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Résumé – Nous proposons dans cette communication un nouvel algorithme de reconstruction d’image super-résolue dédié à la
microscopie à éclairements structurés aveugle (blind-SIM), c’est-à-dire sans connaissance préalable des illuminations ayant éclairé
l’objet. Simple à programmer et d’un faible coût de calcul par itération, ce nouvel algorithme ouvre la voie vers l’imagerie 2D
temps réel et 3D.

Abstract – In this communication, a fast reconstruction algorithm is proposed for fluorescence blind structured illumination
microscopy (SIM) under the image positivity constraint. This new algorithm is by far simpler and faster then existing solutions,
paving the way to 3D and/or real-time 2D reconstruction.

1 Introduction

Classical wide-field fluorescence microscopy aims at imag-
ing the fluorescence density ρ emitted from a marked bio-
logical sample. In the linear regime, the recorded intensity
is related to ρ via a simple convolution model [5]. If one
proceeds to M distinct acquisitions, the dataset {ym}Mm=1

is given by

ym = h⊗ (ρ× Im) + εm m = 1 · · ·M (1)

where ⊗ is the convolution operator, h is the point-spread
function (PSF), Im is the m-th illumination intensity pat-
tern, and εm is a perturbation term accounting for (elec-
tronic) noise in the detection and model errors. The final
resolution of the microscope is ultimately limited by the
optical transfer function (OTF)1 h̃, whose cutoff frequency
is fixed by the emitted wavelength and by the numerical
aperture of the microscope objective. The frequency limit
is strict with uniform illuminations. However, structured
illuminations can be used to shift high-frequency compo-
nents of the object into the OTF support [7]. Such a
strategy results in the standard structured illumination
microscopy (SIM) that resorts to harmonic illumination
patterns to achieve super-resolution reconstruction. Be-
cause SIM uses the illumination patterns as references,
strong artifacts are induced if the patterns are not known

1In the sequel, the notation ·̃ stands for the Fourier Transform
(or the Discrete Fourier Transform if a vector is considered).

with sufficient accuracy [9, 1]. From a practical viewpoint,
such a condition is very stringent and restricts standard
SIM to thin samples or to samples with small refraction
indices [9]. The Blind-SIM strategy [9] has been pro-
posed to tackle this problem, the principle being to re-
trieve the sample fluorescence density without the knowl-
edge of the illumination patterns, thereby extending the
potential of SIM. In addition, this strategy promotes the
use of speckle illumination patterns instead of harmonic
illumination patterns, the latter standard case being much
more difficult to generate.
From the methodological viewpoint, Blind-SIM relies on

the simultaneous reconstruction of the fluorescence den-
sity and of the illumination patterns. More precisely,
in [9], joint reconstruction is achieved through the iterative
resolution of a constrained least-squares problem based
on conjugate gradient iterations. However, the compu-
tational time of such a scheme (as reported in [9, Sup-
plementary material]) clearly restricts the applicability of
the resulting blind-SIM strategy. In this paper, the imple-
mentation issues of Blind -SIM are revisited and drastically
simplified: a much improved implementation is proposed,
with an execution time decreased by several orders of mag-
nitude. Moreover, it can be highly parallelized, opening
the way to real-time blind-SIM reconstructions.



2 Blind-SIM reformulation

In the sequel, we focus on a discretized formulation of the
observation model (1). Solving the two-dimensional (2D)
Blind-SIM reconstruction problem is equivalent to finding
a joint solution (ρ̂, {Îm}Mm=1) to the following constrained
minimisation problem [9]:

min
ρ,{Im}

∑M
m=1 ∥ym −Hdiag(ρ) Im∥2 (2a)

subject to
∑

m Im = M × I0 (2b)

ρn ≥ 0, Im;n ≥ 0, ∀m,n (2c)

withH ∈ N×N the 2D convolution matrix built from the
discretized PSF. We also denote ρ = Vect (ρn) ∈ N the
discretized fluorescence density, ym = Vect (ym;n) ∈ N

the m-th recorded image, and Im = Vect (Im;n) ∈ N the
m-th illumination with spatial mean I0 = Vect (I0;n) ∈

N . Let us remark that (2) is a biquadratic problem.
Block coordinate descent alternating between the object
and the illuminations could be a possible minimisation
strategy, relying on sequentially solving M + 1 quadratic
programming problems. In [9], a more efficient but more
complex scheme is proposed. However, the minimisation
problem (2) has a very specific structure, yielding a fast
and simple strategy, as shown below.
Let us first consider problem (2) without the equal-

ity constraint (2b). It then becomes equivalent to M
quadratic minimisation problems

min
qm

∥ym −Hqm∥2 (3a)

subject to qm ≥ 0 (3b)

where
∀m, qm

def
= diag(ρ)× Im.

with diag(ρ) the diagonal matrix with vector ρ on the di-
agonal. Each minimisation problem (3) can be separately
solved in a simple and efficient way (see Sec. 4), hence
providing a set of global minimizers {q̂m}Mm=1. Although
the latter set corresponds to an infinite number of solu-
tions (ρ̂, {Îm}Mm=1), the equality constraint in (2b) defines
a unique solution such that diag(ρ̂)× Îm = q̂m for all m:

ρ̂ = diag(I0)
−1 q (4a)

∀m Îm = diag(ρ̂)−1 q̂m (4b)

where

q
def
= 1

M

∑
m q̂m = diag(ρ̂) 1

M

∑
mÎm = diag(ρ̂) I0.

Moreover, the following implications hold:

I0;n > 0, and q̂m;n > 0,

=⇒ Îm,n ≥ 0 and ρ̂n ≥ 0 ∀n,m.

Because we are dealing with intensity patterns, the con-
dition I0 ≥ 0 is always met, hence ensuring the positivity
of both the density and the illumination estimates. We

also note that a solution (4) exists as long as I0;n ̸= 0 and
ρ̂n ̸= 0, ∀n. The first condition is met if the sample is
illuminated everywhere, which is an obvious minimal re-
quirement. For any pixel sample such that ρ̂n = 0, the
corresponding illumination Îm;n is not defined; this is not
a problem as long as the fluorescence density ρ is the only
quantity of interest.

3 Super-resolution in Blind-SIM

Whereas the mechanism that conveys super-resolution with
known structured illuminations is well understood (see [6]
for instance), the super-resolution capacity of blind-SIM
has not been characterized yet. It can be made clear,
however, that the positivity constraint (2c) plays a cen-
tral role in this regard. Let H+ be the pseudo-inverse
of H [4, Sec. 5.5.4]. Then, any solution to the problem
without positivity constraints (2a)-(2b) reads

ρ̂ = diag(I0)
−1(H+y + q⊥) (5a)

Îm = diag(ρ̂)−1(H+ym + q⊥
m), (5b)

with

y = 1
M

∑
m ym, and q⊥ = 1

M

∑
mq⊥

m

where q⊥
m is an arbitrary element of the kernel of H , i.e.

an arbitrary high-frequency component. Hence, the for-
mulation (2a)-(2b) has no capacity to discriminate the
correct high frequency components, which means that it
has no super-resolution capacity. Under the positivity
constraint (2c), we thus expect that the super-resolution
capacity of blind-SIM depends on the fact that each il-
lumination pattern Im activates the positivity constraint
on qm in a frequent manner. Such adequate illumina-
tion patterns can be easily generated as speckle images,
as proposed by [9]. In contrast, standard SIM rests upon
the amplitude modulation of the object, i.e., it only needs
illumination patterns with broad-band spectra.
Let us stress that each problem (3) is convex quadratic,

and thus admits only global solutions, which in turn pro-
vide global solutions to problem (2), when recombined
according to (4a)-(4b). On the other hand, problems (3)
may not admit unique solutions, since ∥ym −Hqm∥2 is
not strictly convex in qm. A simple way to enforce unic-
ity is to slightly modify (3) by adding a strictly convex
penalization term. We are thus led to solving

minqm≥0
∑M

m=1 Jm(qm) (6a)

with

Jm(q)
def
= ∥ym −Hq∥2 + ϕ(q). (6b)

Another advantage of such an approach is that ϕ can be
chosen so that robustness to the noise is granted and/or
some expected features in the solution are enforced. In
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Fig. 1: [Top] Harmonic blind-SIM reconstruction of the
fluorescence pattern achieved by the minimization of the
penalized criterion (6) with 100 or 1000 projected-gradient
(a,b) or FISTA (c,d) iterations. [Bottom] Evolution of the
criterion (6) as a function of the iteration number for the
projected-gradient (plain) and the FISTA (dot) algorithm.
All these simulations were performed with (α = 6.104, s =
150). The reconstruction (d) corresponds to the one that
is shown in Fig. 2-(d).

particular, the analysis conveyed above suggests that fa-
voring sparsity in each qm is suited since speckle or pe-
riodic illumination patterns tend to frequently cancel or
nearly cancel the product images qm, i.e., an appropri-
ate modeling for qm is the “near black object” as intro-
duced in [3]. Following this line, we found that enforcing
sparsity via the standard separable ℓ1 penalty provides
super-resolved reconstructions at high signal-to-noise ratio
(SNR). For moderate SNR values, though, we have found
more appropriate to consider an ℓ21 separable penalty such
as [8]:

ϕ(q;α, s)
def
= α

∑
n

√
q2n + s2 (7)

where the parameters α ≥ 0 and s > 0 need to be ad-
justed.

4 Proposed blind-SIM approach

The criterion (6b) [equipped with (7)] enjoys good struc-
tural properties: it is a smooth, strictly convex function

with a Lipschitz continuous gradient. Such properties en-
sure that the constrained optimization problem (6) can
be solved by mean of simple projected-gradient iterations.
Here, we consider the accelerated version FISTA [2]. Let
P+ be the projector over the positive orthant, and let

q(0)
m ∈ N

+ and ω(0) = q(0)
m be the initial solution. For the

m-th subproblem, the iterations read

q(k+1)
m ←− P+

(
ω(k) − γ(k)∇Jm(ω(k))

)
(8a)

ω(k+1) ←− q(k+1)
m + k−1

k+2

(
q(k+1)
m − q(k)

m

)
(8b)

where the step-size is chosen such that ϵ < γ(k) < 2/L− ϵ
to ensure global convergence, L being the Lipschitz con-
stant that reads

L = 2λmax(H
tH) + αs−1. (9)

where λmax(A) denotes the highest eigenvalue of the ma-
trix A ∈ N×N . The asymptotic convergence achieved
by (8) is O(1/k2), which is a substantial gain compared
to the O(1/k) rate of the standard gradient-projected iter-
ation [2]. Figure 1 gives an illustration of this accelerated
convergence with one of the reconstructions discussed in
the next paragraph.
For illustrative purposes, the numerical blind-SIM ex-

periment presented in [9] is now considered. The ground-
truth consists in the 2D ’star-like’ fluorescence pattern de-
picted in Fig. 2(a). The M collected images are simulated
following (1) with the PSF h given by the Airy pattern
that reads [in polar (r, θ) coordinates]

h(r, θ) =

(
J1(r k0 NA)

k0 r

)2 k20
π

(10)

where J1 is the first order Bessel function of the first kind,
NA is the objective numerical aperture set to 1.49, and
k0 = 2π/λ is the free-space wavenumber with λ the emis-
sion and the excitation wavelengths. The image sampling
step for all the simulations is set to λ/20. The illumina-
tion set {Im}Mm=1 consists either in M = 9 periodic pat-
terns with spatial frequency equal to 2/λ, or in M = 100
speckle patterns with spatial correlation given by (10). Fi-
nally, the collected images are corrupted with Gaussian
noise. The standard deviation for a single acquisition was
chosen so that the total SNR is 30 dB for both the periodic
and speckle experiments. The subproblem hyperparame-
ters were set to (α = 6.104, s = 150) for the periodic and
the speckle illuminations. The initial-guess and the step-

size were set to q(0)
m = 0 and γ(k) = 0.85 × 2/L (∀k),

respectively. The reconstruction of Fig. 2(c)-(d) clearly
shows a super-resolution effect similar to the one obtained
in [9]. In particular, this simulation corroborates the em-
pirical statement thatM ≈ 10 harmonic illuminations and
M ≈ 100 speckle illuminations produce almost equivalent
super-resolved reconstructions. Obviously, imaging with
random speckle patterns remains an attractive strategy
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Fig. 2: Right lower quadrant of the (200 × 200 pixels)
true fluorescence pattern (a), deconvolution of the aver-
aged speckle patterns (b), and blind-SIM reconstructions
with M = 9 periodic (c) and M = 100 speckle patterns
(d). The graduations are in λ. The dashed (resp. solid)
lines in (a) corresponds to the spatial frequencies trans-
mitted by (resp. twice) the OTF support.

since it is achieved with a very simple experimental setup,
see [9] for details.
The interest of the proposed strategy is that the iter-

ations (8) can be easily implemented, at a low computa-
tional cost; for instance, the speckle and periodic blind-
SIM reconstruction shown in Fig. 2 were respectively ob-
tained in about 100 and 10 seconds with a standard Mat-
lab implementation on a regular laptop computer. On the
other hand, let us remark that our strategy requires an
explicit tuning of the parameters α and s, whereas the
constrained conjugate gradient approach proposed in [9]
is regularized through the number of iterates. Since ade-
quate values of α and s will depend mostly on experimen-
tal parameters (PSF, noise and signal levels, number of
views), a simple calibration step seems possible.

5 Conclusion

The reformulation presented in Sec. 2 unveiled some of
the super resolution properties of the joint reconstruction
problem introduced in [9]. We feel however that this blind-
SIM approach deserves further investigations, both from
the theoretical and the experimental viewpoints. In par-
ticular, the joint reconstruction approach considered here
produces some systematic errors (i.e., bias) that should be
evaluated. Indeed, we are currently exploring a marginal
strategy aiming at estimating ρ only, which could be prefer-
able from the statistical viewpoint. Finally, some exper-
imental datasets should be considered shortly. One ex-
pected difficulty arising in the processing of such real data

sets is the strong background induced in the focal plane
by the out-of-focus light. This phenomenon prevents the
local extinction of the excitation intensity, hence destroy-
ing the expected super-resolution in blind-SIM. The mod-
eling of this background with a very smooth function is
possible [10] and will be considered. A different approach
would be to solve the reconstruction problem in its 3D
structure, which is numerically challenging, but remains a
mandatory step to achieve 3D reconstructions.
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