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ABSTRACT

High resolution spectral analysis has recently been ad-
dressed as an inverse problem, and solutions are currently
proposed through the regularization framework. In this pa-
per, we focus on regularized spectral analysis of unevenly
sampled data for line spectra estimation. First, we study
the structural differences of the model between regular sam-
pling, missing data (where the sampling is regular, but with
missing data) and irregular sampling cases. Then, conse-
quences for the computation of the solution are emphasized.
We propose an approximation of the irregular sampling
model to compute the non quadratic regularization solution
at a cost comparable to the other sampling cases. Finally,
algorithmic implementation is discussed and applications to
simulated data are presented.

1. INTRODUCTION

Spectral analysis is a classic signal processing problem and
many parametric and non parametric methods have been
proposed. Considering spectral analysis as a linear inverse
problem, solutions have recently been proposed through the
regularization framework [1, 2], which removed the tradi-
tional incompatibility between "high resolution" and "non
parametric" methods. These works consider regularly sam-
pled data, and only [1] mentioned the unevenly spaced data
situation.

Spectral analysis of unevenly spaced noisy data is a very
important topic in astrophysics and the search for line spec-
tra is particularly interesting. In asteroseismology, for ex-
ample, determining the pulsation modes of variable stars
from their light curves allows to estimate some physical pa-
rameters, such as mass, temperature and chemical composi-
tion. Because of observation constraints, astronomical data
are generally unevenly spaced. We deal with two kinds of
unevenly spaced data. First, short time observations - from
a few minutes to several days - are generally regularly sam-
pled, but observation conditions (meteorology, object vis-
ibility. . . ) might generate missing data. Then, long time
observations - up to many years - are generally fully irregu-
larly sampled.

In this paper we focus on the regularized spectral anal-
ysis of unevenly spaced data and study the consequences of
the different sampling schemes. After stating this problem
in the regularization framework as [1, 2] for line spectra es-
timation, we focus on some structural properties (Toeplitz,
circulant. . . ) of matrices involved in the computation of reg-
ularized solutions. This shows fundamental differences be-
tween the particular missing data case and the general irreg-
ular sampling case. We see how one can take advantage of
such structural properties to compute exact or approximate
solutions at a low computational cost. After discussing the
algorithmic implementation, we finally show on simulations
that accounting for these structures provides an accurate es-
timation of line spectra at a lower cost than other existing
algorithms for irregularly sampled data.

2. REGULARIZATION FRAMEWORK

We consider the estimation of spectrum x from noisy data
sampled at times {tn}n=1...N :

y(tn) =
∑

k∈K
xkej2π k

P fmaxtn + εn

⇔ y = Wx + ε (1)

where x collects the complex spectral amplitudes {xk}k∈K
associated to frequencies on the grid { k

P fmax}k∈K with
K = (−P . . . P ). To deal with an ill-posed problem – ill-
conditioned or rank-deficient operator W if high resolution
is required – a classic regularization framework consists in
minimizing a penalized least squares criterion:

J(x) = ‖y − Wx‖2 + λR(x). (2)

In the Bayesian framework, it corresponds to the maxi-
mum a posteriori (MAP) estimation of x for additive i.i.d.
centered complex circular gaussian noise ε and prior p(x) ∝
e−λR(x), and hyperparameter λ > 0 balances between fi-
delity to data and confidence in prior information.

Many regularization functions have been designed to
emphasize the searched line spectra characteristic. The l1
regularization (R(x) =

∑
k |xk|) is a standard that actu-

ally yields sparseness [3]. The non 0-differentiability of the
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resulting criterion, however, requires sophisticated numeri-
cal tools, that may result very expensive for high dimension
problems. In a Bayesian approach, [1] use a Cauchy prior
on x, producing a non convex criterion that may have local
minima. In this paper we follow [2] by using the convex
differentiable function R(x) =

∑
k

√
s2 + |xk|2. For low

s it provides a very similar solution to that of l1 regular-
ization, while leading to a strictly convex and differentiable
criterion J with no local minima. Optimization can then be
performed using any descent algorithm, which require the
computation of the criterion and its gradient:

−→∇J(x) = −2W†(y − Wx) + λ
−−→∇R(x)

Thus, products W· and W†W· have to be performed
at the lowest cost to reduce the computational cost of the
solution. Next sections show how one can take advantage
of the structural properties of matrix W w.r.t. the different
sampling schemes.

3. OPERATOR STRUCTURE

3.1. Regular sampling

For regularly sampled data at period Ts, one can set fmax

at the Nyquist limit 1/2Ts and K = {−P + 1, . . . , P}, as
k = −P and k = P give the same contribution at frequency
fmax. Relation (1) writes:

y(tn) = y(nTs) =
P∑

k=−P+1

xkejπ kn
P + εn

If 2P = N , matrix W is of course the Fourier kernel
F2P = {exp jπ kn

P }n=1...2P
k=−P+1...P , relation above corresponds

to the inverse Discrete Fourier Transform (DFT−1) of x
and F†

2P F2P = F2P F†
2P = 2P I2P . In the high reso-

lution case, i.e. 2P � N , rank-deficient operator writes
W = ZN,2P = {exp jπ kn

P }n=1...N
k=−P+1...P and matrix

Z†
N,2P ZN,2P = F†

2P DZF2P is circulant (where DZ is a
diagonal matrix with N ones and 2P − N zeros).

3.2. Missing data

We now consider a regular sampling scheme with missing
data: tn = inTs, in ∈ N. Operator W writes:

MN,2P = {exp jπ
kin
P

}n=1...N
k=−P+1...P

= LN,2P F2P

where LN,2P is built with lines {in}n=1...N of identity ma-
trix I2P . Thus, MN,2P

†MN,2P = F2P
†DMF2P is still

circulant, where DM is a diagonal matrix with ones for in-
dexes in and zeros elsewhere.

In both regular sampling and missing data cases, W
writes with Fourier operators and W†W is circulant. Thus,
products W· and W†W·, then J(x) and

−→∇J(x), can

be computed by Fast Fourier Transform (FFT) algorithms.
Note also that relation WW† = 2PIN holds, therefore in
those cases the generalized inversion of (1) leads to:

x̂GI
∆= W†(WW†)−1y =

1
2P

W†y

which corresponds to the DFT of the zero-padded and zero-
substituted data. That is, x̂GI is a frequency sampling of the
spectrum of the signal convolved by the frequency response
of the observation window. Because of the missing data,
the latter has no more a sinc-like shape and may have many
undesirable secondary lobes. Therefore, this solution is not
acceptable. Moreover the use of windowing to lessen the
lobes is not as simple as in the full sampling case.

3.3. Irregular sampling

In the general case of an irregular sampling scheme {tn}n,
there is no theoretical maximum frequency since the spec-
trum is not periodic any more [4]. Thus, parameter fmax has
to be set according to some physical prior knowledge and
operator W writes:

W = UN,2P+1 = {exp j2π
k

P
fmaxtn}n=1...N

k=−P...P

It looses the previous Fourier-like shape, which is severe
for the computational cost: products W· cannot be com-
puted by FFT algorithms any more1 and the computation of
J requires order P 2 operations. It can be shown that:

{U†
N,2P+1UN,2P+1}k,l =

∑

n

e−j2π
(k−l)fmax

P tn

is still Toeplitz but not circulant, and this structure can still
be used to perform products W†W· at low cost.

4. MODIFIED CRITERION

To reduce the cost in the general irregular sampling case,
we introduce the modified criterion (for sake of clarity, in
the following we write U for UN,2P+1):

J2(x) = ||U†y − U†Ux||2 + λR(x) (3)

As matrix U†U is Toeplitz, products
U†U· can be computed using (4P + 2)-point FFTs by em-
bedding the matrix in a twice bigger circulant one. One can
easily verify also that

−−→∇J2(x) can be computed at a reason-
able cost. Note that the quadratic term in (3) writes:

QU (x) = (y − Ux)†(UU†)(y − Ux)

with:

{UU†}k,l =
sin(π(tk − tl)(2P + 1) fmax

P )

sin(π(tk − tl) fmax
P )

= γP (tk − tl)

1Approximations of such a product using FFTs exist but are out of
scope in this paper

IV - 422



where γP (t) is the Dirichlet kernel. Thus, criteria J2(x)
and J(x) are not equivalent since UU† is not proportional
to identity. Actually, relation UU† ∝ IN holds if and
only if the sampling is regular with eventual missing data
(tn = inTs) and fmax = P

2P+1
1
Ts

: in that case instants
{tk − tl}k �=l correspond to zeros of γP .

We can show, however, that the extradiagonal terms in
UU† almost always have negligeable values, therefore the
approximation has no real impact on the solution. For ex-
ample, let {tn} be uniformly distributed on [O, Tmax]. It
is easy to show that the proportion of instants {tk − tl}k �=l

in the principal lobe of γP – 1/fmax width – is less than
1

Tmaxfmax
. Considering that a reasonable value for fmax would

be at least fmax = 1
2

N
Tmax

(which would be the Nyquist fre-
quency if the N samples were evenly spaced), we show that
less than 2

N % instants {tk − tl}k �=l are in the first lobe of
γP . Hence, although minimization of J2(x) does not give
exactly the same solution that minimization of J(x), dif-
ferences between both minimizers are expected to be not
significant, which will show to be true in practice.

5. ALGORITHMIC CONSIDERATIONS

5.1. Different algorithms

Several specific algorithms have been proposed to minimize
such a penalized criterion for line spectra estimation, that
are mostly designed for regular sampling [1, 2]. Each it-
eration of such algorithms consists in solving a quadratic
regularization problem, i.e. essentially computing a matrix
inversion. Thus, these algorithms are particularly efficient
when the associated matrix is circulant, which is not true
for irregular sampling.

Here we propose to exploit the particular structure men-
tioned in the last section associated with descent algorithms.
Recall that, for irregular sampling, the main cost is associ-
ated to the calculation of J (W is no more a Fourier-like
matrix). The use of a conjugate gradient without line search
(CGWLS) algorithm [5] is a way to avoid such a computa-
tion and is only based on successive computations of

−→∇J .
The associated cost per iteration is then essentially that of
one product W†W·. However, it requires the computation
of the highest eigenvalue of W†W to state the steplength
and shows slow convergence speed on simulations.

A conjugate gradient (CG) algorithm (Polak-Ribière ver-
sion) can be implemented also, where the minimization w.r.t.
each descent direction is performed by e.g. parabolic ap-
proximation. Each iteration requires essentially two prod-
ucts W· and one product W†W· when associated to crite-
rion J , and three products W†W· for the modified criterion
J2. Thus, this algorithm is expected to show a lower cost
when associated to the minimization of criterion J2.

5.2. Real data case

Up to now we considered a model with a circular complex
gaussian noise: ε may be complex since the hermitian sym-
metry of spectrum x (x−k = x∗

k) is not guaranteed. If the
data y are real, it has been shown, however, that for regular
sampling the minimizer of criterion J is hermitian as J is
convex [2]. This result easily extends to the minimizers of
criteria J and J2 in the general irregular sampling case.

Nevertheless, real data can be accounted for by using a
model with only positive frequencies, i.e.:

y = W+x+ + W∗
+x∗

+ + ε = 2�(W+x+) + ε (4)

where x+ = {xk}k=O...P ,W+ = {ej2π k
P fmaxtn}n=1...N

k=O...P

and ε is a real gaussian noise. The corresponding criterion
and gradient write respectively:

Jr(x+) = ||y − 2�(W+x+)||2 + λR(x)
−→∇Jr(x+) = −4W+

†(y − 2�(W+x))

One can show that W†
+W+ is still a Toeplitz matrix and

W†
+W∗

+ is a Hankel matrix. Therefore, similar algorithmic
conclusions hold concerning the minimization of both origi-
nal and modified corresponding criteria. As model (4) deals
with twice less variables than the complex data model (1),
the resulting computational costs are then reduced.

6. SIMULATION RESULTS

Signal presented on figure 1 is the sum of 5 sinusoids cor-
rupted by 10dB white gaussian noise. The N = 250 sam-
pling times span Tmax = 500 days and are uniformly dis-
tributed on [O, Tmax] with additional periodic gaps. Fre-
quencies are set off the reconstruction grid and
fmax = N

2Tmax
= 0.25 day−1. The estimation given by the

non-uniform Discrete Fourier Transform is not satisfactory
for peak detection, as shown on figure 1.

Minimization of criterion J is performed by CGWLS
and CG algorithms, and a CG algorithm is used to compute
the minimizer of modified criterion J2. Optimal value of
hyperparameter λ is selected by Hansen’s L-curve criterion,
which gave satisfactory results despite the lack of theoreti-
cal framework for non quadratic regularization. Both mini-
mizers correctly localize the 5 frequencies and only slightly
differ in the associated amplitudes. The minimizer of the
modified criterion J2 is presented on figure 2, in its real data
version with s = 10−3, λ = 100 and P = 1000. Figure 2(c)
shows that the matrix WW† correponding to the sampling
scheme is almost diagonal, which explains the similitudes
between both solutions. We note that both minimizers of J
and J2 suffer a loss in the amplitude estimation, which is
inherent in the regularization process. Once the frequencies
are correctly localized, however, the amplitudes of the cor-
responding sinusoidal model can be reestimated in terms of
least squares (Fig. 2(d)).
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Fig. 1. Left: test signal. Right: corresponding non-uniform
DFT (–) and theoretic spectrum (	) .
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Fig. 2. Optimization results.

Convergence speed is compared with that of a single
site update algorithm (SSUA) with a half-quadratic 1D min-
imization [6], which showed ability to retrieve sparse solu-
tions, and with the IRLS algorithm presented in [1]. As they
do not use the above properties, those algorithms are imple-
mented to minimize the original criterion J . A quadratic
program (QP) performing l1 regularization is also imple-
mented. Algorithms are tested on the previous signal, with
s = 10−3 and λ = 100, and stop at iteration m when
||x(m) − x(m−1)|| ≤ α and J(x(m)) − J(x(m−1)) ≤ α
with α = 10−6. Figure 3 shows the performances ob-
tained by the proposed algorithms (CGWLS and CG as-
sociated to the modified criterion J2) compared to that of
SSUA, IRLS and QP. These algorithms are implemented
with MATLAB, excepted QP which uses Mosek C library
(http://www.mosek.com). The use of the modified cri-
terion proposed in section 4 allows to reduce the computa-
tional cost of the solution, which is approximately divided
by half when a model with real data as (4) is considered.
The advantage of this approximation is more visible as di-
mension P increases. Note, however, that the selection of a
lower s value dramatically increases the computational cost
as the corresponding criterion tends to be not differentiable.
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Fig. 3. Algorithm performances: CG on criterion J (	),
IRLS (o), QP (�), SSUA (−·), CGWLS (· · · ) and CG on
criterion J2: complex data (- -) and real data (–)

7. CONCLUSION

We studied the regularized spectral analysis of unevenly
sampled data. Matrices involved in the computation of the
solution have shown computationnally interesting proper-
ties in the regular sampling and missing data cases, which
do not generalize to the irregular sampling case. In the latter
case, the criterion cannot be computed exactly using FFT,
which can still be used to compute the gradient. We pro-
posed an approximation of the initial model by introducing
a modified criterion that can be computed with FFT. There-
fore the regularized solution can be computed using a Con-
jugate Gradient algorithm at a computation cost compara-
ble to the regular sampling and missing data cases. Such an
approximation has shown on simulation results to have no
impact on the solution, which provides accurate estimation
of line spectra.
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