controller

Controlled

Outputs

Virtual

Constraints

Fig. 2. Virtual-constraint-based Control scheme is depicted with the vector
of control inputs τ representing the input torques in the singularity locus.
The box in blue highlights the linearized system, and the PD controller
ensures the convergence of the virtual constraints.
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Classical Computed
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Parallel
Robot
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u
1

u
2
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Neighborhood of singularity
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u

σ

Fig. 3. Multi-Controller scheme is depicted with the designed virtual-
constraint-based control law near to the singularity and the classical com-
puted torque control far from the singularity. The supervisor block decides
when to switch the control laws based on the proximity to the singularity
locus.

VI. CASE STUDY
A. Five-bar mechanism: Benchmark in Type 2 singularity
crossing

The proposed control approach for crossing Type 2 singu-
larities was validated in a five-bar mechanism from Meca-



demic, as shown in Fig. 4. The actuation is provided by
q = [q11, q21]

T . The vector of passive joints is given by
qd = [q12, q22, q13]

T . The vector of moving platform pose is
given by x = [x, y]T . a is the distance between the actuated
joints. All link lengths l are identical.

Fig. 4. On the left the five-bar mechanism parametrization is presented. On
the right the real robot is shown with an Inertial Measurement Unit sensor
attached in the end-effector. The five-bar mechanism is a planar parallel
robot with two actuated joints at A11 and A21, and three passive joints
located at A12, A22 and A13.

The dynamic model of the five-bar mechanism from Meca-
demic with identified parameters was given in [16]. The
dynamic model has the following form:

τ = ZZq̈+BTλ+ f (37)

wp = ATλ = mẍ (38)

where A and B are computed from the input-output kinematic
constraint relation (1). The matrix ZZ is positive diagonal
resulted from the identified dynamic parameters, and f
groups the active joint friction terms.

B. Virtual-constraint-based control implementation

In the case of the five-bar mechanism, the general expres-
sion of the matrix AT in a Type 2 singular configuration as
in Fig. 1 is given by

AT =

[
cosβ − cosβ
sinβ − sinβ

]
(39)

with β the orientation of the alignment of the passive legs

β = q11 + q12 + q13 = q21 + q22 (40)

In order to obtain the separation between the free and the
controlled dynamics, the matrix V of equation (9) is defined
by

V =

[
− sinβ cosβ
cosβ sinβ

]
(41)

and the equation (38) is pre-multiplied by the matrix V

mVẍ =

[
0 0
1 −1

]
λ (42)

The variable ξ =
[
ξ1 ξc

]T
is defined by

ξ = mVx (43)

Giving the uncontrolled dynamics

ξ̈1 = 0 (44)

and the inverse dynamic model (29) associated to the con-
trollable variables for the five-bar mechanism at singular
configuration

τ = JT+
s (Msξ̈c + cs) (45)

with Js = −B−1As, Ms = 1 + JTs ZZJs/m, cs =
JTs ZZb − AT

s B
−T f , ξc = mx and AT

s =
[
1 −1

]
. This

inverse dynamic model will be used to perform the input-
output linearization in the control loop (see section V).
The enforced virtual constraint is simply ξc = 0. Then the
auxiliary control law υ applied on the controlled acceleration
ξ̈c is given by

υ = −Kpξc −Kdξ̇c (46)

C. Multi-Control architecture for integrating the control
laws

The performance index considered in the supervisor block
from Fig. 3, for the control laws transition, is the proximity
to the singularity locus. We use the approach of computing
the condition number of the matrix A, which is the kinematic
matrix that degenerates in the singularity locus. Any other
criterion characterizing the proximity to singularity could be
used. Thus, the multi-control law can be synthesized by:

u = σu1 + (1− σ)u2 (47)

where σ is equal to 0 far from the singularity and equal to
1 in the singularity locus:
• σ = 1, if

(
1

cond(A)

)
≥ 2ε

• σ =
( 1−cond(A)ε

cond(A)ε

)
, if ε <

(
1

cond(A)

)
< 2ε

• σ = 0, if
(

1
cond(A)

)
≤ ε

ε is a threshold to be tuned experimentally.

D. Trajectory generation

In order to validate the theoretical formulations, the con-
troller is tested by defining sections of trajectory crossing the
singularity using fifth-degree order polynomials which can
fix the position at the sections extremities with null initial
and final velocities and accelerations. As the uncontrolled
dynamic is taken into account in the controller, it is not
necessary to design those sections such that the dynamic
criterion established in previous studies [7] is respected.
The trajectory will be automatically modified to respect the
free dynamics when crossing the singularity and the classic
CTC controller catches up with the initial trajectory after the
crossing. The final trajectory consists of multiple sections
crossing the singularity locus switching between the two
different assembly modes of the five-bar mechanism. The
sections of trajectories are defined between the points given
by A = [0, 0.15], B = [0, 0.035], C = [−0.025, 0.025], D =
[−0.025, 0.125], E = [0.025, 0.125], F = [0.025, 0.025].
The sequence of the trajectory is defined as the Fig. 5.

E. Experimental results

This section presents the results of testing the controller
for the trajectory defined in section VI-D. Fig. 6 shows the
input torques computed from the multi-control law along the
trajectory with multiple crossings from one assembly mode
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Fig. 5. Multiple crossing trajectory with the sequence: A → B → A →
B → A → C → D → A → F → E → A.

to the other. The five-bar mechanism crosses the singularity
without torque discontinuities. In order to validate the virtual-
constraint-based control law in the multi-control architecture,
an IMU was attached in the platform of the robot. Fig. 7
shows the tracking error of the magnitude of the acceleration
of the end-effector. The error is expressed as a function of the
desired trajectory. Since the controller automatically corrects
the trajectory when crossing the singularity with respect
to the controlled and uncontrolled dynamics, the perturba-
tion of the trajectory tracking when crossing is expected.
Furthermore, model errors may have an influence over the
perturbations observed. Nevertheless, the overall error in
acceleration remains converging towards zero, and varying
in a range of 10−1 m/s2. The robustness in experimentation
of the proposed control architecture was observed by testing
the trajectory at least 10 times. In all the tests the robot
successfully crosses the singularities automatically.
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Fig. 6. Input torques for the first and the second actuator.
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VII. CONCLUSIONS

This paper proposes a new solution to cross Type 2
singularities on a parallel robot. An analysis of the dynamic

equations in the singularity locus provided the separation of
the uncontrolled and controlled dynamics. Then, a specific
controller using an approach based on virtual constraints
was developed to deal with the local underactuation in
the singularity. A multi-control law was then implemented
to toggle between the local controller near the singularity
locus and a classic computed torque control in the rest
of the workspace. This controller allowed the crossing of
singularities without the pre-planning of an optimal trajectory
based on the dynamic criterion identified in previous studies.
Experimental implementations led to the successful crossing
of singularities in several configurations on a five-bar mech-
anism. Future work on this subject includes the theoretical
proof of robustness of the multi-control law implemented
and the design of alternative constraints to minimize the
divergence from the initial trajectory when performing the
singularity crossing.
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