
D
ra
ft

A Pregroup Toolbox for Parsing and Building Grammars of
Natural Languages

Denis Béchet

LINA CNRS – UMR 6241 – Université de Nantes

2, rue de la Houssinière – BP 92208

44322 Nantes Cedex 03 – France

Denis.Bechet@univ-nantes.fr

Annie Foret

IRISA – Université de Rennes 1

Campus Universitaire de Beaulieu

Avenue du Général Leclerc

 35042 Rennes Cedex – France

 Annie.Foret@irisa.fr

Abstract. Pregroup grammars are a mathematical formalism in the spirit of categorial grammars.
They are close to logical formalisms like Lambek calculus but have a polynomial parsing algorithm.
The paper presents a pregroup toolbox for parsing and building grammars of natural languages,
including a parser that uses a tabular approch based on majority partial composition.

Keywords. Parser, Pregroups, Lambek Categorial Grammars, Parsing Software, XML Linguistic
Ressources, Natural Language Toolbox.

Introduction

Pregroup grammars (PG) [13, 15] have been introduced as a simplification of Lambek calculus [12].
They have been used to model fragments of syntax of several natural languages: English [13, 15,
Italian [7], French [1], Turkish [2], German [14, 16], Japanese [6], Persian [18] etc.

They belong to categorial and lexicalized grammatical frameworks : categorial grammars have nice
relations to semantic interpretation and lexicalism has many advantages for the definition and
acquisition of grammars and for parsing.

Another interest of PG is their order on primitive types, that helps grammar design with natural and
compact types (less types) ; this point also allows to combine calculi, both formally and in
software[11, 10]. In contrast to some other categorial variants, PG parsing is polynomial (O(n3)).

Based on the PG formalism, and some extensions of it, we have programmed a pregroup toolbox,
including a specific parser, and a grammar definition tool. The data are stored in XML format, to
allow better interconnexions with other tools. A web version is also provided for parsing with a
grammar, either from raw text, from (partially) parenthesized text or from analyzed text (as in XML

treebanks).

mailto:Annie.Foret@irisa.fr
mailto:Denis.Bechet@univ-nantes.fr

D
ra
ft

This article explains the tool characteristics in connection with the underlying formalism, and gives
an overview of the toolbox.

Pregroups

Pregroup Grammars

Definition 1 (Pregroup). A pregroup is a structure (P, ≤, ·, l, r, 1) such that (P, ≤, ·, 1) is a partially
ordered monoid and l, r are two unary operations on P that satisfy for all element x in P, x lx ≤ 1 ≤
xxl and xxr ≤ 1 ≤ xrx.

Let Type denote the lists of pi,
(ni), for primitive pi where p(0) = p, and p(n) stands for (p(n−1))r if n > 0

and p(n) stands for (p(n+1))l if n < 0.

Definition 2 (Pregroup Grammar). A Pregoup Grammar G is a finite subset of Σ × Type (Σ words,
G finite). Its language L(G), a subset of Σ+ , is the set of sequence of words such that the
concatenation of types entails (≤) the distinguished type s.

Parsing can be based on rewrite rules such as:

Xp(n)q(n+1)Y → XY if p ≤P q and n is even or if q ≤P p and n is odd

Parsing using partial and majority composition.

Rules below proceed by pairs of words (their types are separated by ,) ; thus parsing also provides a
binary tree on words.

 – [C] (partial composition) : for k in N, X′ = p1
(n1)· · ·pk

(nk), Y′ = qk
(nk+1)· · ·q1

(n1+1)

Γ , Xp1
(n1)· · ·pk

(nk) , qk
(nk+1)· · ·q1

(n1+1)Y , ∆ → Γ , XY , ∆

if pi ≤P qi and ni is even or if qi ≤P pi and ni is odd , for 1 ≤ i ≤ k.

 – [@] (majority composition) : if (moreover) the result is not greater than the biggest argument
(the width of |XY| must be less or equal to the maximum of the width of XX′ and the width of Y′Y).

Pregroup extended with iteration types

For iteration types p* [5], the parser is also based on partial composition rules:

 – [C] (partial composition) : for X′ Y' ≤ Z′ , with Z′ empty (1) or a(k+1) :

 Γ , XX′ , Y′Y , ∆ → Γ , XZ′Y , ∆

− [@] (majority composition) : if (moreover) at most a half of one of the two type strings (XX′
or Y′Y) is in the result (|X′| ≥ |X| or |Y′| ≥ |Y|).

Example 3. Let us see the following sentence, in French, taken from “Un amour de Swann” by M.
Proust: Maintenant, tous les soirs, quand il l’avait ramenée chez elle, il fallait qu’il entrât. 1

Below is a proof of correctness of assignment of types to its fragment. The primitive types used in
this proof are: π3 = third person (subject - also with a bar), p2 = past participle, o = object, s =
sentence, s5 = subjunctive clause, with s5 ≤ s, σ = complete subjunctive clause, τ = adverbial phrase,
λ = locative, dp = plural determiner, ρ = special adjective. A? denotes an optional simple type. This
grammar assigns s to the following sentence1:

1[Now, every evening when he took back her to her home, he ought to enter.]

D
ra
ft

Parsing using majority partial composition : PPQ

A Cocke-Younger-Kasami (CYK) algorithm for pregroup grammar can be developed. The
granularity of this algorithm is words (or entries if the lexicon assigns also types to a sequence of
words like “pomme de terre” (potato in French)). This method presented in [4] has been
implemented into a tabular parser together with other components:

Input form. This form selects one of the dictionnary, asks for the input string (alternatively, one
may choose one or all samples that are associated to the selected dictionnary).

Lexicon loading.
<?xml version="1.0" encoding="UTF-8"?>
<grammar>
 <pregroup>
 <order inf="n" sup="n-bar"/>
...
 </pregroup>
 <sentence type="s"/>
 <lexicon>
 <w><word>whom</word>
 <type><simple atom="q’"/>
 <simple atom="o" exponent="-2"/>
 <simple atom="q" exponent="-1"/>
 </type>
 </w>
...
 </lexicon>
</grammar>

Grammars are described in XML files. A grammar defines a partial order on basic types, a set of
basic types that are considered to form the correct sentences and a lexicon that associated to an
entry (a list of tokens) a set of types. It is also possible to describe special entries with a regular
expression that is useful for instance for the class of numerical number or the class of proper noun
(that starts with an upper case letter). To improve the efficiency of this step that may be very long if
the lexicon is big (Lefff 2.5.5 [19] has 534753 entries – the PPQ XML lexicon is a file whose size is
31,367,146 bytes), a compressed text format or a SQLite database may be used. With an indexed
table, this kind of big lexicon is accessed very quickly (less than a second rather than several tens of
seconds). In fact, the parser do not load all the lexicon. It selects the entries that correspond to the
input string.

Type assignment to words/entries. This step assigns to each list of tokens of the input string a set
of pregroup types. The input string is split into tokens using spaces and several regular expressions

D
ra
ft

For instance“l’homme” (the man in French) is segmented into two tokens: “l’” and “homme”. If the
string is split in n tokens, there are n × (n + 1)/2 possible entries. Each one is searched in the lexicon
and defines the initial value of the parsing matrix that computed the types associated with each
segment of tokens of the input string.

Majority partial composition of sequences of entries.

This step computes the parsing matrix with
the result of majority partial composition
(rather than using production rules of the
Chomsky normal form of a context-free
grammar). Of course, because we also want to
describe the pregroup nets, the matrix is in
fact a complex directed acyclic graph. This
matrix may be displayed by the parser at the
end of the report. Here, the matrix of ”whom
have you seen” as input string for the Test
grammar is displayed.

Net calculus. This step computes representation of the analyses of the parser. They are called
pregroup nets. In a net, each entry is associated to a pregroup type and the link represents the
different axioms that associates two by two the simple types of the net. This representation is close
to a dependency tree except that the structure is a graph rather than a tree. Moreover, with the
introduction of iterative simple types [5], a simple type can be connected to more that one other
simple type as the following example shows.

Net simplifications. This step simplifies the net by suppressing the optional simple types that are
not used and by taking into account cut annotations (see next section).

Result reporting. This step puts together all the results and presents them with different formats.
Actually, there are three possible output formats: an HTML format useful for a web server, a text
output that is suitable for terminal and an XML format that may be used if the output needs to be
processed by another program.

Parsing with added cuts

Grammars based on free pregroups even with optional and iterative simple types are context free.
Thus, for several complex syntactical constructions some types must include a way to cross part of
the environment. This is particularly the case for non projective dependencies. For instance, the
French clitics are placed between the verb and the subject: In “il la mange” (he is eating it) “la” is
between “il” and “mange”. The previous example shows such a construction:

The clitic l' is assigned π3
rsollslπ3 . The main simple type is oll . The rest enables the crossing of two

D
ra
ft

axioms (one corresponding to π3
r and π3, the other to s and sl). To solve this problem, the pregroup

parser PPQ can use cut annotations on the types assigned to special words like clitics or adverbs.
These annotations that can be seen as a limited form of semantical interpretation replace two normal
axiom links by a long distance axiom link. The previous French example has such annotations for
the type associated to the clitic l’. Here two cuts have been added, one between π3

r and π3 and one
between s and sl . Thus on the net, the axiom between π3 of il and π3

r of l’ and the axiom between π3

of l’ and π3
r of avait are replaced by a single long distance axiom between π3 of il and π3

r of avait.
Another long distance axiom is created for the other cut that links sl of quand and s2 of avait.

On the final picture, these special long distance axioms are shown as dashed (red) lines. Such lines
can cross other axioms. The cut simple types are also erased from the picture. This interpretation is
placed in the Net simplification step of PPQ parser.

Grammar construction

Other packages concern the construction of XML pregroup grammars : xslt programs have been
developed for this task, including a specific mode for the French Paris7 Treebank. Another set of
programs (XML2CTX, LIS2XML) provides an interface with Camelis/Glis
(http://www.irisa.fr/LIS/ferre/camelis/index.html) an implementation of Logical Information
Systems (LIS [10]), allowing navigation. A user can define a lexicon with Glis, then save it as a LIS
context, where objects are words ; this context is then transfered to the pregroup XML format (using
LIS2XML). Conversely, a pregroup grammar in XML format can be transfered to a LIS context
(using XML2CTX). Camelis/Glis has been used for several prototype languages (English, French,
Breton, Bambara), either for the definition or updates of parts of the grammar or for its
visualisation and control (see next schema, except its upper-left dedicated to Lefff) . For a large
coverage of French, Lefff [19] has been used to make a link between a French lexicon and pregroup
types, through ''macro-types'' regrouping pregroup types in classes (see next schema).

D
ra
ft

Around Lefff towards PG grammars (via “macro-types”)

Conclusion

The pregroup parser PPQ implements majority partial composition. This program, that can be used
inline through a PHP webserver or as a command line program, uses XML files for describing a
pregroup grammar. An optional indexed database can speed up the lookup in the lexicon. The result
is a HTML or text page with pregroup nets as syntactical analysis that is convenient for human
reading. The command line program can also produce a XML output if the result must be used by
another program. This model also enables a form of semantical interpretation limited to the
reduction of annotated “cuts”.

This program which is rather a test platform than a finished software has at present a large cover of
the French language (however with a rough pregroup type system) and several toy lexicons for
English, Breton (a Celtic language) and Bambara (an African language).

Acknowledgements

This work has benefited from useful discussions and colloborations with several collegues, a special
thank to Daniela Bargelli ; we also thank A. Dikovsky, S. Ferré and E. Garel.

References

1. Bargelli D. and Lambek J. : An algebraic approach to french sentence structure. In Philippe
de Groote, Glyn Morill, and Christian Retoré, editors, Logical aspects of computational
linguistics: 4th International Conference, LACL 2001, Le Croisic, France, June 2001,
volume 2099. Springer-Verlag, 2001.

2. Bargelli D. and Lambek J. : An algebraic approach to Turkish syntax and Morphology.
Linguistic Analysis 34(1-2)

3. Buszkowski, W. : Cut elimination for the lambek calculus of adjoints. In Abrusci, V.,
Casadio, C., eds.: New Perspectives in Logic and Formal Linguisitics, Proceedings Vth
ROMA Workshop, Bulzoni Editore (2001).

4. Béchet, D. : Parsing pregroup grammars and Lambek calculus using partial composition.
Studia logica 87(2/3) (2007).

5. Béchet, D., Dikovsky, A., Foret, A., Garel, E. : Optional and iterated types for pregroup
grammars. In: Proceedings of the 2nd International Conference on Language and Automata
Theory and Applications (LATA 2008), March 2008, Tarragona, Spain. Lecture Notes in
Computer Science (LNCS), Springer (2008) 88–100.

6. Cardinal. K. : An algebraic study of Japanese grammar. Master’s thesis, McGill University,
Montreal, 2002.

7. Casadio C. and Lambek J. : An algebraic analysis of clitic pronouns in italian. In Philippe de
Groote, Glyn Morill, and Christian Retoré, editors, Logical aspects of computational
linguistics: 4th International Conference, LACL 2001, Le Croisic, France, June 2001,
volume 2099. Springer-Verlag, 2001.

8. Degeilh, S., Preller, A. : E ciency of pregroup and the french noun phrase. Journal offfi
Language, Logic and Information 14(4) (2005) 423–444.

9. Dosen, K. : Cut Elimination in Categories. Kluwer Academic publishers, Dordrecht, Boston,
London (1999).

10. Ferré S. and Ridoux O. : An Introduction to Logical Information Systems. Information

D
ra
ft

Processing & Management 3(40): 383–419, 2004.

11. Foret, A. : Pregroup calculus as a logical functor. In: Proceedings of WOLLIC 2007. Volume
LNCS 4576., Springer (2007)

12. Lambek, J. : The mathematics of sentence structure. American Mathematical Monthly 65
(1958) 154–170.

13. Lambek, J. : Type grammars revisited. In Lecomte, A., Lamarche, F., Perrier, G., eds.:
Logical aspects of computational linguistics: Second International Conference, LACL ’97,
Nancy, France, September 22–24, 1997; selected papers. Volume 1582., Springer-Verlag
(1999).

14. Lambek. J. : Type grammar meets german word order. Theoretical Linguistics, 26:19–30,
2000.

15. Lambek J. : From word to sentence, a computational algebraic approach to grammar.
Polimetrica, Milan, 2008.

16. Lambek J. and Preller A. : An algebraic approach to the german noun phrase. Linguistic
Analysis, 31:3–4, 2003.

17. Oehrle, R. : A parsing algorithm for pregroup grammars. In Moortgat, M., Prince, V., eds.:
Proc. of Intern. Conf. on Categorial Grammars, Montpellier (2004).

18. Sadrzadeh. M. : Pregroup Analysis of Persian Sentences, in C. Casadio and J. Lambek
(Eds.), Recent Computational Algebraic Approaches to Morphology and Syntax,
Polimetrica, Milan, 2008.

19. Sagot, B., Clément, L., de la Clergerie, E., Boullier, P. : The lefff2 syntactic lexicon for
french: architecture, acquisition. In: LREC’06. (2006).

	A Pregroup Toolbox for Parsing and Building Grammars of Natural Languages
	Introduction
	Pregroups
	Pregroup Grammars
	Pregroup extended with iteration types

	Parsing using majority partial composition : PPQ
	Parsing with added cuts
	Grammar construction
	Conclusion
	Acknowledgements
	References

