
École Centrale de Nantes

MASTER ARIA - ROBA

“AUTOMATIQUE, ROBOTIQUE ET INFORMATIQUE APPLIQUÉE”

2015/ 2016

Thesis Report

Presented by

Muhammad Qumar Zaman Tufail

On 30 / 08 / 2016

Title

 Visual Servoing of a High Speed Parallel Robot

Jury

President: Philippe Martinet Professor, Ecole Centrale de Nantes

Evaluators: Sebastien Briot Full-time CNRS researcher at IRRCyN

 Philippe Martinet Professor, ECN

 Olivier Kermorgant Assistant Professor, ECN

 Abdelhamid Chriette Assistant Professor, ECN

Supervisors:

Sebastien Briot and Olivier Kermorgant

Laboratory : Institut de Recherche en Communications et Cybernétique de Nantes

Abstract

This thesis work is aimed at investigating the possibilities of controlling
a high speed parallel robot using computer vision techniques. For this
purpose, different methods that have been proposed in the literature, are
studied.Different possibilities like controlling by observation of leg directions
and leg edges are considered here. The efficacy of these models with and
without noise has been studied.

For the purposes of simulation, a model of the robot has been de-
veloped in ADAMS and linked with MATLAB/Simulink in order to
control. At the end of the thesis work, reader can get an idea that the
control of parallel robot using vision is indeed an innovative and useful
way and the information provided can be used to further improve the results

2

Contents

List of Figures 5

1 Introduction 8
1.1 Structure of the report . 8
1.2 Objective . 9

2 Pose and Velocity 12
2.1 Pose in robotics literature . 13
2.2 Pose estimation using vision 15

2.2.1 Estimating Pose . 18
2.2.2 Velocity estimation . 19

3 State of the art in Robotics 20
3.1 Concept of a robot . 20
3.2 Classification of robots . 21

3.2.1 Serial robotic architectures 21
3.2.2 Parallel Robotic architectures 22

3.3 Classical Control algorithms 26
3.3.1 PID Control . 26
3.3.2 Computed Torque Control 26

3.4 Joint space or Cartesian space 28

4 Vision Based Control 30
4.1 Basics of Vision based control 31
4.2 Different techniques in visual servoing 31

4.2.1 Image based visual servoing 31
4.2.2 Position based visual servoing 32

4.3 Vision based computed torque control of parallel kinematic
machines[2] . 33

4.4 Problems with vision based control 34

3

4.5 MIMO predictive controller 35
4.6 Techniques based on Regions of Interest acquisition 36

4.6.1 3D Pose and Velocity Visual Tracking Based on Se-
quential Region of Interest Acquisition[3] 36

4.6.2 Efficient High-speed Vision-based Computed Torque
Control of the Orthoglide Parallel Robot [19] 41

5 Visual servoing using legs observation 43
5.1 Plücker coordinates for visual servoing 43
5.2 Leg Observation . 44

5.2.1 Line Modelling . 44
5.2.2 Cylindrical leg observation 46

5.3 Simulator Design . 46
5.3.1 Linking ADAMS and MATLAB/Simulink 48

5.4 Control Algorithms developed 49
5.4.1 Leg orientation based visual servoing 49
5.4.2 Results without noise 54
5.4.3 Results with noise . 58
5.4.4 Leg edges based visual servoing 60
5.4.5 Results without noise 64
5.4.6 Results with noise . 69

5.5 Practical Edge detection on robot 73
5.5.1 Practical setup . 73
5.5.2 Camera calibration . 74
5.5.3 Technique used for edge detection 77

6 Conclusion and Future work proposal 82

7 Bibliography 83

4

List of Figures

2.1 Transformation from frame G to H 14
2.2 Perspective projection, taken from [10] 15
2.3 Pinhole camera with real and virtual images, taken from [10] 16
2.4 Geometric view of pinhole camera model, taken from [10] . . 16
2.5 From 3D to image coordinates, taken from [10] 17

3.1 Visual description of serial robots, taken from [4] 21
3.2 Visual description of Parallel robots, taken from [5] 22
3.3 Comparison of serial and parallel robots,taken from [4] 24
3.4 Planar RRRP mechanism in type1 singualrity,taken from [5] . 25
3.5 Planar RRRP mechanism in type2 singualrity ,taken from [5] 25
3.6 PID Controller schematic . 26
3.7 Computed Torque Controller schematic,taken from[7] 28

4.1 General schematic for sensor based control,taken from[5] . . 30
4.2 Cartesian space computed torque control,where ω = Ẍ[2] . . 33
4.3 60mm circle at 3ms−2 achieved by the Cartesian space com-

puted torque control with the forward kinematic model and
the vision-based computed torque control in the XY plane . . 34

4.4 High speed vision system chronogram where processing is
based on the sequential acquisition of small sub-images con-
taining the features. 37

4.5 Control scheme using ROI acquisition 40
4.6 3D trajectories from robot joint sensors and Vision, taken

from [3] . 41

5.1 Plücker Coordinates and edges of a cylinder [16] 45
5.2 IRSBot-2 Architecture of 1 leg[24] 47
5.3 ADAMS model of IRSBot-2 48
5.4 Simulation setup in simulink 49

5

5.5 IRSBot-2 Schematic . 50
5.6 Error on Leg11 . 55
5.7 Error on Leg21 . 56
5.8 Error on Leg11 . 57
5.9 Error on Leg21 . 57
5.10 Error on Leg11 . 58
5.11 Error on Leg21 . 59
5.12 Error on pose of end-effector 60
5.13 Error on edge1 of Leg11 . 65
5.14 Error on edge2 of Leg11 . 66
5.15 Error on first edge of Leg21 66
5.16 Error on second edge of Leg21 67
5.17 Error on first edge of Leg11 68
5.18 Error on second edge of Leg11 68
5.19 Error on first edge of Leg21 69
5.20 Error on second edge of Leg21 69
5.21 Error on edge1 of Leg11 . 71
5.22 Error on edge2 of Leg11 . 71
5.23 Error on first edge of Leg21 72
5.24 Error on second edge of Leg21 72
5.25 Error on pose of end-effector 73
5.26 Process of Camera Calibration 74
5.27 Reprojection error in pixels 75
5.28 Extrinsic visualization . 76
5.29 Original Image from Camera 77
5.30 Sub Images from the original 77
5.31 Edge detection . 79
5.32 Sobel Edge detection . 80
5.33 Edges (green) and projection-line vectors (red) 80

6

Acronyms

POS Pose from orthography and scaling

POSIT POS with iterations

RRRP Revolute Revolute Revolute Prismatic joints

PID Proportional Integral Derivative

DOF Degrees of Freedom

MIMO Multi input Multi Output

ROI Regions of Interest

GS Gough Stewart

STL Stereolithography

IRRCyN Institut de Recherche en Communications et Cybernétique de
Nantes

7

Chapter 1

Introduction

1.1 Structure of the report

This thesis work is divided into two parts. In part 1 ,basic concepts and
techniques related to robotics,vision, visual servoing and control are pre-
sented. In part 2 , the work that has been performed during this project is
presented. In third part, conclusion is presented and possible future work is
suggested.

• In chapter 2 , basics of pose and velocity in the robotics literature are
covered. How these parameters can be estimated using vision

• In chapter 3 ,state of the art in Robotics is described. Different
robotics architectures and different control algorithms available in lit-
erature, are described briefly.

• In chapter 4 , the concepts of Vision based control are described. What
is the basis of such kind of control . What kind of techniques are being
used in literature to achieve vision based control, all this is covered in
this chapter.

• Chapter 5 describes all the work that has been done in the context of
this project. The results are presented and analyzed.

• Chapter 6 concludes the work done and describes the future work that
could be done on the basis of this work

8

1.2 Objective

Aim is to propose a vision-based controller for IRSBot-2 , a high speed
parallel robot designed at IRCCyN, based on the observation of the legs,
rather than using the proprioceptive sensors.

To achieve this objective, during the first phase of this project, bibli-
ographic study was performed in order to get acquainted with the work
being done in this field and algorithms available in literature. In the second
phase of the project, different vision based algorithms have been developed
and investigated for the robot.

9

Part 1

10

Preliminary Concepts & Literature Review

11

Chapter 2

Pose and Velocity

Pose and velocity information about a body in space can help understand
the motion of the body better. Pose of a body defines the complete position
and orientation of a body in space. Velocity of a body defines how fast this
pose is changing with respect to time. Depending on the physical resources
available, there can be different methods to estimate these parameters.
Nature has blessed different organisms with different kind of sensors to help
them evolve and survive in their respective environments.
The animals evolving in the environments where light is not sufficient, tend
to use other means. It is necessary for them to localise and estimate the
motion of other animals, in order to survive and hunt. They usually use
methods based on sound waves. Equipped with sensors that respond to
sound waves, they send sound signals and then capture it back. From the
captured signal, they are able to localise other animals, how far they are
and their motion profile.
The animals evolving in suitable light conditions tend to depend more on
the light based sensors,mainly vision. Human beings are also equipped
with vision sensors,in the form of eyes. Our vision system is binocular,
because of the difference of position of eyes on the head. The vision system
of humans is a very efficient one,at the same time being a complicated one.

Another technology available for determining the pose and velocity of
an object is RADAR technology. Radar is an object-detection system that
uses radio waves to determine the range, angle, or velocity of objects. A
radar transmits radio waves or microwaves that reflect from any object
in their path. A receive radar, which is typically the same system as the
transmit radar, receives and processes these reflected waves to determine

12

properties of the object(s)[1]. It basically uses the Doppler effect.Based on
the Doppler shifts,it can estimate the velocity of the objects. It is being
used in many different applications in the world,such as:

• Air traffic Control and Air Defence

• Police Department

• Geology

• Weather prediction

To emulate any kind of system in real life, we need to have a thorough
understanding of its working. Unfortunately, the vision system of humans
is not understandable to a level of being able to completely emulate it. The
issues of processing a huge amount of information while communicating
between many different modules in real time is well performed by humans,
but not well understood. The artificial correspondence to the natural
system of eyes is camera. But there are many issues that need to be
addressed while using the camera,such as:

• Limited Processing power

• Interfacing the camera with other processing units(Brain of the sys-
tem)

• Operating frequency of the system

• Accuracy

These and many other issues related to artificial vision system are dealt
with in the field of computer vision. The aim of this project is to extract
the information related to the pose and velocity of an object in a scene, from
the images provided by the camera,using the field of computer vision. Then
we can use this information for our purpose (Designing a controller for the
robot).

2.1 Pose in robotics literature

Since a robot uses its end-effector to manipulate different objects and
interact with its environment, it is necessary to know the exact coordinates

13

of the end-effector. The position and orientation of it’s end-effector is
completely described by it’s pose. The pose means coordinates of a specific
point on the end-effector defined with respect to a frame attached to the
robot’s base. So we attach an imaginary frame to the end-effector, and we
describe the coordinates of robot by describing the translation and rotation
of this frame with respect to the reference frame.
For understanding purposes, we can assume two frames attached to two dif-
ferent bodies,named as RG and RH ,as shown in figure 2.1 . So now we need
to find the transformation between these two frames,GTH ,that could de-
fine the position and orientation of one frame with respect to another frame.:

Figure 2.1: Transformation from frame G to H

This transformation matrix between two frames is called homogeneous
transformation matrix. The general form of this matrix is given as:

GTH =

[
GRotH

GPosH
000 1

]
(2.1)

In the above matrix ,GRotH shows the orientation part,while GPosH shows
the position part. Consider that we have a 3D point in space defined by

the coordinates


x
y
z
1


RH

expressed in the frame RH . If we want to express

the same point but in frame RG,we will have to write:

14


x
y
z
1


RG

= GTH


x
y
z
1


RH

(2.2)

The rotation part of the homogeneous transformation matrix can be defined
in several ways. In literature,there exist many different parametrizations ,
like Euler angles , direction cosines, quaternions,Bryant angles,Roll pitch
yaw angles, Rodrigues’rotation formula etc.

2.2 Pose estimation using vision

The most commonly used vision sensor is the camera. So if we are using
camera to obtain visual features, it is obvious that we are dealing with 2D
images. So the problem here is that we need to reconstruct the 3D world
using the 2D information provided by camera. So we need to find a relation
between 2D coordinates of points in images and 3D coordinates of same
points in the world.
The most commonly used model for camera in literature is that of a
pinhole camera. Pinhole camera model is based on the idea of perspective
projection. Basic idea of perspective projection is that the images which
are far appear smaller,while the images which are near appear larger,and
the real image is inverted upside down. An illustration of perspective
projection is provided in the figure 2.2:

Figure 2.2: Perspective projection, taken from [10]

Using the idea of perspective projection, if we consider an object in

15

the view of a pinhole camera,its real and virtual images can be visually
depicted as shown in figure 2.3:

Figure 2.3: Pinhole camera with real and virtual images, taken from [10]

As can be seen in the figure 2.3, the camera aperture is described as a
point,so lenses are not used to focus light in an ideal pinhole camera model.
A geometric view of pinhole camera model can be represented as shown in
figure 2.4:

Figure 2.4: Geometric view of pinhole camera model, taken from [10]

In general form, the relationship between the image points in pixels and
the 3D points can be written as:

w.mp = K(I3×3 03×3)

(
R0 t0
000 1

) 
X
Y
Z
1


F0

(2.3)

In the equation 2.3 , F0 represents the object frame,or the frame in 3 D
world and (X,Y,Z) are the coordinates of 3 D point in this frame. R0 and
t0 represent the translation and rotation of the object frame with respect
to the camera frame. They are called extrinsic parameters. I denotes the

16

identity matrix. K is the collineation matrix, which is composed of the
inertial parameters of the camera. w is the scaling factor ,which is inversely
proportional to the depth of 3 D point.mp are the coordinates of the point
in the image plane, in pixels. The figure 2.5 provides a general overview of
how we obtained the equation 2.3.

Figure 2.5: From 3D to image coordinates, taken from [10]

The collineation matrix K is a matrix of the following form:

K =

fu γ u0
0 fv v0
0 0 1


where:
fu, fv:Focal lengths in pixels
γ:Skew factor
u0 and v0 :Principal point

Camera calibration

If we define a matrix P, which is composed of intrinsic as well as extrinsic
parameters,we can write:

P = K(I3×3 03×3)

(
R0 t0
000 1

)
(2.4)

So equation 2.3 can be written as:

w.mpi = P.mi (2.5)

17

where mpi =

xpiypi
1

 is the image point of i-th point. mi =


Xi

Yi
Zi
1

 represents

the 3 D coordinates of i-th point of the object. So P will be a 3× 4 matrix.
Hence we need to estimate 12 unknowns,which means that by estmating P
matrix, we can extract the matrix K, R0 and t0. So from equation 2.5,we
can estimate P , taking number of images n≥ 6 ,knowing the model of object
mi and image coordinates mpi.
This was the linear approach for camera calibration. There also exists a
non-linear approach. The basic idea behind non-linear approach is that it
initializes from the estimate provided by linear approach. Then a correction
is computed at each iteration until the convergence of the system. Conver-
gence of the system is defined by minimization of a chosen criteria.

Distortion

Generally, there exists some distortion when we are considering pinhole
camera model. So this also needs to be taken into account. For this
purpose, two kinds of distortions are defined [10]:

• Radial distortion

• Tangential distortion

Radial distortion results because of the failure of a lens to image straight
lines as straight lines. It is composed of three components,which can be
denoted as k1,k2 and k3. Tangential distortion is produced when a lens is
not parallel to the imaging plane. It is composed of two components,which
can be denoted by p1 and p2. In this case, the equation for pinhole camera
model will be modified to take into account the distortions. The equation
is not detailed here. Interested reader can find it in [10].

2.2.1 Estimating Pose

With a calibrated camera, the pose can be estimated using different algo-
rithms available in literature. The most commonly used algorithm in case
of non-planar objects is Dementhon algorithm [11] . The basic idea of De-
menthon algorithm is this :
The algorithm is defined to estimate the pose of a non coplanar object from
a single object. The model of object must be known. Four or more non-
coplanar feature points of the object are used. In this method, basically two

18

algorithms algorithms are used, namely POS(Pose from orthography and
scaling) and POSIT(POS with iterations) .
POS algorithm considers a scaled orthographic projection and finds the ro-
tation matrix and translation vector by solving a linear system. Scaled
orthographic projection means that we assume that all the points on the
object have same depth and we replace Zi for each point by just a value
Z . In POSIT algorithm, first an estimation of pose is obtained using the
POS algorithm. Then in the iteration loop, applies POS to scaled ortho-
graphic projections of feature points ,rather than to original image projec-
tions. POSIT converges to good accuracy within few iterations. As shown in
[11] , POSIT can be written in 25 lines of code in Mathematica. Dementhon
algorithm was used in [2] by Paccot et al. in order to estimate the pose. This
method is not feasible in our case, because the required operating frequency
of robot is quite high . So other ways to estimate pose will be explored in
next chapters.

2.2.2 Velocity estimation

A precise estimate of velocity along with pose information can help us to
understand the motion better and design a more efficient controller in terms
of twist associated.In literature, even though efficient algorithms exist for
pose estimation, but those algorithms do not provide a way to estimate
velocities. In many research works, like [2], velocity estimation is produced
by direct numerical differentiation of pose information. THis introduces
noise,which at high speeds could become very high. Hence this way of
computing velocity information is not suitable for our cause and alternate
methods will be explored in order to obtain it in a more useful way.

19

Chapter 3

State of the art in Robotics

3.1 Concept of a robot

A robot can be described as a mechanical assembly of different parts whose
combined action allows it to perform motions with a certain degree of
autonomy. It is a programmable device and the region it can operate in, is
defined by its workspace. It is different from automated machines in the
fact that it does not necessarily perform same motion again and again and
it can be programmed to do different tasks.
The different segments or links in a robot are connected to each
other with the help of joints .These joints could be of many
types,namely,prismatic,revolute,cylindrical,spherical,universal etc. The
type of joints determine the kind of motion that could be performed. The
combined effect of these series of segments helps the robot to place and
manoeuvre it’s end-effector in the environment.

While giving us many advantages over automated machines, robots
are limited in their operation by different constraints imposed by physical
limits of different parts being used. This fact makes the design and control
of robots an interesting research and engineering field. While a good design
and control algorithm can provide the industry with a very useful tool, the
constraints and limits imposed could also pose a great challenge.
In the following sections of this chapter, a general classification of robots
will be described,that is currently being used in literature. Also,different
constraints imposed by physical parts will be described and different control
strategies being used will be briefly covered.

20

3.2 Classification of robots

Robots can be generally classified on the basis of types of joints,number
of joints, types of motions that it can perform etc. Here we will describe
the two general classifications made in literature,namely serial and parallel
robots. These classifications are made on the basis of the way a robot’s end-
effector is connected to it’s base. We will see that both classes have quite
different properties and constraints. This fact leads us to adopt different
control strategies for both classes.

3.2.1 Serial robotic architectures

In serial robots, the end-effector of the robot is attached to it’s base with
the help of several links,connected to each other in a serial way. This
architecture is analogous to serial circuits in electrical engineering. A close
resemblance to serial architecture can be thought of a human arm,where
the links are connected in a serial way. A serial architecture is shown in the
figure 3.1a and a serial robot in 3.1b :

(a) Serial architecture

(b) Serial Robot

Figure 3.1: Visual description of serial robots, taken from [4]

Serial robots are widely used in the industry. The main reason of their
widespread use is that they have a large workspace and relatively simple
structure.
However, serial robots have their own disadvantages. Because of their serial
architecture , each actuator has to carry the inertia of it’s link as well as
inertia of the following links and actuators. This leads to a very high inertia
at the last link and hence relatively small load can be manipulated by the

21

robot. This means that serial robots have high less payload to mass ratio as
compare to their parallel counterparts. Also, the errors tend to accumulate
in serial robots because of their architecture. This leads to a reduced accu-
racy. These facts urge us to look for alternative solutions and hence the role
of parallel robots becomes very important.

3.2.2 Parallel Robotic architectures

As opposed to serial robots, the end-effector and base of the robot
are connected by several kinematic chains in parallel robots. Each
kinematic chain is composed of a number of serial links connected by
joints, just like serial robots. All these kinematic chains combine to
give a parallel robot. Each of these kinematic chains are called legs in
the architecture and they form a close loop. Unlike serial robots,where
usually all of the joints are actuated, parallel robots have some motorized
joints(active joints) and some non-motorized joints(passive joints) in each
leg . A parallel architecture is shown in figure and a parallel robot in figure :

(a) Stewart platform

(b) Kinematic scheme

Figure 3.2: Visual description of Parallel robots, taken from [5]

Advantages

Parallel robots have several advantages as well as drawbacks,when compared
to serial robots. Since motion of end-effector is a result of the combined

22

motion of several light weight kinematic chains, parallel robots are able to
handle weights more than their weights so their payload to mass ratio is
higher. Actuators can be mounted onto the base and this results in faster
movements and light weight kinematic chains.
Another advantage of parallel robots is that the errors tend to average out
as opposed to the serial case,where they tend to accumulate. Also,because
of several supporting chains, the stiffness of the structure is high.

Drawbacks

However, parallel robots are not without their disadvantages. The
workspace of parallel robots is smaller as compared to serial robots.
Another disadvantage is that their workspace is constrained by many
kind of singularities which leads to a complex design analysis and hence a
complex structure. At a singularity, the robot loses one or more degrees
of freedom or the motion in a particular direction becomes uncontrollable.
Hence singularity analysis is a major challenge for the designer and effec-
tiveness of a robot can be described in terms of singularities in its workspace.

Another drawback is that the forward kinematic model of the parallel
robots is usually complex and does not have an analytical form. Hence
we have to resort to numerical methods which can introduce errors in the
modelling and these small errors can lead to major problems in model based
control algorithms. Hence the problem of control of parallel manipulators
is a research issue and will be briefly covered in the following sections.
We can see a non-exhaustive comparison of serial and parallel robots in
figure3.3 :

23

Figure 3.3: Comparison of serial and parallel robots,taken from [4]

Singularities in Parallel Robots

Singularities in parallel robots usually arise from the degeneracy of kine-
matic model of the robot. If we represent the pose of the robot by x
active joint variables by qa,then the corresponding velocities are related by
following mathematical equation:

Aẋ+Bq̇a = 0

Where:
ẋ is twist of the robot
q̇aare velocities of active joint variables
A is reduced form of parallel jacobian matrix which contains actuation and
constraint wrenches
B is serial jacobian matrix
This form of equation is also called first-order kinematic model of the robot.
Serial singularities correspond to the situation when the matrix B de-
generates. Physically,it means that the robot is at the boundary of it’s
workspace or an internal boundary limiting different subregions of the
workspace. This kind of singularity is also called Type 1 singularity. In
this situation, the output link loses one or more degrees of freedom. This
situation is depicted in figure 3.4:

24

Figure 3.4: Planar RRRP mechanism in type1 singualrity,taken from [5]

Type 2 singularities arise when the matrix A degenerates. This
corresponds to a situation when output link gains one or more degrees
of freedom or more precisely, one or more degrees of freedom become
uncontrollable. This situation is depicted in figure 3.5:

Figure 3.5: Planar RRRP mechanism in type2 singualrity ,taken from [5]

Here R means revolute joint,which can only produce rotational mo-
tion,while P means prismatic joint,which can only produce translational
motion.

Another type of singularities exist,which are called constraint singu-
larities. These singularities occur when a system of leg constraints degen-
erates. This means that the platform gains an additional degree of freedom,
outside of it’s number of degrees of freedom. There exist some other kind
of singularites in parallel robots, which are less common and will not be
detailed here.
This general overview about the singularities in parallel robots gives us an
idea about how many problems we can face in design and analysis of a
parallel robot.

25

3.3 Classical Control algorithms

3.3.1 PID Control

PID control corresponds to proportional,integral,derivative control. It
means the control signal is composed of three terms, a proportional term,a
derivative term and an integral term. PID controllers are the most basic
kind of controllers and are very useful when the systems are linear. The
control signal corresponds to terms composed of difference between the
feedback term and desired value. A basic mathematical equation of a PID
controller can be written in the following form:

τ = Kp(q
d − q) +Kd(q̇

d − q̇) + ki

∫
(qd − q)dt (3.1)

The schematic of PID controller is shown in figure 3.6:

Figure 3.6: PID Controller schematic

Here q is the feedback signal from sensor, qd is the desired value and
Kp,Kd,Ki are tuning parameters and there exist different tuning techniques
in literature. Interested readers about tuning of these parameters are re-
ferred to [6] .
As for the case of parallel robots, the dynamics of different legs are coupled
which lead to a non linear behaviour of the system. An assumption of linear
behaviour can be applied at very low velocities ,but in our case, we want
to work at very high velocities and hence this assumption is no more valid.
Hence this class of controllers are not useful in our case of work. So we will
explore other methods available.

3.3.2 Computed Torque Control

This method is based on input-output linearization using the state feedback
of a non-linear system. It is a model based approach,which means it is
susceptible to modelling errors.

26

Considering the general form of dynamic model of a robot,given by equation
below:

τ = A(q)q̈ +H(q, q̇) (3.2)

Where:
τ is the torque
A(q) denotes the Inertia matrix of the robot
q is the set of joint variables
H denotes the matrix taking into account the gravitational,Coriolis and
centrifugal effects
Considering the torque control law described by:

τ = ˆA(q)w(t) + Ĥ(q, q̇) (3.3)

So a straightforward linearization is obtained by having q̈ = w(t) . This
means that the system has become a double integrator. We can consider
different cases ,as described in the following sections.

Motion completely specified

In the case,motion is completely specified, means we know the desired joint
positions, velocities and accelerations, we can write the control law as:

w(t) = q̈d +Kv(q̇
d − q̇) +Kp(q

d − q) (3.4)

Then:

q̈ = q̈d +Kv(q̇
d − q̇) +Kp(q

d − q)

If we write error as:

e = (qd − q)

Then ,using equation 3.3 ,the control signal becomes:

τ = A(q̈d +Kv ė+Kpe) + Ĥ(q, q̇) (3.5)

where:
Kv is derivative gain tuning term
Kp is proportional gain tuning term

27

Only desired position specified

In this case, we can write the control signal as:

w(t) = Kp(q
d − q)−Kv q̇ (3.6)

Then using equation 3.3, we can write the control law as:

τ = Â(Kpe−Kv q̇) + Ĥ(q, q̇) (3.7)

The control scheme in this case is shown in figure 3.7 :

Figure 3.7: Computed Torque Controller schematic,taken from[7]

The computed torque control method gives a nice compensation for dy-
namics of the robot. It is also quite accurate,given an accurate model.
However, because of its dependence on model of the system, modelling er-
rors could cause problems and hence lead to unsatisfactory results.
Since we are dealing with parallel robots, it is valid to question whether we
should use joint space control or cartesian space control. This issue will be
deal with in the next part.

3.4 Joint space or Cartesian space

In the case of serial robots, we know that joint configuration of the robot
completely describes the configuration of end-effector. In other words, we
have analytical expression for forward geometric models of the robot . It
means we can control in joint space and this will be the state space.
However,in case of parallel robots, the joint configuration does not com-
pletely specify the end-effector configuration. This is because for a given
joint configuration, there can be many end-effector configurations which

28

correspond to that same joint configuration. For example, in case of Gough-
Stewart platform, a single joint configuration may correspond to 40 real
configurations. So in the case of parallel robots, it is desirable to control in
cartesian space. This was shown in [8] . Also the superiority of computed
torque control law was shown in this paper.
However,as shown previously,computed torque control law is a model based
approach and hence it is susceptible to errors. In the next chapter, control
techniques which do not depend on models,will be explored.

29

Chapter 4

Vision Based Control

The classical control techniques described previously, all depend on model
of the system. It means that the model will estimate the relationship
between joint configurations and corresponding end-effector configuration.
So in order to get accurate results,model of the system has to be as accurate
as possible. This accuracy in modelling is usually achieved through
identification process,which is quite rigorous. Implementing identification
on complex systems is quite time consuming and expensive. Hence an
alternate solution needs to be found. One way is to totally bypass the
model. But how could this be achieved? The answer lies in the sections
ahead.
In order to totally bypass the effects of modelling errors, we could think of
schemes which do not require the use of models. It means we can control in
the cartesian space, without having to use the forward geometric models.
This could be achieved by the use of an exteroceptive sensor,which could
provide the measure of the configuration of end-effector. One of the possible
candidates in this case,could be to use vision as a sensor. A general scheme
in the case of sensor-base control scheme could be as shown in figure 4.1:

Figure 4.1: General schematic for sensor based control,taken from[5]

30

4.1 Basics of Vision based control

The basic idea in vision based control is to minimize an error defined by
the following equation [9]:

e(t) = s(m(t), a)− s∗ (4.1)

Here s denotes the set of visual features that we are interested in. It
depends on the set of image measurements,m, as well as the intrinsic
parameters or the knowledge about the object model a.s∗ represents the
desired visual features
In vision based control,usually a velocity controller is designed based on
the concept of interaction matrix An interaction matrix relates the rate of
change of visual features with the instantaneous relative motion between
the camera and scene. If we denote the interaction matrix by Ls , then we
can write:

ṡ = LsVc (4.2)

Here Vc represents the instantaneous relative motion between the camera
and scene. So it can be defined as Vc =c vc − cvs. Herecvc and cvs
represent the kinematic screw of the camera and the scene respectively,
both represented in camera frame.
Then if we want to impose exponential decay of the error,we can write
ė = −λe . If we assume that desired visual features are not changing
with respect to time, then we can define a velocity controller given by the
following equation:

Vc = −λ L+
s (s(m(t), a)− s∗) (4.3)

4.2 Different techniques in visual servoing

4.2.1 Image based visual servoing

The basic idea in image based visual servoing is to achieve servoing in the
image. We do not know how the robot will move in 3 D space, we try to
achieve convergence in image space. For this purpose, a relation between
2D points in the image in pixel coordinates and velocity of camera must
be defined. This relationship is defined by an interaction matrix. If we
represent image point coordinates in pixels as mp ,from [17]we can write:

31

ṁp =

−fu/Z 0 u/Z (u ∗ v)/fv −fu − u2/fu (−fu ∗ v)/fv

0 −fv/Z v/Z fv + v2/fv −(u ∗ v)/fu (−fv ∗ u)/fu

 Vc

Where:
Vc :the camera velocity vector ,which is composed of 6 components, 3 for
translational velocity and 3 for rotational velocity
u,v: image point coordinates in pixels
Z is the depth of the point
Here, the skew factor ”l” is assumed to be equal to zero . fv = fr and
fu = f , where ”f” denotes focal length and ”r” denotes aspect ratio.
This was 2D point based visual servoing. There exist many other 2 D
techniques which differ on the basis of features considered. To name a few,
we can consider 2D segment features, 2D moments etc.

4.2.2 Position based visual servoing

In this case,we know how the robot will behave in 3D but we do not know
what will happen in the image. In this case, the set of visual features”s” is
defined on the basis of the pose of the camera with respect to some reference
frame. So in this case, knowledge of the model of object is essential. We
can then write s = (t,yθ). Here ”t” is the translation vector,while yθ
represents the rotation of θ around an axis defined by unit vector y. Now
we can use two different approaches based on how the translation vector is
defined.
If we define t relative to an object frame Fo, we can write the interaction
matrix as:

Le =

[
−I3 [cto]×
03 Lyθ

]
where Lyθ is defined as:

Lyθ = I3 −
θ

2
[y]× + (1− sincθ

sinc2 θ2
) [y]2×

Where: I3 is 3× 3 identity matrix while 03 is 3× 3 zero matrix
[y]× is the skew symmetric matrix associated with the unit vector
[cto]× is the skew-symmetric matrix associated with translation vector.
sincθ = sin θ

θ

Note that here we could define the rotation part as y sin θ or y θ
2 . But

32

those parametrizations have singularities,while yθ parametrization has no
singularity.

4.3 Vision based computed torque control of par-
allel kinematic machines[2]

Usually, parallel robots are controlled in cartesian space. This is because
of the fact that joint space is not the state space in case of parallel robots.
Many end-effector poses exist corresponding to a specific joint configuration.
Hence Parallel robots have been shown to be better controlled in cartesian
space. This paper introduced a novel approach in the control of parallel
kinematic machines. Instead of writing the models of the robot in the
form of joint configurations, the models were written only as a function
of end-effector configurations. Having achieved this, the control loop
used measures from a fast exteroceptive sensor and hence it reduced the
complexity involved. So in this way, the problem of solving the forward
kinematic model is avoided completely. The basic control scheme used in
this paper is as shown below:

Figure 4.2: Cartesian space computed torque control,where ω = Ẍ[2]

This was one of the first papers to practically implement the idea of
using vision in dynamic control of parallel kinematic machines. The results
obtained were tested on Orthoglide robot. It was shown practically that
the results obtained were comparable to those obtained with computed
torque control based on forward kinematic model. The following figure was
obtained for a trajectory of 60mm circle :

33

Figure 4.3: 60mm circle at 3ms−2 achieved by the Cartesian space computed
torque control with the forward kinematic model and the vision-based com-
puted torque control in the XY plane

We can see that the results obtained using visual sensor are comparable.
But this method is not useful for our purposes. In this method, Dementhon
algorithm is used for computing the pose and then velocity is derived by
simple numerical derivation. Since we are interested in working at high
frequencies, the numerical derivation is not a useful option in our case, hence
this method will not be useful. Nevertheless, it encourages the use of vision
as sensor and with more precise visual sensors and at lower velocities, this
method can provide useful results.

4.4 Problems with vision based control

Since we have clearly established the advantages associated with using vi-
sion based control, we are hopeful to get an improvement in results. The
problem in vision based control comes when we look into the practical imple-
mentation of these techniques. We see that the dynamic control frequency
is usually quite high,in our case we want to operate the robot at 1 kHz
. The problem is that we have to synchronize the vision sensor with the
robot. The vision sensors usually operate at lower frequencies. Even with

34

high technology cameras, the problem of huge amount of data to be trans-
mitted and processed cannot be ignored. Moreover,the transferring system
will have limited bandwidth. All this results in loss of speed of vision based
controller. One solution is proposed in [12] , where the authors designed
a multivariable predictive controller for a 6 DOF manipulator robot. The
next section will describe this controller briefly.

4.5 MIMO predictive controller

MIMO stands for multi-input,multi-output .This work is based on the lin-
earized model of the dynamics of a robot. The purpose of this controller
was to increase the bandwidth of servo loop.In the visual servo loop, the
reference pose vector is compared with estimated pose obtained using the
vision system.The controller is a velocity controller, means that it generates
a control signal that is a velocity vector of size 6×1 . It represents a velocity
reference signal for each component of pose. The open loop model of visual
servoing can be considered as a multi-input,multi-output (MIMO) system,
whose input is a reference velocity vector and whose output is an estimated
vector of pose, having 6 components. The controller is predictive controller
because it takes into account the future references.
It was shown in this paper, with the help of practical implementations, that
predctive controller always yields a larger bandwidth as compared to PID.
However,In this work, the authors did not consider the torque control. In
our case, while dealing with higher dynamics, we have to use the torque
control . So this type of approach is not valid for torque control,because in
that case, the model of the robot cannot be linearized.

35

4.6 Techniques based on Regions of Interest ac-
quisition

4.6.1 3D Pose and Velocity Visual Tracking Based on Se-
quential Region of Interest Acquisition[3]

This method is based on non-simultaneous sub-images acquisition. Instead
of grabbing the whole image and using it for the purpose of visual servoing,
this paper introduces the concept of regions of interest. Sequential acqui-
sition of regions of interest(ROI) means that we capture only the parts of
the image which have useful information. This method has many benefits
as compared to classical visual servoing schemes, in terms of visual control
sampling frequency. It allows to increase the visual control sampling fre-
quency as well as manages to reduce the amount of data to be acquired and
sent by camera. Also ,the associated image projection model depends on
pose and velocity of observed object. Based on this property, a new control
law was defined in this paper, whose outputs are kinematic and dynamic
twists.

A very important assumption taken by the authors in this paper was
that the velocity of the tracked object is constant during the image acqui-
sition. In other words, the velocity was considered piecewise constant ,and
image acquisition period was considered small enough to make this assump-
tion valid. Practically, the algorithm was implemented using two threads,as
shown in figure 4.4. One thread was dedicated to ROI acquisition and an-
other thread was dedicated to control processing and pose prediction. This
idea allowed to achieve 4kHz ROI acquisition frequency and 400Hz vision
control sampling frequency.

36

Figure 4.4: High speed vision system chronogram where processing is based
on the sequential acquisition of small sub-images containing the features.

Proposed visual servoing approach

We consider a camera and a rigid known object in its visual field. The
object can be represented by a set of 3D points. The motion of this
object can be analysed by sequentially grabbing one single sub-image
where just one point is located. The cartesian coordinates of the set of
points with respect to the object frame is represented as oPi, ∀i = 1, ..., n.
Their corresponding image projections in the camera frame are denoted by
mi = (ui, vi)

T .If we use the pinhole projection model, then we can compute
the coordinates of these points in camera frame as:

∀i = 1, ..., n, wim̃i(ti) = K(cRoi
ctoi)

oP̃i (4.4)

where:
cRoi is rotation between the reference and grabbing times
ctoi is translation between the reference and grabbing times
K is the intrinsic parameters matrix of camera
oP̃i = (P Ti , 1)T is the homogeneous representation of oPi
m̃i = (mT

i , 1)T is the homogeneous representation of mi

wi is the scale factor ,which is inverse of the depth of 3D point
Now considering the assumption of constant velocity between the image

37

acquisitions, we can obtain the translation of the object by simple integra-
tion:

cδt =

∫ ti

t0

cV dt =c V∆ti (4.5)

The rotation can be defined using Rodrigues formula,expressed in the form
of rotational velocities:

oδRi = I +
sin(‖ oω‖∆ti)
‖ oω‖

[oω]× +
1− cos2(‖ oω‖∆ti)

‖ oω‖2
[oω]2× (4.6)

where:
‖ oω‖ represents the magnitude of rotational velocity oω
[oω]× represents the skew symmetric matrix associated with the rotational
velocity vector
∆ti is the integration time, or the time elapsed between each acquisition
In order to define the aim of this method, a corresponding task function
was defined. A task function of the general form was defined as below:

e = C(s(r, τ0)− s∗(t)) (4.7)

where s(r, τ0) is the vector of features in the image plane. It depends on the
object pose ’r’ as well as the kinematic twist τ0(translational and rotational
velocities). C is the combination matrix. We should note here that task
function defined here will have 12 entries, 6 for pose and 6 for velocity.
Combination matrix will correspondingly be a 12x2n matrix, where n is the
number of features. As shown in [3] , we can take the time derivative of
equation 4.7,and write it as:

ė =
∂e

∂r

dr

dt
+

∂e

∂τ0

dτ0
dt

+
∂e

∂t
(4.8)

After some simplifications ,equation 4.8 can be written as:

ė = CL2d

[
τ
τ̇

]
− Cds

∗(t)

dt
(4.9)

Here L2d is an interaction matrix which will be of size 2nx12 . It will
relate the velocities of n image features to translational and rotational
velocities and acceleration of the object. It should be noted here that in

38

classical vision based algorithms, size of interaction matrix is usually 2nx6
because in that case we only relate translational and rotational velocities to
the features. Here, we also have a relation of rotational and translational
accelerations. A first order exponential decrease of the task function was
imposed,which could be mathematically expressed as:

ė = −λe (4.10)

where λ was defined as a positive proportional gain parameter which will
determine the convergence speed of this law.
From equations 4.9 and 4.10, we can write :[

τ
τ̇

]
= (CL2d)

−1(−λe+ Cṡ∗(t)) (4.11)

The condition for convergence of this control law can be written as:

C = L̂2d
+

where L̂2d
+

is the pseudo inverse of the estimate of interaction matrix L2d.
If we assume that estimate of interaction matrix is correct i.e,:

L̂2d
+
L2d = I

where I is the identity matrix, then the control law can be written in the
following form: [

τ
τ̇

]
= −λL̂2d

+
(s(r, τ0)− s∗(t)) + L̂2d

+
s∗(t)) (4.12)

The proposed control scheme based on ROI acquisition is as shown in
figure4.5:

39

Figure 4.5: Control scheme using ROI acquisition

In this control method, the control output provided 12 elements, 6 for
kinematic twise and 6 for dynamic twist. So integration of kinematic twist
provides the estimation of current pose, and integration of dynamic twist
provides an estimation of current velocity. The relative target velocity with
respect to the camera was then estimated by integrating the dynamic twist
over the sampling period .
Interaction matrix is computed on the basic principles of vision based control
described previously. It is detailed in [3] .

Results

The virtual visual servoing scheme was implemented by authors in [3] in
C++ language . The acquisition process was performed using a ”Photon
focus Track Cam” based on ROI grabbing method. The algorithm was
tested on ”Orthoglide” robot. Maximum speed reached was 1m/s and
maximum tangential acceleration of the robot was 5m/s2 . The results
obtained were as shown in the figure 4.6:

40

(a) Trajectories projection on XZ plane
(b) Trajectories projection on XZ plane

Figure 4.6: 3D trajectories from robot joint sensors and Vision, taken from
[3]

We can see that the results provided by vision sensor are quite compara-
ble to those obtained using the model of system. With better vision sensors
,this response could be improved.

4.6.2 Efficient High-speed Vision-based Computed Torque
Control of the Orthoglide Parallel Robot [19]

In [19] , authors have improved the work done in [3] . The basic assump-
tion in [3] was that velocity is constant during the image acquisition time.
Because of this assumption,the velocity was estimated with a constant de-
lay. This assumption is not quite valid when considering very high speed
parallel robot. So in [19], authors have made a more coherent assumption
of constant acceleration. The basic idea is same as the one used in [3] . The
authors showed that the results obtained were improved and were superior
to the ones obtained with model based approach.

41

Part 2

42

Chapter 5

Visual servoing using legs
observation

We have seen in the previous chapters that classically, computed torque
control law is used to control parallel robots. This control law performs well
in joint space,in case of serial robots. However,in case of parallel robots,
we usually try to avoid working in joint space because one has to solve for
forward kinematic problem at each step.
So in case of parallel robots, we try to work in cartesian space,as was shown
in previous chapter. One way to control in cartesian space is to estimate
the end-effector pose and estimate its velocity directly,using different pose
estimation algorithms available in literature. But these pose estimation
algorithms are costly in terms of computations and hence not very feasible
in very high speed manipulators.

5.1 Plücker coordinates for visual servoing

Plücker coordinates are another way to represent a line in space. We know
that a line L in 3-dimesnional Euclidean space can be determined by two dis-
tinct points. If we consider x1 = (x1, y1, z1)and x2 = (x2, y2, z2) be the two
points on line L, then the vector displacement from x1 to x2 represents the
direction of the line. by this definition, every displacement between points
on L is a scalar multiple of d = x2−x1. If we suppose that a physical parti-
cle of unit mass moves from x1 to x2, it would have a moment about origin.
The geometric equivalent is a vector with the direction perpendicular to the
plane containing line L and the origin, with the length equal to double the

43

area of triangle formed by the segment of displacement and origin. There-
fore, moment is the vector cross product m = P× d, where P is any point
on the line. The area of triangle is proportional to the length of segment
between x1 and x2. By definition, the moment vector is perpendicular to
each displacement along the line, so the vector dot product is d ·m = 0.
The two vectors, the direction vector of the line and the moment vector, are
sufficient to uniquely determine line L. Therefore, plücker coordinates are
given by :
(d : m) = (d1 : d2 : d3 : m1 : m2 : m3).

5.2 Leg Observation

The control schemes developed and studied during this work i.e, line ori-
entation and edges based, are defined based on the fact that it is possible
to control by observing the legs of the robot. The following subsections
describe the ways to extract leg orientation and edges, using geometrical
relations.

5.2.1 Line Modelling

A line L expressed in the camera frame, is define by its binormalized plücker
coordinates [21] :

L = (cu, ch, ch)

Here, cu is the unit vector giving the spatial orientation of the line, ch is
the unit vector defining the interpretation plane of line L and ch is a non
negative scalar. The latter are defined by chch = cP × cu , where cP is
position of any point P on the line, expressed in camera frame. Using this
notation, the well known normalized plücker coordinates [22] are the couple
(cu, chch).

44

Figure 5.1: Plücker Coordinates and edges of a cylinder [16]

The projection of such a line in the image plane, expressed in the camera
frame, has for characteristic equation [21]:

chT cp = 0 (5.1)

where cp are the coordinates of a point P lying on the line, in the image
plane, expressed in camera frame.
If we denote the intrinsic parameter matrix of the camera as K , we can
obtain the line equation in pixel coordinates ph from:

phT pp = 0 (5.2)

Replacing pp with Kcp in this expression yields:

phTKcp = 0

From equations 5.1 and 5.2, we can write:

ph =
K−T ch

‖K−T ch‖
(5.3)

ch =
K−T ph

‖K−T ph‖
(5.4)

45

5.2.2 Cylindrical leg observation

The legs of parallel robots usually have cylindrical cross-sections [23]. Edges
of i-th cylindrical leg in the camera frame, are given by [16] (Fig 5.1):

cn1
i = − cos θi

chi − sin θi
cui × chi

cn2
i = + cos θi

chi − sin θi
cui × chi

Where:

cos θi =

√
ch2i −R2

i

chi
sin θi =

Ri
chi

Ri is the radius of the cylinder and (cu, ch, ch) are the binormalized Plücker
coordinates of the cylinder axis.
We can also write a relationship between the leg orientation and its edges,
expressed in camera frame, as given by [16]:

cui =
cn1

i × cn2
i

‖cn1
i × cn2

i ‖

5.3 Simulator Design

A necessary tool to test the efficacy of developed algorithms in simulation
was ADAMS model of the robot.Since SolidWorks model of the robot was
available, so in order to obtain an ADAMS model, a systematic process was
followed.
First, the SolidWorks model was saved as a Step file. This type of file
could be opened in CATIA. In CATIA, each part of the model was saved
as a separate CATProduct. Then for each CATProduct, a corresponding
STL file was generated. Now these STL files could be imported as separate
bodies in ADAMS.
After performing these steps, all the bodies were available in ADAMS.
Now, the aim was to define corresponding markers at exact joint locations.
There are two things to be considered here. The marker’s location and its
orientation. For locations of joints, I obtained the information using mea-
suring tools available in CATIA. For the orientation part, the orientation
of revolute joints was straightforward. But for universal joints, it was a
bit tricky and hence took a big chunk of time. After some unsuccessful
attempts, i eventually obtained the correct orientation for universal joints
from motion analysis study of SolidWorks model. The architecture of

46

a leg of IRSBot-2 is shown in figure 5.2,with all the joints.The lengths
l1 = l2 = 321mm, l41 = l42 = 458mm . The angle β = 45.

Figure 5.2: IRSBot-2 Architecture of 1 leg[24]

47

Figure 5.3: ADAMS model of IRSBot-2

The model finally obtained in ADAMS, is shown in figure 5.3

5.3.1 Linking ADAMS and MATLAB/Simulink

After obtaining the ADAMS model, the ADAMS plant was exported in order
to use it with MATLAB/Simulink. The figure 5.4 shows the final model in
Simulink.

48

Figure 5.4: Simulation setup in simulink

5.4 Control Algorithms developed

5.4.1 Leg orientation based visual servoing

Kinematics of IRSBot-2 using leg orientation based visual servoing

In this part, we will systematically develop the kinematic model of IRSBot-2
in order to use it for the visual servoing purpose. It should be noted here
that all the equations are in camera frame unless mentioned otherwise.

49

Figure 5.5: IRSBot-2 Schematic

The figure 5.5 shows the simplified architecture of IRSBot-2 and will be
used to develop a kinematic model. IRSBot-2 is a two degrees of trans-
lational parallel manipulator. The robot can be basically categorized as
composed of two legs. Each leg can be further subdivided into a proximal
part and distal part, linked by an elbow. The proximal part is a parallelo-
gram as shown in figure 5.5.In this part, the revolute joints that are actuated
are located at point Ai, which move the arm attached at points Ai and Bi.
The direction vector of this arm is given by the vector xi. The distal part
can be further split into two distal bars or cylinders. An elbow joints the
distal part with the proximal part and the end-effector. A distal leg, or
cylinder is attached at points Cij and Dij with the help of universal joints.
Here, i= 1, 2 denotes the index of the proximal part and j= 1, 2 denotes the
index of the distal part.

50

Differential Inverse Kinematic model

Considering the figure 5.5, we can write, for a leg ’ij’,the following equation:

Luij = CDij = Dij − Cij (5.5)

where:
L is the length of distal bar
uij is the direction or orientation vector of leg ’ij’ in space
C and D are the attachment points of the leg under consideration
Differentiating eq 5.5 with respect to time, we obtain:

Lu̇ij = Ḋij − Ċij (5.6)

From figure 5.5, we can also write

Cij = PAi + lxi +BCij (5.7)

where l is the length of the proximal bar.
In eq 5.7, the terms PAi and BCij are constant. So if we differentiate this
equation with respect to time, we will obtain:

Ċij = lẋi

or we can write in the following form:

Ċij = lq̇iyi (5.8)

Here xi can be written for each leg under consideration and a corre-
sponding analytical expression was obtained for y

i
. For instance,x2 could

be written in vector form , in camera frame as:

x1 =

cos q1
sin q1

0

 (5.9)

Similarly, we can write the expression for leg 1 .From there, we can derive
the vector y

i
, for corresponding legs.

From figure5.5, we can also write:

Dij = E + EDij

Time differentiating the above equation, we obtain:

Ḋij = Ve + ˙EDij

51

Since ED is constant, the above equation simplifies to:

Ḋij = Ve (5.10)

Putting 5.8 and 5.10 in equation 5.6, we obtain:

Lu̇ij = Ve − lq̇iyi (5.11)

Since u is a unit vector , so the following relation holds:

uTij u̇ij = 0

Hence we can obtain the following relation after simplification:

q̇i =
uTijVe

lyT
i
uij

(5.12)

This could be written in simplified form as:

q̇i = J invi Ve (5.13)

Where J invi is the inverse jacobian matrix relating the end-effector velocity
to the joint value of the leg considered.

Interaction Matrix Computation

Since we want to use visual servoing, determination of interaction matrix
relating the rate of change of features to the end effector velocity is essential.
For this purpose,if we insert eq 5.12 into eq 5.11, we obtain:

u̇ij =
1

L

(
I3 −

y
i
uTij

yT
i
uij

)
Ve

The above equation can be written in simplified form as:

u̇ij = MijVe (5.14)

Here, Mij denotes the interaction matrix relating the rate of change of fea-
tures to the end effector velocity.

52

Control Law

Since we are dealing with unit vectors, geodesic error is a better way to
consider error as compared to the difference of vectors. If we consider that
uij is our current leg direction at some point in time and u∗ij is our desired
leg direction, then we can write the error as:

eij = uij × u∗ij
Taking the time derivative of above equation, we can write:

˙eij = −[u∗ij]×u̇ij

Using equation 5.14, we can write the above equation as:

˙eij = −[u∗ij]×MijVe

or
˙eij = NijVe (5.15)

where:

Nij = −[u∗ij]×Mij

For a simple control strategy, if we impose proportional decrease of the
error, we can write:

˙eij = −λeij
Using this in eq 5.15, we get following pseudo control law:

Ve = −λN+e (5.16)

Notice that matrix N is a compound matrix obtained by stacking individual
matrices Nij of each leg and e is the compound error matrix obtained by
stacking the individual errors of each leg. Using eq 5.13 in eq 5.16, we have
the final control law of the form:

q̇ = −λJ invN+e

where q is a vector obtained by stacking the values from both actuators.
J inv is the matrix obtained by stacking the inverse jacobian matrices of
both legs.

53

5.4.2 Results without noise

The following section shows some of the results obtained using the Simulink
/ ADAMS View based simulator. Noise is not added in this part. The
desired leg orientation vectors of both legs are provided, which correspond
to a certain pose of end-effector. For simulation purposes, as shown in
figure 5.5, the camera is supposed to be placed at some location away from
the robot and the camera frame is rotated for 90◦ around x-axis. The
general form of homogeneous transformation matrix between camera and
base frame can be written as:

cTo =

[
cRo

cto
0 0 0 1

]
So the homogeneous transformation matrix between the robot and

camera frame is as follows:

cTo =


1 0 0 250
0 0 −1 −250
0 1 0 1000
0 0 0 1


The translation part of the homogeneous transformation matrix is in
millimetres.
The initial leg orientations of each leg were:

u21 =

−0.8056
0.5092
0.3032

 u11 =

0.5150
0.8019
0.3032


These initial leg orientations correspond to the initial end effector pose of:

X =

xy
z

 =

 100
342.9
1000


The desired orientations of each leg are as shown below:

u∗21 =

−0.7131
0.6322
0.3032

 u∗11 =

0.4163
0.8573
0.3032



54

These desired leg orientations correspond to the end effector pose of:

X =

xy
z

 =

 88.1
413.1
1000


It should be noted that all the vectors described here are in camera
frame.Figure 5.6 demonstrates the results obtained for leg11.

Figure 5.6: Error on Leg11

Similarly, figure 5.7 shows the error and norm of error on the leg 21. It
can be noted that in both cases, the desired leg orientation was achieved
and there was an exponential decay of error, as desired.

55

Figure 5.7: Error on Leg21

Secondly, I changed the desired leg orientations and see if these new
values could be attained. Now, the desired orientations of each leg are as
below:
The desired orientations of each leg are as shown below:

u∗21 =

−0.5939
0.7453
0.3032

 u∗11 =

0.3250
0.8959
0.3032


These desired leg orientations correspond to the end effector pose of:

X =

xy
z

 =

86.88
469.1
1000


Figure 5.8 demonstrates the results obtained for leg11.

56

Figure 5.8: Error on Leg11

Similarly, figure 5.9 shows the error and norm of error on the leg 21. It
can be noted that in both cases, the desired leg orientation was achieved
and there was an exponential decay of error, as desired.

Figure 5.9: Error on Leg21

57

5.4.3 Results with noise

In this subsection, we will observe the effect of a small noise added. This
will be closer to practical scenario, since there will be some noise in
determination of leg edges or leg orientation in real life.
This effect was mimicked in simulation by introducing additive white
gaussian noise in our model, at the location where we are determining the
orientation vectors. The noise was added with a variance of 0.001 to the
original vector measured. The results are as shown below in the figures:

Figure 5.10: Error on Leg11

Similarly, figure 5.11 shows the error and norm of error on the leg 21.
It can be noted that in both cases, the desired leg orientation was achieved
and there was an exponential decay of error, as desired.

58

Figure 5.11: Error on Leg21

The pose reached by end-effector in this case was

X =

xy
z

 =

87.78
412.8
1000


As described previously the desired pose was :

X =

xy
z

 =

 88.1
413.1
1000


The figure 5.12 shows that despite the noise introduced in the measurement
of orientation vectors, the desired end-effector pose was reached with
minimal error.

59

Figure 5.12: Error on pose of end-effector

We can see that the percentage error on the end-effector pose is around
0.2%, which is negligible.

5.4.4 Leg edges based visual servoing

As discussed previously, if we want to control using leg directions in a
practical scenario, we will make use of the following relation between a leg
direction and its edges:

cuij =
cn1

ij × cn2
ij

‖cn1
ij × cn2

ij‖

where n1
ij and n2

ij denote the two edges of the leg and cuij denotes the
corresponding leg direction. This relation is useful but not always. Consider
a scenario where the two edges of the leg appear parallel in the image. So
it means they will appear to intersect at infinity and hence the leg direction
cannot be determined. For this purpose, we will try to control using leg
edges rather than the leg directions, in this part. Note that leg directions
based visual servoing is close to position based visual servoing while leg
edges based visual servoing is closer to image based visual servoing.
Since each cylinder edge is a line in space, it can be expressed by binormal-
ized plücker coordinates (cuij ,

cnkij ,
cnkij). Also, the attachment pont Cij is

lying at a distance R (radius of the cylinder) from the edge. Consequently,

60

a cylinder edge can be fully defined by following constraints [16]:

CTijn
k
ij = −R (5.17)

nkTij n
k
ij = 1 (5.18)

uTijn
k
ij = 0 (5.19)

The interaction matrix W relating the end effector velocity to the edges in
the pixel frame can be written as:

ṅk = WVe (5.20)

The matrix R can be decomposed into three parts, as follows:

W = pQc
nQuM (5.21)

The matrix M, as derived previously, relates the time rate of change of
leg orientation to the end effector velocity. The matrix nQu relates the leg
orientation velocities and leg edges velocities, in camera frame. The matrix
pQc is used to change from camera to pixel frame. The two latter matrices
will be derived in the following sections.

Edge velocity in the camera frame

Here, we will derive the time derivative of a cylinder edge, in camera frame,
under the kinematic constraint that cylinder is attached at point Cij .
For that purpose, taking time derivative of the constraints expressed in
equations 5.17, 5.18 and 5.19, we have the following relations. Note that
the legs index ’ij ’ is dropped from following calculations for simplicity:

ṅkTC = 0 (5.22)

ṅkTnk = 0 (5.23)

ṅkTu+ nkT u̇ = 0 (5.24)

Using the equation 5.18 and the fact that the vectors (u,n,u×n) form the
orthonormal basis (Andreff et al. 2002), we can state that:

ṅk = αu+ βu× nk

Now inserting this expression into equations 5.17 and 5.19 yields :

α = −nku̇, β =
CTu

CT (u× nk)
(nkT u̇)

61

Consequently, we obtain the relationship between the time derivative of a
leg edge, expressed in the camera frame, and the time derivative of the leg
orientation:

ṅk = nQuu̇ = nQuMVe

where:

nQu =

(
CTu

CT (u× nk)
(u× nk)− u

)
nkT

Image line velocity in pixel coordinates

In this section, we will derive a jacobian associated with the change of
frame in which the time derivative of an image line is expressed, from
camera frame to the pixel frame. These calculations hold for any image
line, not only for edges.
Rewriting 5.3, we have:

pn = µ(cn)K−T cn (5.25)

Time differentiating the above equation:

pṅ =
dµ(cn)

dt
K−T cn+ µ(cn)K−T cṅ (5.26)

Since pn is a unit vector, so using equation 5.18, we get :(
dµ(cn)

dt
K−T cn

)T
pn+ µ(cn)pnTK−T cṅ = 0

Using 5.3 again, this simplifies into :

dµ(cn)

dt
= −µc(n)2 pnTK−T cṅ

Inserting this result into equation 5.26, we have:

pṅ =
(
−K−T cnTµ(cn)2 pnT + µ(cn)I3

)
K−T cṅ

This simplifies into:

pṅ = µ (cn)
(
I3 − pn pnT

)
K−T cṅ

Inserting eq. 5.4 into eq. 5.25 proves that:

µ(cn) = ‖KT pn‖

62

From this, we finally obtain the relationship between the time derivative of
a line, expressed in the pixel frame and in camera frame:

pṅ = pQc
cṅ

pQc = ‖KT pn‖
(
I3 − pnpnT

)
K−T

Thus we have all the matrices needed to use equation 5.21.

Controlling in pixel coordinates

In our case,geodesic error is a better way to consider error as compared to
the difference of vectors. If we consider that nkij is one of our current leg

edge at some point in time and nk∗ij is our desired leg edge , then we can
write the error as:

ekij = nkij × nk∗ij
Taking the time derivative of above equation, we can write:

ėkij = −[nk∗ij]×ṅ
k
ij

Using equation 5.20, we can write the above equation as:

ėkij = −[nk∗ij]×Wk
ijVe

or
ėkij = SkijVe (5.27)

where:

Skij = −[nk∗ij]×Wk
ij

For a simple control strategy, if we impose proportional decrease of the
error, we can write:

˙eij = −λeij
Using this in eq 5.27, we get following pseudo control law:

Ve = −λS+
ije (5.28)

Notice that matrix S is a compound matrix obtained by stacking individual
matrices Skij of all the edges of all legs and e is the compound error matrix
obtained by stacking the individual errors of each edge. Using eq 5.13 in eq

63

5.28, we have the final control law of the form:

q̇ = −λJ invS+e

where q is a vector obtained by stacking the values from both actuators.
J inv is the matrix obtained by stacking the inverse jacobian matrices of
both legs.

5.4.5 Results without noise

The following section shows some of the results obtained using the
Simulink / ADAMS View based simulator. Noise is not added in this part.
The desired leg edges vectors of both legs are provided, which correspond
to a certain pose of end-effector. The initial values of the edges of leg11 were:

n111 =

 0.8091
−0.5715

0.137

 n111 =

−0.7931
0.5799
−0.1865


Similarly, for leg21, the initial values for edges were:

n121 =

 0.3884
0.8401
−0.3788

 n121 =

−0.4082
−0.8477
0.3388


These initial values for leg edges correspond to the initial end effector

pose of:

X =

xy
z

 =

 100
342.9
1000


The desired edges of leg11 are as shown below:

n1∗11 =

 0.4973
0.7611
−0.4165

 n2∗11 =

−0.5195
−0.767
0.3765


Similarly, for leg21, the desired values for edges were:

n1∗21 =

 0.3884
0.8401
−0.3788

 n2∗21 =

−0.4082
−0.8477
0.3388


64

These desired leg edges values correspond to the end effector pose of:

X =

xy
z

 =

 88.1
413.1
1000


It should be noted that all the vectors described here are in camera
frame.Figure 5.13 demonstrates the results obtained for first edge of leg11
and figure 5.14 demonstrates the results obtained for second edge.

Figure 5.13: Error on edge1 of Leg11

65

Figure 5.14: Error on edge2 of Leg11

Similarly, figure 5.15 shows the error and norm of error on the first edge
of leg 21 and 5.16 shows the error and norm of error on the second edge.
It can be noted that in both cases, the desired leg orientation was achieved
and there was an exponential decay of error, as desired.

Figure 5.15: Error on first edge of Leg21

66

Figure 5.16: Error on second edge of Leg21

Secondly, I changed the desired leg edges and see if these new values
could be attained. Now, the desired edges of each leg are as below:
The desired orientations of leg11 are as shown below:

n1∗11 =

 0.8946
−0.4228

0.145

 n2∗11 =

−0.8793
0.434
−0.1959


Similarly, for leg21, the desired values for edges were:

n1∗21 =

 0.5263
0.7424
−0.4146

 n2∗21 =

 −0.549
−0.7475

0.374


These desired leg edges correspond to the end effector pose of:

X =

xy
z

 =

86.88
469.1
1000


Figures 5.17 and 5.18 demonstrates the results obtained for first and second
edges of leg11 respectively.

67

Figure 5.17: Error on first edge of Leg11

Figure 5.18: Error on second edge of Leg11

Similarly, figures 5.19 and 5.20 show the error and norm of error on first
and second edges of leg 21 respectively. It can be noted that in both cases,
the desired leg orientation was achieved and there was an exponential decay
of error, as desired.

68

Figure 5.19: Error on first edge of Leg21

Figure 5.20: Error on second edge of Leg21

5.4.6 Results with noise

In this case also, additive white gaussian noise was added with a variance
of 0.001.
The initial values of the edges of leg11 were:

69

n111 =

 0.8091
−0.5715

0.137

 n111 =

−0.7931
0.5799
−0.1865


Similarly, for leg21, the initial values for edges were:

n121 =

 0.3884
0.8401
−0.3788

 n121 =

−0.4082
−0.8477
0.3388


These initial values for leg edges correspond to the initial end effector

pose of:

X =

xy
z

 =

 100
342.9
1000


The desired edges of leg11 are as shown below:

n1∗11 =

 0.4973
0.7611
−0.4165

 n2∗11 =

−0.5195
−0.767
0.3765


Similarly, for leg21, the desired values for edges were:

n1∗21 =

 0.3884
0.8401
−0.3788

 n2∗21 =

−0.4082
−0.8477
0.3388


These desired leg edges values correspond to the end effector pose of:

X =

xy
z

 =

 88.1
413.1
1000


It should be noted that all the vectors described here are in camera
frame.Figure 5.21 demonstrates the results obtained for first edge of leg11
and figure 5.22 demonstrates the results obtained for second edge.

70

Figure 5.21: Error on edge1 of Leg11

Figure 5.22: Error on edge2 of Leg11

Similarly, figure 5.23 shows the error and norm of error on the first edge
of leg 21 and 5.24 shows the error and norm of error on the second edge.
It can be noted that in both cases, the desired leg orientation was achieved
and there was an exponential decay of error, as desired.

71

Figure 5.23: Error on first edge of Leg21

Figure 5.24: Error on second edge of Leg21

The pose reached by end-effector in this case was:

X =

xy
z

 =

88.12
413.1
1000


72

The desired pose was :

X =

xy
z

 =

 88.1
413.1
1000


The figure 5.25 shows that despite the noise introduced in the measurement
of orientation vectors, the desired end-effector pose was reached with error
even less as compared to the case of controlling the leg orientations.

Figure 5.25: Error on pose of end-effector

We can see that the percentage error on the end-effector pose is almost
equal to zero in the case of controlling the edges rather than the orientation.

5.5 Practical Edge detection on robot

5.5.1 Practical setup

For testing the algorithms developed, we have a practical scenario. The
robot is IRSBot-2 available in IRCCyN. The camera used was monochrome
Mikrotron 4CXP of type MC4082. THe lens is of 12mm focal length. THe
maximum frame rate of this camera is 563 fps. The camera was in eye-
to-hand configuration. A set of images were captured using this camera

73

and then the edge detection algorithms were run to find the edges in those
images. Once we have edges, we can test our algorithms. Since we need
the camera to be calibrated in order to use our algorithms, so next section
describes the steps followed for calibration and the matrices obtained.

5.5.2 Camera calibration

For calibration purposes, the camera calibrator application of MATLAB
was used. A checkerboard was used and about 20 images of the checker-
board were taken by the camera. The images were loaded in the camera
calibrator app of the MATLAB. Then it was provided with the size of
the square on checkerboard. After that MATLAB will reject some images
that were not good (either too blurry, checkerboard at bad angle etc).
Then, MATLAB will return the detected corners of the checkerboard
pattern and i went through each image in order to make sure that corners
were correctly detected. Then there is option of selecting 2 coefficients or
3 coefficients for noise. I chose 2 coefficients and clicked on ’Calibrate’.
The figure 5.26 shows some of the images used during the camera calibration.

Figure 5.26: Process of Camera Calibration

74

After the calibration process is done, matlab gives us the camera param-
eters and provides information about the reprojection errors. In the figure
5.27 we can see the reprojection error (how well the detected points mea-
sured to the actual points in pixels). These reprojection errors are quite
low, which means the calibration was good.

Figure 5.27: Reprojection error in pixels

The figure 5.28 shows a 3D visualization of the extrinsic relation between
the positioning of camera and different images of the checker board.

75

Figure 5.28: Extrinsic visualization

Next, we click on “export camera parameters” (this will be imported
into MATLAB workspace). Then, we can go to MATLAB workspace and
find cameraParameters file. Here, we can find the intrinsic parameters and
the radial distortions needed to undistort an image. The values returned
by MATLAB were:

K =

fu γ u0
0 fv v0
0 0 1

 =

1812.3 0 1231.4
0 1817.5 497.42
0 0 1


The radial distortion parameters determined were:

76

Radial distortion =

k1k2
k3

 =

−0.0801
0.1442

0



5.5.3 Technique used for edge detection

Since the full image was quite big (in terms of data) so first it was cropped
to obtain two regions of interest. Each region of interest contained one leg,
as shown in figure 5.30.

Figure 5.29: Original Image from Camera

Figure 5.30: Sub Images from the original

77

Then on each image, the edge detection was applied simultaneously.
Since we had a MATLAB model of the robot, so Computer vision toolbox
of MATLAB was used to do image processing. For the detection of edges,
an edge detection block was used, which is available in computer vision
toolbox. Initially, the technique selected was using the Sobel filter, although
this could be changed later. The basic idea in Sobel filter is to determine
the approximations of derivatives in horizontal and vertical direction. For
doing so, it uses a 3 × 3 Kernel and convolves it with a given image. This
can be mathematically represented as follows:

M1 =

−1 0 1
−2 0 2
−1 0 1

 M2 =

 1 2 1
0 0 0
−1 −2 −1


If we define I as the source image, and Gx and Gy as two images which at
each point contain the horizontal and vertical derivative approximations
respectively, the computations can be represented as follows:

Gx = M1 ∗ I, Gy = M2 ∗ I

Here ‘*’ operator denotes the 2-dimensional signal processing convolution
operation.At each point in the image, the resulting gradient approximations
can be combined to give the gradient magnitude, using:

G =
√
G2
x +G2

y

Using this information, the gradient’s direction is calculated as:

θ = arctan
Gy
Gx

The images after the edge detection are shown in figure 5.31.

78

Figure 5.31: Edge detection

After the edge detection, there were more edges detected than we
needed. So in order to extract the lines of our interest, some algorithm
needs to be used. In this case, a hough transform block was used. The
Hough Transform block computes the Hough matrix by transforming the
input image into the rho-theta parameter space. The block also outputs
the rho and theta values associated with the Hough matrix. The block
parameters ‘rho resolution’ and ‘theta resolution’ were tuned in order to
get the desired lines.
Then, The Find Local Maxima block was used. This block finds the location
of the maximum value in the Hough matrix. The Maximum number of
local maxima was set equal to 2 , since we needed to find two lines in a
single image. A threshold value was also specified, which had to be tuned
in order to get the desired results. Once the correct lines detected, a Hough
lines block was used. The Hough Lines block determines where the given
line intersects the edges of the original image. So this provides us with
cartesian coordinates of the points where the intersection occurs. Using
this information, we can draw the obtained lines on the original image, for
viewing.This process was done for both the sub-images obtained from one
single image by cropping it out, as described previously. This is shown in
figure 5.32.

79

Figure 5.32: Sobel Edge detection

Finally the projection line vectors for each leg can be found from edges,
as shown in figure 5.33.

Figure 5.33: Edges (green) and projection-line vectors (red)

80

Part 3

81

Chapter 6

Conclusion and Future work
proposal

In the previous chapters, state of the art in robotics,vision and control has
been briefly covered. Different techniques to estimate the pose and velocity
for parallel robots have been analysed and different control algorithms in
the literature were covered.
Then the work done in the context of this thesis has been presented in
detail. It has been shown that it is possible to control this robot using 2
out of the 4 legs of the robot. The methods using the leg orientations and
leg edges have been investigated and validated in simulations.
Secondly, the way has been paved for practically testing the algorithms on
robot. The edge detection has been performed on images obtained through
a calibrated camera.

Future Recommendations

For building the future work based on this thesis, following points could be
investigated:

• Practically testing the algorithms on the robot

• Improving the control algorithms by introducing the dynamic control
while taking into account the high speed of robot

82

Chapter 7

Bibliography

[1] https://en.wikipedia.org/wiki/Radar

[2] Flavien Paccot, Philippe Lemoine, Nicolas Andreff, Damien

Chablat and Philippe Martinet. A vision-based computed

torque control for parallel kinematic machines. In IEEE

International Conference on Robotics and Automation, 2008.

[3] Redwan Dahmouche, Nicolas Andreff, Youcef Mezouar, Philippe

Martinet, LASMEA, CNRS, Université Blaise Pascal. 3d pose

and velocity visual tracking based on sequential region of

interest acquisition. In The 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems October 11-15,

2009 St. Louis, USA. IEEE, 2009.

[4] Optimal Kinematic Design of Robots by Mr Philippe

Wenger,EMARO II Course, Ecole Centrale de Nantes

[5] Victor Rosenzvig, Sensor Based design and control of

high-speed manipulators, PhD Thesis 2015, IRCCyN,Ecole

Centrale de Nantes,Nantes

[6] P.Srinivas,K.Vijaya Lakshmi,V.Naveen Kumar.A comparison

of PID Controller Tuning Methods for three tank

level process. International Journal of Advanced

Research in Electrical,Electronics and Instrumentation

Engineering,January 2014

[7] Modelling and Control of Manipulator Robots by Professor

Philippe Martinet,EMARO-ARIA Master 1,Ecole Centrale de

83

Nantes. Slides available at http://www.irccyn.ec-nantes.fr/

~martinet/MoCom.html

[8] Flavien Paccot ,Nicolas Andreff, Philippe Martinet.A review

on dynamic control of parallel kinematic machines:Theory

and experiments. The International Journal of Robotics

Research

[9] Chaumette, F. and Hutchinson, S. (2008). Handbook of

Robotics - Visual Servoing and Visual Tracking pages

563-583

[10] Slides of Computer Vision course by Professor Philippe

Martinet . Slides can be found at http://www.irccyn.

ec-nantes.fr/~martinet/

[11] Daniel F. DeMenthon and Larry S. Davis. Model-based object

pose in 25 lines of code. International Journal of Computer

Vision, 15:123{141, 1995

[12] J.A. Gangloff and M.F. de Mathelin. High speed visual

servoing of a 6 DOF manipulator using multivariable

predictive control,October 7,2003

[13] Seth Hutchinson, Gregory D Hager, Peter I. Corke. A

tutorial on visual servo control.IEEE transactions on

Robotics and Automation,Volume 12, No.5, October 1996

[14] D. Stewart. A platform with six degrees of freedom.

Proceedings of the Institution of Mechanical Engineers

[15] N. Andreff, A. Marchadier, and P. Martinet. Vision-based

control of a Gough-Stewart parallel mechanism using

legs observation. In Robotics and Automation, 2005.

ICRA 2005. Proceedings of the 2005 IEEE International

Conference on, pages 2535{2540, april 2005. doi:

10.1109/ROBOT.2005.1570494

[16] Nicolas Andref, Tej Dallej, Philippe Martinet. Image-based

Visual Servoing of a Gough- Stewart Parallel Manipulator

using Leg Observations. International Journal of Robotics

Re- search. Special Issue on Vision and Robotics - Joint

with the International Journal of Computer Vision, 2007, 26

(7), pp.677-687. <hal-00520165>

84

http://www.irccyn.ec-nantes.fr/~martinet/MoCom.html
http://www.irccyn.ec-nantes.fr/~martinet/MoCom.html
 http://www.irccyn.ec-nantes.fr/~martinet/
 http://www.irccyn.ec-nantes.fr/~martinet/

[17] Slides of Vision based control course by Professor

Philippe Martinet . Slides can be found at http://www.

irccyn.ec-nantes.fr/~martinet/VisionBasedControl.html

[18] S. Briot and P. Martinet. "Minimal Representation for the

Control of Gough-Stewart Platforms via Leg Observation

Considering a Hidden Robot Model", Proceedings of the 2013

IEEE International Conference on Robotics and Automation

(ICRA 2013), May 6-10, 2013, Karlsruhe, Germany

[19] Redwan Dahmouche, Nicolas Andreff, Youcef Mezouar and

Philippe Martinet.Efficient High-speed Vision-based

Computed Torque Control of the Orthoglide Parallel

Robot. 2010 IEEE International Conference on Robotics and

Automation Anchorage Convention District May 3-8, 2010,

Anchorage, Alaska, USA

[20] Tej Dallej, Nicolas Andreff and Philippe Martinet.

Image-Based Visual Servoing of the I4R parallel robot

without Proprioceptive Sensors. 2007 IEEE International

Conference on Robotics and Automation Roma, Italy, 10 − 14
April 2007

[21] N. Andreff, B. Espiau, and R. Horaud. Visual servoing from

lines. International Journal of Robotics Research, 21(8):

679–700, 2002

[22] J. Plücker. On a new geometry of space. Philosophical

Transactions of the Royal Society of London, 155:725–791,
1865.

[23] J.P. Merlet. Parallel Robots. Springer, 2nd edition, 2006.

[24] Coralie Germain. Conception d’un robot paralléle à deux

degrés de liberté pour des opérations de prise et de

dépose. Automatique / Robotique. Ecole Centrale de Nantes,

2013. Français. <tel-01108739>

[25] Erol Ozgur. From lines to dynamics of parallel robots.

Other. Université Blaise Pascal, Clermont-Ferrand II, 2012

[26] Alessia Vignolo, Master Thesis(2014). Visual servoing of

the Monash Epicyclic-parallel manipulator,Ecole Centrale de

Nantes.

85

http://www.irccyn.ec-nantes.fr/~martinet/VisionBasedControl.html
http://www.irccyn.ec-nantes.fr/~martinet/VisionBasedControl.html

[27] Giovanni Claudio, Master Thesis(2013). Pose and velocity

estimation for high speed robot control, Ecole Centrale de

Nantes.

[28] Redwan Dahmouche, Thése de doctorat. Contributions à

l’estimation de mouvement 3D et à la commande par vision

rapide, Université Blaise Pascal - Clermont II.

[29] Tej Dallej, Thése de doctorat. Contributions à

un modéle générique pour l’asservissement visuel

des robots paralléles par observation des élements

cinématiques,Université Blaise Pascal - Clermont II.

[30] Flavien Paccot, Thése de doctorat. Contributions à la

commande dynamique référencée capteur de robots paralléles,

Université Blaise Pascal - Clermont II.

86

	List of Figures
	Introduction
	Structure of the report
	Objective

	Pose and Velocity
	Pose in robotics literature
	Pose estimation using vision
	Estimating Pose
	Velocity estimation

	State of the art in Robotics
	Concept of a robot
	Classification of robots
	Serial robotic architectures
	Parallel Robotic architectures

	Classical Control algorithms
	PID Control
	Computed Torque Control

	Joint space or Cartesian space

	Vision Based Control
	Basics of Vision based control
	Different techniques in visual servoing
	Image based visual servoing
	Position based visual servoing

	Vision based computed torque control of parallel kinematic machinescomputedtorque
	Problems with vision based control
	MIMO predictive controller
	Techniques based on Regions of Interest acquisition
	3D Pose and Velocity Visual Tracking Based on Sequential Region of Interest Acquisitionconstantvelocity
	Efficient High-speed Vision-based Computed Torque Control of the Orthoglide Parallel Robot constantacceleration

	Visual servoing using legs observation
	Plücker coordinates for visual servoing
	Leg Observation
	Line Modelling
	Cylindrical leg observation

	Simulator Design
	Linking ADAMS and MATLAB/Simulink

	Control Algorithms developed
	Leg orientation based visual servoing
	Results without noise
	Results with noise
	Leg edges based visual servoing
	Results without noise
	Results with noise

	Practical Edge detection on robot
	Practical setup
	Camera calibration
	Technique used for edge detection

	Conclusion and Future work proposal
	Bibliography

